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The possibility that a classical space-time and quantum matter cohabit at the deepest level, i.e., the
possibility of having a fundamental and not phenomenological semiclassical gravity, is often disregarded
for lack of a good candidate theory. The standard semiclassical theory suffers from fundamental
inconsistencies (e.g., Schrödinger cat sources, faster-than-light communication and violation of the Born
rule) which can only be ignored in simple typical situations. We harness the power of spontaneous
localization models, historically constructed to solve the measurement problem in quantum mechanics, to
build a consistent theory of (stochastic) semiclassical gravity in the Newtonian limit. Our model makes
quantitative and potentially testable predictions: we recover the Newtonian pair potential up to a short
distance cutoff (hence, we predict no one-particle self-interaction) and uncover an additional gravitational
decoherence term which depends on the specifics of the underlying spontaneous localization model
considered. We hint at a possible program to go past the Newtonian limit, towards a consistent general
relativistic semiclassical gravity.
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I. INTRODUCTION

Marrying quantum mechanics and gravity in the same
physical theory is an extremely difficult endeavor, yet one
that is desperately needed to understand the extreme
scenarios where space-time becomes so singular that
quantum effects should arise, e.g., in the early universe
and in black holes. Insuring the consistency and unity of
physics is another no less important motivation. Many
routes to quantum gravity, which aims at describing space-
time as emerging from quantum dynamical degrees of
freedom, have been explored [1]. These efforts have
yielded interesting results but, after nearly half a century
of hard work, none of them gave birth to an unanimously
accepted quantum theory of gravity.
But do we really need to quantize gravity? Could we not

imagine a dynamical classical curved space-time (in the
sense of relativistic but not quantized) with some quantum
matter in it? To build a complete semiclassical theory of
gravity, one needs to say how quantum matter, described by
state vectors jΨi in a Hilbert space, can source the curvature
of a classical space-time. The standard approach to semi-
classical gravity, due to Møller [2] and Rosenfeld [3], is to
use the quantum mechanical average to get a classical
quantity out of the energy-momentum operator T̂ab of
quantized matter:

Gab ¼ 8πGhΨjT̂abjΨi; ð1Þ

where Gab is the Einstein tensor. So far, this is the only
available model of backaction of quantized matter on a
classical space-time, indispensable to the description of our
cosmology, stars and black holes. When it is seen as an
approximate theory, and as it ignores quantum fluctuations
of T̂ab, it becomes incorrect if the quantum state jΨi codes
for large matter density fluctuations [4]. The semiclassiacal
theory possesses deep fundamental anomalies as well, the
most spectacular one being faster-than-light communica-
tion [5]. The standard semiclassical equation (1) is con-
sequently untenable as the building block of a fundamental
theory. One faces Mielnik’s deep-rooted alternative [6]:
either the gravitation is not classical or quantum mechan-
ics is not orthodox. We are going to explore the latter
option.
Interestingly, these anomalies already appear in the

Newtonian regime as they are of quantum and not of
relativistic nature. The defective prediction of the semi-
classical theory in the case of large quantum uncertainties
of T̂ab can be best understood in this simpler limit.
Consider the superposition jΨi ¼ jAi þ jBi of a massive
macroscopic object at two macroscopically different loca-
tions A and B. Such Schrödinger cat states yield an
intuitively and empirically incorrect source term in
Eq. (1) [4]. The other anomaly [5], too, turns out to be
basically quantum, i.e., essentially unrelated to relativity
and even to gravity. Having a quantum average hÂi in any
deterministic dynamics spoils the linearity of quantum
mechanics which allows faster-than-light communication
[7] and induces a break down of the statistical interpretation
(Born rule) [6,8].
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The objective of this article is to provide another way to
source gravity from quantum matter in the nonrelativistic
limit, free of the inconsistencies of the standard approach. It
turns out that all the previous anomalies can be dealt with
through the use of spontaneous collapse models, a class of
models initially aimed at solving the measurement problem
in quantum mechanics. Most spontaneous wave function
collapse models, see Sec. III, propose the addition of a
small nonlinear stochastic term in the Schrödinger
equation. This small term is responsible for the
dynamical collapse of macroscopic superpositions, i.e.,
the mechanism

jΨi ¼ jAi þ jBi ⇒ jAi or jBi ð2Þ

for macroscopic Schrödinger cat states, only at the price of
a negligible stochastic modification of the microscopic
dynamics. These nonrelativistic models are formally equiv-
alent to the standard time-continuous quantum measure-
ment (or monitoring) of the mass density operator ϱ̂ ¼ T̂00

at each point in space by hidden unsharp detectors. A
crucial interest of this interpretation is that it naturally
suggests to introduce the measured classical signal T00

(time-continuous equivalent of von Neumann measurement
outcomes), a now classical field which will be fluctuating
around the quantum average value:

T00 ¼ hT̂00i þ δT00; ð3Þ

where δT00 is the signal noise.
The following speculation, outlined already in [9–11], is

now tempting. Suppose we were able to construct a
relativistic model of spontaneous collapse, i.e., formally
monitoring the full energy-momentum tensor T̂ab. This
would be useful in two ways. First, the quantummonitoring
of T̂ab would suppress large quantum fluctuations of T̂ab,
removing in particular the large Schrödinger cat ambigu-
ities. Second, the random signal Tab ¼ hT̂abi þ δTab, when
used to source the Einstein-tensor,

