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Since quantum field theories do not possess proper position observables, Unruh-DeWitt detector
models serve as a key theoretical tool for extracting localized spatiotemporal information from quantum
fields. Most studies have been limited, however, to Unruh-DeWitt (UDW) detectors that are coupled
linearly to a scalar bosonic field. Here, we investigate UDW detector models that probe fermionic as well
as bosonic fields through both linear and quadratic couplings. In particular, we present a renormalization
method that cures persistent divergencies of prior models. We then show how perturbative calculations
with UDW detectors can be streamlined through the use of extended Feynman rules that include localized
detector-field interactions. Our findings pave the way for the extension of previous studies of the Unruh
and Hawking effects with UDW detectors, and provide new tools for studies in relativistic quantum
information, for example, regarding relativistic quantum communication and studies of the entanglement
structure of the fermionic vacuum.
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I. INTRODUCTION

While the spatial and temporal meaning of wave func-
tions in first quantization is straightforward, it is notori-
ously difficult to extract spatiotemporal information from
the quantum fields of second quantization. This is in large
part due to the fact that there are no position observables in
quantum field theory (QFT) [1]. As a consequence, one
often works with nonlocal field modes instead, for exam-
ple, in order to calculate S-matrix elements in the case of
particle physics or Bogolubov transforms in the case of
QFT on curved space.
Actual experiments, of course, probe quantum fields

on finite patches of spacetime. A technique which does
allow one to model the extraction of localized spatiotem-
poral information from quantum fields was pioneered by
Unruh and DeWitt [2,3]. The key idea is to probe quantum
fields by coupling the quantum field in question to a
localized first quantized system, called a detector. An
excitation of the detector system is then interpreted as
the absorption and therefore detection of a particle from the
quantum field.
For example, a hydrogen atom, first quantized, can serve

as such a detector system for the photons of the second
quantized electromagnetic field. The technique of probing
quantum fields by coupling them (at least in gedanken
experiments) to so-called Unruh-DeWitt (UDW) detectors
has been used successfully, in particular, to analyze the

Hawking and Unruh effects. One of the key insights gained
from these studies has been the finding that and why the
very notion of particle is observer dependent.
More recently, UDW detectors have been used exten-

sively in studies on quantum communication via field
quanta [4,5] and, more generally, in studies on a host of
effects related to the presence of spatially distributed
entanglement in the quantum field theoretical vacuum
[6–10]. In spite of these successes, however, most of these
studies have been limited in scope to the model of a UDW
detector that probes a quantized real scalar boson field
through a linear coupling.
Here, our aim is to widen the applicability of the general

UDW detector approach. To this end, we investigate Unruh-
DeWitt detector models that probe bosonic as well as
fermionic, nonscalar fields through both linear and quadratic
couplings. We show how certain persistent divergencies can
be overcome through renormalization and we show how
perturbative calculations withUDWdetectors can be stream-
lined through the use of extended Feynman rules that include
the scattering of detector excitations.
Historically, idealized particle detector models were first

introduced by Unruh [2], in an attempt to resolve the well-
known ambiguity in defining field states corresponding to
physical particles on curved spacetimes or for noninertial
observers [2,11,12]. This was the finding that different
quantization procedures yield incompatible Fock spaces
and thus lead to ambiguous definitions of particle number
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eigenstates [13,14]. Unruh’s groundbreaking idea is best
summarized in his now famous dictum “a particle is what a
particle detector detects.” He initially modeled a particle
detector for a quantized scalar field as being a quantized
scalar field itself, albeit one that is restricted to a cavity so
that its excitation events come with spatiotemporal infor-
mation. Unruh calculated that, when uniformly accelerated
through the Minkowski vacuum, this detector will measure
a flux of particles that is thermally distributed, which
established the famous Unruh effect [2,14,15].
A few years later, DeWitt improved and simplified

Unruh’s original model by introducing approximations
that effectively replace the detecting field with a non-
relativistic two-level quantum system [3], inventing what is
now called the Unruh-DeWitt detector. The detector cou-
ples directly to the field Φ through its monopole moment μ:

Hint ∝ μΦ: ð1Þ

This model fixed minor problems with Unruh’s initial
suggestion [13]. More importantly, the UDW detector has
the advantage of being much easier to work with in
calculations, because the detector is described by quantum
mechanics rather than quantum field theory. Other detector
models for quantized scalar fields followed, using both
two-level systems and full fields as detectors, and featuring
different ways to couple the detector to the fundamental
quantum field (see e.g. [13,16–18]). In the present paper,
we will generally call any model that uses DeWitt’s
monopole as the detecting system a (UDW-type) detector,
irrespective of the field it probes and the coupling it uses.
UDW particle detector models have proven to be very

versatile and useful tools. They were first used to analyze
the effects of accelerations, spacetime curvature and hori-
zons on scalar quantum fields (see e.g. [2,19]). Further,
UDW detectors have been used in quantum field theory to
quantify vacuum fluctuations and the structure of vacuum
states [20,21]. In relativistic quantum information, pairs of
detectors are crucial for measuring and harvesting the
entanglement of quantum fields [22–25], and serve as
senders and recipients of information in quantum signaling
[5,26]. Moreover, they can be good toy models for light-
matter interaction in quantum optics [27,28].
Because UDW detector models for quantized scalar

fields have proven so valuable, the question arises to what
extent analogous techniques can be developed and applied
to other types of fields, such as quantized spinor or vector
fields, which in Nature are of course more common than
quantized scalar fields. This question is of fundamental
interest by itself and there are also concrete applications
where detector models for quantized spinor fields could
immediately be useful, such as for analyzing the fermionic
Unruh effect [29], and for investigating the related
Hawking radiation of Dirac particles [30]. Moreover, it
has recently been pointed out that such more general UDW

detector models could resolve ambiguities that arise in
defining measures for the entanglement between disjoint
patches of a fermionic field [31].
A key aim of the present work is, therefore, to find a

counterpart of the UDW detector for quantized spinor
fields. More precisely, we are interested in a pair of particle
detector models, one each for quantized scalar and spinor
fields, that is comparable in the sense that differences in the
detectors’ reaction to scalar and to spinor fields are due to
the probed field alone, not caused by any other feature of
the respective detector models. We will focus on only half-
integer spin fermions and integer-spin bosons, i.e., we will
here not be concerned with nontrivial spin/statistic combi-
nations that may arise in low dimensional systems.
To the best of our knowledge, only two detector models

for quantized spinor fields have been suggested so far: the
first one by Iyer and Kumar [32] uses a quantized scalar
field in a cavity as detecting system, close in spirit to
Unruh’s original suggestion. The second one by Takagi
[20,33] seeks to imitate DeWitt’s simpler model by
coupling an UDW-type two-level system to a quantized
spinor field Ψ through

Hint ∝ μΨΨ; ð2Þ

making it a likely candidate for the closest spinor field
equivalent to the scalar field UDW detector. While the
above interaction may not be immediate from first princi-
ples, that is, from the Standard Model of particle physics,
we may for example think of it as an attempt at a first-
quantized, simplified version of a second-quantized
cavity detector: in quantum electrodynamics, a spinor
field (electrons) is coupled to a vector field Aμ (photons)
through

HQED ∝ AμΨγμΨ: ð3Þ

In this logic, certain modes of the electromagnetic field
restricted to a cavity with appropriate boundary conditions
(realized, e.g., as superconducting mirrors) could serve as a
detector for the electron field. The spatiotemporal profile of
the detector is then determined by the extent of the cavity
and the time over which the electromagnetic field is
observed. It is conceivable that by a series of approxima-
tions—e.g., neglecting all but one mode in the cavity and
restricting its occupation to at most one quantum—we
could arrive at a model of the type of Eq. (2). A two-level
system coupled through Eq. (2) may then be thought of as
an approximation to a cavity detector, much in the same
way that the UDW detector is a simplification of Unruh’s
original cavity setup. In the following, however, we will
keep with the original idea of such detectors as simple tools
to obtain spatiotemporally resolved information about
quantum fields, and set aside considerations of how exactly
they could arise from first principles. This is justified by the
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fact that, as discussed above, UDW detectors provide a very
useful tool for extracting spatiotemporal information from
quantum fields, at least in gedanken experiments.
We begin in Sec. II with an overview of the UDW-type

detector models that wewill study. In Sec. III, the excitation
probability for the different detector models at rest in
Minkowski vacuum is calculated for these models, also to
test to what extent these models are comparable. We
demonstrate that any UDW-type detector featuring an
interaction Hamiltonian which is quadratic in the field
has divergent excitation probabilities. This is true for spinor
field models like Eq. (2), but also for quantized (real and
complex) scalar field detector models with coupling

Hint ∝ μΦ†Φ: ð4Þ
Unlike divergent probabilities reported before [13,20,
34,35], it is not possible to regularize these divergencies
by considering a detector of finite size and switching it on
and off adiabatically. However, the divergencies are readily
understood from a field theoretic point of view: In Sec. IV
we show that they are closely related to tadpoles in
quantum electrodynamics, and this analogy leads us to a
renormalization scheme for quadratically coupled detec-
tors. Section V is dedicated to the comparison of the
vacuum excitation probabilities of the detector models. We
establish that it is indeed justified to compare the two
models Eq. (2) (for quantized spinor fields) and Eq. (4) (for
quantized complex fields), at least at leading order in the
coupling constant. As an example, their response to
massless quantum fields in (1,1) dimensions is studied
explicitly, using both a sudden switching of the detector, as
well as a Gaussian switching function, in addition to a
Gaussian spatial detector profile.
The second part of this work is dedicated to the

derivation of fully fledged Feynman rules for all detector
models discussed, valid on Minkowski spacetime. The
Feynman rules are to facilitate investigating whether the
discussed models are finite, or at least renormalizable, and
whether they are comparable at higher orders as well.
Section VI summarizes the required calculation methods,
such as the Feynman propagators andWick’s theorem, with
the proofs moved to Appendix C for better readability.
After applying these methods in Sec. VII to the probability
for a detector to remain in its ground state when interacting
with a field in the vacuum state (the vacuum no-response
probability), the Feynman rules then follow in Sec. VIII.
In Appendix A, we summarize canonical results in

classical and quantum field theory to introduce notation
as well as for the convenience of the reader. Appendix B
explains the origin of the different normalization conditions
for scalar and spinor field mode functions, which plays a
crucial role in the UV behavior of the theories.
Throughout this work, natural units c ¼ 1 ¼ ℏ are used.

