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Black holes are a paradigm in physics nowadays and are expected to be hosted at the centers of galaxies.
Supermassive galactic black holes are not isolated, and their surroundings play crucial roles in many
observational features. The absorption and scattering of fields by isolated black holes have been vastly
studied, allowing the understanding of many phenomenological features. However, as far as we are aware,
a study of the influence of the presence of matter surrounding black holes in their planar wave scattering
and absorption spectrum is still lacking in the literature. This may be important in the analysis of, for
instance, the accretion of dark matter by black holes. We consider planar massless scalar waves incident
upon a Schwarzschild black hole surrounded by a thin spherical shell. We use the partial-wave method to
determine the absorption cross section and present a selection of numerical results. In the low-frequency
regime, we show that the absorption cross section is equal to the horizon area. At the high-frequency
regime, we show that the absorption cross section approaches the geodesic capture cross section.
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I. INTRODUCTION

In the year 2015, the Theory of General Relativity (GR)
reached 100 years of existence. In its centennial history, GR
has been submitted to many experimental tests [1,2] and
has obtained remarkable success in all of them. Among the
predictions of GR, black holes (BHs) arise as one of the
most curious and fascinating ones, due to the features
presented by these objects. Within GR, one can state (under
certain conditions) that in electrovacuum, isolated black
holes are governed by just three parameters [3]: mass,
charge, and angular momentum. In astrophysical environ-
ments, BHs are likely to be surrounded by a rich structure,
e.g., the accretion disks [4].
The surroundings of BHs have a major importance in

many of their observational features. Some gravitational
features considering matter surrounding BHs were studied
in the past years. Configurations known as dirty BHs were
considered to analyze the influence of environmental
matter around BHs [5]. In Ref. [6], a perturbative formula
to study quasinormal modes of BHs with surrounding
matter was proposed, where it was shown that the presence
of an environment can modify the quasinormal modes of
the BHs. More recently, in Ref. [7], the BH environment
influence in the gravitational wave phenomenology was
studied in a broad class of scenarios, some of them in which
the whole configuration resembles an isolated BH.
Additionally, in Ref. [8], Gürlebeck has argued that the
presence of matter surrounding a Schwarzschild BH has no
influence on the multipole moments of the distorted BH,
within generic assumptions on the matter.

The absorption and scattering of fields have been widely
investigated for isolated Schwarzschild [9–13], Reissner-
Nordström [14–20], Kerr [21–23], and regular BHs
[24,25], which helped to understand many of the BH
phenomenological features. Although planar wave scatter-
ing seems to be a very peculiar phenomenon, many
interesting outcomes may be analyzed through it, like
the accretion of dark matter by compact objects [26,27].
Also, planar wave absorption shares many features with the
accretion of a uniform velocity fluid into a BH [28].
Moreover, the scattering of light by BHs may cast a
shadow [29], that should be visible with near-future
telescopes.
A review on wave propagation, taking into account the

coupling with matter and fields, can be seen in Ref. [30].
However, the study of the gravitational backreaction of the
matter surrounding the BH in its absorption cross section is
still lacking in the literature. In this paper, we take a first
step in this line of investigation, analyzing the case of
Schwarzschild BHs surrounded by a thin spherical shell
[31], which we shall call dirty black holes (DBHs).
More specifically, we analyze the absorption cross section
of planar massless scalar waves impinging upon a
Schwarzschild BH surrounded by a thin shell of matter.
We also consider how the dirtiness of the BH can change
the absorption of null geodesics.
The remaining of this paper is organized as follows. In

Sec. II, we review some features of a Schwarzschild BH
surrounded by a thin spherical shell. In Sec. III, we
investigate the massless scalar field in the spacetime of
interest and the suitable boundary conditions for planar
wave scattering. In Sec. IV, we provide expressions for the
absorption cross section of a Schwarzschild BH with a thin
spherical shell, valid in the low- and high-frequency
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regimes, with emphasis on the geodesic analysis. In Sec. V,
we show a selection of our numerical results, considering
different possibilities for the shell position and for
the BH mass. We finalize pointing out some remarks
in Sec. VI. Throughout the paper, we use natural units
ðc ¼ G ¼ ℏ ¼ 1Þ. Latin indices at the beginning of the
alphabet ða; b;…Þ are related to the four-dimensional
spacetime metric.

