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We consider Palatini fðR; TÞ gravity models, similar to those introduced by Harko et al. (2012), where
the gravitational Lagrangian is given by an arbitrary function of the curvature scalarR and of the trace of the
energy-momentum tensor T. Interior spherical static solutions are studied considering the model of matter
given by a perfect fluid configuration and a polytropic equation of state. We analyze the curvature
singularities found previously for Palatini fðRÞ gravity and discuss the possibility to remove them in some
particular fðR; TÞ models. We show that it is possible to construct a restricted family of models for which
these singularities are not present.
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I. INTRODUCTION

Modified theories of gravity have received much atten-
tion as an alternative to general relativity (GR). Among the
many alternatives to Einstein’s gravity, theories including
curvature invariants of higher order have been studied in
detail; fðRÞ theories especially have received particular
attention. In the Palatini formalism (see [1] for a complete
review on modified theories of gravity in the Palatini
approach), which considers the metric and the connection
as independents fields, these theories have been applied to
stellar models, and it has been found that for generic
choices of fðRÞ, the theory presents curvature singularities
when considering static spherically symmetric solutions
and a polytropic equation of state [2–4]. The only exception
seems to be the case in which f is a linear function of R,
which corresponds to Einstein gravity with a cosmological
constant. This feature has also been found in other models,
for instance in the Eddington-inspired Born-Infeld gravity,
where the presence of higher derivatives of the matter fields
in the effective field equations produce curvature singu-
larities; see [5] and references therein. On the other hand, in
[6] Kim argues that it is possible that a gravitational
backreaction on the matter dynamics can remove the
singularities. Furthermore, Harko et al. [7] introduced
fðR; TÞ gravity, where the gravitational Lagrangian is
given by an arbitrary function of the curvature scalar R
and of the trace of the energy-momentum tensor T. The
authors present the metric gravitational field equations of
some particular models and studied the equations of motion
in the Newtonian limit. The features of these models are
being studied in different physical situations; see for
instance Refs. [8–11].

The purpose of this paper is to present a new family of
related models, obtained as a variation of those described
above, by considering the Palatini formalism for fðR; TÞ
gravity. In particular, we study the existence of curvature
singularities similar to those found in Palatini fðRÞ gravity
for polytropic spheres, and determine if these kind of
models are a viable alternative within this context. As a first
step, we derive the field equations in the Palatini formalism.
We consider the metric gμν independent of the connection
Γλ

μν, and the curvature scalar of this connection is denoted
by R. We will follow the procedure described by
Kainulainen et al. in Ref. [12] to obtain a generalization
of the Tolman-Oppenheimer-Volkoff (TOV) equation of
hydrostatic equilibrium for fðR; TÞ gravity in the Palatini
formalism and will follow the method described in [2], used
to analyze the existence of curvature singularities in
Palatini fðRÞ gravity, and study the possibility to remove
them in some particular fðR; TÞ models.
The content of our paper is organized as follows. In

Sec. II we determine the field equations of fðR; TÞ gravity
in the Palatini formalism and reduce them to effective
field equations. In Sec. III we consider a static spherically
symmetric solution and find a generalized TOV equation
for Palatini fðR; TÞ gravity. In Sec. IV we consider the
problem of curvature singularities in polytropic spheres and
show that it is possible find a family of functions for which
no singularities arise. We conclude in Sec. V with a
summary and discussion of some future perspectives.

II. GRAVITATIONAL FIELD EQUATIONS OF
PALATINI f ðR;TÞ GRAVITY

In the Palatini formalism we consider that the metric
tensor and the connection are independent fields. The scalar
constructed with the Christoffel symbols of gμν will be
denoted by R, whereas R ¼ gμνRμνðΓÞ represents the
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curvature scalar constructed with the independent connec-
tion Γλ

μν. The scalar R is invariant under projective trans-
formation of the form Γλ

μν → Γλ
μν þ δλμξν, where ξν is an

arbitrary covariant vector field. Then, the Hilbert-Einstein
Lagrangian, or any other Lagrangian constructed from a
function of R, is invariant under this kind of transforma-
tion. As a consequence, it would not be possible to find a
unique solution for the connection, since the field equations
determine this field up to projective transformations. Away
out of this problem is to assume from the beginning that
the connection has no torsion, i.e. that it is symmetric
with respect to its lower indices. This assumption breaks
projective invariance, since projective transformations do
not preserve the torsionless condition. Therefore, we
always consider an independent torsionless connection
Γλ
μν, which on the other hand can in general have nontrivial

nonmetricity, i.e. ∇λgμν ≠ 0.
With these preliminaries, we consider an action given by

