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We conjecture a novel generalized second law that can be applied in cosmology, regardless of whether
an event horizon is present: the generalized entropy increases monotonically outside of certain hyper-
surfaces we call past Q-screens. A past Q-screen is foliated by surfaces whose generalized entropy (sum of
area and entanglement entropy) is stationary along one future null direction and increasing along the other.
We prove that our generalized second law holds in spacetimes obeying the quantum focusing conjecture.
An analogous law applies to future Q-screens, which appear inside evaporating black holes and in
collapsing regions.
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I. INTRODUCTION

The thermodynamics of gravitating systems is a funda-
mental link between quantum phenomena and gravity. This
connection is manifest in various contexts (e.g. [1–4]),
suggesting that it is borne of an underlying principle of full
quantum gravity. Hawking’s classical area theorem [5], an
early indication of this connection, states that the area of a
black hole event horizon cannot decrease.
Hawking’s theorem holds in spacetimes obeying the null

curvature condition, Rabkakb ≥ 0 for any null vector ka.
This will be the case if the Einstein equations are obeyed
with a stress tensor satisfying the null energy condition
(NEC),

Tabkakb ≥ 0: ð1Þ
The NEC is satisfied by ordinary classical matter, but it is
violated by valid quantum states (e.g., in the standard
model). In particular, the NEC fails in a neighborhood of a
black hole horizon when Hawking radiation is emitted.
Indeed, the area of the event horizon of an evaporating
black hole decreases, violating the Hawking area law.
Bekenstein proposed that the area of an event horizon

should be interpreted as an entropy: SBH ≡ AEH=4Gℏ. He
further proposed the generalized second law of thermody-
namics (GSL) [1,6,7],

dSgen ≥ 0; ð2Þ

in which the Bekenstein-Hawking entropy SBH of black
holes is properly included in the total entropy budget:

Sgen ≡ Sout þ
AEH

4Gℏ
: ð3Þ

The quantity Sout is the von Neumann entropy of the matter
outside the black hole. With this generalization, when
matter disappears behind an event horizon, an increase in
horizon area can compensate for the loss of matter entropy.
Thus, the GSL can prevent what would otherwise be a
violation of the (ordinary) second law to an external
observer.
In light of the breakdown of the area theorem during

black hole evaporation, Bekenstein’s GSL can also be
viewed as the semiclassical extension of Hawking’s area
theorem. The GSL remains valid even when the NEC is
violated and the event horizon shrinks. This is because the
exterior entropy Sout is increased by the Hawking radiation,
more than compensating for the area loss [8].1 Proofs of the
GSL exist for nontrivial limiting regimes; see [10] for a
review and [11,12] for recent work.
The area theorem and the GSL are associated with the

event horizon, or more generally with causal horizons
such as the Rindler horizon of an accelerated observer. This
limits their applicability: not all observers accelerate
eternally, and not all spacetimes have an event horizon.
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1With unitary evolution, entropy cannot increase except under
coarse-graining. For recently formed black holes, Eq. (3) suffices
since the area term implicitly entails coarse-graining. At late
times, the radiation will be the larger system; if the evaporation
process is unitary then this era is not strictly in the semiclassical
regime [9]. Nevertheless, Eq. (2) continues to hold under coarse-
graining, in the same sense in which the ordinary second
law holds in the evaporation of an ordinary matter object in a
pure state.
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In particular, cosmological solutions (except for asymp-
totically de Sitter universes) do not have an event horizon.
No general formulation of a second law of thermody-

namics has been known in cosmology. In the absence of
asymptotic regions, the entire spacetime is highly dynami-
cal, so matter and entropy can freely move around. There
do not exist natural divisions into subsystems whose
entropy could be tracked. In a spatially homogeneous
universe, one could consider the comoving entropy density,
but this is an approximate notion. It has no fundamental
status, and its definition breaks down as density perturba-
tions grow strong.
Even if a causal horizon can be defined, its location is

“teleological”: it depends on the arbitrarily distant future.
Thus, the very notion of a black hole requires a certain
asymptotic structure of spacetime and is not rigorously
defined in cosmology.
Since the above limitations stem from the event horizon’s

dependence on the asymptotic boundary, it would be
desirable to identify a more local alternative to the event
horizon: a geometric object that satisfies some area law or
GSL, but which is rigorously defined in general spacetimes
without reference to an asymptotic region.
Holographic screens [13] are quasilocally defined, and

can be constructed in general cosmological solutions. (See
[14,15] for pioneering work on a more restrictive class of
quasilocal horizons.) Moreover, we recently proved that
future (or past) holographic screens obey an area theorem
[16,17], assuming the NEC holds. Thus, they satisfy the
criteria outlined above: for a black hole, the holographic
screen shares key properties with the event horizon. But
holographic screens require no asymptotic structure and
exist in more general settings. Moreover, our proof dem-
onstrated that a holographic screen is uniquely associated
with each choice of null foliation; it can be constructed
simply by maximizing the area on each null slice.
In this paper, we turn to the semiclassical case, where

the NEC need not hold. Our area theorem, like Hawking’s,
may fail in this case. We consider the question of whether
holographic screens satisfy a generalized second law
instead. We define the notion of a Q-screen, a quantum
corrected holographic screen. A Q-screen H is a hyper-
surface foliated by spatial surfaces σðrÞ. Each σðrÞ extrem-
izes the generalized entropy, under variations along a
null hypersurface NðrÞ orthogonal to it. A Q-screen is
called past (or future) if the generalized entropy increases
(or decreases) along the opposite null direction orthogonal
to σ.
We conjecture that any past or future Q-screen satisfies a

novel generalized second law: the generalized entropy
along the Q-screen increases monotonically. Assuming
the quantum focusing conjecture (QFC) [18] (a quantum
extension of the Bousso bound), we show that a Q-screen is
again uniquely associated with any null foliation of the
spacetime; this in turn implies that our novel GSL holds.

