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We investigate the motion of test particles in the gravitational field of a static naked singularity generated
by a mass distribution with a quadrupole moment. We use the quadrupole metric (q metric) which is the
simplest generalization of the Schwarzschild metric with a quadrupole parameter. We study the influence of
the quadrupole on the motion of massive test particles and photons and show that the behavior of the
geodesics can drastically depend on the values of the quadrupole parameter. In particular, we prove
explicitly that the perihelion distance depends on the value of the quadrupole. Moreover, we show that an
accretion disk on the equatorial plane of the quadrupole source can be either continuous or discrete,
depending on the value of the quadrupole. The inner radius of the disk can be used in certain cases to
determine the value of the quadrupole parameter. The case of a discrete accretion is interpreted as due to the
presence of repulsive gravity generated by the naked singularity. Radial geodesics are also investigated and
compared with the Schwarzschild counterparts.
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I. INTRODUCTION

The black hole uniqueness theorems state that in
Einstein’s general relativity theory the most general black
hole solution in empty space is described by the Kerr
metric [1], which represents the exterior gravitational field
of a rotating mass m with specific angular momentum
a ¼ J=m. In Boyer-Lindquist coordinates ðt; r; θ;φÞ, a
true curvature singularity is determined by the equation
r2 þ a2 cos2 θ ¼ 0 that corresponds to a ring singularity
situated on the equatorial plane θ ¼ π=2. The ring singu-
larity is isolated from the exterior spacetime by an event

horizon situated on a sphere of radius rh ¼ mþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 − a2

p
.

In the case that a2 > m2, no event horizon exists and the
ring singularity becomes naked. Different studies [2–4]
show, however, that in realistic situations, where astro-
physical objects are mostly surrounded by accretion disks,
a Kerr naked singularity is an unstable configuration that
rapidly decays into a Kerr black hole. Moreover, it now
seems established that in generic situations a gravitational
collapse cannot lead to the formation of a final configu-
ration corresponding to a Kerr naked singularity. These
results seem to indicate that rotating Kerr naked singular-
ities cannot be very common objects in nature.
The above results seem to corroborate the validity of the

cosmic censorship hypothesis [5] according to which a
physically realistic gravitational collapse, which evolves
from a regular initial state, can never lead to the formation
of a naked singularity; that is, all singularities formed as the

result of a realistic collapse should always be enclosed
within an event horizon. Hence, the singularities are always
invisible to observers situated outside the horizon. Many
attempts have been made to prove this conjecture with the
same mathematical rigor used to show the inevitability of
singularities in general relativity [6]. No general proof
has been formulated so far. Instead, particular scenarios of
gravitational collapses have been investigated, some of
which indeed corroborate the correctness of the conjecture.
Nevertheless, other studies [7] indicate that under certain

circumstances naked singularities can appear as the result
of a realistic gravitational collapse. Indeed, it turns out that
in the case of the collapse of an inhomogeneous matter
distribution, there exists a critical degree of inhomogeneity
below which black holes form. Naked singularities appear
if the degree of inhomogeneity is higher than the critical
value. The speed of the collapse and the shape of the
collapsing object are also factors that play an important role
in the determination of the final configuration. It turns out
that naked singularities form more frequently if the collapse
occurs very rapidly and if the object is not spherically
symmetric.
In recent times, much attention has been devoted to

the observational distinction between black holes and
naked singularities, for instance, by using the properties
of accretion disks [8] or the redshift function [9]. Moreover,
steady long-term progress on improving the capability of
very long baseline interferometry and the sensitivity and
angular resolution of the Event Horizon Telescope (https:
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www.elisascience.org) allowed astrophysicists to resolve
the region around Sagittarius A� to scales of the order
of its gravitational radius. Similarly, eLISA (https:
www.elisascience.org) has an extraordinary sensitivity to
detect massive black holes in the mass range of most
galactic-core black holes. Consequently, eLisa is improving
to provide us information from the smallest scales around
singularities and black holes.
In view of this situation, it seems reasonable to inves-

tigate the effects of naked singularities on the surrounding
spacetime. This is the main aim of the present work. We
will study a naked singularity without a black hole
counterpart. In fact, we investigate the quadrupole metric
(q metric) which is the simplest generalization of the
Schwarzschild metric containing a naked singularity. We
will see that, starting from the Schwarzschild metric, the
Zipoy-Voorhees [10,11] transformation can be used to
generate a static axisymmetric spacetime which describes
the field of a mass with a particular quadrupole moment.
For any values of the quadrupole, the spacetime is
characterized by the presence of naked singularities situ-
ated at a finite distance from the origin of the coordinates.
In this work, we are interested in analyzing the spacetime
outside the outer naked singularity.
We perform an analysis of the motion of test particles

(massive and nonmassive) outside the naked singularity,
comparing in all cases our results with the corresponding
situation in the Schwarzschild spacetime in order to
establish the exact influence of the quadrupole on the
parameters of the trajectories.
This paper is organized as follows. InSec. II,we present the

q metric and investigate its main physical properties.
It is shown that it can be used to describe the exterior
gravitational field of a mass distribution with quadrupole
moment. Moreover, we prove that the corresponding space-
time is characterized by the presence of naked singularities. In
Sec. III, we derive the geodesic equations in general and study
numerically the conditions under which motion is allowed.
Section IV is devoted to the study of circular and noncircular
equatorial geodesics. We show that the geometric configu-
ration of an accretion disk located around a naked singularity
depends explicitly on the value of the quadrupole in a such a
way that it is always possible to distinguish between a
Schwarzschild black hole and a naked singularity. This effect
was found previously in the field of naked singularities with
electric charge [12,13]. Furthermore, in Sec. V, we study the
influence of the quadrupole on the behavior of radial timelike
and null geodesics. Finally, in Sec. VI, we discuss our results
and comment on possible future works.