The metric of (nþ 1)-dimensional Minkowski spacetime
has signature ðþ;−; � � � ;−Þ.

II. UNRUH-DEWITT-TYPE PARTICLE
DETECTOR MODELS

Unruh-DeWitt particle detectors are two-dimensional
quantum systems. We choose the energy levels to be zero
and some Ω > 0 so that the detector’s Hamiltonian, which
generates translations in its proper time τ, reads

Hd ¼ Ωjeihej ¼ Ωσþσ−: ð5Þ

Here, the ladder operators

σþ ¼ jeihgj; σ− ¼ jgihej ð6Þ

are expressed in term of the ground and excited states jgi
and jei. We parametrize the detector’s trajectory xðτÞ ¼
ðtðτÞ; xðτÞÞ by its proper time. Since the detector’s trajec-
tory will be prespecified rather than dynamical, spacetime
translational symmetry is broken and overall energy and
momentum are not conserved (unless one considers also
the agent that keeps the detector on its trajectory). The
detector’s effective spatial profile, which may be thought of
as the distribution of its charge, centered around x, will be
described by a function

pðx; ·Þ∶ Rn → R ð7Þ

that is normalized to one unit of charge,Z
Rn

pðx; yÞdy ¼ 1; ð8Þ

where n is the number of spatial dimensions. For example,
for a pointlike detector

pðx; yÞ ¼ δðx − yÞ; ð9Þ

while for a detector with Gaussian profile

pðx; yÞ ¼ ð2πσ2Þ−n=2 exp
�
−
ðy − xÞ2
2σ2

�
: ð10Þ

It will sometimes be convenient to combine the switching
function χ and the spatial profile p into a spacetime profile
f by defining

fðxÞ ¼ fðt; xÞ≡ χðtÞpð0; xÞ ð11Þ

in the detector’s rest frame.
An UDW detector is to detect field quanta by becoming

excited. To this end, the field must couple to an operator, μ,
of the UDW detector that does not commute with the
detector‘s Hamiltonian Hd. Without restricting generality,
one can define this so-called monopole moment operator of
the detector to be
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μ ¼ σþ þ σ−: ð12Þ

Let us now systematically consider how the monopole
moment μ of an UDW detector can be coupled to the
various types of fields.

A. Linear coupling

We begin by considering a pointlike UDW-type detector
coupled to a quantized real field Φ through the interaction
Hamiltonian

Hint ¼ λμΦðxÞ; ð13Þ

where λ ∈ R is the coupling strength. This is the particle
detector model originally proposed by DeWitt [3]. It can be
viewed as an idealization of the two lowest states of an
atom interacting with the electromagnetic field.
As is well known, UV divergencies in the excitation

probabilities arise in this setup, in particular, if the detector
is abruptly switched (i.e. coupled) on or off; see, e.g.,
[13,34,35]. The pointlike structure of this detector also
leads to UV divergencies; see, e.g., [13,20]. The divergen-
cies can be regularized by switching the detector on and off
gradually, i.e., by using a sufficiently smooth switching
function χðtÞ, and by endowing the detector with a finite
spatial profile p:

HintðτÞ ¼ λχðτÞμ
Z
Rn

pðxðτÞ; yÞΦðyÞdy: ð14Þ

Let us now consider the coupling of an UDW detector to a
quantized complex field, Φ. In this case, one cannot couple
them as in Eq. (13) because Φ† ≠ Φ would imply that the
interaction Hamiltonian is not self-adjoint. In principle, one
may instead view Φ as composed of two quantized real
fields Φ ¼ 1ffiffi

2
p ðΦ1 þ iΦ2Þ and couple any real linear com-

bination of Φ1 and Φ2 to the detector. This approach,
however, would single out a direction in the complex plane
and would therefore make any Uð1Þ symmetry for Φ
impossible [20]. The same incompatibility arises with
any unitary symmetry if Φ carries higher-dimensional
complex group and/or spin representations. We conclude
that the coupling of UDW detectors to quantized complex
fields should not be linear.

B. Quadratic coupling

Any interaction Hamiltonian between an UDW detector
and a field must be a self-adjoint scalar. Since an UDW
detector’s monopole moment is a self-adjoint Lorentz
scalar, UDW detectors always need to couple to an
expression in the field which is also both scalar and
self-adjoint. In the case of a quantized spinor field, the
simplest self-adjoint Lorentz scalar is ΨΨ ¼ Ψ†γ0Ψ. This
suggests the following interaction Hamiltonian:

HintðτÞ ¼ λχðτÞμ
Z
Rn

pðxðτÞ; yÞΨðyÞΨðyÞdy: ð15Þ

Note that the interaction is now quadratic in the field. This
is plausible also because an UDW detector coupled linearly
to a fermion field would be able to violate fermion number
conservation by creating and annihilating individual fer-
mions. Coupling an UDW detector quadratically to the
field ensures that the detector can only pair create or
annihilate fermion antifermion pairs. An example of this
type of coupling was first considered by Takagi [20,33] and
has been used since; see [36–39].
It is straightforward to couple UDW detectors quadrati-

cally not only to quantized spinor fields but also to
quantized (real and complex) scalar fields while preserving
symmetries:

HintðτÞ ¼ λχðτÞμ
Z
Rn

pðxðτÞ; yÞΦ†ðyÞΦðyÞdy: ð16Þ

This type of coupling was first suggested by Hinton for
quantized real fields [17]. It may be possible to justify
interpreting this model as an effective description of some
fundamental interaction, for example when the scalar field
describes composite particles at sufficiently low energy.
However, in the present work, we will use it as a theoretical
tool for investigating what difference it makes to an UDW
detector’s behavior whether it is coupled to a bosonic (scalar)
or to a fermionic (spinor) field. This is because to this end we
can now compare model Eq. (16) and model Eq. (15) which
are both quadratically coupled, i.e., they differ essentially
only in the spinor structure but not in the type of coupling.We
will separately investigate the impact of quadratic versus
linear coupling, such asmodelEq. (16) versusmodelEq. (14).
In Table I, the four different detector models we will

discuss are summarized and numbered for easy reference:
model 1 for quantized real fields couples linearly through
Eq. (14); model 2 couples quadratically to quantized real
fields; model 3 to quantized complex; and model 4 to
quantized spinor fields with the Hamiltonians Eq. (16) and
Eq. (15), respectively.

TABLE I. Overview of the particle detector models discussed
in this paper—listed is the power of the field to which the detector
(i.e. μ) is coupled.
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III. FIRST ORDER: EXCITATION
PROBABILITY IN THE VACUUM

For simplicity, only UDW-type detectors that are at rest
in nþ 1 dimensional Minkowski spacetime will be con-
sidered in our investigation of the different detector models.
In particular, we study vacuum excitation probabilities
(VEP), i.e., probabilities P0;g→e of the detector evolving
from its ground state jgi to its excited state jei when
the field is initially in the vacuum state j0i. We calculate the
vacuum excitation probability or vacuum response for the
four different detector models under consideration, up to
leading order in perturbation theory. Calculation of the
VEP serves a double purpose: (a) to demonstrate the need
for renormalization of the models 2, 3 and 4 in Table I and,
after successful renormalization, (b) as a means to gauge
whether these two models can be viewed as equivalent.
For concrete calculations, we consider both bosonic and

fermionic quantum fields F quantized in the cylinder with
toroidal spatial sections consisting of the following product
of intervals with periodic boundary conditions:

B ¼ ½−L=2; L=2�n ⊂ Rn: ð17Þ

Therefore,

Fðt; xþ δÞ ¼ Fðt; xÞ ∀ δ ∈ L · Zn: ð18Þ

The zero mode.—In the cylinder quantization, the field
boundary conditions allow for constant classical solutions,
that is, solutions of vanishing momentum k and energy ωk.
These degrees of freedom mathematically behave like free
particles, rather than harmonic oscillators. They therefore
have to be quantized differently from the rest of the field
modes. Since there is no canonical vacuum state for such a
zero mode, further subtleties appear when we couple the
zero mode to particle detectors [40].
One could get rid of all the problems of the presence of a

zero mode by using alternative boundary conditions which,
unlike the periodic boundary conditions, do not permit
solutions of zero momentum. A simple such choice is the
use of Dirichlet boundary conditions, Fðt; xÞ ¼ 0 for all
x ∈ ∂B, such that solutions of zero momentum vanish
everywhere. These boundary conditions are straightforward
to implement for scalar fields, but full Dirichlet boundary
conditions are too restrictive for spinor fields in the Dirac
representation on C4 because the only solution would be
Ψ ¼ 0. Instead, a weaker variant can be realized: imposing
Dirichlet boundary conditions on the upper (or lower) two
components of a four component spinor is possible; see for
example [41]. However, it is not as clear how to construct a
basis of the solution space that consists of eigenfunctionof∂0

(corresponding to energy eigenfunctions in quantum theory)
and σ3 (corresponding to spin eigenfunctions), which makes
quantization of the theory too involved. In this work we will

therefore keep to periodic boundary conditions and simply
exclude the zeromode from interactions, as described above.
Fortunately, in most cases, it is possible to choose “safe”

states for the zero mode that would minimize its impact on
the dynamics of the particle detectors [40]. Based on this
fact, in this work we will assume ad hoc that the detector
does not couple to the zero mode of the field, as it is often
done in quantum optics. The question in what circum-
stances dropping the zero mode can be justified is not vital
to the discussion here, and is still subject to active research.
Defining the vacuum response.—We assume that both

field and detector are in their respective free ground states at
time t0. The state of the composite system is then
characterized by the density operator

ρðt0Þ ¼ j0; g; t0ih0; g; t0j ¼ j0; gih0; gj: ð19Þ

The coupled system is allowed to evolve unitarily until time
t ¼ t0 þ T; time-evolution is performed using the time-
evolution operator U generated by the total Hamiltonian