S ¼ 1

2κ

Z
d4x

ffiffiffiffiffiffi
−g

p
fðR; TÞ þ

Z
d4x

ffiffiffiffiffiffi
−g

p
Lm; ð2:1Þ

where κ ¼ 8πG; fðR; TÞ is an arbitrary function of the
curvature scalar R; and of the trace T of the energy-
momentum tensor of matter Tμν, we choose c ¼ 1 and
follow the notation of Ref. [7]. Finally, Lm is the matter
Lagrangian, and we define the energy-momentum tensor of
matter as usual as

Tμν ≔ −
2ffiffiffiffiffiffi−gp δð ffiffiffiffiffiffi−gp

LmÞ
δgμν

: ð2:2Þ

We will assume as in [7] that the Lagrangian Lm of matter
depends only on the metric tensor components gμν, not on
its derivatives, and thus

Tμν ¼ gμνLm − 2
∂Lm

∂gμν : ð2:3Þ

By varying the action (2.1) with respect to the metric tensor
gμν we find

δS ¼ 1

2κ

Z �
FðR; TÞδRþHðR; TÞ δT

δgμν
δgμν ð2:4Þ

−
1

2
gμνfðR; TÞδgμν þ κ

1ffiffiffiffiffiffi−gp δð ffiffiffiffiffiffi−gp
Lm

δgμν

� ffiffiffiffiffiffi
−g

p
d4x; ð2:5Þ

where we have denoted

FðR; TÞ ≔ ∂fðR; TÞ
∂R ; HðR; TÞ ≔ ∂fðR; TÞ

∂T : ð2:6Þ

Since R ¼ gμνRμν and Rμν does not depend on the metric
tensor, we have that

δS ¼ 1

2κ

Z �
FðR; TÞRμνδgμν þHðR; TÞ δðg

αβTαβÞ
δgμν

δgμν

−
1

2
gμνfðR; TÞδgμν þ κ

1ffiffiffiffiffiffi−gp δð ffiffiffiffiffiffi−gp
LmÞ

δgμν

� ffiffiffiffiffiffi
−g

p
d4x:

ð2:7Þ

As in Ref. [7] we define the variation of T with respect to
the metric tensor as

δðgαβTαβÞ
δgμν

¼ Tμν þ Θμν; ð2:8Þ

where

Θμν ≔ gαβ
δTαβ

δgμν
: ð2:9Þ

Then, we obtain the field equations for the metric of
fðR; TÞ gravity as

FðR; TÞRμν −
1

2
gμνfðR; TÞ

¼ κTμν −HðR; TÞTμν −HðR; TÞΘμν: ð2:10Þ

Varying now the action (2.1) with respect to the connection
Γλ

μν, and taking into account that the trace of the energy-
momentum tensor is independent of the connection and that

δRμν ¼ ∇̄λδΓλ
μν − ∇̄νδΓλ

μλ; ð2:11Þ

where ∇̄λ denotes the covariant derivative defined with the
independent connection Γλ

μν, we have that

∇̄λðFðR; TÞ ffiffiffiffiffiffi
−g

p
gμνÞ − δðνλ ∇̄ρðFðR; TÞ ffiffiffiffiffiffi

−g
p

gμÞρ ¼ 0;

ð2:12Þ

where ðμνÞ denotes the symmetrization over μ and ν.
Contracting with δλν, we can rewrite (2.12) as

∇̄λðFðR; TÞ ffiffiffiffiffiffi
−g

p
gμνÞ ¼ 0: ð2:13Þ

Note that if we consider fðR; TÞ ¼ fðRÞ, then HðR; TÞ ¼
0 and we recover the field equations for Palatini fðRÞ
gravity; see [13].
We can eliminate the connection as an independent field

if we consider a metric conformal to gμν as

hμν ≔ FðR; TÞgμν: ð2:14Þ

It is easy to show that in terms of hμν the field equa-

tion (2.13) reduces to ∇̄λð
ffiffiffiffiffiffi
−h

p
hμνÞ ¼ 0, so that the

solutions are the Christoffel symbols of hμν,
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Γλ
μν ¼

