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We investigate the effect of the cosmological expansion on the bending of light due to an isolated
pointlike mass. We adopt the McVittie metric as the model for the geometry of the lens. Assuming a
constant Hubble factor, we find an analytic expression involving the bending angle, which turns out to be
increased by a contribution 1þ zL, where zL is the redshift of the lens. Employing the lens equation in the
thin lens approximation, we find that for Einstein ring systems, the lens mass estimation gains a correction
ð1þ zSÞ=ð1þ zLÞ with respect to the one based on the usual formula.
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I. INTRODUCTION

The McVittie metric [1] is a spherically symmetric
solution of Einstein’s equations which asymptotically tends
to a Friedmann-Lemaître-Robertson-Walker (FRLW) uni-
verse. It was introduced in 1933 by McVittie in order to
investigate cosmological effects on local systems, e.g., on
closed orbits of planets or stars. This issue has been
examined again in the past years [2–7], especially in
relation to the Pioneer anomaly [8]. It is still a matter of
debate whether and how much cosmological effects influ-
ence the physics of local systems.
The McVittie metric has been intensively analyzed by

many authors, see, e.g., Refs. [9–15]. In particular, Nolan
analyzed the mathematical properties of the McVittie
solution in a series of three papers [9–11]. One of the
most important results is that the McVittie metric is not a
black hole solution because where one expects a horizon,
there is instead a weak singularity (i.e., geodesics can be
extended through it). There is an exception to this theorem:
when the external, FLRW part of the McVittie solution
tends to be cosmological constant dominated [12,13].
Taking advantage of the well-posedness of the McVittie

metric with flat spatial hypersurfaces [9] (see also
Ref. [14]), we use this solution in order to understand
how the lensing phenomenon generated by a point mass is
affected by the embedding of the latter in an expanding
universe. This idea has been recently explored in Ref. [16],
where the authors numerically show that an effect due to
the Hubble constant H0 does exist on the deflection angle.
There is ample literature on this problem, mostly

specialized to the case in which a cosmological constant
dominates and, for this reason, based on the Kottler
(Schwarzschild-de Sitter) metric [17].
In his pioneering investigation, Islam [18] found no

influence whatsoever by Λ on the bending of light. Only
less than a decade ago, Ishak and Rindler [19,20], via a new
definition of the bending angle, showed that an effect due to

Λ indeed exists. Their work and results gave rise to
many others investigations, see, e.g., Refs. [21–29].
There seems to be common agreement now that Λ indeed
affects the bending of light. A debate actually exists on the
entity of this influence. Among the works cited above,
Refs. [23,25,26] disagree with the existence of any relevant
effect caused by Λ on the lensing phenomenon. The reason
is essentially the following: putting the source, the lens, and
an observer in a cosmological setting, i.e., taking into
account the Hubble flux, makes the Λ contribution com-
pletely negligible (but nonzero, in principle) because of
how it enters the definition of the angular diameter
distances and because of aberration effects due to the
relative motion.
In order to better understand these points, we present

here a perturbative, analytic calculation of the bending
angle in the McVittie metric. We assume a constant Hubble
parameter, thereby focusing on the case of a cosmological
constant-dominated universe. By using the McVittie metric
in the coordinates of Eq. (1), we take into account the
embedding of the source, the lens, and an observer in a
cosmological context, thereby potentially addressing the
issues raised in Refs. [23,25,26]. We find a contribution to
the bending angle proportional to 1þ zL, where zL is the
redshift of the lens. Afterwards, investigating the lens
equation in the thin lens approximation and in the case
of Einstein ring systems, we find a correction to the lens
mass estimate of a factor ð1þ zSÞ=ð1þ zLÞ, with respect to
the standard formula.
The paper is structured as follows. In Sec. II, we present

the McVittie metric and tackle the lensing problem,
calculating the bending angle and a new correction on it,
proportional to the redshift of the lens. In Sec. III, we focus
on the case of Einstein’s ring systems and obtain a formula
for the mass of the lens, which includes the correction in the
bending angle coming from cosmology. We also determine
some lenses masses, using data from the literature. Finally,
Sec. IV is devoted to a discussion and the conclusion. We
use natural G ¼ c ¼ 1 units throughout the paper.*oliver.piattella@pq.cnpq.br
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II. THE MCVITTIE METRIC AND LENSING