H ¼ HF þHd þHint; ð20Þ

where HF is the Hamilton operator of the free field, Hd is
given by Eq. (5), and Hint depends on the model under
consideration. The system ends up in the state

ρðtÞ ¼ Uðt; t0ÞρU†ðt; t0Þ ð21Þ

and the probability for the detector to be excited is encoded
in the corresponding component of the density operator,
after tracing out the field:

P0;g→eðt; t0Þ ¼ hejtrFρðtÞjei: ð22Þ

At the end, we take the limit

P0;g→e ¼ lim
t0→−∞
t→þ∞

P0;g→eðt; t0Þ ð23Þ

such that the actual duration of the interaction is determined
by the switching function χðtÞ alone: at times outside the
support of χ, both systems evolve freely.
It is convenient to reformulate Eq. (22) in terms of state

vectors in the interaction picture:

P0;g→eðt; t0Þ ¼
X
a

jha; e; tjUðt; t0Þj0; g; t0ij2; ð24Þ

where jai is an orthonormal basis of the Hilbert space of
states of the free quantum fieldF. Recall that the interaction
picture is related to the Schrödinger picture through the
partial inverse time evolution U0ðtÞ ¼ eiH0t which only
takes into account the free Hamiltonian H0 ¼ HF þ
Hd [42].
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Finally, we set up the usual perturbation theory under the
assumption that λ is small. To this end, the time-evolution
operator is expanded in the Dyson series

Uðt; t0Þ ¼
X∞
n¼0

ð−iλÞn
n!

UðnÞðt; t0Þ; ð25Þ

where the operator at order n is [43]

UðnÞðt; t0Þ ¼
1

λn
T
Yn
i¼1

Z
t

t0

dtiHintðtiÞ: ð26Þ

For n ¼ 0 we haveUð0Þ ¼ 1 (no change over time at all),
but since hejgi ¼ 0, order zero does not contribute to P0;g→e

in Eq. (24). Therefore,

P0;g→eðt; t0Þ ≈
X
a

j − iλha; e; tjUð1Þðt; t0Þj0; g; t0ij2

≡X
a

jAð1Þ
a;ej2 ð27Þ

to leading order in λ, where Að1Þ
a;e is simply the probability

amplitude for the system to evolve from j0; gi to ja; ei at
leading order.
In the following, we calculate the VEP for quantized

scalar fields in linear coupling, as well as for quantized
scalar and spinor fields in quadratic coupling (all models in
Table I).

A. Linear coupling to quantized scalar fields

1. Vacuum excitation probability

In preparation for the derivation of new results concern-
ing fermionic detector models, we begin by rederiving the
standard case of a quantized real fieldΦ (see, among others,
[34,35,44]). In order to work as generally as possible, we
will avoid choosing a particular spatial profile and switch-
ing function. We couple an UDW-type detector to the
quantized scalar field using the interaction Hamiltonian
Eq. (14) (model 1 in Table I). We are dealing with a detector
at rest, so its trajectory is

xðτÞ ¼ x0; tðτÞ ¼ τ: ð28Þ

The time-evolution operator at leading order reads

Uð1Þðt; t0Þ ¼
Z

t

t0

dt0χðt0Þμðt0Þ
Z
Rn

dypðx0; yÞΦðt0; yÞ ð29Þ

according to Eq. (26). Notice that for a sufficiently
localized spatial profile p (as for example a Gaussian
profile), if the localization length σ is much smaller than the
compactification length L, we can extend the integration
region to the full space to a good approximation.

Here, the monopole operator in the interaction picture is

μðtÞ ¼ eiΩtσþ þ−iΩt σ−: ð30Þ
Similarly, the field operator

Φðt; xÞ ¼
X
k

1ffiffiffiffiffiffiffiffi
2ωk

p ½ake−iωktφkðxÞ þ a†ke
iωktφ�

kðxÞ�; ð31Þ

where ωk is the energy of a single mode, the ladder
operators ak satisfy the usual canonical commutation
relations Eq. (A14), and the mode functions φk
Eq. (A10) form an orthonormal basis of the solution space
of the Klein-Gordon equation. The field is restricted to a
cylinder, so the momentum spectrum is discrete.
Since the detector does not couple to the zero mode, we

have

k ∈
2π

L
· Znnf0g: ð32Þ

Note that we have not yet chosen a particular form for the
switching function or spatial profile.
From Eq. (27), the only nonvanishing amplitudes are

Að1Þ
1k;e

. Therefore the time evolved states will be super-
positions of the ground state j0; gi and states of the form
j1k; ei, which feature a single quantum in the field.
Summing up the squared moduli of the amplitudes and
taking the time limits leads to the VEP:

P0;g→e ¼
λ2

2

X
k

1

ωk

����
Z
Rn

pðx0; yÞφkðyÞdy
����2

×

����
Z

∞

−∞
χðtÞeiðΩþωkÞtdt

����2: ð33Þ

Solving the Klein-Gordon equation in a cavity with
periodic boundary conditions yields (see Appendix A)
for the spatial part of the mode function

φkðxÞ ¼
1ffiffiffiffiffiffi
Ln

p eik·x; ð34Þ

so the final expression for the VEP reads

P0;g→e ¼
λ2

2Ln

X
k

1

ωk

����
Z
Rn

pðx0; yÞe−ikydy
����2

×

����
Z

∞

−∞
χðtÞeiðΩþωkÞtdt

����2: ð35Þ

2. Dependence on the dimension of spacetime

The momentum sum in Eq. (35) depends on the spatial
dimension n, since k ¼ ðk1; k2;…; knÞ. Therefore the
convergence behavior of P0;g→e also strongly depends on
the dimension. To demonstrate this, we assume the detector
to be pointlike,
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pðx; yÞ ¼ δðx − yÞ; ð36Þ

and switch it on and off abruptly (sudden switching) by
means of a window function:

χðtÞ ¼
�
1 if t ∈ ½t0; t0 þ T�
0 else

: ð37Þ

This is the original UDW detector introduced by DeWitt
[3]. Plugging χ and pðy; ·Þ in Eq. (35) and performing the
time integrals, the VEP simplifies to

P0;g→e ¼
2λ2

Ln

X
k

1

ωkðΩþ ωkÞ2
sin2

�
Ωþ ωk

2
T

�
: ð38Þ

In the massless case, the momentum sums are made explicit
by writing out the dispersion relation

ωk ¼ jkj ¼ 2π

L

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l21 þ l22 þ � � � þ l2n

q
; ð39Þ

where li ∈ Znf0g.
In one spatial dimension, we have

P0;g→e ¼
λ2L2

2π3
X∞
l1¼1

×
1

l1ðΩL2π þ l1Þ2
sin2

�
π

L

�
ΩL
2π

þ l1

�
T

�
: ð40Þ

This sum is bounded by

P0;g→e ≤
λ2L2

2π3
X∞
l1¼1

1

l31
;

which is convergent.
For dimension n ¼ 2, the probability is

P0;g→e ¼
λ2L
π3

X∞
l1¼1

X∞
l2¼1

×

� ffiffiffiffiffiffiffiffiffiffiffiffiffi
l21 þ l22

q �
ΩL
2π

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
l21 þ l22

q �
2
�
−1

× sin2
�
π

L

�
ΩL
2π

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
l21 þ l22

q �
T

�
; ð41Þ

which is similarly bounded by the convergent double sum

P0;g→e ≤
λ2L
π3

X∞
l1¼1

X∞
l2¼1

1ffiffiffiffiffiffiffiffiffiffiffiffiffi
l21 þ l22

p
3
:

In n ¼ 3 dimensions, however, the VEP diverges. Its
formal expression is

P0;g→e ¼
2λ2

π3
X∞
l1¼1

X∞
l2¼1

X∞
l3¼1

×

2
64

ffiffiffiffiffiffiffiffiffiffiffiffiX3
i¼1

l2i

vuut
0
B@ΩL

2π
þ

ffiffiffiffiffiffiffiffiffiffiffiffiX3
i¼1

l2i

vuut
1
CA

2
3
75
−1

× sin2

2
64π
L

0
B@ΩL

2π
þ

ffiffiffiffiffiffiffiffiffiffiffiffiX3
i¼1

l2i

vuut
1
CAT

3
75: ð42Þ

As ΩLð2πÞ−1 ≥ 0, we can estimate

π3

2λ2
P0;g→e ≥

X∞
l1¼1

X∞
l2¼1

X∞
l3¼1

2
64ΩL
2π

þ
ffiffiffiffiffiffiffiffiffiffiffiffiX3
i¼1

l2i

vuut
3
75
−3

× sin2

2
64π
L

0
B@ΩL

2π
þ

ffiffiffiffiffiffiffiffiffiffiffiffiX3
i¼1

l2i

vuut
1
CAT

3
75: ð43Þ

By exploiting cosðxÞ ¼ sinðxþ π=2Þ and the Pythagorean
trigonometric identity, it is straightforward to prove that the
right-hand side converges for all choices of parameters if
and only if

X∞
l1¼1

X∞
l2¼1

X∞
l3¼1

2
64Aþ

ffiffiffiffiffiffiffiffiffiffiffiffiX3
i¼1

l2i

vuut
3
75
−3

does, where A ¼ ΩLð2πÞ−1. This sum is in turn bounded
by

X∞
l1¼1

X∞
l2¼1

X∞
l3¼1

½Aþ l1 þ l2 þ l3�−3; ð44Þ

which diverges logarithmically.
In higher dimensions convergence can only get worse,

because even more sums will appear. For any dimension
ð1; nÞ with n ≥ 3, the VEP is divergent [35].
The above results show that the VEP strongly depends

on the dimension of the underlying spacetime. In the above
example, the vacuum response of a pointlike detector with
sudden switching, coupled to a quantized real field is
convergent in (1,1) and (1,2) dimensions, but divergent in
all higher dimensions, necessitating regularization.