A. Outline

In Sec. II, we follow Bekenstein’s step of replacing area
with generalized entropy in appropriate definitions and
statements. First, this modifies the notion of holographic
screen by a quantum correction, leading to our definition of
Q-screens. Second, the statement that the area increases
along a past holographic screen becomes our conjecture
of a novel generalized second law: the generalized
entropy increases monotonically outside of a past Q-screen.
We believe that this is the first thermodynamic law that
applies in arbitrary spacetimes, and in particular in cos-
mology. We also conjecture that the generalized entropy
outside of future Q-screens increases monotonically (but
toward the past).
In Sec. III, we consider some examples. In Sec. III A, we

show that the classical area law for holographic screens
fails for an evaporating black hole. We construct a Q-
screen, and we verify that it satisfies the new GSL, due to
the contribution of the Hawking radiation to Sout. In
Sec. III B we construct a Q-screen in cosmology. We find
that the new GSL is satisfied, because the area increase
greatly dominates over any changes in entropy (much as
Bekenstein’s GSL tends to be comfortably satisfied when
matter enters a black hole).
In Sec. IV, we show that our GSL follows from the

recently proposed quantum focusing conjecture (QFC)
[18]. The QFC itself has not been proven generally, but
no counterexamples are known. Moreover, the QFC is
plausible in that it unifies several nontrivial statements
for which proofs do exist, such as Bekenstein’s GSL in
certain regimes [11,12], the Bousso bound in the hydro-
dynamic regime [19–21], and the quantum null energy
condition [22].
Throughout this paper, we work in (3þ 1)-dimensions;

the generalization to higher dimensions is trivial. A hyper-
surface has codimension 1 in the spacetime; by surface we
always mean a codimension 2 spatial surface (except in the
term Cauchy surface, which as usual refers to an achronal
hypersurface).

B. Discussion

Our GSL extends a central notion of thermodynamics to
general spacetimes, particularly to cosmological settings. It
adds another link to what appears to be a rich interplay
between geometry, energy, and quantum information (e.g.
[3,12,13,18,19,22–29]). This web of relations must origi-
nate with the emergence of classical spacetime from an
underlying quantum gravity theory—an expectation largely
borne out in the main example we have of such a theory, the
AdS/CFT correspondence [4,30–33]). A broadened under-
standing of the second law may yield insights on how to
construct a quantum gravity theory for more realistic
spacetimes.
We were led to our conjecture as a natural generalization

of the area law for holographic screens [16], which we
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recently identified and proved. But as far as we can see,
neither our area law nor our GSL is “necessary” in the
same sense as their analogues for event horizons were:
Hawking’s area law (in hindsight) encodes the second law
for purely gravitational systems, and Bekenstein’s GSL
preserves the second law when both matter and black holes
are present. By contrast, it is not clear which “ordinary
second law” (or other well-established principle) would be
violated if we failed to consider the generalized entropy
outside Q-screens.
There may not be a good answer to this question, short of

a full quantum gravity theory. This is similar to the
difference between entropy bounds that apply strictly to
black hole horizons (and which are thus suggested by the
GSL), and the more general entropy bounds that appear to
hold far more broadly [3,13,18], for no reason discernible
in an existing framework.
The Bousso bound does single out holographic screens,

drawing attention to these particular hypersurfaces and
leading us to their further study. Similarly, the QFC singles
out Q-screens as preferred hypersurfaces in the spacetime.
Let us discuss this in more detail.

C. Relation to the Bousso bound and the QFC

The Bousso bound provides a notion of entropy asso-
ciated to the area of an arbitrary surface σ. The area of σ
yields a bound on the entropy of its lightsheets, null
surfaces generated by nonexpanding light-rays orthogonal
to σ:

Slightsheet ≤
Aσ

4Gℏ
: ð4Þ

Any surface has four null congruences emanating from it
(future-outwards, future-inwards, past-outwards, and past-
inwards). At least two of these must be lightsheets (see e.g.
Fig. 1 of [3]).
For example, the event horizon of a classical black hole

to the past of any cross-section σ is a lightsheet of σ. In this
special case, the Bousso bound implies that the area of the
horizon more than compensates for the matter entropy that
entered the black hole prior to σ, consistent with the GSL.
The Bousso bound in particular distinguishes marginal

surfaces: σ is marginal if one of its orthogonal null
congruences has locally vanishing expansion θ ¼ 0 every-
where. In other words, σ locally extremizes the area on a
null hypersurface N orthogonal to it. Therefore one can
regard N as the union of two valid lightsheets. By the
Bousso bound, the area of σ bounds the entropy on an
entire null slice N.
Given a null foliation, one can find the surface σðrÞ of

maximal area on each null sliceNðrÞ. The union of the σðrÞ
forms a hypersurface H ¼ ⋃σðrÞ (not necessarily of definite
signature), termed a holographic screen hypersurface in
[13]. The Bousso bound implies that at every time r, all the

information about the null slice NðrÞ can be stored on the
surface σðrÞ, at a density of no more than one bit per Planck
area. This construction makes concrete earlier speculations
that the world is like a hologram [24,25,34]. Our recent area
theorem applies to holographic screen hypersurfacesH that
are subject to an additional refinement, analogous to the
distinction between past and future event horizons [16,17].
The QFC is a quantum generalization of the Bousso

bound, which reduces to it when matter systems are well-
isolated on the lightsheet, or when the entropy can be treated
in a hydrodynamic approximation. It is based on a quantum
generalization of the notion of expansion, defined using the
generalized entropy rather than the area of surfaces. All
relevant definitions will be presented in the main text.
Under the QFC, a surface σ that maximizes the gener-

alized entropy outside a null slice N is a preferred cross-
section of N. The union of such surfaces σðrÞ over a null
foliation NðrÞ defines a quantum-corrected holographic
screen H ¼ ⋃σðrÞ, which we call Q-screen. Our GSL
conjecture states that the entropy outside any past or future
Q-screen is monotonic in r.