Gab ¼ 8πGðhT̂abi þ δTabÞ; ð4Þ

would by construction respect the linear structure of
quantum mechanics. It would yield a backaction of
quantized matter on space-time free of the anomalies
of the deterministic semiclassical coupling (1). In terms
of quantum control, backaction would be realized by a
dynamical feedback conditioned on the signal.
Our objective with this theory of spontaneous-collapse-

based stochastic semiclassical gravity is not to construct
another approximate theory, more precise than the standard
semiclassical one, to an exact yet unknown theory of
quantum gravity. Rather, it is to propose a conceptually
healthier semiclassical theory which is not plagued by
foundational anomalies so it might in principle be the

ultimate theory of gravity plus quantized matter. In this
article, we will make this proposal precise and quantitative
only in the nonrelativistic sector. This is unfortunately
needed for lack of a good relativistic spontaneous locali-
zation model. However, as the anomalies of the standard
approach already show up in the Newtonian limit, showing
that they can be cured represents a first promising step.
The article is structured as follows. We first recall the

standard possible approaches to semiclassical gravity in the
Newtonian limit in Sec. II. We then give a short introduc-
tion to the spirit of spontaneous localization models and
explain how they can be harnessed in semiclassical gravity
in Sec. III. The core of our theory is then developed in
mathematical detail in Sec. IV, first for a general sponta-
neous localization model, then in more detail for the most
studied ones, mainly continuous spontaneous localization
(CSL) and Diósi-Penrose (DP) models. Eventually we
discuss some related works in Sec. V, and the main findings
and their interpretation in the last section.

II. CLASSICAL GRAVITY VS
QUANTIZED MATTER

Throughout all this article, we will consider N particles
of massm1;…mN evolving in three spatial dimensions. We
write Ĥ the many-body Hamiltonian (in the absence of
gravity), ρ̂ ¼ jΨihΨj the many-body pure state density
matrix, x̂n the position operator of the nth particle and we
use ℏ ¼ 1 through all sections but the Appendix.
In the nonrelativistic realm, where everything is techni-

cally easy, one can add gravity by a Newtonian pair
potential V̂G in the Schrödinger–von Neumann equation:

dρ̂
dt

¼ −i½Ĥ þ V̂G; ρ̂�; ð5Þ

with the gravitational pair potential:

V̂G ¼ −
G
2

Z
drds

ϱ̂ðrÞϱ̂ðsÞ
jr − sj ; ð6Þ

where the spatial mass density of pointlike constituents of
masses mn and locations x̂n is defined as1

ϱ̂ðrÞ ¼
X
n

mnδðr − x̂nÞ: ð7Þ

Equations (5)–(7) represent the standard nonrelativistic
many-body quantum theory of gravitating constituents
and do not use the concept of gravitational field. This
theory is free of any serious inconsistency (the infinite

1The results of our work are also valid for indistinguishable
particles provided one takes ϱ̂ðrÞ ¼ P

kmkâ
†
kðrÞâkðrÞ where

âkðrÞ and â†kðrÞ are the local annihilation and creation operators
of species of particle of mass mk.
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self-interaction energy has no dynamical consequence and
is easily renormalized out) but it is not a very good
candidate for a more general theory where the gravitational
field is expected to be an autonomous entity. Admittedly,
one can formally introduce the Newton field as a field
operator slaved to the matter density:

Φ̂ðrÞ ¼ −G
Z

ds
ϱ̂ðsÞ
jr − sj ; ð8Þ

but relating a classical gravitational field to this operator is
a delicate issue and a central task of the present work.
Alternatively, and keeping an eye on general relativity

where the gravitational field is a separate dynamical entity
interacting with matter, one studies matter-field interaction
instead of the pair potential V̂G. The nonrelativistic limit of
the standard semiclassical approach (1) amounts to take a
classical (i.e., not quantized) Newtonian potential ΦðrÞ
satisfying the Poisson equation with the quantum average
of the mass density operator as a source:

∇2ΦðrÞ ¼ 4πGhϱ̂ðrÞi; ð9Þ

yielding

ΦðrÞ ¼ −G
Z

ds
hϱ̂ðsÞi
jr − sj ð10Þ

which is a semiclassical counterpart of (8). In this setting,
the semiclassical Newton interaction can be introduced in
the following way:

V̂Gscl ¼
Z

drΦðrÞϱ̂ðrÞ; ð11Þ

and then be used in the von Neumann equation (5) in place
of the pair potential V̂G:

dρ̂
dt

¼ −i½Ĥ þ V̂Gscl; ρ̂�: ð12Þ

This equation, understood for pure states ρ̂ ¼ jΨihΨj, is
equivalent to the Schrödinger-Newton equation which has
been proposed earlier for the natural localization of
quantum massive objects [12,13]:

djΨi
dt

¼ −iðĤ þ V̂GsclÞjΨi: ð13Þ

This equation is the subject of intensive studies currently,
cf., e.g.: [14–18]. The most salient feature of the
Schrödinger-Newton equation is self-interaction: even
the single-body dynamics contains a gravitational self-
interaction term. Such a term would presumably not show
up in a (so far elusive) theory of quantum gravity [19] but

this does not discredit it a priori in the eventuality that
space-time is fundamentally classical.
However, and as natural as it may seem, the latter

standard semiclassical approach is plagued by foundational
problems. The most obvious one is that such a semi-
classical coupling means nonlinear deterministic quantum
mechanics and, as we mentioned earlier, this in itself leads
to fatal anomalies. The problem does not come from the
way the gravitational potential is introduced in the
Schrödinger–von Neumann equation, which is completely
standard, but from the very way it is sourced from quantum
matter. The failure of this specific version of semiclassical
gravity, at least when it is seen as a fundamental theory, is
often taken as a strong argument in favour of the quantiza-
tion of gravity. However, this only means that one of the
most naive couplings between classical gravity and quan-
tum matter does not do the trick. In the next section we
discuss a way to get a stochastic classical mass density ϱðrÞ
from continuous localization models. This will give us a
consistent source of the classical Newton field ΦðrÞ that we
will use in Sec. IV. As we shall see, the proposed theory
will solve the problems previously encountered and induce
the Newtonian pair potential from a classical gravitational
field without the inconsistencies arising from nonlinearity.