3. Regularization through detector profile

Those divergences of the VEP can be understood as a
result of the pointlike structure of the detector as well as the
sudden switching [35]. In the linear coupling case, the
divergences can be regularized by adiabatically switching
the detector, or by “smearing” the interaction between
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detector and field over the spatial profile of the detector. Let
us study both possibilities in two separate examples.
Gaussian switching and pointlike detector.—Consider

the probability Eq. (35), still with a pointlike detector
Eq. (36), but this time employing a Gaussian switching
function,

χðtÞ ¼ exp

�
−

t2

2T2

�
; ð45Þ

which is known to regularize the response of a resting
detector in (1, 3)-dimensional Minkowski spacetime [34].
We generalize this result to ð1; nÞ dimensions: the time
integral is readily solved, giving

Z
∞

−∞
e−t

2=ð2T2ÞeiðΩþωkÞtdt ¼
ffiffiffiffiffiffiffiffiffiffi
2πT2

p
e−ðΩþωkÞ2T2=2: ð46Þ

Substituting this in Eq. (35) yields

P0;g→e ¼
πλ2T2

Ln

X
k

1

ωk
e−ðΩþωkÞ2T2 ð47Þ

which is bounded by the convergent sum

P0;g→e ≤
2n−1λ2T2

Ln−1

Yn
i¼1

X∞
li¼1

e−ð2πT=LÞ2l2i : ð48Þ

This shows that a suitably smooth switching function is
able to regularize the leading order excitation probability in
arbitrary dimensions.
The excitation probability in this example is finite, but

nonzero, even though the detector was in the ground state
and the field in the vacuum. This should not be surprising
considering that we have a time-dependent Hamiltonian:
When the interaction is switched on, the Hamiltonian of the
composite system is changed, and the state j0; gi is no
longer an energy eigenstate. In consequence, the state
begins to evolve nontrivially, and there is a finite proba-
bility for the detector to be measured in its excited state jei.
The more adiabatically the interaction is switched on, the
lower is the probability to excite the detector [34]. This is
reflected in Eq. (47): the larger T, that is, the slower the
detector is switched, the smaller P0;g→e. In the limit
T → ∞, corresponding to adiabatic switching, P0;g→e→0

as expected.
Sudden switching and Gaussian detector profile.—Now

consider a Gaussian detector profile,

pðx0; yÞ ¼ ð2πσ2Þ−n=2 exp
�
−
ðy − x0Þ2

2σ2

�
; ð49Þ

together with a sudden switching. In this case,

P0;g→e ¼
2λ2

Ln

X
k

e−k
2σ2

ωkðΩþ ωkÞ2
sin2

�
Ωþ ωk

2
T

�
; ð50Þ

which is bounded by

P0;g→e ≤
2n−2λ2

π3Ln−3

Yn
i¼1

X∞
li¼1

e−ð2πσ=LÞ2l2i ð51Þ

and therefore again convergent in arbitrary dimensions—
the spatial smearing of the interaction between detector and
field is also able to regularize the vacuum response of the
detector. Moreover, P0;g→e → 0, if the detector is com-
pletely delocalized, that is for σ → ∞.
General effect of spacetime profile.—The two preceding

examples show that it is possible to regularize the VEP to
leading order in perturbation theory. But which combina-
tions of switching function χ and spatial smearing p are
able to regularize the VEP? To address this question, it is
helpful to use the detector’s spacetime profile f: the VEP of
the quantized real field in Eq. (35) can be reformulated as

P0;g→e ¼
λ2

2Ln

X
k

1

ωk
j ~fðωk þ Ω; kÞj2; ð52Þ

where ~f is the ð1; nÞ-dimensional Fourier transform of the
spacetime profile f:

~fðωξ; ξÞ ¼
Z
Rn

dx
Z

∞

−∞
dtfðx; tÞe−iωξteiξx: ð53Þ

Therefore, a given spacetime profile does regularize the
VEP to leading order in ð1; nÞ dimensions if and only if the
modulus squared of its ð1; nÞ-dimensional Fourier trans-
form ~f decays fast enough in the UV such that the
n-fold sum in the above expression is finite.

B. Quadratic coupling to quantized spinor fields

We now turn to the pivotal question: How can we
construct a similar particle detector model for quantized
spinor fields? To this end, let us begin by investigating and
extending a model that has been commonly employed in
the literature, namely, model 4 in Table I pioneered by
Takagi in 1985 [33] and extensively used, e.g., in [20,36–
39]. We will assess the physicality of this class of models
by considering the vacuum response of spatially smeared
detectors.
Let Ψ be a spinor field, that is, a field taking values in

some representation space Cm of the complexified Clifford
algebra Cliffð1; nÞC. In order to be able to do explicit
calculations, we choose the irreducible Dirac representation
of Cliff(1,3) on C4 in 4 spacetime dimensions. In 2
spacetime dimensions, a related but reducible representa-
tion of Cliff(1,1) on C4 is used, which yields similar spinor
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mode functions. Details on these conventions and standard
results in classical and quantum field theory can be found in
Appendix A.
We will work again in the interaction picture, where the

operator of the quantized field is

Ψðt;xÞ ¼
X
k;s

ak;se−iωktψk;s;þðxÞþb†k;se
iωktψk;s;−ðxÞ: ð54Þ

The ladder operators ak;s, bk;s satisfy the canonical anti-
commutation relations Eq. (A60). The spinor-valued mode
functions ψk;s;ϵ span a solution space of the Dirac equation.
Depending on dimension and mass, the mode functions
take slightly different forms, namely, (a) Eqs. (A28) and
(A37) for massive and massless fields in (1,3) dimensions;
and (b) Eqs. (A28) and (A37) in (1, 1) dimensions.
This quantized spinor field is coupled quadratically to a

resting UDW-type detector via the interaction Hamiltonian
Eq. (15), which is model 4 in Table I. Using Eq. (26) we
then obtain the leading order contribution to the time
evolution operator:

Uð1Þðt; t0Þ ¼
Z

t

t0

dt0χðt0Þμðt0Þ

×
Z
Rn

dypðx0; yÞΨðt0; yÞΨðt0; yÞ: ð55Þ

The vacuum response Eq. (27) yields

P0;g→e ¼ λ2
����Xk;s

Z
Rn

pðx0; yÞψk;s;−ðyÞψk;s;−ðyÞdy
����2

×

����
Z þ∞

−∞
χðtÞeiΩtdt

����2
þ λ2

X
k;s

X
p;r

����
Z
Rn

pðx0; yÞψk;s;þðyÞψp;r;−ðyÞdy
����2

×

����
Z þ∞

−∞
χðtÞeiðΩþωkþωpÞtdt

����2: ð56Þ

There are obvious differences to the vacuum response of
the usual UDWmodel (model 1 in Table I, i.e., a monopole
detector linearly coupled to a quantized scalar field).
Comparing Eq. (33) with Eq. (55), at leading order in λ,
there are two kinds of terms instead of one.
The first term corresponds to excitation of the detector by

creation and subsequent annihilation of a field quantum,

with amplitudeAð1Þ
0;e. More precisely, the detector is excited

by creating and annihilating an antiparticle from the
vacuum. However, the equivalent process featuring a
particle does not occur.
The second term represents processes where the detector

is excited by emission of a particle and an antiparticle, with

amplitude Að1Þ
1ðk;sÞ;1̄ðp;rÞ;e

. These stood to be expected in the

light of our discussion regarding fermion number

conservation in Sec. II B. Note that the momenta of the
particle and antiparticle are not related since the detector is
“heavy” and can absorb any amount of momentum.
We can make the mode functions ψk;s;ϵ explicit using

Eqs. (A28), (A37), (A45) and (A53). In all four cases
considered here, massive and massless fields in (1, 3) and
(1, 1) dimensions, the VEP when coupling quadratically to
quantized spinor fields can be brought into the form

P0;g→e ¼
λ2

2L2n

�
8m2

�X
k

1

ωk

�
2
����
Z þ∞

−∞
χðtÞeiΩtdt

����2

þ
X
k;p

ðωk þmÞðωp þmÞ
ωkωp

�
k

ωk þm
−

p
ωp þm

�
2

×

����
Z
Rn

pðx0; yÞe−iðkþpÞydy
����2

×

����
Z þ∞

−∞
χðtÞeiðΩþωkþωpÞtdtj

2
�
;

ð57Þ

where n ¼ 1 or n ¼ 3. The case of a massless field is
correctly recovered by setting m ¼ 0, such that the first
term vanishes. Notice that there is an additional problem
with the first term in Eq. (57) form ≠ 0. Namely, the term is
proportional to

P
kω

−1
k . Even in the least divergent sce-

nario, i.e. n ¼ 1, this sum diverges like
P

aa
−1.

This divergency is fundamentally worse behaved than
those encountered in the standard bosonic Unruh-DeWitt
model,which arise from the pointlike structure of the detector
[13,20], or its overly abrupt switching [34,35]. The first term
in Eq. (57) cannot be regularized by way of a smooth
spacetime profile, and therefore the divergency in model 4
cannot be cured via this commonmethod. This is because the
spatial integral containing the (normalized) detector profile
factors out and yields a factor of 1. The time integral here is
not momentum dependent and merely contributes an overall
factor which cannot regularize the divergent sum.
Comparing with the Unruh-DeWitt model, there are

three conceivable origins of this new divergency: (a) it
could be algebraic on the level of ladder operators, because
we are now dealing with a field obeying Fermi statistics
instead of Bose statistics, (b) it could be analytic due to the
field’s spinorial structure and different inner product
compared to the scalar fields, (c) or the origin could be
the coupling that is now quadratic in the field instead of
linear. The question is easily settled by computing the VEP
of a quantized complex field coupled quadratically to an
UDW-type detector, keeping properties (a) and (b) the same
as in the usual Unruh-DeWitt model.