II. BLACK HOLES WITH A SURROUNDING
THIN SPHERICAL SHELL

Spherically symmetric four-dimensional spacetimes can
be described by the following line element,

ds2 ¼ −AðrÞdt2 þ 1

BðrÞ dr
2 þ r2dΩ2; ð1Þ

where A and B are functions of the radial coordinate r only
and dΩ2 denotes the unit 2-sphere line element. We want to
describe the metric functions A and B corresponding to a
thin spherical shell constituted of a perfect fluid outside a
Schwarzschild BH. In GR, (isotropic) fluid configurations
are described by the Tolman-Opennheimer-Volkoff (TOV)
equations [32], i.e.,

dμ
dr

¼ 4πr2ρðrÞ; ð2Þ

dA
dr

¼ 2
μþ 4πr3p
r2 − 2rμ

A; ð3Þ

dp
dr

¼ −
μþ 4πr3p
rðr − 2μÞ ðpþ ρÞ; ð4Þ

where p and ρ are the pressure and density of the fluid,
respectively, and μ is the mass function, defined through

BðrÞ ¼ 1 −
2μ

r
: ð5Þ

The vacuum solutions (i.e., ρ ¼ p ¼ 0) of the TOV
equations are given by

A ¼ a1

�
1 −

2a2
r

�
ð6Þ

μ ¼ a2; ð7Þ

where a1 and a2 are constants. From Eq. (2), we can see that
a2 accounts for the total mass energy of the configuration,
within the radius r. Moreover, we note that the vacuum
solution can always be brought to its Schwarzschild form,
both inside and outside the spherical shell, by absorbing the
constant a1 in a time reparametrization [33,34]. However,

herewe choose to keep the constant a1 for the solution inside
the shell.
Let us restrict ourselves to the case of a thin spherical

shell surrounding a Schwarzschild BH [31]. Let RS denote
the radial position of the shell. We have that, for r > RS, the
metric function can be written in the Schwarzschild form

AðrÞ ¼ BðrÞ ¼ 1 −
2M
r

; ð8Þ

whereM is the Arnowitt–Deser–Misner mass. In the region
between the BH event horizon and the spherical shell, we
can see from Eqs. (5) and (7) that the constant a2 ¼ MBH is
the mass of the BH as measured by its horizon surface area.
We choose the remaining constant a1 such that AðrÞ is
continuous across the spherical shell. We have that

α≡ a1 ¼
ð1 − 2M=RSÞ

ð1 − 2MBH=RSÞ
: ð9Þ

Therefore, the full solution is given by

AðrÞ ¼
�
αð1 − 2MBH=rÞ; r < RS

ð1 − 2M=rÞ; r > RS
; ð10Þ

BðrÞ ¼
� ð1 − 2MBH=rÞ; r < RS

ð1 − 2M=rÞ; r > RS
: ð11Þ

Using the metric discontinuities, we can evaluate
the surface energy Σ and the surface tension Θ of the
spherical shell, which are obtained through the following
relations [35],

ffiffiffiffiffiffiffiffiffiffiffiffiffi
BðRSÞ

p
þ −

ffiffiffiffiffiffiffiffiffiffiffiffiffi
BðRSÞ

p
− ¼ −4πRSΣ; ð12Þ

"
A0ðRSÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
BðRSÞ

p
AðRSÞ

#
þ
−

"
A0ðRSÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
BðRSÞ

p
AðRSÞ

#
−

¼ 8πðΣ − 2ΘÞ;

ð13Þ

where the subscripts þ and − indicate the limit r → RS
from r > RS and r < RS, respectively. The prime denotes a
derivative with respect to the coordinate r. Using the metric
components (11), we find

Σ ¼ 1

4πRS

 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

2MBH

RS

s
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

2M
RS

s !
: ð14Þ

Moreover, using Eq. (13), the surface tension can be
written as
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Θ ¼ 1

16π

�
8πΣ −

�
A0ðRSÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
BðRSÞ

p
AðRSÞ

�
þ

þ
�
A0ðRSÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
BðRSÞ

p
AðRSÞ

�
−

�
: ð15Þ

Inserting Eqs. (10) and (11) in Eq. (15), we obtain

Θ ¼ 1

8πRS

 
1 − MBH

RSffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2MBH

RS

q −
1 − M

RSffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2M

RS

q
!
: ð16Þ

III. SCALAR FIELD

The massless scalar field Φ is described by the Klein-
Gordon equation, namely,

1ffiffiffiffiffiffi−gp ∂að
ffiffiffiffiffiffi
−g

p
gab∂bΦÞ ¼ 0: ð17Þ

Monochromatic scalar waves in spherically symmetric
spacetimes can be decomposed as