II. THE q METRIC

In 1917 [14], it was shown that the most general static
axisymmetric asymptotically flat solution of Einstein’s
vacuum equations is represented by the Weyl class. In
terms of multipole moments, the simplest static solution

contained in the Weyl class is the Schwarzschild metric
which is the only one that possesses only a mass monopole
moment. From a physical point of view, the next interesting
solution should describe the exterior field of a mass with a
quadrupole moment. In this case, it is possible to find a
large number of exact solutions with the same quadrupole
(see [15] and the references cited therein) that differ only in
the set of higher multipoles. A common characteristic of the
solutions with a quadrupole is that their explicit form is
rather cumbersome, making them difficult to be handled
analytically [16]. An alternative exact solution was pre-
sented by one of us in [17] by applying to the
Schwarzschild metric a Zipoy-Voorhees transformation
with parameter δ ¼ 1þ q, where q represents the quadru-
pole parameter. In spherical coordinates, the resulting
metric can be written in a compact and simple form as

ds2 ¼
�
1 −

2m
r

�
1þq

dt2 −
�
1 −

2m
r

�
−q

×

��
1þ m2sin2θ

r2 − 2mr

�−qð2þqÞ� dr2

1 − 2m
r

þ r2dθ2
�

þ r2sin2θdφ2

�
: ð1Þ

In the literature, this solution is known as the δ metric or
as the γ metric for notational reasons [18]. We propose to
use the term quadrupole metric (q metric) to emphasize the
role of the parameter q which determines the quadrupole
moment, as we will see below.
The q metric is an axially symmetric exact vacuum

solution that reduces to the spherically symmetric
Schwarzschild metric only for q → 0. It is asymptotically
flat for any finite values of the parameters m and q.
Moreover, in the limiting case m → 0, it can be shown that,
independently of the value of q, there exists a coordinate
transformation that transforms the resulting metric into the
Minkowski solution. This last property is important from a
physical point of view because it means that the parameter q
is related to a genuine mass distribution.
An important quantity that characterizes the physical

properties of any exact solution is the Arnowitt-Deser-
Misner (ADM) mass. If one tries to use the common
formula [19,20] for calculating the ADMmass, one obtains
incorrect results because these formulas are adapted to a
particular coordinate system. Therefore, we perform here a
detailed calculation of the ADM mass, using the original
approach. All the details are given in the Appendix. In the
case of the q metric (1), the final result is simply

MADM ¼ mð1þ qÞ: ð2Þ

It follows that if we take the parameter m as positive, the
parameter q must satisfy the condition q > −1 in order for
the ADMmass to be positive. Nevertheless, one can choose
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a negative m so that for q < −1 the mass is still positive.
For the sake of simplicity, we assume from now on thatm is
positive.
We also calculate the multipole moments of the q metric

by using the invariant definition proposed by Geroch [21].
The lowest mass multipole moments Mn, n ¼ 0; 1;… are
given by

M0 ¼ ð1þ qÞm; M2 ¼ −
m3

3
qð1þ qÞð2þ qÞ; ð3Þ

whereas higher moments are proportional tomq and can be
completely rewritten in terms of M0 and M2. This means
that the arbitrary parameters m and q determine the mass
and quadrupole which are the only independent multipole
moments of the solution. In the limiting case q ¼ 0, only
the monopole M0 ¼ m survives, as in the Schwarzschild
spacetime. In the limit m → 0, with q ≠ 0, and q → −1,
with m ≠ 0, all multipoles vanish identically, implying that
no mass distribution is present and the spacetime must be
flat. Furthermore, notice that all odd multipole moments are
zero because the solution possesses an additional reflection
symmetry with respect to the equatorial plane θ ¼ π=2.
We conclude that the above metric describes the exterior

gravitational field of a static deformed mass. The defor-
mation is described by the quadrupole moment M2 which
is positive for a prolate mass distribution and negative for
an oblate one. Notice that the condition q > −1 must be
satisfied in order to avoid the appearance of a negative total
massM0. Therefore, in the interval q ∈ ð−1; 0Þ the qmetric
describes a prolate mass distribution and in the interval
ð0;∞Þ an oblate one.
To investigate the structure of possible curvature

singularities, we consider the Kretschmann scalar K ¼
RμνλτRμνλτ. A straightforward computation leads to

K ¼ 16m2ð1þ qÞ2
r4ð2þ2qþq2Þ

ðr2 − 2mrþm2sin2θÞ2ð2qþq2Þ−1

ð1 − 2m=rÞ2ðq2þqþ1Þ Lðr; θÞ;

ð4Þ
with

Lðr; θÞ ¼ 3ðr − 2m − qmÞ2ðr2 − 2mrþm2sin2θÞ
þ qð2þ qÞm2sin2θ½qð2þ qÞm2

þ 3ðr −mÞðr − 2m − qmÞ�: ð5Þ

In the limiting case q ¼ 0, we obtain the Schwarzschild
value K ¼ 48m2=r6 with the only singularity situated at the
origin of coordinates r → 0. In general, we can see that the
singularity at the origin, which occurs at r4ð2þ2qþq2Þ ¼ 0, is
present for all real values of q. Moreover, an additional
singularity appears at the radius r ¼ 2m which, according
to the form of the metric (1), is also a horizon in the sense
that the norm of the timelike Killing vector vanishes at that

radius. Outside the hypersurface r ¼ 2m no additional
horizon exists, indicating that the singularities situated at
the origin and at r ¼ 2m are naked. In addition, a curvature
singularity occurs at the surface determined by the equation

r2 − 2mrþm2sin2θ ¼ 0 ð6Þ
under the condition that thevalue of the quadrupole parameter
is within the interval q∈ ð−1;−1þ ffiffiffiffiffiffiffiffi

3=2
p �nf0g. We con-

clude that the main consequence of the existence of a
quadrupole determined by the parameter q is that the
Schwarzschild horizon becomes a naked singularity. The
geometric structure of the curvature singularities of the q
metric is illustrated in Fig. 1.
Several physical properties of the q metric have

been investigated in the literature (see, for instance,
[17,18,22–28] and references therein). In this work, we
are interested in continuing the analysis of the correspond-
ing gravitational field as observed by exterior test particles.

III. GEODESIC MOTION

Consider the trajectory xαðτÞ of a test particle with
4-velocity uα ¼ dxα=dτ ¼ _xα. The moment pα ¼ μ_xα of
the particle can be normalized so that

gαβ _xα _xβ ¼ ϵ; ð7Þ

where ϵ ¼ 0; 1;−1 for null, timelike, and spacelike curves,
respectively [12]. For the q metric we obtain from (7) that

FIG. 1. Curvature singularities of the q metric. The outer
singularity at r ¼ 2m and the singularity at the origin r ¼ 0
exist for any value of the parameter q. The singularity which
depends on the angle θ exists only for certain values of the
quadrupole (see text).
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�
1þ m2sin2θ

r2 − 2mr

�−qð2þqÞ
_r2 ¼ ~E2 − Φ2; ð8Þ

where

Φ2¼
�
1−

2m
r

�
1þq

�
r2
�
1−

2m
r

�
−q
�
1þm2sin2θ

r2−2mr

�−qð2þqÞ
_θ2

þ
~l2

r2sin2θ

�
1−

2m
r

�
q
þϵ

�
; ð9Þ

and we have used the expression for the energy E ¼ μ ~E
and the angular moment l ¼ μ~l of the test particle which
are constants of motion