1

2
hλσð∂μhνσ þ ∂νhμσ − ∂σhμνÞ; ð2:15Þ

and therefore,

Γλ
μν ¼

1

2

1

FðR; TÞ g
λσ½∂μðFðR; TÞgνσÞ þ ∂νðFðR; TÞgμσÞ

− ∂σðFðR; TÞgμνÞ�

¼ f λ

μν
g þ 1

2

1

FðR; TÞ ½δ
λ
ν∂μðFðR; TÞÞ

þ δλμ∂νðFðR; TÞÞ − gμν∂λðFðR; TÞÞ�; ð2:16Þ

where f λ
μνg denotes the Christoffel symbols of the metric

tensor gμν. As a result, we have that

Rμν ¼ Rμν þ
3

2

1

ðFðR; TÞÞ2 ð∇μFðR; TÞÞð∇νFðR; TÞÞ

−
1

FðR; TÞ
�
∇μ∇ν þ

1

2
gμν□

�
FðR; TÞ; ð2:17Þ

and

R¼Rþ3

2

1

ðFðR;TÞÞ2 ð∇FðR;TÞÞ2− 3

FðR;TÞ□FðR;TÞ;

ð2:18Þ

where Rμν and R are the Ricci tensor and the curvature
scalar defined by the Christoffel symbols of the metric
tensor gμν, respectively. Replacing Eqs. (2.17) and (2.18) in
Eq. (2.10), and after some manipulations we can write the
field equations as effective Einstein equations, namely

Gμν¼Rμν−
1

2
gμνR

¼κ−HðR;TÞ
FðR;TÞ Tμν−

HðR;TÞ
FðR;TÞΘμν−

1

2
gμν

�
R−

fðR;TÞ
FðR;TÞ

�

−
3

2F2ðR;TÞðð∇μFðR;TÞÞð∇νFðR;TÞÞ

−
1

2
gμνð∇FðR;TÞÞ2Þþ 1

FðR;TÞð∇μ∇ν−gμν□ÞFðR;TÞ:

ð2:19Þ

III. MODIFIED TOLMAN-OPPENHEIMER-
VOLKOFF EQUATION

We now take the covariant derivative ∇μ of Eq. (2.10)
and obtain for the divergence of the energy-momentum
tensor Tμν

∇μTμν ¼
HðR; TÞ

κ −HðR; TÞ
�
ðTμν þ ΘμνÞ∇μ lnHðR; TÞ

þ∇μΘμν −
1

2
∇νT

�
; ð3:1Þ

where ∇μ denotes the covariant derivative with respect to
the connection of the metric tensor gμν. Note that Eq. (3.1)
corresponds to the conservation law found in Ref. [14] in
the metric formalism. If HðR; TÞ ¼ 0, we obtain ∇μTμν ¼
0 as in GR and fðRÞ gravity.
Now, in order to obtain a modified TOV equation of

hydrostatic equilibrium for Palatini fðR; TÞ gravity we
assume that the metric is static and spherically symmetric,
and we write it in the form

ds2 ≡ eAðrÞdt2 − eBðrÞdr2 − r2dΩ2: ð3:2Þ
We also assume a perfect fluid description for matter, so
that

Tμν ¼ ðρþ PÞuμuν − Pgμν; ð3:3Þ
where ρ is the mass/energy density, P is the pressure, and
uμ is the fluid 4-velocity. As in Ref. [7] we consider the
matter Lagrangian to be given by Lm ¼ −P; see also [15].
Then, we find that Θμν ¼ −2Tμν − gμνP. Now we can
replace the metric (3.2) and the energy-momentum tensor
(3.3) in (2.19) and consider the components G00 and G11.
Denoting d=dr with a prime 0, we arrive at

A0 ¼ −
1

1þ γ

�
1 − eB

r
−

κ

F
eBPrþ α

r

�
; ð3:4Þ

B0 ¼ 1

1þ γ

�
1 − eB

r
þ κ

F
eBρrþH

F
eBðρþ PÞrþ αþ β

r

�
;