Φðt; r; θ;ϕÞ ¼
X
lm

UωlðrÞ
r

e−iωtYlmðθ;ϕÞ; ð18Þ

and, using Eq. (17), we obtain the following radial equation
for UωlðrÞ:
ffiffiffiffiffiffiffi
AB

p
ð
ffiffiffiffiffiffiffi
AB

p
U0

ωlÞ0 þ
�
ω2 − A

�
lðlþ 1Þ

r2
þ ðABÞ0

2Ar

��
Uωl ¼ 0:

ð19Þ

Introducing the Regge-Wheeler coordinate x, which can
be defined through

x≡
Z

dr
1ffiffiffiffiffiffiffi
AB

p ; ð20Þ

we can rewrite Eq. (19) in the form of an one-dimensional
Schrödinger-like equation, given by

�
−

d2

dx2
þ Vl − ω2

�
UωlðxÞ ¼ 0; ð21Þ

where VlðrÞ is the effective potential, namely,

VlðrÞ ¼ A

�
lðlþ 1Þ

r2
þ ðABÞ0

2Ar

�
: ð22Þ

We note, from Fig. 1 that at the event horizon rH ¼
2MBH the effective potential vanishes and goes as 1=r2 for
r ≫ rH. These characteristics of the potential are shared
with the case of an isolated Schwarzschild BH. However,

for DBHs the potential presents a discontinuity at the shell
radius, which is visible in Fig. 1.
The independent solutions of Eq. (21) are usually labeled

as in and up. For absorption and scattering, the ones of
interest will be the in modes, which denote purely ingoing
waves impinging from the past null infinity. The in modes
obey the following boundary conditions:

UωlðxÞ ∼
�
AωlRI þRωlRI

� ðx=M → ∞Þ;
T ωlRII ðx=M → −∞Þ: ð23Þ

The functions RI and RII can be written as

RI ¼ e−iωx
XN
j¼0

Aj
∞

rj
; ð24Þ

RII ¼ e−iωx
XN
j¼0

ðr − rHÞjAj
H; ð25Þ

and the coefficients Aj
∞ and Aj

H are obtained by requiring
the functions RI and RII to be solutions of the differential
equation (21), far from the BH and close to the event
horizon, respectively. The coefficients Rωl and T ωl in
Eq. (23) are related to the reflection and transmission
coefficients, respectively, and obey the following relation:

				Rωl

Aωl

				
2

¼ 1 −
				 T ωl

Aωl

				
2

: ð26Þ

In order to obtain the coefficients Rωl and T ωl, we
integrate the differential equation from the horizon up to a
point far from the configuration (BH with shell). In the
integration procedure, one must carefully choose the
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FIG. 1. The effective potential, VlðrÞ, plotted for the modes
l ¼ 0, 1. Here, we have chosen the shell radius RS ¼ 4.0M and
the BH mass MBH ¼ 0.9M. We see clearly the discontinuity of
the potential in each case with the help of the insets.
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boundary conditions at the spherical shell. We impose that
the scalar field is continuous at the shell location, i.e.,

UωlðRSÞþ ¼ UωlðRSÞ−: ð27Þ

Integrating the differential equation (19) across the shell
location r ¼ RS, we find the jump condition [7]:

h ffiffiffiffiffiffiffi
AB

p
U0

ωlðRSÞ
i
þ
−
h ffiffiffiffiffiffiffi

AB
p

U0
ωlðRSÞ

i
−

¼ UωlðRSÞ
RS


 ffiffiffiffiffiffiffi
AB

p
þ −

ffiffiffiffiffiffiffi
AB

p
−

�
: ð28Þ

Using the metric functions (10) and (11), the jump
condition can be rewritten as

�
1 −

2M
r

�
U0

ωlðRSÞþ −
ffiffiffi
α

p �
1 −

2MBH

r

�
U0

ωlðRSÞ−

¼ −2
ðM −MBHÞUωlðRSÞ

R2
Sð1þ 1=

ffiffiffi
α

p Þ : ð29Þ

In practice, one integrates the differential equation (19)
from very close to rH up to the spherical shell, using the
inner boundary condition, extracting UωlðRSÞ− and
U0

ωlðRSÞ−. With these values, we use the jump condition
to determine U0

ωlðRSÞþ and then integrate again the differ-
ential equation (19) from the shell to a point far away from
the configuration which corresponds to the numerical
infinity. The reflection and transmission coefficients can
be obtained by comparing the numerical solution with the
asymptotic forms (23).

IV. ABSORPTION CROSS SECTION

In this section, we show the procedure to compute the
absorption cross section for arbitrary frequencies, which
uses the solutions from the numerical integration scheme
described in Sec. III. We also show analytical approximate
results in the low- and high-frequency regimes.