C. Quadratic coupling to quantized scalar fields

LetΦ be a quantized real or complex field (models 2 and 3
in Table I, respectively), coupled quadratically to a resting
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UDW-type detector via the interaction Hamiltonian
Eq. (16). Inserting the interaction Hamiltonian in Eq. (26)
yields

Uð1Þðt; t0Þ ¼
Z

t

t0

dt0χðt0Þμðt0Þ
Z
Rn

dypðx0; yÞΦ†ðt0; yÞΦðt0; yÞ;

ð58Þ
where the field operator (in the interaction picture) is given
by Eq. (31) in case of a quantized real field. If the field is
complex,

Φðt; xÞ ¼
X
k

1ffiffiffiffiffiffiffiffi
2ωk

p ½ake−iωktφkðxÞ þ b†ke
iωktφ�

kðxÞ�: ð59Þ

Calculation of the VEP Eq. (27) yields

P0;g→e ¼
λ2

4

�����X
k

1

ωk

Z
Rn

pðx0; yÞjφkðyÞj2dyj2

×

����
Z þ∞

−∞
χðtÞeiΩtdt

����2
þ
X
k;p

1

ωkωp

����
Z
Rn

pðx0; yÞφ�
kðyÞφ�

pðyÞdy
����2

×

����
Z þ∞

−∞
χðtÞeiðΩþωkþωpÞtdt

����2
�

ð60Þ

in both cases at leading order. Notice that this is no longer
true at higher orders. This expression has two terms like
Eq. (56), representing analogue processes: The first term
again corresponds to excitation of the detector by emission

and reabsorption of an antiparticle with amplitudeAð1Þ
0;e, and

the second term corresponds to processes where the detector
is excited by emission of a particle-antiparticle pair with

amplitude Að1Þ
1k;1̄p;e

. Explicitly inserting the mode functions

Eq. (34) for periodic boundary conditions gives

P0;g→e ¼
λ2

4L2n

��X
k

1

ωk

�
2
����
Z þ∞

−∞
χðtÞeiΩtdt

����2
þ
X
k;p

1

ωkωp

����
Z
Rn

pðx0; yÞe−iðkþpÞydy
����2

×

����
Z þ∞

−∞
χðtÞeiðΩþωkþωpÞtdt

����2
�
: ð61Þ

The first term is proportional to
P

kω
−1
k and thus divergent in

the same way as for spinor fields in Eq. (57). Since this
divergence appears in exactly the same form for both scalar
and spinor fields, its origin is clearly the quadratic coupling.
Also note that for quantized scalar fields the divergence
arises even if m ¼ 0.
It is not surprising that these divergencies arise:

Interactions containing second or higher powers of fields

tend to lead to divergencies in observables, which require
renormalization. In particular, the spinor field detector
model by Iyler and Kumar [32] faces the same problem.

IV. RENORMALIZATION OF
QUADRATIC MODELS

Before investigating the renormalization of the quadrati-
cally coupled detector models Eqs. (15) and (16), let us
briefly review the literature.

A. Literature review

In Ref. [17], Hinton introduces an UDW-type particle
detector model coupled to a quantized real field Φ through
the interaction Hamiltonian

Hint ¼ λμΦ2½xðτÞ�; ð62Þ

which was the template for Eq. (16). Hinton calculates the
VEP in [17] [Eq. (14)], remarks that the expression is
formally divergent and requires renormalization but no
explicit renormalization scheme is given.
Takagi, who suggested coupling a quantized spinor field

quadratically to DeWitt’s two-level detector through
Eq. (2), followed a different approach. In the original
publications, see Refs. [20,33], Takagi points out an infinite
term in the VEP at leading order but argues that this term
can be dropped. Later publications employing Takagi’s
detector model or drawing on his results implicitly follow
the same reasoning [36–39]. A key point is that instead of
the total excitation probability, excitation rates are consid-
ered. As is well known, the calculations of rates involves
fewer integrations and are therefore generally more regular.
In addition, Takagi regularizes the detector response by
using a smooth, namely exponential switching function. As
a consequence, in the excitation rate

R ¼ lim
t0→−∞
t→þ∞

P0;g→eðt; t0Þ
t − t0

ð63Þ

the divergence in P0;g→e is offset by a divergence in the
denominator.
Takagi’s expression for the rate [20] [Eqs. (8.5.2) to (8.5.4)]

can easily be obtained in the notation developed earlier by
using Eqs. (27), (26) and (15) in Eq. (63) and by using a
pointlike detector with exponential switching function:

pðx; yÞ ¼ δðx − yÞ; χðtÞ ¼ e−sjtj: ð64Þ

The limit s → 0 is taken at the end of the calculation in
Ref. [20] so that ultimately the detector is switched on and off
infinitely slowly. One obtains the rate

R ¼ λ2jhejμjgij2FðΩÞ: ð65Þ
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Here,

FðΩÞ ¼ lim
s→0

lim
t0→−∞
t→þ∞

Z
t

t0

dt1

Z
t

t0

dt2
1

t − t0

× e−sðjt1jþjt2jÞe−iΩðt1−t2ÞSðt1 − t2Þ; ð66Þ
which is usually called the detector response function [14],
and

Sðt1 − t2Þ ¼ h0jΨðt1; xÞΨðt1; xÞΨðt2; xÞΨðt2; xÞj0i ð67Þ

is a 4-point correlation function. This step is notmade explicit
in Ref. [20]; rather, Takagi directly argues that the exact form
of the switching function is not relevant, since it has only been
introduced as a way to regularize the detector response.
Therefore, he argues, one is allowed to temporarily replace the
exponential switching function with a Gaussian one, and to
exploit that only the limits t → ∞, t0 → −∞ and s → 0 are of
interest—see end of section 3. 3 in Ref. [20]. Finally, the
Gaussian is replaced ad hoc with an exponential function
again. If we accept Takagi’s reasoning, the above response
function can be rewritten as

FðΩÞ ¼ lim
s→0

Z
∞

−∞
dte−iΩðtÞe−sjtjSðtÞ; ð68Þ

which indeed corresponds to [20] [Eqs. (8.5.2) to (8.5.4)]
(with two differences: in the original paper, the factor e−sjtj
due to the switching function is suppressed, and λ ¼ 1.). In
this notation, the divergence we encountered earlier is now
hidden in the correlator S: by Wick’s theorem it can be
expanded as

Sðt1 − t2Þ ¼ ½trS−ð0Þ�2 þ tr½S−ðt1 − t2ÞSþðt1 − t2Þ� ð69Þ

where S−, Sþ are the Wightman functions

S−ðt1; t2ÞAB ¼ h0jΨBðt2; xÞΨAðt1; xÞj0i
Sþðt1; t2ÞAB ¼ h0jΨAðt1; xÞΨBðt2; xÞj0i ð70Þ

and the first term is infinite, as expected:

trS−ð0Þ → ∞: ð71Þ

Takagi treats this infinite termas formally constant inEq. (69),
which allows one to obtain a delta distribution from the time
integral:

FðΩÞ ¼ δðΩÞ½trS−ð0Þ�2 þ lim
s→0

Z
∞

−∞
dt0e−iΩðt0Þe−sjt0j

× trS−ðt2; t1ÞSþðt1; t2Þ: ð72Þ

Heconcludes, therefore, that the term trS−ð0Þ canbedropped,
as long as thedetectorgap is finite,Ω > 0, therebyobtaining a
finite excitation rate R.

This argumentation is not entirely satisfactory. In par-
ticular, it merely yields a finite excitation rate. This is not
enough to fully characterize the response of a particle
detector. For that, one would need to be able to compute its
full density matrix, which requires computing probability
amplitudes, not rates. Takagi’s techniques, however, do not
avoid divergences in probabilities. The challenge remains
to fully renormalize particle detector models with an
interaction Hamiltonian that is quadratic in the field.

B. Renormalization at leading order

As we discussed above, the first term in Eqs. (57) and
(61) contains a divergence that cannot be regularized by
means of a spacetime profile, unlike in the usual linearly
coupled UDWmodel. As wewill show now, the occurrence
of such divergencies is not surprising from the point of
view of a quantum field theoretical renormalization theory,
and can be handled straightforwardly. To this end, let us
compare the two problematic detector models to quantum
electrodynamics (QED). The interaction Hamiltonian of
QED,HQED ∝ AμΨγμΨ, is also quadratic in the spinor field
(electron field), the only difference being that the coupling
is not to a scalar detector but to the vectorial photon field.
Indeed, QED has a similar divergence, namely the well-
known divergent tadppole subdiagram. In QED, it is
renormalized straightforardly by normal-ordering the inter-
action Hamiltonian (see, e.g. [45]). In the following two
sections we demonstrate that and how the divergencies in
the detector models are related to tadpole diagrams, and we
show that normal-ordering of the interaction Hamiltonian
renormalizes the detector models as well.

1. Structure of the divergence

As mentioned before, there are two types of perturbative
processes that excite the detector at leading order, thereby
contributing to the VEP for quantized spinor fields in
Eq. (56), or quantized scalar fields in Eq. (60). To see this,
recall that at leading order, time evolution amounts to
applying the interaction Hamiltonian to the initial state
j0; gi and integrating over the entire duration of the
interaction. In case of a spinor field, the final state is
je;ψi. Given the quadratic coupling in the interaction
Hamiltonian ∼ΨΨ for the fermionic case and ∼Φ†Φ for
the bosonic case, the algebraic structure of the leading order
time evolved field state is of the form

jψi; jϕi ¼
X
k

Ekj0i þ
X
k;p

Fk;pj1k; 1̄pi: ð73Þ

The spinorial degrees of freedom are suppressed and Ek,
Fk;p are coefficients depending on the momenta (and for
spinor fields additionally on spins). In other words: When
interacting with the field in the vacuum state, the detector
can be excited (to leading order in perturbation theory)
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either by emission and subsequent annihilation of an
antiparticle [divergent first term in Eqs. (73), (56) and
(60)], or by emitting a particle-antiparticle pair (second
term in the same equations). Since we are only interested in
the state of the detector after the interaction, both types of
processes contribute to the vacuum excitation probability.
They are visualized as diagrams in Fig. 1. Note that these
simplified diagrams (used for illustration) are not strictly
Feynman diagrams since the detector is not yet second
quantized, as we will see in more detail in Sec. VIII when
we build the detector-field interaction Feynman rules.
The following discussion is limited to the case of a

quantized spinor field, but runs analogously for quantized
scalar fields. In comparing the spinor field detector with
QED, the spinor field corresponds to the electron field in
QED, and the detector to the photon field. Thus, the
detector ground state translates to the absence of photons,
while the excited state corresponds to the presence of one
photon. In this sense, the processes in Fig. 1 are analogous
to the QED diagrams drawn in Fig. 2. In particular, the
problematic first term in Fig. 1 corresponds to the tadpole

diagram in Fig. 2. The divergence of its amplitude Að1Þ
0;e is

mirrored by QED: the amplitude of the tadpole diagram is
divergent as well; see [45].
While the “heavy” detector guarantees energy and

momentum conservation in Fig. 1, both QED processes
in Fig. 2 are dynamically forbidden. They may, however,
appear as subdiagrams in larger processes, and it is possible
to calculate their contribution to the total amplitudes.
Indeed, the analogy between the left-hand diagrams in
Figs. 1 and 2 extends to their respective amplitudes:
according to Eqs. (27) and (55), the amplitude of the left
diagram in Fig. 1 is