ð3:5Þ

where we define

α ≔ r2
�
3

4

�
F0

F

�
2

þ 2F0

Fr
−
eB

2

�
R −

f
F

��
; ð3:6Þ

β ≔ r2
�
F00

F
−
3

2

�
F0

F

�
2
�
; ð3:7Þ

γ ≔
rF0

2F
: ð3:8Þ

Note that Eq. (3.4) for A0 is not modified by the new
coupling between geometry and matter as compared to
fðRÞ gravity, while B0 is modified, due to the term
proportional to H. We consider the conservation of the
energy-momentum tensor, Eq. (3.1); take into account that
∇μTμ1 ¼ P0 þ A0ðρþ PÞ=2; and assume an equation of
state of the form ρ ¼ ρðPÞ, so that ρ0 ¼ P0ðdρ=dPÞ.
Therefore, we can use Eqs. (3.4) and (3.5) to arrive at
the modified TOV equation for Palatini fðR; TÞ gravity:
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dP
dr

¼ −
κ þH

κ þHð1þ e−B
2
ð1 − dρ

dPÞÞ

�
1

1þ γ

� ðρþ PÞ
rðr − 2mtotÞ

×

�
mtot þ

4πGPr3

F
−
α

2
ðr − 2mtotÞ

�
: ð3:9Þ

Here we have defined mtotðrÞ ≔ rð1 − e−BÞ=2. Note that if
H ¼ 0 we obtain the corresponding modified TOV equa-
tion for Palatini fðRÞ gravity [12].

IV. CURVATURE SINGULARITIES

Our purpose is to determine if Palatini fðR; TÞ gravity
presents the same kind of surface curvature singularities
which appear in fðRÞ theory. The fact that the function f
depends, in addition to the curvature scalar R, on the trace
of the energy-momentum tensor T, could provide a
possibility that these singularities are not present in some
particular model. As stated above, our analysis follows
Ref. [2]; therefore we will use the modified TOV equa-
tion (3.9), and the general equations for the metric
components (3.4) and (3.5). Indeed, multiplying (3.9) by
dF=dP and after some algebra, we find a quadratic
equation for F0, aF02 þ bF0 þ c ¼ 0, where

a ¼ 2r2ðr − 2mtotÞðκ þHÞð3C − 4FÞ

− 4rðr − 2mtotÞ2HF

�
1 −

dρ
dP

�
;

b ¼ 16rFðr − 2mtotÞðκ þHÞðC − FÞ

− 8HF2ðr − 2mtotÞ2
�
1 −

dρ
dP

�
;

c ¼ −8CFðκ þHÞ
�
2mtotF þ 8πGPr3 þ r3

2
ðRF − fÞ

�
;

ð4:1Þ

whose solution is then given by

F0 ¼ 1

2

�
−b
a

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
b
a

�
2

− 4

�
c
jaj

�s �
; ð4:2Þ

and where we have defined

C ≔ ðρþ PÞ dF
dP

¼ ðρþ PÞ dF
dρ

dρ
dP

: ð4:3Þ

We focus on a polytropic equation of state, which can be
written as

ρðPÞ ¼
�
P
K

�
1=Γ

þ P
Γ − 1

; ð4:4Þ

where K > 0 and Γ > 1 are constants, the latter being the
polytropic index. Note that, even when dρ=dP diverges for
P → 0, the product ðρþ PÞdρ=dP → 0 provided Γ < 2

[2]. Notice also that taking the trace of Eq. (2.10) we can
find an algebraic relation among R, T and P,

FðR;TÞR−2fðR;TÞ¼ κTþHðR;TÞTþ4HðR;TÞP;
ð4:5Þ

so that after solving for R we find a relation of the form
R ¼ RðT; PÞ. Taking this into account, as well as the
dependency of the trace of energy-momentum tensor on ρ
and P and the equation of state, we can evaluate the total
variation of F under changes of the density ρ, i.e. the
derivative dF=dρ appearing in (4.3), and find that

dF
dρ

¼ ∂F
∂R

∂R
∂T

�
1−3

dP
dρ

�
þ ∂F
∂R

∂R
∂P

dP
dρ

þ∂F
∂T

�
1−3

dP
dρ

�
;