A. Partial-waves approach

Using the standard partial-wave method [36], one can
show that the total absorption cross section σ of planar
massless scalar waves impinging on a Schwarzschild BH
surrounded by a spherical shell is given by

σ ¼
X∞
l¼0

σl; ð30Þ

with

σl ¼
π

ω2
ð2lþ 1Þ

				 T ωl

Aωl

				
2

ð31Þ

being the partial absorption cross section,1 where T ωl and
Aωl are the coefficients appearing in Eq. (23). This
expression is algebraically the same as the one for a
Schwarzschild BH without surrounding shells [9]. From
Eq. (31), we see that the main ingredient to determine the
absorption cross section for arbitrary frequencies is
jT ωl=Aωlj2, obtained using the procedure explained in
Sec. III.

B. Low-frequency regime

In order to determine the absorption cross section in the
low-frequency regime, we start writing the solution of
Eq. (19) for ω ¼ 0 in two regions, namely, for r < RS,

U−
0lðrÞ ¼ C−rPlðy−Þ þD−rQlðy−Þ; ð32Þ

and for r > RS

Uþ
0lðrÞ ¼ CþrPlðyþÞ þDþrQlðyþÞ; ð33Þ

where C−,D−, Cþ, andDþ are constants and Pl andQl are
the Legendre functions [37]. Also, we define

y− ≡ r
MBH

− 1; ð34Þ

and

yþ ≡ r
M

− 1: ð35Þ

The regularity of the wave function at the BH horizon
requires D− ¼ 0. We can find relations among the remain-
ing constants using the continuity of the scalar field at
the shell position (27) and the jump condition (29)
(cf. Appendix A).
At the spatial infinity r → ∞, the term proportional to

lðlþ 1Þ=r2 dominates the effective potential (22), so that
we can write the solution for Eq. (21) as

UωlðxÞ ≈ ωx½ð−iÞlþ1Aωlh
ð1Þ�
l ðωxÞ þ ðiÞlþ1Rωlh

ð1Þ
l ðωxÞ�;

ð36Þ

where hð1Þl is the spherical Hankel function of the first
kind [37].
If one considers the low-frequency regime ωx ≪ 1, it is

possible to rewrite Eq. (36) as

Uωl ≈ ð−iÞlþ1Aωl
ð2Þlþ1l!
ð2lþ 1Þ! ðrωÞ

lþ1; ð37Þ

where we have considered ωr ≈ ωx, for r → ∞.

1The partial absorption cross section, σl, corresponds to the
absorption cross section for a fixed value of l.
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We can rewrite Eq. (33) for r → ∞, by using the
following approximations:

PlðyþÞ ≈
2−lð2lÞ!ð rMÞl

ðl!Þ2 ð38Þ

and

QlðyþÞ ≈ −i
πð2l − 1Þ!!ð rMÞl

2l!
: ð39Þ

Inserting Eqs. (38) and (39) in Eq. (33), we obtain an
asymptotic expression which can be compared with
Eq. (37), and we find an expression for the constant C−

[cf. Eq. (A7)], which contains the dependence on the
frequency.
In the regime ωx ≪ 1, the radial solution near the event

horizon r ≈ rH behaves as [see Eq. (23)]

Uωl ≈ T ωl: ð40Þ

Using Eqs. (A1)–(A7) together with Eqs. (32) and (33), we
obtain a complete solution in the low-frequency regime. By
taking the limit r → rH in Eq. (32), we can compare the
resulting expression with Eq. (40), obtaining

T ωl

Aωl
≈ ð−iÞ4MBHωþOðωlþ1Þ; ð41Þ

where the linear term in the frequency is related to the
mode l ¼ 0.
We have that, for ω ≈ 0, combining Eq. (41) and

Eq. (31),

σlf ≈ σ0 ≈ 16πM2
BH ¼ 4πr2H; ð42Þ

which establishes that in the low-frequency regime only the
mode l ¼ 0 contributes to the absorption cross section.
Thus, the low-frequency regime of the absorption cross
section, σlf , is given by the area of the event horizon, in
agreement with the results for isolated spherically sym-
metric BHs [38].