Að1Þ
0;e ¼ −iλe−iΩt

× h0; ej
Z

t

t0

χðt0Þμðt0ÞΨðt0; xÞΨðt0; xÞdt0j0; gi

∼ h0jΨðt0; xÞΨðt0; xÞj0i ð74Þ

when suppressing the time integration. The detector was
assumed to be pointlike for simplicity, since we know
already from Eq. (56) that the spatial profile has no

regularizing effect. Using the fermionic time-ordering
operator, this can be rewritten as

h0jΨAðt; xÞΨAðt; xÞj0i ¼ −h0jTΨAðt; xÞΨAðt; xÞj0i; ð75Þ

which is essentially the Feynman propagator:

SFðx − yÞAB ¼ h0jTΨAðxÞΨBðyÞj0i: ð76Þ

We find

Að1Þ
0;e ∼ trSFð0Þ → ∞; ð77Þ

where the trace runs over the spinor indices.
By applying position space Feynman rules to the tadpole

diagram in Fig. 2, on the other hand, one obtains the
amplitude

tr½γμSFð0Þ� → ∞ ð78Þ

(see e.g. [45]). The divergence of the two amplitudes
Eqs. (77) and (78) has a common structure: they diverge
because the Feynman propagator of the quantized spinor
field is ill defined when closed in itself. The gamma
matrices in the second amplitude merely appear because
electrodynamics has a vector coupling Eq. (3), as opposed
to the scalar coupling Eq. (15) for the detector model.
In conclusion, it is justified to interpret the divergence

found in the quadratically coupling detector models as the
analogue of tadpole diagrams known from quantum field
theories such as QED.

2. Renormalization by normal-ordering

Tadpoles are renormalized by normal-ordering of the
interaction Hamiltonian. This amounts to setting the
amplitude of the tadpole to zero, or—equivalently—
ignoring any diagram containing tadpoles as subdiagrams
(see, for instance, [45]). The same procedure works for both
the detector models as well: normal-ordering the interaction
Hamiltonians Eq. (15) leads to

Að1Þ
0;e ¼ −iλe−iΩt

× h0; ej
Z

t

t0

χðt0Þμðt0Þ∶Ψðt0; xÞΨðt0; xÞ∶dt0j0; gi

¼ 0 ð79Þ

FIG. 1. Schematic representation of the processes leading to the
state Eq. (73). The wiggly line stands for the detector (dashed
when in ground state, solid if excited), the solid straight line for
the quantized scalar or spinor field. The time direction is from left
to right.

FIG. 2. QED Feynman diagrams corresponding to the proc-
esses in Fig. 1.
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instead of Eqs. (74) and (77), such that the divergence is
renormalized to zero. Equivalently, for detector models
coupled quadratically to quantized real or complex fields
via the Hamiltonian Eq. (16),

Að1Þ
0;e ∼ h0j∶Φ†Φ∶j0i ¼ 0. ð80Þ

The above renormalization can be interpreted as shifting
the expectation value of the interaction energy from infinity
to zero: If detector and field do not interact, j0; gi is the
ground state, with energy eigenvalue zero:

h0; gjHj0; gi ¼ 0: ð81Þ

Here, H ¼ Hd þHΦ for quantized scalar fields, and H ¼
Hd þHΨ for quantized spinor fields as given in Eqs. (5),
(A15), (A19) and (A61). However, as soon as the coupling
is switched on, λ > 0, we would naively have

h0; gjH þHintj0; gi → ∞ ð82Þ

for the interactions quadratic in the field Eqs. (16) and (15).
This would be unphysical and normal-ordering the inter-
action Hamiltonian is therefore appropriate to ensure that

h0; gjH þ ∶Hint∶j0; gi ¼ 0: ð83Þ

In comparison, for linear coupling Eq. (14) the energy
expectation value vanishes automatically.

C. The renormalized models and their VEP

In summary, renormalization of the spinor field detector,
model 4 in Table I, is achieved by coupling through the
Hamiltonian

HintðtÞ ¼ λχðtÞμ
Z
Rn

pðxðtÞ; yÞ∶ΨðyÞΨðyÞ∶dy: ð84Þ

Detector models 2 and 3 for real or complex fields are
similarly renormalized by coupling through

HintðtÞ ¼ λχðtÞμ
Z
Rn

pðxðtÞ; yÞ∶Φ†ðyÞΦðyÞ∶dy: ð85Þ

The vacuum response of the renormalized spinor field
detector is obtained by dropping the first term in Eq. (56):

P0;g→e ¼ λ2
X
k;s

X
p;r

����
Z
Rn

pðx0; yÞψk;s;þðyÞψp;r;−ðyÞdy
����2

×

����
Z þ∞

−∞
χðtÞeiðΩþωkþωpÞtdt

����2: ð86Þ

Explicitly, for periodic boundary conditions:

P0;g→e ¼
λ2

2L2n

X
k;p

ðωkþmÞðωpþmÞ
ωkωp

�
k

ωkþm
−

p
ωpþm

�
2

×

����
Z
Rn
pðx0;yÞe−iðkþpÞydy

����2
×

����
Z þ∞

−∞
χðtÞeiðΩþωkþωpÞtdt

����2: ð87Þ

Similarly, the leading-order vacuum response of the renor-
malized real and complex field detector becomes

P0;g→e ¼
λ2

4

X
k;p

1

ωkωp

����
Z
Rn

pðx0; yÞφ�
kðyÞφ�

pðyÞdy
����2

×

����
Z þ∞

−∞
χðtÞeiðΩþωkþωpÞtdt

����2; ð88Þ

or explicitly

P0;g→e ¼
λ2

4L2n

X
k;p

1

ωkωp

����
Z
Rn

pðx0; yÞe−iðkþpÞydy
����2

×

����
Z þ∞

−∞
χðtÞeiðΩþωkþωpÞtdt

����2 ð89Þ

by dropping the first term from Eqs. (60) and (61).
As will be demonstrated in the next section, the VEPs

Eqs. (89) and (87) may still be divergent even after this
renormalization and further regularization of the VEP is
necessary. Recall that the VEP of detector model 1 coupling
to a quantized scalar field could be rewritten in terms of the
Fourier transform of its spacetime profile f in Eq. (52). The
same is possible for the quadratically coupling detectors:
using the Fourier transformation Eq. (53), the VEP Eq. (89)
for quantized scalar fields can be rewritten as

P0;g→e ¼
λ2

4L2n

X
k;p

1

ωkωp
j ~fð−d − k − pÞj2: ð90Þ

The probability in the case of Eq. (87) is

P0;g→e ¼
λ2

2L2n

X
k;p

ðωk þmÞðωp þmÞ
ωkωp

×

�
k

ωk þm
−

p
ωp þm

�
2

j ~fð−d − k − pÞj2: ð91Þ

Thus, the UV behavior of its Fourier transform again
decides which spacetime profile f is suitable for regulari-
zation. Note that the prefactor in front of the ~f decays faster
in the UV for quantized scalar fields than for quantized
spinor fields. This means that spinor field detectors require
a “stronger” regularization.
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V. COMPARISON OF PARTICLE
DETECTOR MODELS

So far, we have discussed how to obtain a finite vacuum
response through renormalization and regularization for
four different detector models. We will now investigate
whether any of the three scalar field detector models (1,2
and 3 in Table I) is comparable to the spinor field detector,
in the sense that a comparison of their respective responses
offers insight into the properties of the field they probe.
For the different models considered, the relevant features

that can have a significant impact on the response of UDW-
type detectors for quantized scalar and spinor fields are
(1) The nature of the coupling: linear versus quadratic.
(2) Internal degrees of freedom of the field: for example,

the Uð1Þ charge.
(3) The field statistics: bosonic or fermionic.
(4) The analytic structure of the field: scalar or spinorial.
From the results obtained in the previous sections, we

discuss below each of these points individually.

A. Linear vs quadratic coupling

The coupling has a profound influence on the response
of an UDW-type detector: The vacuum response of model
1—i.e. coupling linearly to a quantized real field—given in
Eq. (33), is fundamentally different from the response
[Eq. (88)] of model 2 to the same field when using the
(renormalized) quadratic coupling of Eq. (85). In order to
assess the differences between the response of detectors to
fermionic (spinor) fields and bosonic (scalar) fields, we will
now compare models 2 to 4 that couple to the same power
of the fields.

B. Charged vs uncharged field

Quadratic coupling to quantized scalar fields gives the
same VEP Eq. (88) for uncharged (i.e. real) and charged
(i.e. complex) quantized scalar fields to leading order in
perturbation theory. However, as we shall see in Sec. VIII,
the detector response is not identical in general; the field
charge does have an influence. Since spinor fields are
generally charged, one should always use a charged scalar
field when comparing quantized scalar fields with quan-
tized spinor fields in order to single out effects coming
exclusively from the field statistics or analytic structure. In
other words, only model 3 and model 4 can be rightfully
compared.