ð4:6Þ
where ∂R=∂T and ∂R=∂P can be calculated from (4.5),
obtaining that

∂R
∂T ¼ κ þ 3H þ ∂H

∂T ðT þ 4PÞ
∂F
∂RR − F − ∂H

∂R ðT þ 4PÞ ð4:7Þ

and

∂R
∂P ¼ 4H

∂F
∂RR − F − ∂H

∂R ðT þ 4PÞ : ð4:8Þ

For the study of surface singularities, we will consider, for
simplicity, the case in which the function f takes the form
fðR; TÞ ¼ f1ðRÞ þ f2ðTÞ; then we have that F ¼ FðRÞ
and H ¼ HðTÞ. In addition, we consider f2ðTÞ to be a
polynomial of T. Then, ∂F=∂R, ∂R=∂T, ∂R=∂P and
∂F=∂T are in general finite [check for instance,
fðR; TÞ ¼ RþR2 þ T2], even when T → 0 and
dP=dρ → 0 when P ¼ 0 at the surface, which is located
at r ¼ rout. Moreover, f, F, H and R take finite values f0,
F0, H0 and R0 at the surface, respectively. Additionally, it
can be easily shown from Eqs. (2.19) and (4.5) that the
vacuum static spherically symmetric solution for these
cases is the Schwarzschild-(anti–)de Sitter solution.
Therefore, when Γ < 2, C ¼ 0 at r ¼ rout. Furthermore,
in contrast to the fðRÞ case [2], the solutions of F0,
Eq. (4.2), contain terms proportional to Hdρ=dP. While
dρ=dP diverges when P → 0, the productHðdρ=dPÞ could
converge in a particular model. Thus, for simplicity we
consider two cases: (1) HðT ¼ 0Þ ¼ H0 ¼ const. and
(2) HðTÞ ∝ Tn; n ≥ 1. We have to calculate the solutions
for F0 at the surface considering Eq. (4.2). For the first case,
HðT ¼ 0Þ ¼ H0 ¼ const, we have that

lim
P→0

�
b
a

�
→

−8H0F2
0ðrout−2mtotÞ2ð1− dρ

dPÞ
−4routðrout−2mtotÞ2H0F0ð1− dρ

dPÞ
→

2F0

rout
:

ð4:9Þ
Similarly, and considering C ¼ 0 at the surface if Γ < 2,

we find
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lim
P→0

�
c
a

�
→ 0: ð4:10Þ

Then, replacing the previous values in Eq. (4.2) we find
the solutions for F0 at the surface:

F0ðroutÞ ¼ −
2F0

rout
and F0ðroutÞ ¼ 0: ð4:11Þ

For the second case HðTÞ ∝ Tn; n ≥ 1, the calculation
is analogous to the previous one and it can be shown
that we have the same solutions for F0 at the surface, namely
Eq. (4.11).

In both cases, considering the first solution, F0ðroutÞ ¼
−2F0=rout, we have that γ ¼ −1 and then A0 diverges for all
r [see Eq. (3.4)]. Therefore, we focus on the second
solution, F0ðroutÞ ¼ 0. Then, γ ¼ 0 and Eq. (3.4) implies
that A0 is finite at the surface. We also need B0 to be finite
when we approach the surface. Therefore, we also need to
determine the behavior of F00, since B0 depends on this
latter quantity through β; see Eqs. (3.5) and (3.7). Deriving
the quadratic equation of F0 with respect to r, and taking
into account that F0 ¼ C ¼ 0 at r ¼ rout we find

F00ðroutÞ ¼ −
ðκ þH0Þð8mtot þ r3outR0ÞC0

4ðrout − 2mtotÞ½2routðκ þH0Þ þ ðrout − 2mtotÞH0ð1 − dρ
dPÞ�

: ð4:12Þ

To completely determine F00 we must compute C0 and, in
contrast to fðRÞ theory, the second term in the denominator,
proportional toH0ð1 − dρ=dPÞ, could provide a possibility
that even when C0 diverges, F00 converges.
Deriving Eq. (4.5) with respect to r, we find that

F0R − FR0 ¼ κT 0 þ 3HT 0 þ dH
dT

T 0ðT þ 4PÞ þ 4HP0:

ð4:13Þ
We will now proceed to determine the behavior of C0 at

the surface, for which we have to consider the two cases
mentioned above.