E ¼ gαβξαt pβ ¼
�
1 −

2m
r

�
1þq

μ_t; ð10Þ

l ¼ −gαβξαφpβ ¼
�
1 −

2m
r

�
−q
r2sin2θμ _φ; ð11Þ

associated with the Killing vector fields ξt ¼ ∂t and
ξφ ¼ ∂φ, respectively. For the sake of simplicity, we set

μ ¼ 1 so that ~E ¼ E and ~l ¼ l.
In addition, the equation for the acceleration along the

polar angle can be expressed as

θ̈ ¼ −
�
qð2þ qÞm2 sin θ cos θ
r2 − 2mrþm2sin2θ

��
_r2

r2 − 2mr
− _θ2

�
þ
�
r2 − 2mrþm2sin2θ

r2 − 2mr

�
qð2þqÞ

sin θ cos θ _φ2

−
r3 − ð4þ qÞmr2 þ ½2ð2þ qÞ þ ð1þ qÞ2sin2θ�m2r − ð1þ qÞð2þ qÞm3sin2θ

ðr2 − 2mrÞðr2 − 2mrþm2sin2θÞ _r _θ : ð12Þ

From this equation it follows that the acceleration θ̈
depends on the polar angle. Consider, for instance, the
motion around the central object with initial values
_r ¼ _θ ¼ 0 and _φ ≠ 0. Then, Eq. (12) reduces to

�
1þ m2sin2θ

r2 − 2mr

�−qð2þqÞ
θ̈ − sin θ cos θ _φ2 ¼ 0: ð13Þ

It then follows that the only places at which the accel-
eration vanishes are θ ¼ 0 and θ ¼ π=2, showing that the
polar and equatorial planes are geodesic planes at which
the investigation of the test particle motion can be
considerably simplified due to the symmetry of the
configuration. For all the remaining values of θ, there
is always a nonzero value of the acceleration that induces
a velocity in the direction of θ towards the equatorial
plane or the poles.
Equation (8) can be considered as describing the motion

along the radial coordinate in terms of the “effective

potential”Φ2. However, the velocity _θ enters the expression
for Φ2 explicitly so that strictly speaking it is not a
potential. Nevertheless, its dependence on the coordinates
can shed some light on the behavior of the geodesics for
particular values of _θ. In Fig. 2, we plot the behavior of Φ2

for a particular initial velocity _θ ¼ 1 and different values of
the q parameter. We see that at the singularity r ¼ 2m the
behavior of the potential drastically depends on the value of
q. Indeed, for positive values of q, the potential either tends
to infinity near the singularity or crosses it and becomes
divergent inside the singularity. Instead, if q is negative, the
potential tends to infinity as the singularity is approached
from outside. In the case of a vanishing quadrupole, the
singularity turns into a horizon and the potential crosses it
until it becomes infinity near the central singularity located
at the origin of coordinates.
An interesting particular case of the geodesic motion is

that of circular orbits and their stability. The geodesic
equation in this case is given as in Eq. (8) with _r ¼ 0, i.e.

FIG. 2. Behavior of the “effective potential” Φ2 in terms of the
radial distance r for the particular velocity _θ ¼ 1 with θ ¼ π=4,
l ¼ 15 and different values of q. The effective potential for the
Schwarzschild solution q ¼ 0 on a fixed plane with _θ ¼ 0 is also
depicted for comparison.
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Φ2 ¼ E2, whose solutions strongly depend on the value of
the velocity _θ. In fact, the condition for circular orbits can
be expressed as

_θ2 ¼ ðr2 − 2mrÞ−1
�
1þ m2sin2θ

r2 − 2mr

�
qð2þqÞ

×

�
E2 −

l2

r2sin2θ

�
1 −

2m
r

�
1þ2q

− ϵ

�
1 −

2m
r

�
1þq

�
:

ð14Þ

We perform a numerical investigation of this condition for
a particular radius and different values of the quadrupole
parameter in Fig. 3. If we consider, for instance, the case of
a circular orbit with radius r ¼ 2.35m, we can see that such
a motion is not possible for arbitrary values of q and θ. In
fact, for most negative values of q, no circular orbit with
this radius is allowed, because _θ2 is negative for all values
of θ. Instead, for all positive values of q, it is always
possible to find an interval of θ within which it is possible

to have circular orbits. For other values of the orbit radius,
similar results can be found.
The study of the stability of circular orbits is important to

establish the possibility of having accretion disks around
the central gravitational source. In particular, the radius of
the last stable circular orbit determines the inner radius
of the accretion disk, and corresponds to an inflection point
of the potential, i.e., the point where the conditions
∂Φ2=∂r ¼ 0 and ∂2Φ2=∂r2 ¼ 0 are satisfied. We use these
two conditions to find the explicit values of l2 and _θ2 for the
last stable circular orbit and obtain

l2lsco ¼
ϵmð1þ qÞsin2θr2
r − ð3þ 2qÞm

�
1 −

2m
r

�
−q

×

�
1 −

ðr −mÞG
rðr − 2mÞ½r − ð3þ 2qÞm�H

�
; ð15Þ

and

_θ2lsco ¼ −
ϵmð1þ qÞð1 − 2m

r Þq−1ðr2 − 2mrþm2sin2θÞð1þ2qþq2ÞG
r4½r − ð3þ 2qÞm�ðr2 − 2mrÞqð2þqÞ½r2 − 2mrþm2ð1þ qÞ2sin2θ�H ; ð16Þ

where

G≡ r2 − 2mð4þ 3qÞrþ 2m2ð2þ qÞð3þ 2qÞ; ð17Þ

H≡1þ r−m
ðr2−2mrÞ½r− ð3þ2qÞmÞ�

×

�
3r2−6mð3þ2qÞrþ4m2ð2þqÞð3þ2qÞ

þ 2qð2þqÞð1þqÞ2m4sin4θðr−mÞ½r− ð3þ2qÞm�
ðr2−2mrþm2sin2θÞ½r2−2mrþm2ð1þqÞ2sin2θ�

�
:

ð18Þ
In the limiting case of the Schwarzschild spacetime

(q ¼ 0), due to the spherical symmetry we can set _θlsco ¼ 0,
and so we obtain the value rSchlsco ¼ 6m, as expected. The
value of l2lsco determines the angular momentum of the test
particle on the last stable circular orbit and _θ2lsco, the
velocity of the orbit with respect to the polar angle. In
Fig. 4, we analyze numerically the above equations for
different values of the quadrupole. The condition for the
existence of a last stable circular orbits is that both l2lsco and
_θ2lsco be positive and finite. From Fig. 4 we see that for
q ¼ 0.5 and q ¼ −0.5 these conditions are not satisfied.
For q ¼ 0.1 and q ¼ −0.1, however, there exists an interval
of r in which both l2lsco and _θ2lsco are positive. The first thing

FIG. 3. Angular velocity _θ in terms of the angle θ ∈ ð0; πÞ for
different quadrupoles. Here, we consider timelike geodesics
(ϵ ¼ 1) with m ¼ 1, l ¼ 5. For concreteness, the radius of the
orbit has been set to r ¼ 2.35.
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one can notice is that this interval is always inside the
Schwarzschild radius rSchlsco ¼ 6m. This means that the
quadrupole moment diminishes the value of the radius
of the last stable circular orbit. For a particular positive
value of _θ2lsco one can find from the graph the corresponding
radius rlsco. If this value happens to correspond to a positive
value of l2lsco, then there exists a stable circular orbit with
that radius and that angular momentum.

The motion of test particles for arbitrary values of _θ and
θ can be investigated by performing a numerical integration
of the geodesic equations (8)–(12). Several cases must be
considered, depending on the initial velocity _θ and the
initial plane θ. This requires a detailed numerical analysis
in which several aspects must be considered like the
stability of the trajectories and the appearance of chaotic
motion. We will present these results elsewhere. In this

FIG. 4. Angular momentum and polar angle velocity of the last stable circular timelike orbit as a function of the radial coordinate for
different values of the quadrupole parameter q. Here we set θ ¼ π=4. The value of l2lsco has been rescaled in all the graphs for comparison
with the graph of _θ2lsco.
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work, we will focus on the analytic investigation of the
most important families of geodesics of the q metric.

IV. EQUATORIAL GEODESICS

As mentioned above the equatorial plane θ ¼ π=2 is a
geodesic plane due to the symmetry of the gravitational
source. In this case, the geodesic equations reduce to

_t ¼ E

�
1 −

2m
r

�
−ð1þqÞ

; ð19Þ

_φ ¼ l
r2

�
1 −

2m
r

�
q
; ð20Þ

�
1þ m2

r2 − 2mr

�−qð2þqÞ
_r2

¼ E2 −
�
1 −

2m
r

�
qþ1

�
l2

r2

�
1 −

2m
r

�
q
þ ϵ

�
: ð21Þ

To investigate the behavior of the geodesics it is convenient
to introduce the new coordinate u ¼ 1=r and use the
azimuthal angle φ instead of the affine parameter τ so that

du
dτ

¼ lu2ð1 − 2muÞq du
dφ

: ð22Þ

Then, the geodesic equation (21) can be expressed as

ð1 − 2muÞqð4þqÞ

ð1 −muÞ2qð2þqÞ

�
du
dφ

�
2

¼ Fðu; qÞ; ð23Þ

where

Fðu; qÞ ¼ 1

l2
fE2 − ð1 − 2muÞ1þq½l2u2ð1 − 2muÞq þ ϵ�g:

ð24Þ
The properties of the geodesic motion are then determined
by the function Fðu; qÞ which must be positive for the
velocity to be a real-valued function. Furthermore, the zeros
of Fðu; qÞ are the points where the radial velocity vanishes,
i.e., the perihelion or aphelion distance in the case of
bounded orbits. In turn, the behavior of Fðu; qÞ can be
explored by comparison with the function fðuÞ which is
defined as

fðuÞ ¼ Fðu; q ¼ 0Þ ¼ 1

l2
½E2 − ð1 − 2muÞðl2u2 þ ϵÞ�:

ð25Þ
This means that the function fðuÞ determines the behavior
of the geodesics in the case of the Schwarzschild spacetime
and, consequently, a comparison between Fðu; qÞ and fðuÞ
will determine the main differences between geodesics of

the q metric and those of the Schwarzschild spacetime. It is
easy to show that

Fðu; qÞ > fðuÞ for q > 0 and

Fðu; qÞ < fðuÞ for q < 0 ð26Þ

in the interval u ∈ ð0; 1
2mÞ, i.e., in the spatial region located

between the outer singularity (r ¼ 2m) and infinity. This
behavior is illustrated in Fig. 5. This simple observation
leads to an interesting physical result. Suppose that the
zeros of fðuÞ are u1 and u2 with u1 < u2 so that the
trajectory is bounded between r1 ¼ 1=u1 and r2 ¼ 1=u2;
consequently, the perihelion distance is r2 < r1. Suppose
that the value of q is so chosen that Fðu; qÞ has also two
zeros at u10 < u20. Then, from the behavior of Fðu; qÞ (cf.,
Fig. 5) we conclude that

u1 < u01; i:e:; r1 > r01 and u02 < u2;

i:e:; r02 > r2 for q > 0: ð27Þ

This means that the perihelion distance for positive q is
greater that the one for vanishing quadrupole. A similar
analysis shows that the perihelion distance decreases for
negative values of the quadrupole. We conclude that the
presence of the quadrupole in the qmetric leads to a change
of the perihelion distance, an effect that has been predicted
also for other metrics with quadrupole moment [16,29].
Some examples of geodesics for different values of the
quadrupole parameter are given in Figs. 6–8, where for

FIG. 5. Behavior of the function Fðu; qÞ for particular values of
the parameters m ¼ 1, E ¼ 4, and l ¼ 15, and ϵ ¼ 1.
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simplicity the radial coordinate has been redefined as r=m
for all the trajectories.
In Fig. 6, we consider unbounded Schwarzschild orbits

with nonvanishing initial radial velocities under the influ-
ence of the quadrupole. We see that for the chosen initial
radial and angular velocities all the test particles are able to
escape from the gravitational field of the naked singularity.
The value of the quadrupole determines only the direction
along which the particle escapes towards infinity.
In Fig. 7, we investigate how the quadrupole acts on

unbounded Schwarzschild orbits with zero initial radial
velocity. First, we study the change of a stable circular

Schwarzschild geodesic under the influence of a quadru-
pole (left panel). For a small quadrupole (q ¼ 0.009), the
geodesic moves slowly towards the central singularity and
finally reaches a stable circular orbit with a radius which is
smaller than the initial Schwarzschild radius. In the central
and right plots, we consider the same values for the
quadrupole moment, but different initial angular velocities
_φð0Þ. In both cases, the test particles move along bounded
orbits with different perihelion shifts. From the behavior of
these trajectories, we conclude that the quadrupole is able
to transform unbounded Schwarzschild trajectories into
bounded trajectories.