C. Boson vs fermion statistics

The statistics of the probed field influence the reaction of
an UDW-type detector in two ways. First of all, the Pauli
exclusion principle will prevent the creation of more
than one quantum of a given charge, momentum and spin
in a fermionic field. This restricts the set of possible
processes that, for example, excite the detector. This
would not be the case for bosonic fields. Secondly, the

anticommutation of fermionic operators implies that two
distinct processes leading to the same final state may have a
relative minus sign in their amplitudes. Fermionic fields,
unlike bosonic fields, can therefore have cancellations
between amplitudes.
Nevertheless, the field statistics do not influence the VEP

of the four detector models discussed here at leading order:
merely a single quantum (linear coupling), or at most a
particle-antiparticle pair (quadratic coupling) is created
from the vacuum of the field, so the Pauli exclusion
principle has no effect. And since there is only one possible
process contributing to the VEP, no cancellation between
different processes occurs. This implies that the leading
order VEP remains unaffected by the field statistics.
As soon as the field is initially not in its vacuum state,

however, the Pauli exclusion principle does affect the
response of a particle detector to a fermionic field. And
even for the VEP, the exclusion principle and different sign
amplitude interference will be relevant at higher orders in
perturbation theory. Interestingly, in dimensions larger than
two, the spin-statistics theorem ties together field statistics
and the spin of a field (which is reflected in its analytic
structure). This makes it generally hard to distinguish the
effect of the analytic structure and the effect of field
statistics. In the leading order vacuum response, however,
due to the uniqueness of the leading order VEP described
above, it is possible to independently study the effect of the
spinor structure versus a scalar structure.

D. Scalar vs spinor field

Comparing Eqs. (88) and (86), one finds that the VEP of
model 3 has summands proportional to

∝
1

4ωkωp

����
Z
Rn

pðx0; yÞφ�
kðyÞφ�

pðyÞdy
����2

¼
����
Z
Rn

pðx0; yÞ ~φ�
kðt; yÞ ~φ�

pðt; yÞdy
����2; ð92Þ

while the VEP of the spinor field detector, model 4, has
summands proportional to

∝
X
s;r

����
Z
Rn

pðx0; yÞψk;s;þðyÞψp;r;−ðyÞdy
����2

¼
X
s;r

����
Z
Rn

pðx0; yÞ ~ψk;s;þðt; yÞγ0 ~ψp;r;−ðt; yÞdy
����2: ð93Þ

The sum over all spins in the second expression is, of
course, not present in the first one for quantized scalar
fields. The factor ð4ωkωpÞ−1 in the first expression is
simply part of the normalization factor of the scalar
mode functions Eq. (A5). This can be made explicit by
rewriting both of the above expressions in terms of the
full, time-dependent mode functions Eqs. (A5) and (A25)
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(at arbitrary time t). In this form, it is obvious that the only
difference between the VEP for scalar and spinor fields is
due to the different mode functions.
So does it make any difference at all whether the detector

is coupled to a quantized scalar or a spinor field? The
answer is yes: Comparing the VEPs Eq. (90) and Eq. (91) at
the end of the previous chapter, we found that quantized
scalar fields are better behaved for large frequencies since
the UV behavior of the mode functions is different; the
scalar mode functions generally have a factor ∼ðωkÞ−1=2
which the spinor mode functions do not: As a simple
example, compare the mode functions of massless fields in
(1,1) dimensions: For the quantized (real or complex) scalar
field, the particle and antiparticle mode functions are

~φ�
k;ϵðt; xÞ ¼

1ffiffiffiffiffiffiffiffiffiffiffi
2jkjLp eþijkjte−ikx ð94Þ

[see Appendix A, Eqs. (A10), (A12) and (A17)], while the
corresponding spinor mode functions for particles and
antiparticles (in this order) are

~ψ†
k;s;þðt; xÞ ¼

1ffiffiffiffiffiffi
2L

p
�

ξs

sgnðkÞσ3ξs

�†
eþijkjte−ikx

~ψk;s;−ðt; xÞ ¼
1ffiffiffiffiffiffi
2L

p
�
sgnðkÞσ3ξs

ξs

�
eþijkjte−ikx ð95Þ

[see Appendix A, Eqs. (A25), (A45), (A53) and (A58)].
The spinorial parts do no scale with k, while the scalar field
has an additional factor jkj−1 ¼ ω−1

k .
This difference has notable implications: it causes the

quantized scalar fields to exhibit better convergence proper-
ties when summing over all momenta—the VEP for
detectors coupling quadratically to quantized scalar
fields—Eq. (90)—will in general converge better than
the VEP for detectors coupling quadratically to quantized
spinor fields—Eq. (91). This is a dramatic difference. For
instance, there are switching functions and spatial profiles
that give a finite VEP for a detector quadratically coupled to
a quantized scalar field but yield a divergent VEP for
quantized spinor fields. In Sec. V E, examples where this
situation actually occurs are discussed.
Superficially, the different normalization conditions,

stemming from a mathematically different inner product,
are the reason for this difference: The scalar mode functions
are orthonormal with respect to

ð ~φk; ~φpÞ≡ −i
Z
B
~φkðxÞ½∂0 ~φ

�
pðxÞ� − ½∂0 ~φkðxÞ� ~φ�

pðxÞdx

¼ δk;p; ð96Þ

while the spinor mode functions are normalized according
to

h ~ψk;s;ϵ; ~ψp;r;δi≡
Z
B
~ψ†
k;s;ϵðxÞ ~ψp;r;δðxÞdx ¼ δk;pδs;rδϵ;δ:

ð97Þ

The additional time derivative in the product for scalar
functions generates a factor ωk. Thus, the normalization
factor of the scalar fields contains an additional factor
ðωkÞ−1=2 compared to the normalization of the spinor fields.
Ultimately, the reason is that the equation of motion of

scalar fields, the Klein-Gordon equation, is of second order
and features a double time derivative, while the equation of
motion of the spinor field, the Dirac equation, is of first
order, containing only a single time derivative (see
Appendix B).
In order to demonstrate the influence this has on the

response of the different detector models, we compare their
VEPs in three simple examples on (1, 1) dimensional
Minkowski spacetime for massless fields: (1) sudden
switching with a pointlike detector, (2) Gaussian switching
with a pointlike detector, and (3) sudden switching with a
Gaussian detector profile.

E. Examples in (1, 1) dimensions

Let us start by recalling the general expressions for the
massless (1,1) dimension scenario. For model 3 in Table I
(quadratic coupling quantized scalar field detector), the
VEP Eq. (89) simplifies in (1, 1) dimensions and for
massless fields to

P0;g→e ¼
λ2

4L2

X
k;p≠0

1

jkpj
����
Z

∞

−∞
pðx0; yÞe−iðkþpÞydy

����2

×

����
Z þ∞

−∞
χðtÞeiðΩþjkjþjpjÞtdt

����2: ð98Þ

On the other hand, for the spinor field detector (model 4 in
Table I), one similarly obtains

P0;g→e ¼
2λ2

L2

X
k;p>0

�����
Z

∞

−∞
pðx0; yÞe−iðk−pÞydy

����2

þ
����
Z

∞

−∞
pðx0; yÞe−iðp−kÞydyj2

�����
×
Z þ∞

−∞
χðtÞeiðΩþkþpÞtdt

����2; ð99Þ

directly from Eq. (86) by plugging in the mode functions
and spinors Eqs. (A45) and (A53).

1. Sudden switching and pointlike detector

In the most basic scenario, the detector is pointlike [delta
spatial profile as given in Eq. (36)], and it is suddenly
coupled to the field as given in Eq. (37). This is the same
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situation that was considered in Sec. III A 2 for the case of a
quantized real field with linear coupling (model 1).
Quantized scalar field.—Plugging Eqs. (36) and (37) in

Eq. (98), the resulting VEP for the quantized scalar field is

P0;g→e ¼
λ2L2

4π4
X∞
l1¼1

X∞
l2¼1

1

l1l2ðΩL2π þ l1 þ l2Þ2

× sin2
�
π

L

�
ΩL
2π

þ l1 þ l2

�
T

�
: ð100Þ

This double sum is convergent: we can estimate

4π4

λ2L2
P0;g→e ≤

X∞
l1¼1

X∞
l2¼1

1

l1l2ðl1 þ l2Þ2
:

The sums on the right-hand side converge if and only if

S ¼
X∞
l1¼2

X∞
l2¼2

1

l1l2ðl1 þ l2Þ2

does, where the summation starts at 2 instead of 1. We can
now exploit that l1l2 ≥ l1 þ l2 for all li ≥ 2 to find the
upper bound

S ≤
X∞
l1¼2

X∞
l2¼2

1

ðl1 þ l2Þ3
;

where the sum on the right-hand side is convergent.
Quantized spinor field.—The formal expression for the

VEP in case of a quantized spinor field is obtained by
plugging Eqs. (36) and (37) in Eq. (99):

P0;g→e ¼
4λ2

π2
X∞
l1¼1

X∞
l2¼1

1

ðΩL
2π þ l1 þ l2Þ2

× sin2
�
π

L

�
ΩL
2π

þ l1 þ l2

�
T

�
: ð101Þ

Similar to Eq. (43), it is easy to prove that this sum
converges if and only if

X∞
l1¼1

X∞
l2¼1

1

ðΩL
2π þ l1 þ l2Þ2

does. However, this sum diverges, since the corresponding
integral is ill defined:Z

∞

1

dl1

Z
∞

1

dl2
1

ðAþ l1 þ l2Þ2
¼ lim

a→∞
lnðaÞ − lnð2þ AÞ → ∞:

Thus, the VEP Eq. (101) is divergent.

This result nicely illustrates that the detector response to
quantized scalar fields is better behaved in the UV: On one
hand, all the scalar fields detectors (models 1–3) have a
finite VEP in (1, 1) dimensions, even if the detector is
simply pointlike and uses sudden switching [see Eqs. (100)
and (40)]. On the other hand, in the case of a quantized
spinor field the VEP is already divergent in (1, 1)
dimensions for this spacetime profile.