II. GENERALIZED SECOND LAW
FOR Q-SCREENS

In this section, we state our conjecture. We will begin by
reviewing two important quantities that can be associated
with a surface, given minimal additional structure: the
generalized entropy, Sgen, and the quantum expansion, Θ.
A quantum marginal surface, σ, has vanishing quantum
expansion in one null direction. If the quantum expansion
in the other null direction has definite sign, then σ is said to
be marginally quantum trapped or antitrapped.
Quantum marginal surfaces combine to form aQ-screen,

a 3-dimensional hypersurface that need not have definite
signature. A Q-screen is called future (past) if its constitu-
ent marginal surfaces are in addition marginally quantum
(anti)trapped. We conjecture that the generalized entropy
outside a future or past Q-screen always increases.

A. Generalized entropy and quantum expansion

We will begin by extending [18,27,35,36] the notion of
generalized entropy to surfaces that need not lie on an event
horizon. We consider a globally hyperbolic spacetime
(which may be extendible to one that is not: e.g., a domain
of dependence in asymptotically anti-de Sitter space). Let σ
be a spacelike surface that splits a Cauchy surface Σ into
two portions; see Fig. 1. We may choose either side of σ
arbitrarily and refer to this portion of Σ as Σout.
Definition II.1. The generalized entropy is the area of σ

(in Planck units), plus the von Neumann entropy of the
quantum state on Σout:

Sgen ≡ Sout þ
A

4Gℏ
þ counterterms; ð5Þ
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where

Sout ¼ −trρout log ρout; ð6Þ

and the reduced density operator ρout is the restriction of the
global quantum state ρ to Σout:

ρout ¼ tr¬outρ; ð7Þ

where the trace is taken over the field theory degrees of
freedom in the complement of Σout on Σ.
The von Neumann entropy Sout diverges in regular global

states. For example, the entanglement of short-distance
degrees of freedom across σ in the vacuum contributes a
divergence proportional to the area of σ in units of the short
distance cutoff [37–39]. There is compelling evidence that
this divergence is cancelled by a renormalization of
Newton’s constant in the area term [40–42]. From this
viewpoint, the Bekenstein-Hawking entropy is the first in a
series of counterterms. Subleading divergences are can-
celed by other geometric counterterms [43,44] which can
be thought of as higher-curvature corrections to the area
term [45–48]. A review of these arguments and further
references can be found in the Appendix of Ref. [18].
Below we will assume that Sgen is indeed finite and
independent of the UV cutoff.
Generalized entropy was originally defined for the case

where σ is a cross-section of a black hole event horizon [1].
In this case one takes Σout to be the exterior of the black
hole. The GSL as formulated by Bekenstein is the state-
ment that Sgen cannot decrease under forward time evolu-
tion of Σ along the event horizon.
We now turn to defining the quantum expansion. There

are four families of light-rays emanating orthogonally
from the surface σ: future-outward, future-inward, past-
outward, and past-inward. Consider one one of these four
families, with tangent vector ka; and consider one of its
light-rays, emanating from the point y1 ∈ σ. Then deform
σ in a neighborhood of y1, with infinitesimal area A, by
an infinitesimal affine distance λ along the light-ray; see
Fig. 1. This yields a new surface with generalized
entropy S0gen (computed with respect to the same side
as Σout).
Definition II.2. The quantum expansion is given by

Θk½σ; y1�≡ lim
A→0

4Gℏ
A

dSgen
dλ

����
y1

: ð8Þ

In other words, the quantum expansion is the rate of
change, per unit area, of the generalized entropy under
deformations of σ along an orthogonal light-ray. For further
details, and an equivalent definition in terms of a functional
derivative, see Ref. [18].

B. Quantum marginal surfaces and Q-screens

We now require in addition that σ be compact and
connected. The following definitions follow [27]; they
reduce to more familiar classical definitions under the
substitution Θ → θ.
Definition II.3. Let σ be a compact, connected surface

that splits a Cauchy surface into two portions. If one of its
orthogonal null congruences, say in the ka direction, has
vanishing quantum expansion everywhere on σ, we call σ a
quantum marginal surface.
Definition II.4. A Q-screen2 H is a smooth hypersur-

face admitting a foliation by quantum marginal surfaces
called leaves.
The foliation structure implies that we can think of any

screen H as a one-parameter family of marginal surfaces
σðrÞ, with the (nonunique) parameter r taking values in an
open interval. Moreover, this defines a nowhere vanishing
vector field ha on H, which is tangent to H and normal to
its leaves. For a given choice of foliation parameter, the
normalization of h can be fixed by choosing
hðrÞ ¼ haðdrÞa ¼ 1, and h can be uniquely decomposed
into the null normals k and l:

ha ¼ αla þ βka: ð9Þ

It will be convenient to impose a number of weak
technical conditions on H:
Definition II.5. A Q-screen H is regular if

(a) the quantum generic condition is met: for any leaf σ,
the quantum expansion Θk at the null geodesic
intersecting σ at y1 does not continue to vanish when
σ is infinitesimally deformed along the null generator
emanating from y2 along the ka direction, for any y2 ∈
σ (including y2 ¼ y1).

(b) the second generic condition holds: letHþ,H−,H0 be
the set of points in H with, respectively, α > 0, α < 0,
and α ¼ 0. Then H0 ¼ _H− ¼ _Hþ.

FIG. 1. The generalized entropy Sgen is the area A (in Planck
units) of a surface that splits a Cauchy surface, plus the von
Neumann entropy Sout of the quantum fields on one side Σout. The
quantum expansion Θk is the rate at which Sgen changes as the
splitting surface is varied in the orthogonal null direction ka.