C. Null geodesics: High-frequency regime

In the high-frequency limit, our absorption/scattering
problem can be reduced to the one of a stream of particles
propagating along null geodesics. Without loss of
generality, let us focus on null geodesics on the equatorial
plane of the spherically symmetric spacetime under
investigation. The Lagrangian associated to our problem
is given by

L ¼ 1

2

�
−A_t2 þ 1

B
_r2 þ r2 _ϕ

�
≡ 0; ð43Þ

where the overdot indicates a derivative with respect to the
affine parameter of the curve. From the Lagrangian (43),
we have the following conserved quantities:

E ¼ −
∂L
∂_t ¼ AðrÞ_t; ð44Þ

L ¼ ∂L
∂ _ϕ ¼ r2 _ϕ: ð45Þ

Therefore, Eq. (43) can be rewritten as

A
B
_r2 þ VhfðrÞ ¼ E2; ð46Þ

where

Vhf ≡ L2A=r2 ð47Þ

is the classical effective potential. When compared to an
isolated Schwarzschild BH, the effective potential Vhf has
some interesting new features. From Fig. 2, we can see that
the potential derivative is discontinuous at the shell’s
position. Moreover, depending on the shell’s location,
we can have two local maxima, which indicates the
existence of two unstable light rings (see the discussion
bellow).
Using Eq. (43), one can show that the radius of circular

null geodesics rl and the ratio Ll=El are given by2

rl ¼
2AðrlÞ
A0ðrlÞ

; ð48Þ

bl ≡ Ll

El
¼ rlAðrlÞ−1=2; ð49Þ

respectively. For an isolated Schwarzschild BH, bl is the
critical impact parameter for which a massless particle
coming from infinity ends up in an unstable circular orbit.
For b≡ L=E < bl, the particle gets absorbed by the black
hole, and for b > bl, the particle is scattered to infinity.
However, in the case of a DBH, as we shall see, the
situation is not that simple.
The presence of surrounding matter modifies the light

ring structure. For the case of the DBH described in Sec. II,
depending on the position of the spherical shell, we have
three possibilities, namely,

rl ¼
8<
:

3M; if RS < 3MBH;

3M and 3MBH; if 3MBH < RS < 3M;

3MBH; if RS > 3M:

ð50Þ

2The index l denotes quantities related to the light ring.
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Accordingly, we may have two different constants bl
associated to unstable circular orbits. Since we are inter-
ested in absorption/scattering properties, we shall be
concerned with the critical impact parameter. The critical
impact parameter bc is such that for b < bc the light rays
get captured by the BH. The only situation in which there
can be ambiguities is the case 3MBH < RS < 3M.3 For this
case, the critical impact parameter will be

bc ¼ minðblþ; bl−Þ; ð51Þ

where

blþ ¼ 3
ffiffiffi
3

p
M and bl− ¼ 3

ffiffiffi
3

p
MBH=

ffiffiffi
α

p ð52Þ

are related to the light rings at 3M and 3MBH, respectively.
This situation is illustrated in Fig. 3, where we have fixed
the shell radius at RS ¼ 2.8M and the BH relative mass to
MBH ¼ 0.9M. For this configuration, one can show that
bl− > blþ, so that we have bc ¼ blþ.
Following the above analysis, the capture cross section,

which corresponds to the high-frequency limit of the
absorption cross section, is given by

σgeo ¼ πb2c: ð53Þ

We shall explore in more details the three possibilities
described by Eq. (50). We can impose energy conditions to
the shell, and this shall naturally restrict the shell position.
In Appendix B, we show how the strong energy condition
(SEC) and dominant energy condition (DEC) impose a
minimum radius to the location of the shell. In Fig. 4, we
plot the lowest acceptable value for the shell position, rmin,
as a function of the BH mass, according to DEC and SEC,

and compare with 3MBH. Interestingly, DEC enables all
three cases listed in Eq. (50), while for SEC, we only have
two possibilities (those for which RS > 3MBH). We note
that rmin is always bigger than 2M, despite the energy
condition imposed, otherwise the whole configuration
would naturally collapse into an isolated Schwarzschild
BH with mass M.
We are interested in the effect of the spherical shell in the

capture/scattering of null geodesics. From Eq. (46), we
have that the geodesics can be described by

�
du
dϕ

�
2

−
B
b2A

þ Bu2 ¼ 0; ð54Þ

where we have defined u≡ r−1.
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FIG. 3. Null geodesics impinging from infinity with impact
parameters bl− and blþ. Here, we have chosen RS ¼ 2.8M and
MBH ¼ 0.9M. In this case, we have that the critical impact
parameter corresponds to blþ, since blþ < bl−, and the geodesic
with the impact parameter bl− is scattered to infinity
(dashed line). The dotted line represents the location of the shell
at RS.
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FIG. 4. The minimum value for the shell position, rmin,
according to SEC and DEC obtained through Eqs. (B10) and
(B12), respectively, as a function of the mass ratio MBH=M. For
SEC, the minimum value allowed for the shell position is always
larger than 3MBH. However, if one considers DEC, the shell can
be placed inside 3MBH for some values of MBH=M.
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FIG. 2. Effective potential Vhf, as a function of the radial
coordinate for some values of the shell radius. Here, we assume
MBH ¼ 0.8M.