FIG. 6. Influence of the quadrupole on unbounded Schwarzschild orbits with nonvanishing initial radial velocity (_rð0Þ ≠ 0Þ. The
initial point φð0Þ ¼ 0 and rð0Þ ¼ 20 is the same for both plots. Initial velocities: _rð0Þ ¼ −2 and _φð0Þ ¼ 0.04305 (left plot); _rð0Þ ¼ −2.5
and _φð0Þ ¼ 0.039 (right plot).

FIG. 7. Influence of the quadrupole on unbounded Schwarzschild orbits with vanishing initial radial velocity (_rð0Þ ¼ 0). Initial
conditions: φð0Þ ¼ π=2, rð0Þ ¼ 7, _φð0Þ ¼ 0.07145 (left plot); φð0Þ ¼ 0, rð0Þ ¼ 9, _φð0Þ ¼ 0.075 (center plot); φð0Þ ¼ π=2, rð0Þ ¼ 9,
_φð0Þ ¼ 0.07145 (right plot).
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In Fig. 8, we consider a Schwarzschild bounded orbit
under the influence of the quadrupole with zero initial radial
velocity and the same nonzero value for the initial angular
velocity. The left panel shows the Schwarzschild geodesic,
whereas the central and right plots are for a particular
negative and positive value of the quadrupole, respectively.
In this case, we see that the quadrupole does not affect the
bounded character of the geodesic. However, it can drasti-
cally modify the geometric structure of the trajectory.
In general, we see that the quadrupole of the naked

singularity always affects the motion of test particles. The
specific change can manifest itself in different ways,
depending on the explicit value of the quadrupole.

A. Circular orbits

Circular orbits on the equatorial plane can be inves-
tigated analytically. In fact, in this case the motion under
the condition _r ¼ 0 is equivalent to the motion of a test
particle in the effective potential [cf., Eq. (21)]:

V2
effðr; qÞ ¼

�
1 −

2m
r

�
qþ1

�
l2

r2

�
1 −

2m
r

�
q
þ ϵ

�
: ð28Þ

The presence of the quadrupole parameter influences the
behavior of the effective potential, as can be seen in Fig. 9.
The effective potential of the Schwarzschild is also shown
for comparison. For positive values of q the value of the
effective potential at a given point outside the outer
singularity is always less than the Schwarzschild value.
For negative values of the quadrupole, the opposite is true.
This indicates that the distribution of circular orbits on the
equator of the q metric can be modified drastically by the
quadrupole. We will now explore this point in detail.
The explicit value of the angular momentum of a test

particle along a circular orbit can be derived from the
condition ∂V2

eff=∂r ¼ 0. A straightforward computation
yields that this condition is satisfied if the angular momen-
tum is given by

l2 ¼ mðqþ 1Þð1 − 2m
r Þ−qr2

r − ð3þ 2qÞm ; ð29Þ

an expression from which it follows immediately that the
radius of any circular orbit must satisfy the condition

rc > mð3þ 2qÞ: ð30Þ

This radius is greater than the Schwarzschild radius for a
positive quadrupole parameter. However, for negative
values of q, the radius is smaller than the Schwarzschild
value and, in principle, can be made as close as possible to
the outer singularity located at r ¼ 2m. Below we will

FIG. 8. Influence of the quadrupole on Schwarzschild bounded orbits with vanishing initial radial velocity (_rð0Þ ¼ 0). The initial
conditions are φð0Þ ¼ 0, rð0Þ ¼ 7, and _φð0Þ ¼ 0.08 for all the trajectories.

FIG. 9. The effective potential for timelike circular geodesics
on the equatorial plane as a function of the radius for different
values of the quadrupole parameter. Here we set l2 ¼ 30 for
concreteness.
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show that in the limiting case rc ¼ mð3þ 2qÞ, the orbit
becomes lightlike.
Furthermore, the energy of a test particle in circular

motion can be expressed as

E2 ¼
�
1 −

2m
r

�
qþ1

�
mðqþ 1Þ

r −mð3þ 2qÞ þ 1

�
; ð31Þ

which is positive only within the range of allowed radii
(30). To completely characterize the parameters of circular
orbits, we also calculate their angular velocity ΩðrÞ and
period TðrÞ and obtain

ΩðrÞ ¼ _φ ¼ 1

r

�
mð1þ qÞð1 − 2m

r Þq
r −mð3þ 2qÞ

�
1=2

; ð32Þ

TðrÞ ¼
Z

_t
_φ
dφ ¼ 2π

dt
dφ

¼ 2πr3=2
�

r −mð2þ qÞ
mð1þ qÞðr − 2mÞ

�
1=2

�
1 −

2m
r

�
−q
;

ð33Þ

respectively.

B. Stability analysis

We now analyze the stability properties of the circular
motion. In particular, the last stable circular orbit is
determined by the inflection points of the effective potential
(28), i.e., by the zeros of the equation

∂2V2
eff

∂r2 ¼ 2

�
1 −

2m
r

�
q−1mð1þ qÞðr2 − 8mr − 6mqrþ 4m2q2 þ 14m2qþ 12m2Þ

r4½r −mð3þ 2qÞ� ð34Þ

where we have replaced the value for the angular momen-
tum of the circular orbit (29). Then, we obtain the radii

r�lsco ¼ m
�
4þ 3q�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5q2 þ 10qþ 4

q �
ð35Þ

which are positive and lie outside the outer singularity for
all allowed values of q. The behavior of r�lsco is plotted in
Fig. 10 where we also plot the radius rc that denotes the
minimum value at which the angular momentum l2 is

positive. It follows from the graph that it is necessary to
consider three different intervals: I for q ∈ ð∞;−0.5�, II for
q ∈ ð−0.5;−1þ 1=

ffiffiffi
5

p �, and III for q ∈ ð−1þ 1=
ffiffiffi
5

p
;−1Þ.

The particular values of q used to determine the different
intervals follow from the conditions r− ¼ rc (q ¼ −0.5)
and rþ ¼ r− (q ¼ −1þ 1=

ffiffiffi
5

p
≈ −0.5527).