2We thank Z. Fisher for suggesting this term.
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(c) every inextendible portion Hi ⊂ H with definite sign
of α either contains a complete leaf, or is entirely
timelike.

Thus, a regular Q-screen contains at least one complete
leaf with definite sign of α. By shifting r we can take this
leaf to be at r ¼ 0. Moreover, the second generic condition
implies that if a screen contains any point p with α ¼ 0,
then an open neighborhood of p contains points with both
α > 0 and α < 0. Note that this is indeed generic.

C. Past and future Q-screens

Given a quantum marginal surface σ, we now consider
the quantum expansion Θl in the opposite null direction.
For example, if σ is quantum marginal in the future-
outgoing direction, Θk ¼ 0, we consider the future-ingoing
light-rays orthogonal to σ, with quantum expansion Θl. In
general Θl need not have uniform sign everywhere on σ.
Definition II.6. If Θl < 0 ðΘl > 0Þ everywhere on the

quantum marginal surface σ, we call σ marginally quantum
(anti)trapped.
Definition II.7. A future Q-screen H is a smooth

hypersurface admitting a foliation by marginally quantum
trapped surfaces called leaves. Similarly, a past Q-screen is
a smooth hypersurface foliated by marginally quantum
antitrapped leaves.
Recall that α has definite sign on the leaf σð0Þ of a

regular Q-screen, by our earlier convention. For a future
(past) Q-screen we shall use the additional convention that
α < 0 (α > 0) on σð0Þ, which can be implemented by
setting r → −r as needed.

D. New generalized second law

Conjecture II.8. Let H be a regular past or future Q-
screen, with foliation σðrÞ. Then the generalized entropy
SgenðrÞ≡ Sgen½σðrÞ� strictly increases along the foliation:

dSgen
dr

> 0: ð10Þ

In fact, we conjecture more strongly that the following
geometric properties are obeyed by any regular Q-screen
(which need not be past or future):

(i) α cannot change sign anywhere on H.
(ii) The null hypersurface generated by the ka

congruence orthogonal to any leaf σ intersects H
only on σ.

As we shall see in Sec. IV (see Remark IV.4 and
Corollary IV.5), these two statements are equivalent, and
each implies the GSL for past and future Q-screens,
Conjecture II.8.

III. EXAMPLES

In this section, we consider two examples: one future Q-
screen and one past Q-screen. We verify explicitly that they
satisfy the new GSL we have proposed.

A. Evaporating black hole

Consider a Schwarzschild black hole formed by the
collapse of a spherically symmetric dust cloud. Figure 2
shows the resulting geometry, both with and without
Hawking radiation taken into account.3 It is instructive
to study first the classical holographic screen, in both of
these spacetimes. We will then turn to the Q-screen and
verify the new GSL.
Let ρ be the radial variable usually called r (reserved here

for the screen parameter), such that a sphere with

FIG. 2. Black hole formed by dust col-
lapse. The thin green lines are future light
cones which form a null foliation of the
spacetime. (a) No Hawking radiation. A dot
indicates the marginal surface on each light
cone. The area of the classical holographic
screen increases towards the exterior and
past (arrow). (b) Hawking radiation in-
cluded. A solid (hollow) dot marks the
quantum marginal (marginal) surface(s)
on each light cone. The classical screen
(short dashed) now lies outside the event
horizon (long dashed) during evaporation.A
future Q-screen lies inside the black hole. Its
area decreases during evaporation. But due
to the production of Hawking radiation, the
generalized entropy outside the Q-screen
increases monotonically, as demanded by
our conjecture.

3In the case without evaporation, we take a small, exponen-
tially decreasing density of dust to fall in at all times so as to
satisfy the classical generic condition of [16]. In the evaporating
case, the quantum generic condition can be satisfied simply by
not including any infalling matter at late times.
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coordinate radius ρ has proper area 4πρ2. The event horizon
is at ρ ¼ R; in the evaporating case, R is time-dependent.

1. Classical holographic screen

The classical holographic screen is constructed by
finding spheres of stationary area (θk ¼ 0) on each
of a sequence of future light cones centered at ρ ¼ 0
[see Fig. 2]. In a classical black hole geometry without
evaporation, the screen is contained entirely inside the
black hole, because outside the black hole the area of
outgoing future light cones grows without bound. (More
generally, this follows because the first generic condition of
[17] guarantees the existence of a trapped sphere near the
sphere of maximal area; and this implies a singularity
further along the light cone by Penrose’s theorem [49].)
This is a future holographic screen: the expansion in the

nonmarginal direction is strictly negative everywhere on
each of its leaves. Our classical results [17] imply that the
screen evolves everywhere to its own past or exterior and
that the area grows monotonically under this evolution. In
Fig. 2 one can verify this behavior.
Now consider a different geometry that includes back-

reaction from the Hawking radiation, shown in Fig. 2(b).
The event horizon grows during the collapse and then
shrinks during evaporation. By continuity, sufficiently
nearby future light cones just inside or outside the black
hole, too, will have a surface that locally maximizes the
area. Therefore, the classical holographic screen will
extend outside of the event horizon. Now consider a future
light cone just barely outside the black hole horizon. Its
area grows until it is focused by the collapsing matter; then
it shrinks along with the event horizon during a phase when
they are formally less than one Planck distance apart. But
any light cone that lies outside the horizon will get out to
future null infinity, where the area diverges. Therefore the
light cone area must have a local minimum during
evaporation; this happens when ρ satisfies