3Examples of this situation are given by the plots for
RS=M ¼ 2.500 and 2.711, in Fig. 2.
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In order to illustrate the influence of the BH relative mass
in the geodesic motion, we shall analyze in details three
different geodesics with MBH=M ¼ 0.899, 0.900, and
0.901, for RS ¼ 2.900M and also for RS ¼ 4.000M. The
results are shown in Fig. 5, where we exhibit cases
for 3MBH < RS < 3M (RS ¼ 2.900M, left panel) and
RS > 3M (RS ¼ 4.000M, right panel). The impact param-
eter of the geodesics is chosen to be the critical one related
to the case MBH ¼ 0.9M. For a smaller value of MBH=M,
the geodesic is scattered to infinity (dashed line). For a
bigger mass ratio, the geodesic is captured by the BH
(dotted line). Within this high-frequency analysis, we
conclude that, for a fixed shell position RS, the larger
the ratio MBH=M is, the higher the chances are for a null
geodesic to be absorbed.
The position of the shell is also important in the geodesic

behavior. We survey its influence in the geodesic motion
analyzing six different geodesics for MBH ¼ 0.900M,
with RS=M ¼ 2.899, 2.900, 2.901, 3.990, 4.000, and

4.010. The results for these choices are shown in Fig. 6.
We have chosen the impact parameter to be the critical one
related to the unstable circular geodesic (dark solid line)
associated with the shell radius RS ¼ 2.900M (left panel)
and RS ¼ 4.000M (right panel). For a smaller shell radius,
the geodesic is captured by the BH (dotted line). For a
bigger shell radius, the geodesic is scattered to infinity
(dashed line). Therefore, for a fixed mass ratioMBH=M, the
smaller the shell radius is, more the configuration absorbs
null geodesics.
The above features can be confirmed by analyzing how

the critical impact parameter varies withRS andMBH=M. In
Fig. 7, we plot the critical impact parameter, according to
Eqs. (49)–(51), as a function of the BH relative mass, for
some values of the shell radius. As we can see, for a fixed
value of RS=M, the critical impact parameter increases as
the relative mass of the BH increases, up to a point in which
bl− ¼ blþ; then it equals blþ ¼ 3

ffiffiffi
3

p
M, regardless of the

value of the ratio MBH=M. Moreover, for a fixed value of
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MBH=M, the critical impact parameter increases as the
radius of the shell decreases. When the mass of the BH is
set to zero, we see that the critical impact parameter also
goes to zero. This is expected, since there would be no
absorption if there were no BH.
Another interesting feature arises when the thin spherical

shell is far away from the BH. When this happens, from the
null geodesics point of view, the whole system behaves
similarly to a single BH with a massMBH. This can be seen
directly from the metric function AðrÞ, since

AðrÞ ∼ 1 −
2MBH

r
þOðR−1

S Þ; ð55Þ

when RS ≫ MBH. This can be understood in terms of
the surface energy density of the spherical shell, which
decays quickly with its position [cf. Eq. (14)]. To illustrate
this, in Fig. 7, we also show the case RS ¼ 20M, for
which the critical impact parameter behaves almost as a
straight line bc ∼ 3

ffiffiffi
3

p
MBH, resembling that of an isolated

Schwarzschild BH (with mass MBH).

V. RESULTS

In this section, we present a selection of our numerical
results for the scalar absorption of a Schwarzschild BH
surrounded by a thin spherical shell of matter. As a general
behavior for mid-to-high frequencies, we note that the total
absorption cross section, similarly to the case of an isolated
Schwarzschild BH (ISBH), presents a regular oscillatory
pattern around its high-frequency limit.
In the left panel of Fig. 8, we show the total absorption

cross section for a fixed black hole relative mass
MBH ¼ 0.9M and different positions of the shell
RS=M ¼ 2.5, 2.9, and 4.0. As the frequency increases,
we note that the total absorption cross section increases
from the area of the BH event horizon, according to
Eq. (42), and then oscillates regularly around the high-
frequency limit given by the capture cross section of null
geodesics, according to Eq. (53), which is represented by a
horizontal line. When we keep the value of MBH=M fixed,
we see that the absorption decreases as the shell is
positioned further away from the BH. Furthermore,
in the right panel of Fig. 8, where we consider the value
of the shell position fixed at RS ¼ 4.0M and different BH
relative masses MBH=M ¼ 0.7, 0.8, and 0.9, we note
that the absorption increases as the mass ratio MBH=M
increases.
In Fig. 9, we show the results for the partial (σl, left

panel) and total (σ, right panel) absorption cross sections
for Schwarzschild BHs surrounded by a thin spherical shell
of matter and compare with the results for ISBHs. We see
that when the shell is located close to the BH, the values of
the cross sections for DBHs are similar to the ones for an
ISBH with massM. This is in agreement with the fact that,
when the shell is near to the BH, the whole system behaves
similarly to an isolated BH with massM. Also, we note that
for large values of the shell radius RS, the values of the
absorption cross sections for DBHs become closer to the
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results for an ISBH with mass MBH, in accordance with
Eq. (55).