A. Case 1: HðT ¼ 0Þ ¼ H0 ¼ const

As we are interested in the behavior at the surface, F0 ¼ 0
and we also have that T 0 ¼ ðdρ=dP − 3ÞP0. From Eq. (3.9)
we note that ifH0 ¼ const thenP0 ∝ ðρþ PÞ=ð1 − dρ=dPÞ,
so that T 0 ∝ ðdρ=dP − 3Þðρþ PÞ=ð1 − dρ=dPÞwhich goes
to zero at the surface. Thus, considering Eq. (4.13) we find
that R0 ¼ T 0 ¼ 0 at the surface. Furthermore, deriving
Eq. (4.3) with respect to r we find that

C0 ∝ λ
d2ρ
dP2

ðρþ PÞ2
ð1 − dρ=dPÞ þ μ

��
dρ
dP

�
2

− 2
dρ
dP

− 3

�

×
ðρþ PÞ

ð1 − dρ=dPÞ þ ν

�
1þ dρ

dP

� ðρþ PÞ
ð1 − dρ=dPÞ ; ð4:14Þ

where λ, μ and ν are the constant values of the derivatives
λ ¼ ðdF=dRÞð∂R=∂TÞ, μ ¼ ðdF=dRÞð∂R=∂TÞ and ν ¼
ðdF=dRÞð∂R=∂PÞ at the surface, respectively. Using the
polytropic equation of state (4.4) and their respective
derivatives, dρ=dP and d2ρ=dP2, we find after some algebra
that C0 converges at the surface provided Γ < 2, since the
leading term turns out to be proportional to P2=Γ−1. This is
different compared to the case of fðRÞ gravity where C0 goes
to zero as P3=Γ−2 so that it converges only for Γ < 3=2;

see [2] for further details. Note that in the Palatini fðR; TÞ
model F00, cf. Eq. (4.12), includes the term H0ð1 − dρ=dPÞ
in the denominator, and since H0 ¼ const and dρ=dP
diverges at the surface we have that

lim
P→0

F00 ∝ lim
P→0

C0

ð1 − dρ
dPÞ

→ 0: ð4:15Þ

Therefore, we find that F00 converges at the surface if
1 < Γ < 2. Thus, B0 (orm0

tot) converges at r ¼ rout, making
it possible to find solutions where the metric and its first
derivative are continuous across the surface.

B. Case 2: HðTÞ ∝ Tn;n ≥ 1

In this case we have that HðTÞð1 − dρ=dPÞ ∝
Pðnþ1Þ=Γ−1 → 0 when P → 0 if Γ < 2, such that from
Eq. (3.9) we find that P0 ∝ ðρþ PÞ → 0 and from
Eq. (4.13) we have that R0 ¼ T 0 ¼ 0 at the surface.
Thus, we have that C0 is given by

C0 ∝ λ
d2ρ
dP2

ðρþ PÞ2 þ μ

��
dρ
dP

�
2

− 2
dρ
dP

− 3

�
ðρþ PÞ

þ ν

�
1þ dρ

dP

�
ðρþ PÞ; ð4:16Þ

which differs from Eq. (4.14) since now the new terms
proportional to H in the denominator vanish at the surface.
Replacing the equation of state and its derivatives we

find that C0 goes to zero if Γ < 3=2 when P → 0 at the
surface. Finally, considering the expression for F00 given by
(4.12), and since HðTÞð1 − dρ=dPÞ → 0 we have that

F00ðroutÞ ¼ −
ð8mtot þ r3outR0ÞC0
8routðrout − 2mtotÞ

: ð4:17Þ

Note that the above expression is identical to that obtained by
Barausse et al. for fðRÞ models [2], a fact which is not
surprising since in the present case we have found that the
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new terms introduced by fðR; TÞ gravity vanish at the
surface. Therefore, F00 goes to zero at the surface if Γ <
3=2 and diverges if 3=2 < Γ < 2. See Ref. [2] for further
details.