Rðρ − RÞ ∼Oðl2PÞ: ð11Þ

This is the coordinate radius at which the area of the
outgoing light cone would classically increase by about one
Planck area per Schwarzschild time, compensating the
effect of evaporation. In a typical infalling observer’s
reference frame, the sphere satisfying Eq. (11) has a proper
distance of order lP from the event horizon; thus, the
classical screen coincides with the “stretched horizon” [50]
during the evaporation phase.
Hence, each of these barely-exterior light cones con-

tributes two leaves to the classical holographic screen. The
behavior of the area in the evaporating phase can be
understood as follows. A black hole emits Oð1Þ quanta
of energy TH ∼ ℏ=R per Schwarzschild time R. This
decreases the black hole mass by OðTHÞ, so the event
horizon radius decreases byOðGTHÞ ∼Oðl2P=RÞ. Thus, the

area of the event horizon decreases by about one Planck
area in every Schwarzschild time R. This implies that
the area of the minimum sphere on the future light cones
just outside the black hole decreases as well. But these are
the leaves of the classical holographic screen during the
evaporation phase.
We conclude that the area of the classical holographic

screen increases during the collapse phase and decreases
during evaporation, when it evolves back to its own future
and interior. Though it is a future holographic screen, it
does not satisfy our area theorem. This is as expected, much
as the event horizon fails to satisfy Hawking’s area theorem
in this setting, since the NEC is violated.

2. Q-screen

Bekenstein’s GSL improves on Hawking’s area theorem
for event horizons. The matter entropy produced outside
the black hole is larger, by a factor Oð1Þ > 1, than the loss
of Bekenstein-Hawking entropy due to the decrease in
event horizon area [8,51]:

dSout
ð−dA=4GℏÞ − 1 ∼Oð1Þ > 0: ð12Þ

Therefore

dSgen ≡ dA
4Gℏ

þ dSout > 0 ð13Þ

during evaporation, and Bekenstein’s GSL is satisfied.
Similarly, we conjectured a quantum improvement of our

area theorem: the GSL for Q-screens, Eq. (10). Wewill now
verify that the conjecture is satisfied in the example of the
evaporating black hole. For definiteness, we will choose
Σout to be the exterior, i.e., the side with the asymptotic
boundary. The analysis is unchanged with the opposite
choice.
To construct the Q-screen, we again consider outgoing

future light cones centered at ρ ¼ 0, but now we must
maximize the generalized entropy along each cone. Outside
of the black hole no future cone contains such a maximum.
This is obvious for light cones far from the black hole,
whose area increases rapidly. Sufficiently close to the event
horizon, light cones will decrease in area while they remain
less than a Planck distance from the horizon, as discussed
above. In this regime the difference with the event horizon
is negligible, and it follows from Eq. (13) that the
generalized entropy increases despite the area decrease.
Hence the entire Q-screen lies inside the black hole. (More
generally, this property follows from Wall’s quantum
singularity theorem for quantum trapped surfaces [27].)
On the other hand, every future light cone inside the

black hole contains a marginally quantum trapped sphere.
On this sphere, the classical decrease in area in the future-
outward direction precisely compensates the production of
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Hawking radiation entropy. By Eq. (12), this implies that at
the marginally quantum trapped sphere, the light cone’s
area must shrink faster than the event horizon (since the
latter’s decrease does not fully compensate the radiation
entropy).4 By the same reasoning that led to Eq. (11), this
will occur where ρ satisfies

Rðρ − RÞ ∼ −Oðl2PÞ; ð14Þ

corresponding to a proper distance of order lP inside the
event horizon, as measured by an infalling observer.
In summary, we find that the Q-screen is like a “shrunk

horizon”: during the evaporation phase, it hovers a Planck
distance inside the event horizon. Thus, the Q-screen
partakes in the event horizon’s decrease; its area is always
of order a Planck area smaller than the event horizon. It is
now clear that our GSL is obeyed, for the same reason that
Bekenstein’s GSL is obeyed: we know from Eq. (13) that
the area decrease along the Q-screen is more than com-
pensated by the production of Hawking radiation entropy in
the black hole’s exterior.

B. Cosmology

Consider a flat, expanding Friedmann-Robertson-Walker
cosmology filled with radiation. The metric is

ds2 ¼ −dt2 þ aðtÞ2½dχ2 þ χ2dΩ2�; ð15Þ

with aðtÞ ¼ ðt=lPÞ1=2. Again we will construct both a
classical screen and a Q-screen. We will find that both
are past screens, and we will verify our area theorem and
our new GSL.
We begin by picking a simple null foliation of the

spacetime: the past light cones of an “observer” at χ ¼ 0,
see Fig. 3. A classical screen is constructed by maximizing
the area on each cone and combining the corresponding
spheres into a hypersurface. Consider a past light cone with
tip at the time corresponding to scale factor a0. The area of
the sphere at scale factor a is

AðaÞ ¼ 16πa2ða0 − aÞ2l2P: ð16Þ
This is maximal at a ¼ aPHS ¼ a0=2 or tPHS ¼ t0=4. Thus
we find that the area of the classical screen increases
monotonically towards the future,

dAPHS

dtPHS
¼ 32πtPHS > 0; ð17Þ

as guaranteed by our area theorem [16].
To construct the quantum screen, we use the same null

foliation, but now we maximize the generalized entropy on
each past light cone:

d½Aþ 4GℏSout� ¼ 0 ð18Þ

Assuming the number of massless species to be of order
unity, the entropy per comoving volume is s ∼ l−3P , and we
have

dSout
dr

¼ 4πχ2s: ð19Þ

If we choose Σout to be the exterior5 (interior) of the past
light cone, Sout will increase (decrease) monotonically as
we move to the future on the light cone. By Eq. (18), this
implies that the maximum of the generalized entropy will
not be exactly in the same place as the maximum of the area
on the same light cone. Instead, it will be shifted slightly
inward and to the future (outward and to the past). The shift
is of order the geometric mean of the age of the universe
and the Planck time:

jtQS − tPHSj ∼Oð
ffiffiffiffiffiffiffiffiffiffiffiffi
tPHSlP

p
Þ: ð20Þ

The behavior of generalized entropy along the Q-screen is
dominated by the classical growth of the area. We find

l2P
dSgen;QS
dtQS

¼ 32πtQS �Oð ffiffiffiffiffiffiffiffiffiffiffi
tQSlP

p Þ > 0; ð21Þ

consistent with our conjectured GSL in the semiclassical
regime, tQS ≫ lP.

big bang

FIG. 3. Radiation dominated expanding universe; dots and lines
as in Fig. 2b. The classical and Q-screen nearly coincide; the area
and generalized entropy both grow monotonically to the future.