The McVittie metric [1] has the following form:

ds2¼−
�
1−μ

1þμ

�
2

dt2þð1þμÞ4aðtÞ2ðdρ2þρ2dΩ2Þ; ð1Þ

where aðtÞ is the scale factor and

μ≡ M
2aðtÞρ ; ð2Þ

whereM is the mass of the pointlike lens. When μ ≪ 1, the
metric (1) can be approximated by

ds2 ¼ −ð1 − 4μÞdt2 þ ð1þ 4μÞaðtÞ2ðdρ2 þ ρ2dΩ2Þ; ð3Þ

which is the usual perturbed FLRW metric in the
Newtonian gauge and 2μ is what is usually called the
gravitational potential.
We adopt the same formalism Dodelson uses in Chap. 10

of his textbook [30]. We use as a time variable the
background comoving distance χ (as if it there was no
pointlike mass) from us to the plane where the photon is at a
certain time t. See Fig. 1.
The relation between χ and the background expansion is

the usual one for the FLRW metric:

dχ
dt

¼ −
1

a
; ð4Þ

and the comoving distances of the source and of the lens, χS
and χL, respectively, do not change.
The null geodesics equation for the transversal displace-

ment li of the photon is the following:

a
p
1 − μ

1þ μ

d
dχ

�
p
a
1þ μ

1 − μ

dli

dχ

�

¼ 2ð1 − μÞ
ð1þ μÞ7 δ

il∂lμþ 2Ha

�
1þ 2∂tμ

ð1þ μÞH
�
dli

dχ

−
2

1þ μ
ðδij∂kμþ δik∂jμ − δjkδ

il∂lμÞ
dlj

dχ
dlk

dχ
; ð5Þ

where i ¼ 1, 2; H ≡ ∂ta=a is the Hubble factor, and p is
the photon proper momentum. Since the McVittie metric is
spherically symmetric, the two equations for i ¼ 1, 2 are

identical. The equation describing the evolution of the
proper momentum p is the following:

1

p
dp
dt

¼ −H −
2

1þ μ
∂tμþ 2

Pi∂iμ

pð1þ μÞ2 : ð6Þ

The H term gives the cosmological contribution to the
redshift of the photon, whereas the other two terms provide
a gravitational redshift contribution, due to the gravitational
field of the pointlike mass.
The above Eqs. (5) and (6) reproduce the known results

of the cosmological perturbation theory for shear-free
scalar perturbations. To show this, one has to consider
the limit μ ≪ 1 and, defining Ψ ¼ −2μ, one can obtain the
corresponding formulas of Ref. [30].
Now we do consider μ small and investigate how a point

mass in the expanding Universe affects the trajectory of a
light ray. In order to do this, in Eq. (5), we consider μ ≪ 1
and small displacements li ≪ χ.
Equation (5) can be then simplified as follows:

d2li

dχ2
¼ 4∂iμ: ð7Þ

Using Eq. (2) in the equation above, one gets:

d2l
dχ2

¼ −
2Ml

aðχÞ½ðχ − χLÞ2 þ l2�3=2 ; ð8Þ

where we dropped the index i denoting the transversal
direction, thanks to a spherical symmetry. With the follow-
ing definitions:

x≡ χ

χL
; α≡ 2M

χL
; y≡ l

χL
; ð9Þ

Eq. (8) becomes:

d2y
dx2

¼ −α
y

aðxÞ½ðx − 1Þ2 þ y2�3=2 : ð10Þ

Note that a vanishing α implies that aðxÞ has no effect on
the trajectory. This is a sort of “casting out nines”, since
indeed we do not expect lensing caused by cosmology only.
We suppose the source to be at a comoving distance χS

and solve the above equation considering a small α, via the
following expansion of the solution:

y ¼ yð0Þ þ αyð1Þ þ α2yð2Þ þ � � � ; ð11Þ

and retaining the first order only in α. As initial conditions,
we choose:

yðxSÞ ¼ yS; yð0Þ ¼ 0; ð12ÞFIG. 1. Scheme of lensing.
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which mean that the light ray starts from the source with an
impact parameter b≡ ySχL, see Fig. 1, and it must arrive to
us in order to be detected; thus, yð0Þ ¼ 0.
The zero-order solution is trivial, i.e., a straight line:

yð0Þ ¼ C1xþ C2: ð13Þ

We choose the two integration constants so that yð0Þ ¼ yS,
i.e., the trajectory is a straight, horizontal line, see Fig. 2.
The first-order solution is then given by the following

equation:

d2yð1Þ

dx2
¼ −

yS
aðxÞ½ðx − 1Þ2 þ y2S�3=2

; ð14Þ

for which we must choose the following initial conditions:

yð1ÞðxSÞ ¼ 0; yð1Þð0Þ ¼ −yS=α; ð15Þ

in order to respect those in Eq. (12) for the full
solution.
Let’s now consider the contribution of aðxÞ. For a

constant Hubble factor H ¼ H0, one can easily determine
the scale factor as a function of the comoving distance:

χ ¼
Z

z

0

dz0

Hðz0Þ ¼
z
H0

≡ 1

H0

�
1

a
− 1

�
; ð16Þ

where we solved the integral by introducing the redshift z,
defined as in the last equality of the above equation. This is,
in principle, incorrect because one should also take into
account the gravitational redshift caused by the point mass,
according to Eq. (6). However, that would produce a
second order contribution in α in Eq. (10), so we neglect it.
Using Eq. (16), Eq. (14) becomes:

d2yð1Þ

dx2
¼ −

ySð1þH0χLxÞ
½ðx − 1Þ2 þ y2S�3=2

: ð17Þ

In the limit yS ≪ 1, the deviation angle

δ≡ dy
dx

����
x¼0

−
dy
dx

����
x¼xS

; ð18Þ

derived by using the solution of Eq. (17) is the following:

δ ¼ 2αð1þ χLH0Þ
yS

þOðySÞ: ð19Þ

Note that Eq. (17) can be solved exactly, but its solution is
quite cumbersome so we do not write it down here
explicitly.
Recalling that α≡ 2M=χL and yS ¼ b=χL, we can write

the above formula as:

δ ¼ 4Mð1þ χLH0Þ
b

þOðb=χLÞ: ð20Þ

This result is similar to the one in the Schwarzschild case,
except for the fact that the mass seems to be increased by a
relative amount of H0χL, and b is not the proper closest
approach distance to the lens, but it is the comoving
transversal position of the source.
From Eq. (16), we know that H0χL ¼ zL, the redshift of

the lens. Therefore, the farther the lens is, the larger is the
effect of the cosmology on the deflection angle, as one
intuitively would expect. Considering the standard ΛCDM
model Friedmann equation

H2

H2
0

¼ ΩΛ þΩmð1þ zÞ3; ð21Þ

H is approximately constant only as long as ΩΛ ≫
Ωmð1þ zÞ3. Using the observed values for the density
parameters, approximately ΩΛ ¼ 0.7 and Ωm ¼ 0.3, the
above condition amounts to a state that z ≪ 0.3. Therefore,
the correction we found in Eq. (20) for the bending angle is
reliable only when the redshifts involved are very small,
much less than 0.3.
Let us consider now the lens equation in the thin lens

approximation:

θ ≈ β þ δ
DLS

DS
; ð22Þ

where θ is the angular apparent position of the source, β is
the actual angular position of the source,DLS is the angular
distance between the lens and the source, and DS is the
angular distance between us and the source. Note that,
being the metric (1) in an isotropic form, coordinate angles
are equal to physical angles. This can be checked, for
example, using the definition introduced in Ref. [19] or via
the construction used in Ref. [21].
Using Eq. (16), the angular diameter distance between

the source and us can be expressed as

DS ¼
1

H0

ð1 − aSÞ ¼
1

H0

zS
1þ zS

: ð23Þ

The angular diameter distance between the lens and us has
a similar form:FIG. 2. Zero-order trajectory.
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DL ¼ 1

H0

ð1 − aLÞ ¼
1

H0

zL
1þ zL

: ð24Þ

On the other hand, DLS ≠ DS −DL, but, see, e.g.,
Ref. [31]:

DLS ¼ aSðχS − χLÞ ¼
1

H0

zS − zL
1þ zS

: ð25Þ

Using Eq. (20), Eq. (22) can be written as follows:

θ ≈ β þ 4Mð1þ zLÞ
b

DLS

DS
: ð26Þ

For comparison, let us consider the standard lens equation,
which is based on the union of results coming from the
Schwarzschild metric and from the FLRW metric, see, e.g.,
Refs. [31,32]:

θ ≈ β þ 4M
r0

DLS

DS
: ð27Þ

Here, r0 is the closest approach distance to the lens. In a
cosmological setting, it is considered as a proper distance
and, therefore, expressed as r0 ¼ θDL. In our case, b is the
comoving transversal position of the lens; thus, it has a
different interpretation which we will make clearer in the
next section. Note the correction factor 1þ zL from
Eq. (27) to Eq. (26), which indeed suggests a correction
to the mass coming from the cosmological setting of the
problem. In Ref. [23], the author performs a very similar
analysis as the one presented in this section, but using
physical distances instead of comoving ones. He finds no
relevant contribution to the bending angle, i.e., he repro-
duces Eq. (27) with r0 ¼ βDL. This result has been
contested by Ref. [20], see also Ref. [27], because it is
missing an important term proportional to Λ. Note that the
author of Ref. [23] seems to have acknowledged the
existence of such term. For more detail on this debate,
see the above cited references.

III. IN CASE OF ALIGNMENT

The solution we have exploited in the previous section
does not work in the case of an alignment among the
source, the lens and an observer. See Fig. 3.

In this case, the zero order solution cannot be a
horizontal trajectory, because it would never reach us.
The zero order trajectory is now

yð0Þ ¼ θSðxS − xÞ; ð28Þ

where θS ≪ 1. In order for the trajectory to reach us, we
must choose the initial condition yð1Þð0Þ ¼ −θSxS=α.
Computing again the deflection angle, we get:

δ ¼ 4Mð1þ χLH0Þ
θSðχS − χLÞ

þ χL
2ðχS − χLÞ

þOðθSÞ: ð29Þ

In order to deal with the denominator of the first term on the
right-hand side of Eq. (29), we use Eq. (25), i.e.:

θSðχS − χLÞ ¼ θSð1þ zSÞDLS ¼ ð1þ zSÞθEDL; ð30Þ

where the last equality holds true since the proper distances
θSDLS and θEDL are, indeed, the same and equal to the
closest approach proper distance. Now, using the lens
Eq. (22) with β ¼ 0, we obtain the following formula
for the Einstein ring angle:

θE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4M

1þ zL
1þ zS

DLS

DLDS

s
: ð31Þ

Comparing this result with the usual one coming from
Eq. (27) applied to the Einstein ring case, i.e.:

θE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4M

DLS

DLDS

s
; ð32Þ

one infers that the correction induced when determining the
mass of the lens, or the value of H0, is ð1þ zSÞ=ð1þ zLÞ.
Using Eqs. (23), (24), and (25) in order to write the

angular diameter distances of Eq. (31) as functions of the
redshift, one obtains:

θE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4MH0

ð1þ zLÞ2ðzS − zLÞ
ð1þ zSÞzSzL

s
: ð33Þ

We apply formula (33) for some Einstein ring systems
observed by the CASTLES Survey [33] and calculate the
mass estimations of the lenses in Table I, assuming
H0 ¼ 70 km s−1Mpc−1.
The correction ð1þ zSÞ=ð1þ zLÞ for the Einstein ring

systems considered varies from a 1.2 to a 3.1 factor. In
particular, since zS > zL, the new mass estimate is always
larger than the usual one, based on Eq. (32).
Two comments are in order here. First, the values

computed in Table I are rough estimates, based on the
assumption of a pointlike lens. In reality, lenses are not
pointlike, and models for their matter density distributionFIG. 3. Scheme of lensing in case of alignment.
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are necessary in order to provide a more precise, and
reliable, value for the mass. For example, the authors of
Ref. [28] calculated mass estimates for three objects of
Table I assuming a cored density profile, and they found
different values, even if of the same order of magnitude,
from those presented here. Since our purpose is to stress the
existence of the new contribution correcting the bending
angle, viz., Eqs. (20) and (29), we do not discuss the details
of modeling the density profile of the lens, leaving it as a
future investigation.
Second, the correction factors reported in the last column