In interval I, the only valid radius is rþlsco which is greater
(smaller) than the Schwarzschild radius for positive (neg-
ative) values of the quadrupole parameter q. Notice that on
the boundary of this interval (q ¼ −0.5), the zero at r−lsco

FIG. 10. The last stable circular radius for a timelike particle as a function of the quadrupole parameter q. The critical radius
rc ¼ mð3þ 2qÞ and the outer singularity rsing ¼ 2m are also plotted. The left plot is a zoom of the region of intersection.
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cannot be considered because it is located on the outer
singularity. In this interval, we have that ∂2V2

eff=∂r2 > 0, so
that all the circular orbits are stable. If we imagine a
hypothetical accretion disk made of test particles around
the central source so that the inner radius of the disk
coincides with rþlsco, the role of the quadrupole in interval I
consists in changing the inner radius. From an observa-
tional point of view, this implies that by measuring the
inner radius of the disk, one can determine the value of the
quadrupole. The smallest disk inner radius corresponds to
the value rþlscoðq ¼ −0.5Þ ¼ 3m, whereas the outer radius
can, in principle, be extended to infinity.
In interval II with q ∈ ð−0.5;−1þ 1=

ffiffiffi
5

p Þ, the second
derivative of V2

eff is negative within the two zeros located at
rþlsco and r−lsco. This means that circular orbits are unstable
within this interval. The radial extension L of the unstable
region is

L ¼ rþlsco − r−lsco

¼ 2m
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5q2 þ 10qþ 4

q

¼
	
m for q ¼ −0.5

0 for q ¼ −1þ 1=
ffiffiffi
5

p ð36Þ

The interesting fact in this case is that there exists an
additional stable region located between the outer singu-
larity and r−lsco (cf., Fig. 10) which is separated by the
unstable region (r−lsco; r

þ
lsco) from the exterior stable region

with r ≥ rþlsco. An accretion disk around such an object
would consist of an external disk which can extend from

rþlsco to infinity and an internal ring located inside the
region ð2m;mþ 3m=

ffiffiffi
5

p
≈ 2.34mÞ, where the outer boun-

dary corresponds to the point where rþlsco ¼ r−lsco. Since the
internal stable ring is located so close to the outer
singularity, one could imagine that the angular momentum
of the test particles should be very high in order to maintain
the orbit. A detailed analysis, however, shows that this is
not true. In Fig. 11, we plot the value of the angular
momentum as a function of the radial distance for a
particular quadrupole parameter which allows the existence
of an internal ring. We can see that the maximum value of
the angular momentum is reached on the external boundary
of the ring and then it decreases as the singularity is
approached. The explicit value of the angular momentum is
not high and, in fact, it is comparable with the values for
test particles located inside the external stable disk at
distances of several times m. The peculiarity of the angular
momentum is that its value decreases as the singularity
is approached, an effect that contradicts the physical
expectations for an attractive gravitational field. The only
possible explanation for this unusual behavior is that there
is an additional force that compensates the gravitational
attraction. Similar effects have been found in the gravita-
tional field of other naked singularities and have been
interpreted as a manifestation of repulsive gravity
[12,13,30,31]. An alternative approach in which repulsive
gravity is defined in terms of curvature invariants leads to
similar results [32,33].
In interval III, with q ∈ ð−1þ 1=

ffiffiffi
5

p
;−1Þ, there are no

last stable orbits. All the circular trajectories are allowed,
in principle, starting at the outer singularity r ¼ 2m. An

FIG. 11. The angular momentum of test particles around a naked singularity with q ¼ −0.52. The left plot is a zoom of the region
where the internal stable ring is located.
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analysis of the angular momentum shows that it diminishes
as the naked singularity is approached. Again, the simplest
explanation is to assume the presence of repulsive gravity.
An accretion disk around this type of naked singularity
would have a continuous structure which extends from the
singularity to infinity.

C. Circular null geodesics

In the case of null geodesics (ϵ ¼ 0), the effective
potential (28) reduces to

V2
eff ¼

l2

r2

�
1 −

2m
r

�
1þ2q

ð37Þ

and its behavior for a given l2 is similar to that shown in
Fig. 9. The important quantities for the analysis of the
circular motion of photons are

∂V2
eff

∂r ¼ −
2l2

r4

�
1 −

2m
r

�
2q
½r −mð3þ 2qÞ�; ð38Þ

and

∂2V2
eff

∂r2 ¼ 2l2

r6

�
1 −

2m
r

�
1þ2q

½3r2 − 12qmr − 18mr

þ 28qm2 þ 8q2m2 þ 24m2�: ð39Þ

The first derivative vanishes for r ¼ rγ ¼ mð3þ 2qÞ, an
expression which reduces to the standard Schwarzschild
value for q ¼ 0, as expected. We see that the circular orbit
located at rγ ¼ mð3þ 2qÞ corresponds to the trajectory of
a photon. This is also the limiting radius for timelike
circular geodesics, as explained above.
By inserting this radius value into the second derivative

of the effective potential, we obtain an expression which is
negative for all values of q. This implies that the circular
orbit with radius rγ ¼ mð3þ 2qÞ is unstable, independ-
ently of the value of the angular momentum. In contrast to
the Schwarzschild spacetime, where there is only one
circular orbit with rγ ¼ 3m, in the case of the q metric
the radius rγ ¼ mð3þ 2qÞ can take any value within the
interval ð2m;∞Þ, depending on the value of the quadrupole
parameter. Nevertheless, for fixed values of m and q, only
one circular orbit is allowed.

V. RADIAL GEODESICS

In the Schwarzschild spacetime, radial geodesics repre-
senting the free fall of test particles are straight lines that
connect the initial point in spacetime with the singularity
located at the origin of coordinates. Therefore, it is useful to
study radial geodesics in the spacetime described by the q
metric in order to evaluate the influence of the quadrupole.
Wewill consider the free fall of test particles with vanishing

angular momentum (l ¼ 0). Then, the motion along the
radial coordinate is governed by the equation

_r ¼ −
�
1þ m2sin2θ

r2 − 2mr

�q
2
ð2þqÞ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

E2 − Φ2
r

q
; ð40Þ

where the minus sign indicates that the particle falls inward
and

Φ2
r ¼

�
1 −

2m
r

�
1þq

�
r2
�
1 −

2m
r

�
−q

×

�
1þ m2sin2θ

r2 − 2mr

�−qð2þqÞ
_θ2 þ ϵ

�
: ð41Þ

In addition, we must take into account that an arbitrary
polar plane (θ ¼ const) is not necessarily a geodesic plane.
This means that the radial geodesic is determined by
Eq. (40) together with Eq. (12) for the evolution along
the angle θ. We illustrate the result of the integration of
these two differential equations in Fig. 12. The effect of the
quadrupole parameter q becomes plausible from the
behavior of the geodesics. For sources with negative
quadrupole parameter (prolate sources), the geodesics
deviate from the initial angle θ ¼ π