4More precisely, the light cone area must decrease by Oðl2PÞ as
v → vþ R, where v ¼ tþ ρþ R log j ρR − 1j.

5The exterior entropy diverges since the volume is infinite. It
can be regulated by taking the edge of Σout to lie near the big bang
at some large but finite comoving radius. The edge is held fixed as
σ is varied.
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IV. PROOF FROM THE QUANTUM
FOCUSING CONJECTURE

In this section, we show that the generalized second law
for Q-screens follows from the quantum focusing con-
jecture (QFC) [18].
Why derive one conjecture from another? The first

reason is that it is useful to understand the logical structure
of a set of plausible and interesting conjectures. Our result
establishes that the QFC is at least as strong as the new
GSL. However, the new GSL is not obvious from the QFC:
the implication requires a nontrivial proof.
Second, in light of the proof below, any evidence that

makes the QFCmore plausible can be regarded in particular
as evidence for the new GSL. Indeed, there is considerable
evidence for the QFC: it implies several nontrivial related
statements which have already been proven or extensively
tested. In the classical limit of the geometry and the stress
tensor, the QFC implies the classical focusing property of
general relativity. For null hyperplanes inMinkowski space,
the QFC implies a novel lower bound on the quantum stress
tensor in terms of the second derivative of the exterior
entropy. This “quantum null energy condition”was recently
proven [22]. Finally, theQFC also implies theBousso bound
[3] on the entropy crossing a lightsheet [18]. No counter-
example to this bound is known, and the bound has been
proven in certain hydrodynamic regimes [19,20].

A. Quantum focusing conjecture

The quantum focusing conjecture (QFC) states that the
quantum expansion cannot increase along any null con-
gruence [18]. More precisely,

δ

δVðy2Þ
Θk½VðyÞ; y1� ≤ 0: ð22Þ

The quantum expansionΘ is defined as in Sec. II, except that
we characterize the surface σ that appears in Eq. (8) in terms
of its affine position VðyÞ on some null hypersurface N
generated by a congruence of null geodesics y, with tangent

vector ka. Thus, the QFC states that the quantum expansion
cannot increase at y1, if σ is infinitesimally deformed along
the generator y2 of N, in the ka direction. Here y2 can be
taken to be either the same or different from y1.
Suppose that the quantum expansion in the orthogonal

null direction ka is nonpositive (negative) somewhere on σ,
i.e., suppose that Θk½VðyÞ; y1� ≤ 0 for some y1. Then
Θðν; y1Þ will remain nonpositive at the null geodesic y1,
under forward evolution of the surface in the ka direction.
More precisely, for two slices of N satisfying V 0ðyÞ ≥ VðyÞ
(for all y), the QFC implies that

Θ½VðyÞ; y1� ≤ 0; VðyÞ ≥ 0 ⇒ Θ½VðyÞ; y1� ≤ 0; ð23Þ

where if the first inequality is strict, then so is the second
(unless V 0 and V coincide for all y).
In particular, if the expansion is negative everywhere on

some surface σ, then it cannot vanish on any cross section
of N that lies entirely in the ka direction away from σ. This
will be the specific consequence of the QFC that enters the
proof below. The statement is analogous to the classical
result in general relativity, that if light-rays are converging
in a spacetime satisfying the NEC, then they cannot begin
to diverge at any regular point of the congruence.

B. Derivation of the new generalized second law

The derivation of the new GSL from the QFC will be
closely analogous to our proof of the area law for holo-
graphic screens from the null energy condition. Roughly,
we will replace the classical expansion θ with the quantum
expansion Θ, and the assumption of the null energy
condition with the assumption of the QFC.
We begin by recalling an important set of definitions and

results from Ref. [17], which are purely geometric and
carry over unchanged. Any Cauchy-splitting surface σ
defines a partition of the spacetime into sets K�ðσÞ whose
shared boundary is a null hypersurface NðσÞ orthogonal to
σ; see Fig. 4. Now consider any hypersurfaceH foliated by
surfaces σðrÞ, with tangent vector field ha ¼ αla þ βka

FIG. 4. (a) A surface σ that splits a Cauchy surface defines a partition of the entire spacetime into four regions, given by the past or
future domains of dependence and the chronological future or past of the two partial Cauchy surfaces Σ�. (b) The pairwise unions K�

depend only on σ, not on the choice of Cauchy surface. K� share a boundary N ¼ Nþ∪N−∪σ generated by light-rays orthogonal to σ.
(c) If a hypersurface H foliated by σðrÞ has α < 0 everywhere (see text for definition), then the sets KþðrÞ are monotonic under
inclusion, and the sets NðrÞ define a null foliation of spacetime.
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normal to the foliation, as defined in Eq. (9). Note that the
surfaces σðrÞ need not be marginal; we use the notation H
rather than H for a hypersurface of this more general type.
In [17] we proved that if α has definite sign on H, then the
sets K�ðrÞ≡ K�ðσðrÞÞ are monotonic under inclusion:
Lemma IV.1. Let r1 < r2. If α < 0 everywhere on H,

then K̄þðr1Þ ⊂ Kþðr2Þ and K−ðr1Þ ⊃ K̄−ðr2Þ, where an
overbar denotes closure. If α > 0 everywhere on H, then
K̄þðr2Þ ⊂ Kþðr1Þ and K−ðr2Þ ⊃ K̄−ðr1Þ.
We will also need an important result due to Wall, which

constrains the quantum expansion of a surface that touches
but does not cross a null hypersurface N. Let χ be a
spacelike surface tangent to N at a point p. That is, we
assume that one of the two future-directed null vectors
orthogonal to χ, κa, is also orthogonal to N at p. We may
normalize the (null) normal vector field to N so that it
coincides with κa at p.
We further assume that both χ, and ν≡ N∩Σ, split a