of Table I are based on the new bending angle computed in
Eqs. (20) and (29). These formulas, as we already com-
mented in the previous section, are reliable only when our
Universe is Λ dominated, i.e., only for z ≪ 0.3, which is
never the case for the objects in Table I. Therefore,
those factors ranging from 1.2 to 3.1 are not to be taken
too seriously. What is perhaps to be taken seriously is
that the bending angle and the lens equation calculated in
the McVittie metric are different from the usual
Schwarzschildþ FLRW case, even if the McVittie metric
should, in some sense, be a merging of the Schwarzschild
and FLRWmetrics. This fact may deserve further and more
profound investigation.
Finally, we check the approximation μ ≪ 1, on which

our calculations are based. The maximum value of μ is
when y ¼ yðxLÞ, i.e., at the lens. In this case, we can write:

μmax ≃ M
θEDL

¼ H0Mð1þ zLÞ
θEzL

: ð34Þ

From Table I, the lowest θE is of the order 0.1 arcsec. The
productH0M is the ratio between the gravitational radius of
the lens and the Hubble radius. For a typicalM ≃ 1011 M⊙
and H0 ≃ 10−18 s, one obtains H0M ≃ 10−12. Therefore,
H0M=θE ≃ 10−9, which is very small indeed. The redshift
term ð1þ zLÞ=zL is of the order OðzLÞ, so it does not

change our estimate. The other approximation used, in
Eq. (29), is that θS is very small. From Eq. (25):

θS ≃ θEDL

DLS
¼ θE

zLð1þ zSÞ
zS − zL

: ð35Þ

The largest θE from Table I is 1.35 arcsec, corresponding to
≃2 × 10−2 rad. The redshift factor is about 0.1; therefore,
θS ≃ 10−3.

IV. DISCUSSION AND CONCLUSIONS

We have analyzed the issue of whether cosmology affects
local phenomena such as the bending of light by a compact
mass. To this purpose, we adopted the McVittie metric,
which describes the geometry of a point mass (the lens, in
our picture) in the expanding Universe. We assume a
constant Hubble factor, thereby assuming a cosmological
constant-dominated FLRW universe surrounding the point
mass. We found an important correction to the bending
angle, proportional to 1þ zL, where zL is the redshift of the
lens. In the lens equation, within the thin-lens approxima-
tion, we found that the mass estimation has to be corrected
by a factor of ð1þ zSÞ=ð1þ zLÞ. We exploit data and
analysis performed by the CASTLES Survey and calculate
mass estimations for some Einstein ring systems. Future
work, based on a numerical solution of Eq. (10), shall be
necessary in order to determine a more reliable correction to
the bending angle, based on the current standard cosmo-
logical model, where an important fraction of matter is
present and therefore, the Hubble parameter is not constant.
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TABLE I. Mass estimates. In the last column, the ð1þ zSÞ=ð1þ zLÞ contribution is the one coming purely from
the bending angle correction. The angle θE is given in arcseconds.

Object References zS zL θE [arcsec] M=M⊙ from Eq. (33) ð1þ zSÞ=ð1þ zLÞ
Q0047-2808 [34] 3.60 0.48 1.35 1.1 × 1012 3.1
PMNJ0134-0931 [35] 2.216 0.77 0.365 8.2 × 1010 1.8
B0218þ 357 [36] 0.96 0.68 0.17 2.4 × 1010 1.2
CFRS03.1077 [37] 2.941 0.938 1.05 8.1 × 1011 2.0
MG0751þ 2716 [38] 3.20 0.35 0.35 5.7 × 1010 3.1
HST15433þ 5352 [39] 2.092 0.497 0.59 1.6 × 1011 2.1
MG1549þ 3047 [40] 1.17 0.11 0.9 8.8 × 1010 2.0
MG1654þ 1346 [41] 1.74 0.25 1.05 2.9 × 1011 2.2
PKS1830-211 [42] 2.51 0.89 0.5 1.7 × 1011 1.9
B1938þ 666 [43] 2.059 0.881 0.5 1.7 × 1011 1.6
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