VI. FINAL REMARKS

We have considered planar massless scalar waves
impinging upon a Schwarzschild BH surrounded by a thin
spherical shell and determined its absorption spectrum. Our
numerical results are in full agreement with the analytical
formulas obtained in the low- and high-frequency approx-
imations. In particular, for the low-frequency regime, we
have confirmed with our numerical results that the total
absorption cross section is given by the area of the BH
event horizon.
We have shown that for the same MBH=M ratio the

absorption is bigger when the shell is closer to the BH.
Moreover, for a fixed shell position, the absorption cross
section increases as the BH relative mass increases. Also,
when we compare the absorption of a DBH with an ISBH,
we have shown that, as the shell is placed further away from
the BH, the absorption cross section of the DBH tends to
the result of an ISBH with the same mass ratio MBH=M
of the BH inside the shell. This is in accordance with the
fact that as the shell is positioned further away from the BH
the presence of the shell becomes less relevant to the
absorption process. On the other hand, as we approximate
the shell to the BH, we note that the absorption becomes
similar to the case of an isolated BH with mass M equal to
the whole system (BH with shell) mass.
The results presented in this paper generically show that

the presence of matter around black holes can modify their
absorption properties. The modifications due to the sur-
rounding matter intensify for higher densities of the shell.

Moreover, the position of the shell also plays an important
role in the absorption properties.
Another interesting feature that arises due to the matter

surrounding the black hole is the appearance of a second
light ring. We have seen that the two light rings happen for
certain values of the mass and position of the thin shell. We
expect that other matter configurations would also present
two light rings, for instance, when considering thick shells.
Between the two light ring positions, there is a local
minimum of the potential, similar to the one that appears
in the case of gravastars [39]. In the thick shell case, this
minimum point can be related to the existence of a stable
light ring. Moreover, stable light rings can support long-
lived modes in the eikonal limit [40]. These long-lived
modes can source nonlinear instabilities, and therefore any
kind of exotic matter that allows the existence of such a
feature may eventually collapse to the BH, putting further
constraints on the matter surrounding BHs.
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APPENDIX A: COEFFICIENTS
OF EQS. (32) AND (33)

The coefficients appearing in Eq. (33) can be rewritten in
terms of the coefficient C−, as follows,

Cþ ¼ C−

2
64−Pl



RS
MBH

− 1
�


ηþ lðα − 1ÞQl



RS
M − 1

�
RS

�
þ βQl



RS
M − 1

�
τ

3
75; ðA1Þ
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FIG. 9. LEFT: Comparison between the partial absorption cross sections, σl, for DBHs and ISBHs, with l ¼ 0, 1, 2, 3, 4, and 5.
RIGHT: The total absorption cross sections for DBHs compared with the ones of ISBHs.
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and

Dþ ¼ C−

2
64Pl



RS
MBH

− 1
�


χ þ lðα − 1ÞPl



RS
M − 1

�
RS

�
− βPl



RS
M − 1

�
τ

3
75; ðA2Þ

where

η ¼ M

�
ð ffiffiffi

α
p þ l

ffiffiffi
α

p þ l − 1ÞQl

�
RS

M
− 1

�
þ ð ffiffiffi

α
p þ 1Þðlþ 1ÞQlþ1

�
RS

M
− 1

��
; ðA3Þ

χ ¼ M

�
ð ffiffiffi

α
p þ l

ffiffiffi
α

p þ l − 1ÞPl

�
RS

M
− 1

�
þ ð ffiffiffi

α
p þ 1Þðlþ 1ÞPlþ1

�
RS

M
− 1

��
; ðA4Þ

β ¼ ffiffiffi
α

p
MBH

�
ð− ffiffiffi

α
p þ l

ffiffiffi
α

p þ lþ 1ÞPl

�
RS

MBH
− 1

�
þ ð ffiffiffi

α
p þ 1Þðlþ 1ÞPlþ1

�
RS

MBH
− 1

��
; ðA5Þ

and

τ ¼ ð ffiffiffi
α

p þ 1ÞMðlþ 1Þ
�
Plþ1

�
RS

M
− 1

�
Ql

�
RS

M
− 1

�
− Pl

�
RS

M
− 1

�
Qlþ1

�
RS

M
− 1

��
: ðA6Þ

The comparison between Eqs. (37) and (33), rewritten with the aid of Eqs. (38) and (39), gives the following result for the
coefficient C−,