III. SPONTANEOUS LOCALIZATION MODELS

We now step back from gravity and review briefly a class
of models originally aimed at solving the measurement
problem in quantum mechanics. A particular class of
models, called spontaneous (or sometimes dynamical,
objective) collapse (or sometimes localization, reduction)
of the quantum state, describe the emergence of classical
macroscopic phenomena dynamically and without refer-
ence to the presence of observers. The standard unitary
evolution of the quantum state is modified by a universal
weak collapse mechanism irrelevant for microscopic
degrees of freedom but which suppresses macroscopically
large quantum uncertainties of the local mass densities.
Spontaneous collapse theories, spearheaded by Ghirardi,
Rimini, Weber (GRW) [20] and Pearle [21], are reviewed in
[22]. The emphasis on mass density was proposed by one
of the present authors [23,24].
We will focus on the continuous versions of these

models. They come in two main flavors, DP (for Diósi-
Penrose) [9,13,23–29] and CSL (for Continuous
Spontaneous Localization) [30,31]. Although they have
some differences we will discuss later, these models share
an important characteristic: their formalism can be inter-
preted as describing a quantum system subjected to a
continuous monitoring of its (smeared) mass density, i.e., of
the operators:

ϱ̂σðrÞ ¼
XN
n¼0

mngσðr − x̂nÞ: ð14Þ
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The function gσ is a normalized Gaussian of width σ and the
smearing is necessary to keep the theory finite [32]. In what
comes next we will generically define the smeared version
fσ of a field f in the following way: fσ ≡ gσ � f. The
analogy with continuous monitoring theory is only formal,
the equations are the same but the interpretation is
obviously different: in CSL and DP there is no detector
and the spontaneous localization is taken as a fundamental
fact of nature. The parallel is nevertheless extremely useful
because it insures the consistency of the formalism: as they
can be obtained from plain quantum theory, the equations
of spontaneous localization models are guaranteed to
preserve the statistical interpretation of the state vector.
In what follows, we will sometimes use a vocabulary from
continuous measurement theory (detectors, signal, etc.) but
the reader should keep in mind that we only use it as a way
to derive a consistent formalism, and not as if there were
some real observer continuously doing measurements in
nature.
We can illustrate this dual point of view on the example

of the signal. In continuous measurement theory, the signal
is the time-continuous version of a measurement outcome
and in the case we consider it reads:

ϱtðrÞ ¼ hϱ̂σit þ δϱtðrÞ; ð15Þ

where δϱtðrÞ is a white-noise in time with a potentially
nontrivial space correlator which we will specify later. In
CSL or DP, the same quantity ϱtðrÞ is formally a funda-
mental stochastic (classical) field of the theory which can
be taken as physical.2 In the following section, we will use
this field to source gravity. Why is this a better idea than
simply using the average hϱ̂σit as one would do in standard
semiclassical gravity? The answer is that the signal is
simply a measurement result, and modifying the sub-
sequent evolution of a quantum system based on a
measurement result is allowed in orthodox quantum theory!
Therefore, if we use the stochastic field ϱtðrÞ to source
gravity, formally as in a feedback scheme, we will get a
theory which, by construction, will be free of the anomalies
of standard semiclassical gravity.
In the next section we will apply this program and marry

spontaneous collapse with (Newtonian) semiclassical grav-
ity, first for a generic spontaneous collapse model and then
in more detail in the specific cases of CSL and DP.
Technically, we rely on the density matrix formalism
and stochastic master equations. Nevertheless everything
can be recast in the state vector formalism, with the
corresponding stochastic Schrödinger equations.

IV. SPONTANEOUS MONITORING OF MASS
DENSITY AND BACKACTION ON GRAVITY

A. General case

We now consider a general many-particle spontaneous
localization model which includes CSL and DP as specific
cases. Formally it is equivalent to the continuous monitor-
ing of the mass density by (hidden) detectors of spatial
resolution σ. The detectors are also possibly entangled,
which correlates their measurement outcomes. As we have
claimed in the previous section, the continuous equivalent
of a von Neumann measurement result, called the signal,
reads in this context:

ϱtðrÞ ¼ hϱ̂σit þ δϱtðrÞ; ð16Þ

where δϱtðrÞ is a spatially correlated white-noise (under-
stood with the Itô convention):

E½δϱtðrÞδϱτðsÞ� ¼ γ−1rs δðt − τÞ; ð17Þ

and γrs is a non-negative kernel which intuitively encodes
the correlation between the detectors at positions r and s
(see Fig. 1). The stochastic master equation (SME) pre-
scribing the dynamics of the system density matrix reads

dρ̂
dt

¼ −i½Ĥ; ρ̂� −
Z

drds
γrs
8
½ϱ̂σðrÞ; ½ϱ̂σðsÞ; ρ̂��

þ
Z

drds
γrs
2
H½ϱ̂σðrÞ�ρ̂δϱðsÞ; ð18Þ

where

FIG. 1. Intuitive representation of the detectors (here in 2D).
The locations of the detectors are represented by black dots on a
lattice for simplicity but the reader should imagine that they fill
space continuously (or that the lattice spacing is much smaller
than all the other length scales). The radius σ represents the
spatial resolution of a single detector and γrs codes for the
correlation of the outputs of a detector in r and one in s. Notice
that σ and γrs represent completely different physical quantities
and as such, they can be chosen independently.