4
towards the axis of

symmetry. In the case of positive quadrupole q (oblate
body), the deviation is towards the equatorial plane of
source. This result is in accordance with our physical
expectations. Indeed, an oblate source is larger on the

FIG. 12. Free fall of test particles with initial point located at
r ¼ 4ðm ¼ 1Þ and θ ¼ π

4
. The singularity at r ¼ 2m and the radial

geodesic for the Schwarzschild spacetime are also shown for
comparison.
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equatorial plane and so one would expect that the mass
density is larger on the equator, generating a larger
gravitational interaction. In the case of prolate bodies,
the same intuitive reasoning is valid for the symmetry axis.
This result reinforces our interpretation of the parameter q
as determining the quadrupole moment of the gravitational
source.
In the case of radial geodesics, it is interesting to

compute the coordinate time, t, and the proper time, τ,
that passes along the trajectory of a test mass between
two radii ri and rf. For simplicity, we consider the case of
radial geodesics on the equatorial plane where the geodesic
equations reduce to

_r2 ¼
�
1þ m2

r2 − 2m

�
qð2þqÞ�

E2 −
�
1 −

2m
r

�
1þq

�
;

_t ¼ E

�
1 −

2m
r

�
−1−q

: ð42Þ

It is then easy to obtain the relationships

Δτ¼
Z

rf

ri

�
E2−

�
1−

2m
r

�
qþ1

�
−1=2

×
�
1þ m2

r2−2mr

�−1
2
qð2þqÞ

dr; ð43Þ

and

Δt ¼
Z

rf

ri

E

�
1 −

2m
r

�
−ð1þqÞ�

E2 −
�
1 −

2m
r

�
qþ1

�
−1=2

×

�
1þ m2

r2 − 2mr

�−1
2
qð2þqÞ

dr; ð44Þ

for the proper time and coordinate time, respectively. Let us
consider the case of a particle located initially at ri → ∞ so
that E2 ¼ 1. If the final state is at the singularity rf ¼ 2m,
we obtain

τ2m ¼
Z

2m

∞

�
2m
r

�
−1
2
ð1þqÞ�

1þ m2

r2 − 2mr

�−q
2
ð2þqÞ

dr:

ð45Þ

It is not possible to find an analytical expression for this
integral. Nevertheless, one can evaluate it either numeri-
cally or by means of a Taylor expansion around the value
q ¼ 0 and r ¼ 2m. As a result we obtain that the proper
time is finite for all the allowed values of q. The same result
is obtained for the Schwarzschild spacetime (q ¼ 0). This
result indicates that the quadrupole does not affect the
finiteness of the proper time that is necessary to reach the
hypersurface r ¼ 2m.

In a similar manner, for the coordinate time we obtain

t2m ¼ E
Z

2m

∞

�
E2 −

�
1 −

2m
r

�
1þq

�
−1=2

�
1 −

2m
r

�
−1þq2

2

×

�
1 −

2m
r

þm2

r2

�−q
2
ð2þqÞ

: ð46Þ

Again, a Taylor expansion of this quantity reveals that
it is finite for q < 0 and infinite for q ≥ 0. This means that a
positive quadrupole does not change the main property of
the coordinate time of the Schwarzschild spacetime.
However, in the case of a negative quadrupole, the
coordinate time completely changes so that an observer
at infinity would observe how the test particle reaches the
outer singularity located at r ¼ 2m.
Let us now consider the radial motion of photons.

Suppose that a photon is emitted at a radius rem with
frequency νem and received at a radius rrec with frequency
νrec. Then, the redshift z in a static spacetime is determined
by the relationship [19]

zþ 1 ¼ νem
νrec

¼
�
gttjrec
gttjem

�
1=2

¼
�
1 − 2m=rrec
1 − 2m=rem

�1
2
ð1þqÞ

:

ð47Þ

If the emission occurs on the outer singularity (rem ¼ 2m),
the redshift diverges, independently of the value of q.
This means that for an observer located outside the radius
r ¼ 2m, it is not possible to receive information from the
singularity. In this sense, the singularity remains invisible
for external observers. In fact, this means that no emission
can occur on the singularity which is a place where the
entire theory breaks down. However, if the emission takes
place near the singularity (rem ≳ 2m), the observer outside
the radius will certainly receive the photon after a time
which is inversely proportional to the distance between the
singularity and the transmitter.

VI. CONCLUSIONS

In this work, we investigated the motion of test particles
in the gravitational field described by the q metric, the
simplest generalization of the Schwarzschild metric which
contains a quadrupole parameter. It was shown that the q
spacetime possesses two singularities at r ¼ 0 and r ¼ 2m
which are not covered by a horizon; i.e., they are not
isolated from the exterior spacetime. For certain values of
the parameter q, a third θ-dependent singularity appears
inside the spatial region contained within the radial interval
ð0; 2mÞ. If we limit ourselves to the region with r > 2m, the
geodesic equations determine the motion of test particles
around the naked singularity located at r ¼ 2m. First, we
studied the bounded motion on an arbitrary polar plane
θ ≠ 0, π=2 and showed that, in general, the plane of the
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orbit moves towards the equator or to the axis of symmetry,
depending on the value of the quadrupole. We performed a
brief analysis of the conditions under which circular orbits
are allowed for arbitrary values of the polar angle θ, the
angular momentum of the particle, and the quadrupole
parameter.
We studied in detail the motion on the equatorial plane

θ ¼ π=2. We integrated numerically the geodesic equations
and found bounded and unbounded orbits for different
values of the quadrupole. It was also shown explicitly that
the presence of the quadrupole leads to a change of the
perihelion distance of a bounded orbit. This effect could in
principle be used to determine the quadrupole moment of
the gravitational source. Notice, however, that our analysis
of the perihelion distance is only qualitative, because for
measuring spatial distances we use the radial coordinate r
whose meaning depends on the value of q. This implies that
we cannot calculate an absolute value for the perihelion
distance change which could be compared with observa-
tional data. A different approach is necessary, for instance,
by using geodesics as spatial coordinates, in order to
determine the observable perihelion distance change.
This task is outside the scope of the present work.
Nevertheless, the qualitative result presented here can be
used to perform concrete observations intended to cor-
roborate the predicted effect.
The analysis of circular orbits and their stability leads to

a classification of naked singularities according to which, in
certain cases, it is possible to determine the quadrupole
parameter by measuring the inner radius of the accretion
disks made of test particles only. Suppose, for instance,
that an accretion disk is detected with inner radius rinner
within the interval (3m;∞). Then, the naked singularity is
of type III with a quadrupole parameter that can be
determined numerically by using the formula rinner ¼
mð4þ 3qþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5q2 þ 10qþ 4

p
Þ, and the result must be a

value contained within the interval q ∈ ð−0.5;∞Þ. If the
value of the accretion disk inner radius is inside the interval
ð2.34m; 3mÞ, the naked singularity belongs to class II, and
the quadrupole parameter can be determined again from the
formula rinner ¼ mð4þ 3qþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5q2 þ 10qþ 4

p
Þ. In this

case, the quadrupole parameter must be contained within
the interval ð−0.5527;−0.5Þ, and there must exist an
additional inner ring located inside the spatial region
ð2m; 2.34mÞ, whose exterior radius can be determined
by the formula rext ¼ mð4þ 3q −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5q2 þ 10qþ 4

p
Þ.