V. CONCLUSIONS AND FINAL REMARKS

Considering the case 1 discussed above it is possible to
build a family of functions of the form

fðR; TÞ ¼ f1ðRÞ þ f2ðTÞ; ð5:1Þ

that allows nonsingular interior solutions with a poly-
tropic equation of state and Γ < 2, so that they can be
considered as a viable alternative to GR. As we men-
tioned before, in the Palatini fðRÞ theory it was not
possible to have physically acceptable solutions with a
polytropic equation of state in the range 3=2 < Γ < 2,
leading to curvature singularities at the stellar surface,
which would in turn induce infinite tidal forces. This
excluded Γ ¼ 5=3, which is the case of a degenerate
nonrelativistic particle gas, a physical system which is
well described even in Newtonian gravity [2]. We can
construct a family of fðR; TÞ models, of the form (5.1),
which allow interior solutions provided f2ðTÞ can be
written, when T → 0, as

f2ðTÞ → H0T þOðT2Þ; ð5:2Þ

where H0 ¼ ðdf2ðTÞ=dTÞjT¼0 ≠ 0. For instance, we have
the case in which f2ðTÞ is a polynomial of degree n in T,
PnðTÞ, i.e.,

f2ðTÞ ¼ PnðTÞ
¼ anTn þ an−1Tn−1 þ � � � þ a1T1 þ a0; ð5:3Þ

where an are constants and n ≥ 1, and H0 ¼ a1 ≠ 0. On
the other hand, if H0 ¼ 0 the model behaves as in case 2
above, where surface singularities arise for 3=2 < Γ < 2,
just like in fðRÞ gravity.
For example, if we consider the simplest case within the

family of models defined by Eq. (5.3), i.e., fðR; TÞ ¼
f1ðRÞ þ λT, where λ is a constant, then HðTÞ ¼ λ and
Eqs. (2.19) and (3.1) reduce, respectively, to

Gμν ¼
κþλ

FðRÞTμνþ
λ

2FðRÞgμνðρ−PÞ−1

2
gμν

�
R−

f1ðRÞ
FðRÞ

�

−
3

2F2ðRÞ
�
ð∇μFðRÞÞð∇νFðRÞÞ−1

2
gμνð∇FðRÞÞ2

�

þ 1

FðRÞð∇μ∇ν−gμν□ÞFðRÞ ð5:4Þ

and

∇μTμν ¼
λ

2ðκ þ λÞ∇νðP − ρÞ: ð5:5Þ

As expected, if λ ¼ 0 then Eqs. (5.4) and (5.5) reduce to the
corresponding equations of Palatini fðRÞ gravity; see
Ref. [12]. The model with λ ≠ 0, although the simplest
nonsingular one, is physically nontrivial and may then
deserve further investigation. This particular case
has been recently studied within the metric formalism
in Ref. [16].
In summary, we have analyzed fðR; TÞ gravity in the

Palatini formalism and studied the simplest stellar model
defined by a static spherically symmetric solution with a
polytropic equation of state. We have determined the
modified TOV equation for this theory and compared it
with the one obtained for fðRÞ gravity [12]. We have also
shown that, as expected, most of these models present
curvature singularities. This happens when a constant term
H0 is not present and the theory behaves similarly as
Palatini fðRÞ gravity; see Eq. (4.17) and Ref. [2]. Rather
surprisingly, however, we have found that it is possible to
construct a family of fðR; TÞ models allowing finite
solutions in a range in which fðRÞ gravity does not allow
them, i.e., when 3=2 < Γ < 2.
We have studied the simplest case in which the action is a

function of separable variables, i.e., fðR; TÞ ¼ f1ðRÞþ
f2ðTÞ, and we considered the two simplest cases in
Secs. IVA and IV B. For future work it will be interesting
to analyze the cases in which the function f2ðTÞ or its
derivative HðTÞ diverges. This occurs, for instance, in a
model recently considered in the literature1: f2ðTÞ ¼

ffiffiffiffi
T

p
[9,17] for which HðTÞ ¼ 1=ð2 ffiffiffiffi

T
p Þ. In this case the

solutions of F0 at the surface are the same found in the
present paper, Eq. (4.11), but the value of C at the surface
depends on the polytropic index, which converges for 1 <
Γ < 3=2 and diverges for 3=2 < Γ < 2. Then, the form of
C0 and F00 are more complicated to analyze. Furthermore,
for models in which f2ðTÞ diverges in vacuum, we note that
the vacuum solution to (2.19) exists only if we limit the
value of the polytropic index depending on the particular
fðR; TÞ model.
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