2More precisely, the signal can be taken as the primitive
ontology [33–35] of CSL and DP, i.e., as the only local physical
stuff living in space, a point of view which was advocated in [27].
We shall not develop this idea in detail here but this is another
way to see why one would naturally want to use the signal to
source gravity.
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H½ϱ̂σðrÞ�ðρ̂Þ ¼ fϱ̂σðrÞ − hϱ̂σðrÞit; ρ̂tg: ð19Þ

The Eqs. (16)–(19) complete the specification of our many-
particle spontaneous localization model without gravity.
We give more mathematical details on the derivation of
these equations from continuous measurement theory in the
Appendix. In what follows, we will take them as given but
we can nevertheless give the reader a quick heuristic
understanding of the different terms. The deterministic
term with the double commutator in (18) implements the
decoherence induced by the coupling with the detectors and
tends to reduce the state purity and to make the density
matrix diagonal in the position basis of bulky objects. The
stochastic term implements the localization coming from
the conditioning on the measurement results: it drives the
density matrix towards localized states and exactly com-
pensate the purity loss induced by the decoherence term.
For a typical spontaneous localization model like CSL or
DP, these two terms are small in the sense that they have a
negligible impact on the dynamics of microscopic systems
but dominate for macroscopic systems which become well
localized in position.
We are now in the position to construct the backaction of

the quantized matter on the classical gravitational field.
Technically, we make the “monitored” value ϱtðrÞ (16) of
the matter density the source of the classical Newton
potential in the Poisson equation (9), instead of hϱ̂ðrÞi:

∇2ΦðrÞ ¼ 4πGϱðrÞ: ð20Þ

We should mention that this equation was already present
in [36] but the objective of the authors was very different:
their aim was to find a possible gravitational origin for the
white noise in spontaneous localization models, our objec-
tive is essentially opposite. The modified semiclassical
Newton potential then becomes stochastic and takes the
form:

ΦðrÞ ¼ −G
Z

ds
ϱðsÞ
jr − sj : ð21Þ

Inserting this field, we obtain the stochastic semiclassical
interaction V̂Gscl of the same form (11) as before only
with the small technical difference that we leave an option
of σ-smearing open:

V̂Gscl ¼
Z

drΦðrÞϱ̂ðσÞðrÞ

¼
Z

drϱðrÞΦ̂ðσÞðrÞ; ð22Þ

where ðσÞ denotes an optional convolution with gσ. As we
will see, this optional smearing will be necessary for DP to
avoid divergences but superfluous for CSL.

To introduce this potential into the evolution, we have to
be careful because of the multiplicative white noise (again
in the Itô convention). Technically, we introduce it as if it
were feedback, i.e., with the potential act an infinitesimal
amount of time after the “free” evolution given by Eq. (18):

ρ̂þ dρ̂ ¼ e−iV̂Gscldtðρ̂þ dρ̂freeÞeiV̂Gscldt: ð23Þ

More details on how to implement a generic feedback
scheme in continuous measurement theory are provided in
the Appendix. Expanding the exponential up to second
order then gives the SME for the complete evolution:

dρ̂
dt

¼ i

�
Ĥ þ V̂G;σ þ

Z
drδϱðrÞΦ̂ðσÞ; ρ̂

�

−
Z

drds

�
γrs
8
½ϱ̂σðrÞ; ½ϱ̂σðsÞ; ρ̂��

þ γ−1rs
2

½Φ̂ðσÞðrÞ; ½Φ̂ðσÞðsÞ; ρ̂��
�

þ
Z

drds
γrs
2
H½ϱ̂σðrÞ�ρ̂δϱðsÞ; ð24Þ

where the deterministic part of the backaction Hamiltonian
yields

V̂G;σ ¼
1

2

Z
drϱ̂σðrÞΦ̂ðσÞðrÞ: ð25Þ

This is a remarkable result—it is independent of the
strength γrs we assume for monitoring the mass density
ϱ̂σðrÞ. We can write it in the equivalent form:

V̂G;σ ¼ −
G
2

Z
drds

ϱ̂σðrÞϱ̂ðσÞðsÞ
jr − sj : ð26Þ

This is the Newton pair potential of the standard gravita-
tional interaction (6)—up to smearing of the mass density
around the pointlike constituents. Note that the semi-
classical self-interaction of individual constituents, one
of the characteristic features of deterministic standard
semiclassical gravity, has been canceled in our signal-
based stochastic semiclassical gravity. More precisely, self
interaction only shifts all the energies by a finite quantity
(diverging when σ → 0) and thus has no dynamical
consequence.
Let us summarize our model of stochastic semiclassical

gravity. The mass density ϱ̂σ is spontaneously monitored
yielding the signal ϱ (16) containing the white noise δϱ
(17), which is used to create the backaction on gravity. The
quantum state ρ̂ is evolved by the SME (24) which
implements the backaction of gravity. Monitoring leads
to local decoherence in ϱ̂σ . Gravitational backaction leads
to an additional local decoherence in Φ̂ðσÞ. Backaction
generates the standard Newton pair potential up to a
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microscopic smearing. The stochastic Hamiltonian term
directly corresponds to the backaction of the signal noise
δϱ. Eventually, the non-Hamiltonian stochastic term is
responsible for the time-continuous collapse, i.e., localiza-
tion in ϱ̂σ, preventing large quantum fluctuations of mass
density and Schrödinger cat sources in particular.