Cauchy surface Σ. We pick an arbitrary side ΣoutðχÞ as the
“outside” of χ, and we choose ΣoutðνÞ to be the “same” side,
in the sense that they agree at p. This defines generalized
entropies Sgen½χ�, Sgen½ν�. We define the quantum expan-
sions Θ½χ; y�, Θ½ν; z� with respect to that null vector field
orthogonal to each surface which coincides with κ at p.
Let y be Gaussian normal coordinates about p on χ.

Because χ and ν are tangent at p, they can be identified at
linear order in the distance δ from p. Thus, in a sufficiently
small neighborhood of p, we can use the same coordinates
z ¼ y on ν, up to an Oðδ2Þ ambiguity which will be
irrelevant.
Lemma IV.2. Let χ and ν be Cauchy-splitting surfaces

tangent at a point p, and letN ⊃ ν be a null hypersurface, as
described above.

(i) If χ lies entirely outside the past of N, then any small
open neighborhood of p contains a point y such
that Θ½χ; y� ≥ Θ½ν; y�.

(ii) If χ lies entirely outside the future of N, then any
small open neighborhood of p contains a point y
such that Θ½χ; y� ≤ Θ½ν; y�.

Proof.—By causality, the entire null hypersurface NðχÞ,
defined as the boundary of KþðχÞ [Fig. 4(b)], is nowhere to
the past of N in the first case, and nowhere to the future of
N in the second case. If the outside is chosen to be the side
to which κa points, then the first claim is identical to
Theorem 1 in [27], and the second claim follows by
exchanging N with NðχÞ. With the opposite choice of
exterior, the proof can be reduced to the above cases by
time reversal. □

The proof of Conjecture II.8 now proceeds in two steps.
First we will combine the monotonicity property of K�
with the QFC to show that αmust have definite sign on a Q-
screen H. Then we show that this implies the new GSL,
Eq. (10), if in addition H is a past or future Q-screen.
Theorem IV.3. Let H be a regular Q-screen in a

spacetime satisfying the QFC, and let α be defined by

Eq. (9). Then α has definite sign onH. That is, either α < 0
everywhere on H, or α > 0 everywhere on H.
Proof.—By the condition II.5.c. and the subsequent

convention, α has definite sign on the leaf σð0Þ. If α > 0
at r ¼ 0, we can reparametrize r → −r, so without loss of
generality we may assume that α < 0 at r ¼ 0. We will now
show that α < 0 everywhere on H.
Suppose for contradiction that H contains a point with

α ≥ 0. Then the subsetHþ ⊂ H of points with α > 0 is also
nonempty, by Assumption II.5.b. Continuity guarantees
that α < 0 in an open neighborhood of the leaf σð0Þ, so Hþ
has a connected component entirely in the r > 0 region, or
entirely in the r < 0 region (or both). We first consider the
case r > 0.
It is convenient to rescale r to set

1 ¼ inffr∶r > 0; σðrÞ∩Hþ ≠ ∅g: ð24Þ
Then by the second generic condition II.5.b, α < 0 for all
leaves σðrÞ with 0 < r < 1. Hence by Lemma IV.1, there
exists an open neighborhood of K̄−ð1Þ that is contained in
K−ð0Þ, and for sufficiently small ϵ we have

K−ð0Þ ⊃ K−ð1þ ϵÞ: ð25Þ
By continuity, the set P of points on σð1Þ with α ¼ 0 is

nonempty. P may consist of several connected components
Pi. We cannot assume that β is of fixed sign for 0 < r < 1.
But since α and β cannot vanish simultaneously, β has fixed
sign in an open neighborhood OðPiÞ of each Pi. However,
β need not have the same sign in all of these neighbor-
hoods. We distinguish two complementary cases.

1. Case 1

We first consider the case where β > 0 in every OðPiÞ.
Then the assumed sign change from α < 0 to α > 0
corresponds to a transition of ha from spacelike-outward
(S−þ) to timelike-future-directed (Tþþ).
Let σþð1þ ϵÞ be the set of points with α > 0 on the leaf

σð1þ ϵÞ. Note that σþð1þ ϵÞ may be disconnected, but
each disconnected component is open.
By choosing ϵ sufficiently small, we can ensure that each

connected component of σþð1þ ϵÞ is contained in a single
neighborhood OðPiÞ. Let Γ be the set of integral curves of
ha that pass through σþð1þ ϵÞ. Note that each such curve
can also be parametrized by r.
Because α > 0, each curve in Γ lies in K−ð1þ ϵÞ in

some range rϕ<r<1þϵ. By Eq. (25), σð0Þ∩K−ð1þ ϵÞ¼
∅, so rϕ > 0. At rϕ, the curve intersects the boundary
Nð1þ ϵÞ of K−ð1þ ϵÞ. Because β > 0 in OðpÞ, this
intersection will be with N−ð1þ ϵÞ. By smoothness and
the second generic assumption, the intersection will consist
of one point per curve, r ¼ rϕ.
Let the spatial surface ϕ be the set of points r ¼ rϕ of the

curves in Γ. The sets ϕ and σþð1þ ϵÞ have the same
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topology because the integral curves define a continuous,
one-to-one map between them. The closures of both sets,
σ̄þð1þ ϵÞ and ϕ̄, are also related by this map and share a
boundary at r ¼ 1þ ϵ.
Since σ̄þð1þ ϵÞ is a closed subset of a compact set, it is