C− ¼ Aωl4
lþ1ωðl!Þ3ð−iMωÞlτ

ð2lþ 1Þ!½ϵ − βðπ2ll!ð2l − 1Þ!!PlðRS
M − 1Þ − 2ið2lÞ!QlðRS

M − 1ÞÞ� ; ðA7Þ

where

ϵ ¼ Pl

�
RS

MBH
− 1

��
π2ll!ð2l − 1Þ!!

�
χ þ lðα − 1ÞRSPl

�
RS

M
− 1

��
− 2ið2lÞ!

�
ηþ lðα − 1ÞRSQl

�
RS

M
− 1

���
: ðA8Þ

APPENDIX B: ENERGY CONDITIONS

Using the line element (1), it can be shown that the
nonzero components of the Einstein tensor Ga

b [41] are

Gt
t ¼ B0

r
þ B
r2

−
1

r2
; ðB1Þ

Gr
r ¼ BA0

rA
þ B
r2

−
1

r2
; ðB2Þ

Gθ
θ ¼ BA00

2A
þ A0B0

4A
−
BA02

4A2
þ BA0

2rA
þ B0

2r
; ðB3Þ

Gϕ
ϕ ¼ Gθ

θ: ðB4Þ

Recalling Einstein’s equations, Ga
b ¼ 8πTa

b, we note
that, from Eqs. (B1)–(B4), the associated energy-
momentum tensor Ta

b has only nonzero components for

a ¼ b. Therefore, the energy density is given by ρ ¼ −Tt
t,

and the pressures along a direction j are given by pj ¼ Tj
j.

Here, the index j refers to angular coordinates θ and ϕ, with
no implicit summation involved.
Imposing energy conditions, namely, the SECandDEC, to

the content of the massive shell surrounding a Schwarzschild
BH, which is composed of perfect fluid, we can obtain a
lower limit for the position of the shell, as follows.

1. Strong energy condition

Let us first examine the restriction to the position of
the shell following from the imposition of the SEC.
Introducing the quantity

Ua
b ¼ lim

ϵ→0þ

Z
Rsþϵ

Rs−ϵ
Ta

b ffiffiffiffiffiffi
grr

p
dr; ðB5Þ

it can be shown that the following relation holds,
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Ut
t þ Uj

j ≥ 0; ðB6Þ

with no implicit sum on j.
Thus, substituting Eq. (B1) into Eq. (B5), we are left

with

Ut
t ¼ −

1

8π
lim
ϵ→0þ

Z
RSþϵ

RS−ϵ

1ffiffiffiffi
B

p
�
B0

r

�
dr: ðB7Þ

Using Einstein’s equations and inserting Eq. (B1) in
Eq. (B5), we obtain

Ut
t ¼ −

1

4πRS

 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

2M
RS

s
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

2MBH

RS

s !
: ðB8Þ

Analogously, we find that

Uθ
θ ¼ 1

8πRS

 
1 − M

RSffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2M

RS

q −
1 − MBH

RSffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2MBH

RS

q
!
: ðB9Þ

Now, using Eq. (B6), with the aid of Eqs. (B8) and (B9),
we are left with

rSECmin ¼ 3

8


 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9M2 − 14MMBH þ 9M2

BH

q
þ 3M þ 3MBH

�
:

ðB10Þ

We note that when MBH ¼ M, which corresponds to an
ISBH, the minimum value for the shell position is
rSECmin ¼ 3MBH. From (B10), as shown in Fig. 4, if one
assumes the SEC, the shell is always placed outside
of 3MBH.

2. Dominant energy condition

We may carry out a similar analysis considering the
DEC. By doing that, we obtain

Ut
t − jUj

jj ≥ 0 ðB11Þ

for each j ¼ θ, ϕ (with no implicit summation involved).
Using Eq. (B11) together with Eqs. (B8) and (B9), it is

possible to show that the lowest value of RS, according to
the DEC, is given by

rDECmin ¼ 5

24


 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
25M2−46MMBHþ25MBH

q
þ5Mþ5MBH

�
:

ðB12Þ

Considering MBH ¼ M in Eq. (B12), the minimum value
for the shell position is rDECmin ¼ 5MBH=2. Assuming the
DEC, the minimum value for the shell position is always
smaller than the corresponding one related to the SEC, for
the same value of the ratio MBH=M (cf. Fig. 4).
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