B. CSL: Continuous spontaneous localization

This is the simplest spontaneous localization model one
can think of. It is a bit ad hoc in the sense that it is
historically motivated only by the resolution of the meas-
urement problem and has two free parameters, unrelated to
gravity. It is on the other hand very simple. It is formally
equivalent to the continuous monitoring of the mass density
by independent (hidden) detectors; i.e., it uses a trivial
correlator:

γrs ¼ γδðr − sÞ: ð27Þ

The standard choice of GRW, which is compatible with
experiments carried out up to now, is to take a space
cutoff σ ∼ 10−5 cm and a strength parameter
γ ∼ ℏ2 × 1016 cm3 g−2 s−1. Other choices are possible,
see for example Adler [37], but combinations of signifi-
cantly larger γ and significantly smaller σ, yielding fast
spontaneous collapse, are excluded by experiments [38].
Let us recall, for completeness, the measured (moni-

tored) value (16) of ϱ̂σðrÞ:

ϱtðrÞ ¼ hϱ̂σðrÞit þ δϱtðrÞ; ð28Þ

where, according to (17) and (27):

E½δϱtðrÞδϱτðsÞ� ¼
1

γ
δðt − τÞδðr − sÞ: ð29Þ

In CSL it is possible to define the gravitational potential
(22) via the sharp density without getting infinities so we do
it for simplicity:

V̂Gscl ¼
Z

drΦðrÞϱ̂ðrÞ: ð30Þ

This yields the SME (24):

dρ̂
dt

¼ i

�
Ĥ þ V̂G;σ þ

Z
drδϱðrÞΦ̂; ρ̂

�

−
Z

dr

�
γ

8
½ϱ̂σðrÞ; ½ϱ̂σðrÞ; ρ̂�� þ

1

2γ
½Φ̂ðrÞ; ½Φ̂ðrÞ; ρ̂��

�

þ
Z

dr
γ

2
H½ϱ̂σðrÞ�ρ̂δϱðsÞ; ð31Þ

where the backaction Hamiltonian (25) takes the following
symmetric form:

V̂G;σ ¼ −
G
2

Z
drds

ϱ̂σ=
ffiffi
2

p ðrÞϱ̂σ= ffiffi
2

p ðsÞ
jr − sj : ð32Þ

The first decoherence term −
R
dr γ

8
½ϱ̂σðrÞ; ½ϱ̂σðrÞ; ρ̂�� is

already present in CSL so we will only discuss the second
one, D̂G½ρ̂� ¼ −

R
dr 1

2γ ½Φ̂ðrÞ; ½Φ̂ðrÞ; ρ̂��, introduced by the
backaction noise of the coupling with gravity. We consider
the case of a single particle of mass m and density matrix
ρðx; yÞ. It this case, the contribution of the backaction
decoherence to the dynamics of ρðx; yÞ can luckily be
computed explicitly:

DG½ρ̂�ðx; yÞ ¼ −
G2m2

8γ

Z
dr

�
1

jr − xj −
1

jr − yj
�

2

ρðx; yÞ

¼ −
πG2m2

2γ
jx − yjρðx; yÞ ð33Þ

So the backaction decoherence term simply damps the
phases of the density matrix proportionally with the
distance jx − yj separating the positions (in real space)
considered. This is to be contrasted with decoherence
coming from CSL’s ϱ̂σ-decoherence itself which increases
quadratically for short (jx − yj ≪ σ) and saturates for long
(jx − yj ≫ σ) distances. This means that depending on the
value of γ, either backaction decoherence dominates at
every scale or it dominates at very short and very long
distances. Backaction decoherence also globally increases
when the strength of collapse γ decreases and could give a
stringent lower bound on the collapse rate. This is funda-
mental because the only lower bounds currently available
for the collapse rate are of metaphysical origin [38]; i.e.,
one requires that the collapse model gives a philosophically
satisfactory description of the macroscopic world. The
coupling with gravity thus provides empirical constraints
on the lower bound although the details deserve additional
investigation.