Finally, if the inner disk radius is inside the interval
(2m, 2.34m), the naked singularity is of class I with
q ∈ ð−1;−0.5527Þ. In the case of class II and III naked
singularities, it is possible to find the exact value of the
quadrupole parameter by measuring the inner radius of the
accretion disk. This is not true in the case of class I
singularities because all the circular orbits are stable in this
region. However, if we could measure the radius and the
angular momentum of a particular circular orbit located

inside the region (2m, 2.34m), the quadrupole parameter
could be determined by using the expression (29) for the
angular momentum. In this manner, we see that it is always
possible to determine the quadrupole parameter from the
physical properties of the accretion disk. The fact that in the
gravitational field of naked singularities there exist circular
orbits near the outer singularity is explained by assuming
the presence of repulsive gravity.
The study of radial geodesics starting at an arbitrary

polar angle θ shows that the quadrupole induces a deviation
from the original radial direction in such a way that the test
particles tend either towards the equator or to the axis of
symmetry, depending on the value of the quadrupole. We
also calculated the proper time and the coordinate time
along radial geodesics on the equatorial plane and estab-
lished the analogies and differences with respect to radial
geodesics in the Schwarzschild spacetime.
Our results show that the presence of a quadrupole can

drastically affect the motion of test particles in a such a way
that it is possible to determine the quadrupole by studying
the properties of the test particle trajectories. If we were to
compare our results with observational data from astro-
physical compact objects, we would immediately notice
that an important astrophysical parameter is missing in
our analysis, namely, the rotation. We expect to perform
such an analysis in a future work by using a stationary
generalization of the q metric such as, for instance, the one
derived in [34].
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APPENDIX: CALCLATION OF THE ADM MASS

Consider the spacetime ðM; gÞ foliated by a family
ðΣtÞt∈ℜ of spacelike hypersurfaces. Let

St ≡ ∂V∩Σt; ðA1Þ
where ∂V is the boundary of a domain V (∂V is assumed to
be a timelike hypersurface). The ADM mass of the slice Σt
is defined by

MADM ¼ 1

16π
lim
St→∞

I
St

½Djhij −DiðfklhklÞ�Si
ffiffiffi
s

p
d2y

ðA2Þ
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where f is a flat background metric on Σt, h is the induced
metric of the hypersurface Σt, D stands for the connection
associated with the metric f, Si stands for the components
of unit normal to St,

ffiffiffi
s

p
d2y denotes the surface element

induced by the spacetime metric on St with sab being the
induced metric, ya ¼ ðy1; y2Þ are some coordinates on St,
and s≡ det sab.
Let us take for Σt the hypersurface of the constant

coordinate t. Then, in the case of the q metric (1), we have
for the induced metric on the hypersurface Σt

hij ¼ diag

��
1 −

2m
r

�
−q−1

�
1þ m2sin2θ

r2 − 2mr

�−qð2þqÞ
;

r2
�
1 −

2m
r

�
−q
�
1þ m2sin2θ

r2 − 2mr

�−qð2þqÞ
;

r2sin2θ

�
1 −

2m
r

�
−q
�
; ðA3Þ

whereas for the flat metric we obtain

fij ¼ diag½1; r2; r2sin2θ�: ðA4Þ

For St we take the sphere r ¼ const on the hypersurface
Σt. Then ya ¼ ðθ;φÞ, ffiffiffi

s
p ¼ r2 sin θ and Si ¼ δir.

Accordingly, Eq. (A2) becomes

MADM ¼ 1

16π
lim
r→∞

I
r¼const

½Djhrj −DrðfklhklÞ�r2 sinθdθdφ;
ðA5Þ

where

DrðfklhklÞ ¼
∂
∂r ðf

klhklÞ

¼ ∂
∂r ðhrr þ r−2hθθ þ r−2sin−2θhφφÞ ðA6Þ

and

Djhrj ¼ fjkDkhrj ¼
∂
∂r hrr þ

2

r
hrr −

1

r3
hθθ −

1

r3sin2θ
hφφ:

ðA7Þ

Here we used the fact that fklhkl is a scalar field. In
obtaining Eq. (A7), we used the formula

Drhrr ¼
∂
∂r hrr − 2Γr

rrhrr; ðA8Þ

Dθhrθ ¼
∂
∂θ hrθ − Γθ

θrhθθ;−Γr
θθhrr; ðA9Þ

Dφhrφ ¼ ∂
∂φ hrφ − Γφ

φrhφφ − Γr
φφhrr; ðA10Þ

with the nonzero components of the Christoffel symbols of
the connectionDwith respect to the coordinates xi given by

Γr
θθ ¼ −r; Γr

φφ ¼ −rsin2φ; Γθ
rθ ¼ Γφ

rφ ¼ 1

r
;

Γθ
φφ ¼ − cos θ sin θ; Γφ

θφ ¼ cot θ: ðA11Þ

Accordingly, from Eq. (A6) and Eq. (A7), after a simple
but tedious calculation, one obtains that

Djhrj −DrðfklhklÞ

¼ 4mðqþ 1Þ
r2

− qð2þ qÞm2

�
1 −

2m
r

�
−q−2

×

�
3

r3
þ 2mq

r4

�
sin2θ; ðA12Þ

where we have used the first-order approximation

�
1þ m2sin2θ

r2 − 2mr

�−qð2þqÞ
≈
�
1 −

qð2þ qÞm2sin2θ
r2 − 2mr

�
:

ðA13Þ

Thus, by substituting Eq. (A12) into Eq. (A5) and
calculating the limit after integration, we obtain
MADM ¼ mð1þ qÞ.
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