compact; and by the fiber map, ϕ̄ is also compact.
Therefore the global minimum R≡ inffrðpÞ∶p ∈ ϕg is
attained on one or more points Q ⊂ ϕ̄. Since R < 1 but
_ϕ ⊂ σð1þ ϵÞ,Q∉ _ϕ, so Q consists of stationary points of r,
viewed as a function on ϕ. Hence the leaf σðRÞ is tangent to
the null hypersurface N−ð1þ ϵÞ at Q.
Because Q achieves a global minimum of r on ϕ̄, σðRÞ

lies nowhere in the past of N−ð1þ ϵÞ. Let the spacelike
surface ν ⊃ Q be a compact cross section of Nð1þ ϵÞ;
since Nð1þ ϵÞ is spacetime-splitting, ν will be Cauchy
splitting. Because σðRÞ is tangent to Nð1þ ϵÞ at Q,
Lemma IV.1 implies that any open neighborhood of Q
contains a point y such that Θk½σðRÞ; y� ≥ Θk½ν; y�. By the
QFC, Θk½ν; y� ≥ Θk½σð1þ ϵÞ; y� ¼ 0; and by the first
generic condition, the inequality is strict, so Θk½ν; y� > 0.
Hence Θk½σðRÞ; y� > 0. But this contradicts the defining
property of a Q-screen, that the quantum expansion of each
leaf σ in the ka direction must vanish.

2. Case 2

We now consider the case where β < 0 in at least one
open neighborhood OðP1Þ. We showed in [17] that this
implies the existence of a transition with ~β > 0 elsewhere
on H, on a leaf σð2Þ, under reversal of the flow direction,
~r≡ 3 − r. (We use the tilde to denote quantities defined
with respect to the reverse flow.) Upon closer inspection,
one finds that our argument establishes a stronger result that
was not needed in [17]: that ~β > 0 on all neighborhoods
Oð ~PjÞ of transition points on σð2Þ. Namely, we showed that
the only type of α < 0 region that can end at σð2Þ under the
original flow is a timelike region, i.e., β ¼ − ~β < 0; see
Fig. 8 of Ref. [17]. This implies a case 1 transition (in the
sense of the present paper) on σð2Þ. Since we have already
shown that case 1 transitions are impossible, we can now
conclude that case 2 transitions are also impossible.

3. Cases 3 and 4

Now suppose that a transition to α > 0 occurs at some
r < 0. Case 3 arises if β > 0 everywhere at the onset of the
transition. Case 4 is the complementary case where β < 0
in at least one connected component. A straightforward
adaptation of the case 1 and 2 analyses as in [17] rules out
the possibility of case 3 and 4 transitions.
In summary, since α < 0 at r ¼ 0 and no transitions to

α > 0 are possible, it follows from the second generic
condition b that α < 0 everywhere on H. □

The flow alongH with increasing r can be deformed into
a “zig-zag” flow along null surfaces orthogonal to the

leaves σðrÞ and σðrþ drÞ; see Fig. 5, and see Ref. [16] for
further details. Locally the flow will be in theþka direction
where H is spacelike; it will be in the −ka direction where
H is timelike. But because α < 0, the flow will always be in
the −la direction, never in the þla direction. That is, the
flow toward larger r corresponds to a flow to the exterior
or past.
We now show that Theorem IV.3 implies Conjecture II.8,

by applying it to the case where the regular Q-screenH is in
addition past or future, as assumed in our conjecture.
Proof.—By the definition of a future Q-screen, each of

its leaves is marginally quantum trapped, with ka being the
marginal direction. Thus to first order in dr, the generalized
entropy does not change in the ka direction, and it strictly
increases in the −la direction. This implies the new GSL,
Eq. (10), for future holographic screens:

dSgen
dr

> 0: ð26Þ

Similarly, the new GSL follows for past Q-screens, where
the generalized entropy increases in the þla direction, i.e.,
toward the exterior (in spacelike portions ofH) or the future
(in the timelike portions). □

We stress again that the QFC is itself unproven; we have
established a logical relation between what we regard as
two plausible conjectures. We also obtained Theorem IV.3
as a key intermediate result. If we do not wish to assume the
QFC, then Theorem IV.3 can still be considered, as the first
of the two stronger conjectures we made in Sec. II D.

FIG. 5. The flow from leaf to leaf along a Q-screen can be
decomposed as a sequence of infinitesimal motions in the ka and
la null directions. In the �ka direction, the generalized entropy is
locally stationary by definition of the Q-screen, Θk ¼ 0. Because
α < 0 by Theorem IV.3, the motion is always toward −la, along
which the generalized entropy increases since Θl < 0. Hence the
generalized entropy increases along the flow.
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Remark IV.4. The above short proof establishes that
Theorem IV.3 (viewed as a conjecture) is indeed stronger
than our new GSL, Conjecture II.8.
In Sec. II D we further claimed the following

equivalence:
Corollary IV.5. Theorem IV.3 holds if and only if NðrÞ

intersects the regular Q-screen H only on σðrÞ.
Proof.—To prove if, suppose first that α did change sign

on H. This was in fact assumed in our proof of
Theorem IV.3, and it was shown to imply that some
NðrÞ will intersect H at a point that is not contained in
σðrÞ. To prove only if, suppose that there existed some
Nðr1Þ that intersects H at a point p ∈ σðr2Þ with r2 ≠ r1.
We may assume that r2 > r1 by setting r → −r as needed.
Since σðr2Þ ⊂ K̄�ðr2Þ, Lemma IV.1 implies that p ∈
Kþðr1Þ if α > 0 everywhere, and that p ∈ K−ðr1Þ if α <
0 everywhere on H. But this is impossible since K� are

open sets and p ∈ Nðr1Þ ¼ _K�ðr1Þ. Hence α must change
sign on H. □
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