C. DP—Gravity-related spontaneous collapse

This model was historically constructed in order to
reduce macroscopic quantum fluctuations of mass density
[23,23] and to solve the measurement problem with the
help of heuristic considerations involving gravity which we
will not develop here. It is equivalent with spontaneous
monitoring of ϱ̂σðrÞ by spatially correlated (hidden) detec-
tors. DP thus uses the slightly less trivial correlator:

γrs ¼ κG
1

jr − sj ; ð34Þ

where G is the gravitational constant. The obvious interest
of this form is that the constant κ is now a dimensionless
parameter which will be fixed to 2 soon by an additional
physical consideration. In DP, the localization strength is
thus tightly related to gravity right from the start and there
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is one less free parameter than in CSL.3 The more
complicated form of (34) will also help us get a more
symmetric SME in the end.
The inverse kernel is quasilocal:

γ−1rs ¼ −
1

4πκG
δðt − τÞ∇2δðr − sÞ: ð35Þ

Recall the measured (monitored) value (16) of ϱ̂σðrÞ, for
completeness:

ϱσ;tðrÞ ¼ hϱ̂σðrÞit þ δϱtðrÞ; ð36Þ

where, according to (17) and (35),

E½δϱtðrÞδϱτðsÞ� ¼ −
1

4πκG
δðt − τÞ∇2δðr − sÞ: ð37Þ

In DP we have to use the smeared density in (22) to avoid
divergences:

V̂Gscl ¼
Z

drΦðrÞϱ̂σðrÞ: ð38Þ

This yields the SME (24):

dρ̂
dt

¼ −i
�
Ĥ þ V̂G;σ þ

Z
drδϱðrÞΦ̂σ; ρ̂

�

−
κG
8

Z
drds
jr − sj ½ϱ̂σðrÞ; ½ϱ̂σðrÞ; ρ̂��

−
1

8πκG

Z
dr½∇Φ̂σðrÞ; ½∇Φ̂σðrÞ; ρ̂��

þ κG
2

Z
drds
jr − sjH½ϱ̂σðrÞ�ρ̂δϱðsÞ; ð39Þ

where the backaction Hamiltonian (25) takes the following
symmetric form:

V̂G;σ ¼ −
G
2

Z
drds

ϱ̂σðrÞϱ̂σðsÞ
jr − sj : ð40Þ

Observe that, due to the quasilocality of (35), the
backaction decoherence has become local in the Newton
acceleration field ∇Φσ. Interestingly, this structure coin-
cides with the typical nonlocal ϱ̂σ-decoherence term caused
by DP spontaneous collapses. The two decoherence terms
can be united into the following local form:

−
κG
8

Z
drds
jr − sj ½ϱ̂σðrÞ; ½ϱ̂σðrÞ; ρ̂��

−
1

8πκG

Z
dr½∇Φ̂σðrÞ; ½∇Φ̂σðrÞ; ρ̂��

¼ −
�
κ

4
þ 1

κ

�
1

8πG

Z
dr½∇Φ̂σðrÞ; ½∇Φ̂σðrÞ; ρ̂��: ð41Þ

If we now require that decoherence be minimal in the full
model of DP-based stochastic semiclassical gravity, which
seems to be a reasonable physical assumption, we get
κ ¼ 2. The ultimate local form of the SME (39) then reads

dρ̂
dt

¼ −i
�
Ĥ þ V̂G;σ þ

Z
drδϱðrÞΦ̂σ; ρ̂

�

−
1

8πG

Z
dr½∇Φ̂σðrÞ; ½∇Φ̂σðrÞ; ρ̂��

−
Z

drH½Φ̂σðrÞ�ρ̂δϱðrÞ; ð42Þ

where backaction has just doubled the decoherence term of
the initial DP model. Historically, this doubling had been
derived in [9] while [11] had canceled it by an ad hoc
mean-field ansatz.

V. RELATED APPROACHES

This work can be contrasted with earlier nonstandard
approaches to semiclassical gravity. A stochastic semi-
classical theory of gravity [40] (see also [41]) was proposed
a long time ago. The objective of the authors was to
phenomenologically relax the ignorance of the standard
source term hΨjT̂abjΨi with respect to quantum fluctua-
tions. In their model, the Einstein equation takes a
stochastic form similar to ours (4) but the stochastic noise
δTab is constructed to mimic the quantum fluctuations of
T̂ab and is not related to spontaneous monitoring. The
dynamics of the quantum state jΨi remains nonlinear on
each sample of the classical background space-time and
does not include any collapse mechanism. As a result, it
still suffers from the anomalies of the standard semi-
classical theory which are caused by the coupling to
hΨjT̂abjΨi. Similarly, even if the recent approach [42]
includes the GRW discrete spontaneous collapse mecha-
nism which suppresses macroscopic Schrödinger-cat states,
the author uses the average mass density to source the
gravitational field which pushes him to propose a statistical
interpretation different from the standard Born rule.
Recently, the Newtonian sector of semiclassical gravity

has been investigated with approaches bearing some
similarities with the present work. In [43], the authors
attack a slightly more specific problem and attempt to cure
the faster-than-light communication anomaly of the
Schrödinger-Newton equation (13). They supplement it
with an ad hoc nonlinear stochastic term. The modified

3There is however a difficulty to fix the spacial cutoff σ in a
way which is consistent with experiments [39]. In [26], one of the
present authors nevertheless supported the natural cutoff σ ∼
10−12 cm and worked out an SME to lift earlier conflicts with
experiments.
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dynamics leads, like ours does, to the unconditional DP
master equation which is free of the usual anomalies of
semiclassical gravity. Yet, interestingly, the semiclassical
coupling cancels out, without leaving the Newton pair
potential behind. This ad hoc stochastic semiclassical
gravity thus lacks a gravitational interaction. On the
contrary, in our approach, the analogue of the
Schrödinger-Newton equation (13) reads

djΨi
dt

¼ −iðĤ þ V̂G;σÞjΨi

−
1

8πG

Z
drð∇Φ̂σðrÞ − h∇Φ̂σðrÞiÞ2jΨi

− ð1þ iÞ
Z

drðΦ̂σðrÞ − hΦ̂σðrÞiÞδϱðrÞjΨi; ð43Þ

which can be obtained from (42) writing ρ̂ ¼ jΨihΨj. Note
that the semiclassical potential of (13) becomes a pair
potential in our version.
We should eventually mention the pioneering work of

Kafri et al. [44]. The authors formulate a theory concep-
tually similar to ours in a quantum communication context.
Classical (nonquantum) gravity between two objects is
interpreted as a classical measurement channel. In this
context, the word “classical” means the channel cannot
entangle the two separated objects. The two-body toy
model of [44] turns out to be a specific case of the
stochastic semiclassical gravity with the DP signal
(Sec. IV C) and anticipates its remarkable quantum infor-
mational features. The toy model operates at the noise
threshold where the Newton interaction cannot entangle the
two objects any more. How our theory satisfies this
informational condition of classicality in the general case
is an interesting subject for future work.

VI. SUMMARY AND OUTLOOK

In this article, we have shown how to source a classical
gravitational field from spontaneously localized quantum
particles. Using the fact that localization models are
formally equivalent to continuous quantum measurement
models, we have introduced a new quantity, the signal, and
promoted it to the status of physical source of the
gravitational field. In terms of quantum control, backaction
has been formally realized as a dynamical feedback based
on the signal. One of us argued earlier that the signal, i.e.,
quantum measurement outcome, is the only variable
tangible for control like feedback [45]. This fact gives a
justification for spontaneous collapse models as they seem
to be the only way to couple a quantum theory of matter
with a classical theory of space-time. Spontaneous locali-
zation models are seen by many as an ad hoc method to
solve the measurement problem. However, the fact that they
seem unavoidable for a classical-quantum coupling is one
of their less known yet remarkable feature.

Our model is mathematically tractable and makes some
precise and testable predictions. We have shown that it
gives rise to the expected Newtonian pair potential up to a
small correction at short distances coming from the spatial
cutoff of the underlying localization model. This pair
potential does not give rise to 1 particle self-interaction
which means that such a self interaction is not a necessary
consequence of semiclassical gravity as it is often believed.
Failing to see self-interaction in experiments [17,18] would
prove the failure of the Schrödinger-Newton equation, but
it would not imply the quantization of gravity. Additionally,
gravitational backaction introduces a new decoherence
term which depends strongly on the underlying localization
model chosen. In CSL, gravitational backaction adds a
decoherence term which increases linearly with distance,
has consequently no characteristic scale and is independent
on the microscopic details of the theory. This decoherence
term also globally increases when the collapse strength
decreases which makes low values of γ experimentally
falsifiable (and not only metaphysically unsatisfying). In
DP, the additional decoherence term takes the same form as
the original intrinsic decoherence which makes the final
equations very symmetric. In this case, the fact that
gravitational decoherence increases when the collapse
strength decreases allows us to find a global minimum
for decoherence which singles out the gravitational con-
stant G as the collapse strength.
Eventually, as it solves the inconsistencies of standard

semiclassical gravity in the Newtonian regime, our model
—or class of models—is a sound first step in the con-
struction of a full relativistic semiclassical theory of gravity.
In the relativistic realm, the covariant equation of back-
action should be given by the stochastic Einstein equa-
tion (4) with noise δTab. However even the basic principles
governing a theory of convariant continuous monitoring
are still problematic. Working with white noises (the
Markovian case), the only Lorentz covariant possibility
is the one with both temporally and spatially uncorrelated
noise, which leads to fatal divergences [46] once it is
coupled to local quantum fields. The divergences can be
eliminated through a covariant smearing depending on
hTabi [47], but such a nonlinear addition would be in
conflict with the aims of the present article. Another
possibility is to use colored noises right from start. Such
a non-Markovian field-theoretic formalism of monitoring
and feedback was laid down a long time ago [9]. In the
Markovian limit, it yielded–albeit in a different formalism–
exactly the theory presented in the Appendix and used
throughout the present article. However a serious difficulty
of this approach comes from the noninstantaneous avail-
ability of the non-Markovian signal [48–50]. Making our
model relativistic is thus not just a purely technical task and
many additional unexpected obstacles might be encoun-
tered in the way. In the worst case, if these hurdles cannot
be overcome, our model may still provide a consistent
phenomenology of the Newtonian setting. Hoping that
some of its features survive the generalisation, applications
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of this model to specific problems of physical interest could
be explored even if a fully consistent theory is still lacking.
In this spirit, applications to black-holes and cosmological
models of the early universe might be tractable and should
definitely be considered in the future.
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APPENDIX: THEORY OF MONITORING
AND FEEDBACK

1. Continuous monitoring

Time-continuous quantum measurement has a long
history [51–57], and has become part of standard quantum
physics. It has been reviewed, e.g., in [58–60]. One
possible way to understand continuous quantum measure-
ment is to see it as a limit of iterated unsharp measurements
of a given observable Â. Awell-defined continuous limit is
obtained when the successive measurements become infi-
nitely unsharp but infinitely frequent. Equivalently, con-
tinuous quantum measurement can be seen as describing
the interaction of a quantum system with a series of probes
which are subsequently subjected to a sharp von Neumann
measurement, the continuous limit is obtained when the
interaction time goes to zero while the interaction rate goes
to infinity [61,62] (see also [63] for another derivation).
We start with the simplest stochastic master equation

(SME) [53] which has become the convenient form of
most applications. The outcome of the time-continuous
measurement of the observable Â is the following time-
dependent signal:

At ¼ hÂit þ δAt: ðA1Þ

The noise is Gaussian with zero mean and correlation

E½δAtδAτ� ¼
1

γ
δðt − τÞ; ðA2Þ

where γ represents the strength of the continuous meas-
urement. In the formalism of continuous measurement
theory, multiplicative white-noises are usually understood
in the Itô sense. The evolution of the conditional state (i.e.,
conditioned on the signal At) is governed by the following
SME:

dρ̂t
dt

¼−
i
ℏ
½Ĥ; ρ̂t�−

γ

8ℏ2
½Â; ½Â; ρ̂t��þ

γ

2ℏ2
H½Â�ρ̂tδAt; ðA3Þ

where

H½Â�ρ̂t ¼ fÂ − hÂit; ρ̂tg ðA4Þ
is the standard notation of [60]. If the initial state is pure the
SME will preserve its purity, hence for pure states the SME
is equivalent to the corresponding stochastic Schrödinger
equation. On the other hand, if we average over the detector
outcomes (signal) then the average state satisfies simply the
master equation (ME) without noise:

dρ̂t
dt

¼ −
i
ℏ
½Ĥ; ρ̂t� −

γ

8ℏ2
½Â; ½Â; ρ̂t��: ðA5Þ

2. Feedback

The signal can then be used to control subsequent
evolution of the system via feedback. The simplest way,
called Markovian feedback, consists in applying a potential
proportional to the continuously measured value of Â, via
the time-dependent additional Hamiltonian:

V̂t ¼ AtB̂ ðA6Þ
where B̂ is another observable that can be chosen freely.
This scheme amounts to a further infinitesimal unitary
evolution expð−iV̂tdt=ℏÞ after the “free” evolution (A3) of
the conditional state [64,65]:

ρ̂t þ dρ̂t ⇒ e−iAtB̂dt=ℏðρ̂t þ dρ̂tÞeiAtB̂dt=ℏ ðA7Þ

where we identify dρ̂t by dρ̂t in (A3). Expanding the
exponential up to second order, inserting (A1) for At and
carefully using the Itô rule for the δAt-dependent terms
finally give the following SME for the complete evolution:

dρ̂
dt

¼ −
i
ℏ
½Ĥ þ δAB̂; ρ̂� − i

2ℏ
½B̂; fÂ; ρ̂g�

−
γ

8ℏ2
½Â; ½Â; ρ̂�� − 1

2γℏ2
½B̂; ½B̂; ρ̂��

þ γ

2ℏ2
H½Â�ρ̂δA ðA8Þ

Similarly to (A5), the unconditional ME can be obtained
from the above SME if we remove the noise terms
containing δA. As before, the ME is linear.

3. Generalization to multiple observables

Monitoring and feedback theory can be generalized to
the simultaneous monitoring of n observables Aν. In that
case there are n signals which satisfy the equation

Aν;t ¼ hÂνit þ δAν;t: ðA9Þ

In the general case, the detectors associated to different Âν’s
can have intrinsically correlated outputs (this corresponds

SOURCING SEMICLASSICAL GRAVITY FROM … PHYSICAL REVIEW D 93, 024026 (2016)

024026-9



to initially entangled probes in the repeated interaction
picture) so that the signal components can be correlated,

E½δAν;tδAμ;τ� ¼ ½γ−1�νμδðt − τÞ; ðA10Þ

where γ is a non-negative real matrix. The SME then reads

dρ̂
dt

¼−
i
ℏ
½Ĥ; ρ̂�− γνμ

8ℏ2
½Âν; ½Âμ; ρ̂��þ

γνμ
2ℏ2

H½Âν�ρ̂δAμ; ðA11Þ

where we use Einstein’s convention of summation on
repeated indices. Such an equation appeared in another
similar context in [63]. The feedback “potential” (A6) can
then be generalized as

V̂ ¼ AνB̂ν: ðA12Þ

The same steps as before yield the SME for the complete
evolution:

dρ̂
dt

¼ −
i
ℏ
½Ĥ þ δAνB̂μ; ρ̂� − −

i
2ℏ

½B̂ν; fÂν; ρ̂g�

−
γνμ
8ℏ2

½Âν; ½Âμ; ρ̂�� −
γ−1νμ
2ℏ2

½B̂ν; ½B̂μ; ρ̂��

þ γνμ
2ℏ2

H½Âν�ρ̂δAμ: ðA13Þ

As before, the unconditional ME can be obtained if we
remove the noise terms containing the δAν’s. Finally, we
note a possible rewriting when Âν ⊗ B̂ν ¼ B̂ν ⊗ Âν. In that
case, the second term on the rhs reduces to a Hamiltonian
one:

−
i
2ℏ

½B̂ν; fÂν; ρ̂g� ¼ −
i
4ℏ

½fÂν; B̂νg; ρ̂�: ðA14Þ

4. Dictionary

The previous results can be formally generalized to a
continuous set of observables. In that case, the indices μ
and ν become continuous variables r and s (in our case,
positions in R3), and the non-negative correlation matrix
γμν becomes a continuous kernel γrs. Finally, the dictionary
to go from the notations of the appendix to the continuous
setting of Sec. IV is

ν; μ ⇒ r; s

Âν; Aν; δAν ⇒ ϱ̂σðrÞ; ϱðrÞ; δϱðrÞ
γνμ ⇒ γrs

B̂ν ⇒ Φ̂ðσÞðrÞ: ðA15Þ
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