2. Gaussian switching and pointlike detector

It was demonstrated in Sec. III A 3 that the original
UDW detector (model 1), which has a divergent VEP in
dimensions ð1; nÞ for n ≥ 3, can be regularized by intro-
ducing a Gaussian switching function Eq. (45) of width T.
We can prove that Gaussian switching also regularizes the
spinor field detector, model 4, in (1, 1) dimensions.
Quantized spinor field.—Inserting Eq. (45) in Eq. (99),

the VEP for a spinor field reads

P0;g→e ¼
8πT2λ2

L2

X∞
l1¼1

X∞
l2¼1

e−
4π2T2

L2
ðΩL
2πþl1þl2Þ2 : ð102Þ

This excitation probability is now clearly finite: the sum
converges if and only ifZ

∞

1

dl1

Z
∞

1

dl2e−AðBþl1þl2Þ2

does, where A ¼ 4π2T2L−2 and B ¼ ΩLð2πÞ−1, and the
latter expression is bounded from above byZ

∞

1

dl1e−Al
2
1

Z
∞

1

dl2e−Al
2
2 ¼ π

A
:

Quantized scalar field.—For model 3, the same switch-
ing function yields

P0;g→e ¼
T2λ2

2π

X∞
l1¼1

X∞
l2¼1

1

l1l2
e−

4π2T2

L2
ðΩL
2πþl1þl2Þ2 ð103Þ

which is of course also finite since the summand decays
faster than in Eq. (102) [and the VEP had been convergent
in Eq. (100) even without regularization].
Note that for both field types, P0;g→e → 0 in the adiabatic

limit T → ∞, just like for the linear coupling in Eq. (47).

3. Sudden switching and Gaussian detector profile

The third example discussed in Sec. III A 3 for model 1
demonstrated regularization through a Gaussian detector
profile Eq. (49) with variance σ > 0 and sudden switching.
We repeat the example in the present case.
Quantized spinor field.—In case of the quantized spinor

field, the probability is
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P0;g→e ¼
4λ2

π2
X∞
l1¼1

X∞
l2¼1

e−
4π2σ2

L2
ðl1−l2Þ2

ðΩL
2π þ l1 þ l2Þ2

× sin2
�
π

L

�
ΩL
2π

þ l1 þ l2

�
T

�
ð104Þ

and convergence is harder to assess than for the Gaussian
switching function in Eq. (102): the sine squared is
positive, bounded from above by 1 and can thus be ignored.
For l1 ¼ l2, the exponential factor is always 1, but then the
denominator decays as l−21 ; as it happens, this is just fast
enough. As a first step, we can estimate

π2

4λ2
P0;g→e ≤

X∞
l1¼1

X∞
l2¼1

e−Aðl1−l2Þ2

ðl1 þ l2Þ2

where A ¼ 4π2σ2L−2 > 0. This sum converges if the
corresponding integral

I ¼
Z

∞

l1¼1

dl1

Z
∞

l2¼1

dl2
e−Aðl1−l2Þ2

ðl1 þ l2Þ2

does. By substituting l ¼ l2 − l1,

I ¼
Z

∞

l1¼1

dl1

Z
∞

l¼1−l1
dl

e−Al
2

ðlþ 2l1Þ2

and since for l ≥ 1 − l1 we have ðlþ 2l1Þ−2 < l−21 :

I <
Z

∞

l1¼1

dl1
1

l21

Z
∞

l¼1−l1
dle−Al

2

≤
Z

∞

l1¼1

dl1
1

l21

Z
∞

l¼−∞
dle−Al

2 ¼
ffiffiffiffi
π

A

r
< ∞:

The VEP Eq. (104) is finite.
Quantized scalar field.—For the quantized scalar field,

the probability

P0;g→e ¼
λ2L2

8π4

×
X∞
l1

X∞
l2¼1

e−
4π2σ2

L2
ðl1þl2Þ2 þ e−

4π2σ2

L2
ðl1−l2Þ2

l1l2ðΩL2π þ l1 þ l2Þ2

× sin2
�
π

L

�
ΩL
2π

þ l1 þ l2

�
T

�
ð105Þ

is once again convergent because Eq. (100) already was
even without regularization.
Again, P0;g→e → 0 for both fields if the detector is

maximally delocalized by σ → ∞.

F. Comparability of the models

From the analysis above we conclude that the differences
in the response of models 3 and 4 are only due to the
analytic structure of the fields and the field statistics.
The field statistics do not enter the leading order VEP,

but will have a profound influence on the detector response
at higher orders, or also at leading order if the field is
initially not in the vacuum state. On the level of the analytic
structure, model 4 is sensitive to the additional spin degree
of freedom, and, more importantly, requires stronger
regularization since it displays a worse-behaved UV
response. Interestingly, it is not enough to regularize with
a smooth switching function as opposed to the scalar case.
Rather, the spinor model requires a spatial smearing in
order to yield finite VEP.
Note that only a qualitative comparison is feasible. A

naïve quantitative comparison fails because the coupling
strength λ has different dimensions in model 3 and 4: Scalar
fields on ð1; nÞ-dimensional spacetime have mass dimen-
sion ðn − 1Þ=2, while spinor fields have mass dimension
n=2. To obtain a Hamiltonian of mass dimension 1, the
respective coupling constants therefore need to be of
different dimensions. A direct comparison is therefore only
possible with regards to the functional dependence on
model parameters like the detector trajectory xðτÞ, the
detector gap Ω, and more concretely the interaction time
T and the detector size σ. In this sense, the leading-order
vacuum response of models 3 and 4 is equivalent in all
(convergent) examples discussed in Sec. V E.
In conclusion, for finite size detectors after renormaliza-

tion, the pair of models, model 3 (for quantized complex
fields) and model 4 (for quantized spinor fields) can be used
to reliably study the differences between fermionic and
bosonic fields via particle detectors, at least at leading order
in perturbation theory.

VI. COMPUTATION METHODS AT
ARBITRARY ORDER

Up to now, the discussion was limited to the leading order
in the coupling strength λ. However, potential applications
of particle detectors will undoubtedly require calculations to
higher orders in perturbation theory: some phenomena that
have been investigated for quantized real fields using the
original UDW detector, for example, rely on higher-order
effects order (see Refs. [23,46] among others). In prepara-
tion of investigations at higher orders, it will be convenient to
derive a set of Feynman rules for each detector model. We
will adhere to the following roadmap: In this section we
develop the computation methods necessary to obtain
Feynman rules. In Sec. VII, we will apply these methods
to calculations up to second order in the transition ampli-
tudes byway of example, and in Sec. VIII wewill generalize
the emerging pattern to Feynman rules.
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It is to be expected that new divergencies appear at each
order in perturbation theory. As in any quantum field
theory, there are three sources of divergencies in transition
probabilities of UDW-type detector models:
(1) The amplitude of a single process can be infinite, as

it was the case for the tadpolelike diagram in Fig. 1.
(2) Finite amplitudes can still amount to a divergent

transition probability of the detector when the field is
traced out: the sum over all the ingoing and outgoing
field configurations can diverge.

(3) The perturbative series itself can diverge when
taking into account all orders.

Notice, therefore, it is important to ascertain that those
divergences can be regularized and renormalized away in order
to be able to fully trust insights gained from using a particle
detector model to describe the physics of a quantum field.
Example: vacuum no-response probability.—In order to

show which quantities we are going to need to evaluate, let
us first consider a transition probability which involves the
second order term in the Dyson expansion Eq. (25). Every
application of the monopole operator μ Eq. (12) to one of
the two energy eigenstates of the detector switches it back
and forth between ground state jgi and the excited state jei.
In consequence, if the detector starts out in the ground state,
only even orders in perturbation theory contribute to the
probability for it to remain in the ground state, and only
odd orders contribute to the probability for the detector to
be excited. There are thus no corrections to the VEP
coming from Uð2Þ in Eqs. (25) and (26). Instead, we
calculate the probability for the detector to remain in the
ground state when interacting with a quantum field in the
vacuum state, and call this probability the vacuum no-
response probability (VNRP) P0;g→g.
Notice, however, that it would not be strictly necessary to

go through the Uð2Þ calculation in order to compute
the VNRP: Since the same order perturbative corrections
to the density matrix are traceless [5], it follows that
P0;g→g ¼ 1 − P0;g→e. We will nevertheless compute it using
Uð2Þ to illustrate higher order techniques.
Let F be the probed quantum field, and ρðt0Þ ¼

j0; gih0; gj the density matrix of the coupled system at
starting time t0. The VNRP is the ðg; gÞ component after
tracing out the field:

P0;g→gðt; t0Þ
≡ hgjtrFρðtÞjgi
¼

X
a

jha; g; tjUðt; t0Þj0; g; t0ij2 ð106Þ

at time t > t0. In the limit t0 → −∞, t → ∞, the actual
duration of the interaction between detector and field is
determined by the switching function χ. Using the pertur-
bative expansion Eqs. (25) and (26), the VNRP can be
written as

P0;g→gðt; t0Þ ¼ 1þ 2
X
a

½ReðAð0Þ
a;gA

ð2Þ
a;gÞ� þOðλ4Þ; ð107Þ

where the transition amplitudes at order n are

AðnÞ
a;g ≡ ð−iλÞnha; g; tjUðnÞðt; t0Þj0; g; t0i; ð108Þ

The contribution at order zero is only nonzero for the final
state j0; gi since U0 ¼ 1:

Að0Þ
a;g ¼

�
1 for a ¼ 0

0 else
: ð109Þ

As we have argued earlier, order n ¼ 1 does not contribute

at all, Að1Þ
a;g ¼ 0. Thus, only the amplitude at order n ¼ 2,

Að2Þ
a;g ¼ ð−iÞ2

Z
t

t0

dt1

Z
t

t0

dt2

× ha; g; tjTHintðt1ÞHintðt2Þj0; g; t0i; ð110Þ

remains to be evaluated to obtain the VNRP.
As an example, consider the renormalized detector

model 3 for quantized complex fields with interaction
Hamiltonian Eq. (85). The second order correction is

Að2Þ
ϕ;g ¼ ð−iλÞ2e−iωϕt

×
Z

t

t0

dt1

Z
t

t0

dt2χðt1Þχðt2ÞhgjTμðt1Þμðt2Þjgi

×
Z
Rn

dy1

Z
Rn

dy2pðx0; y1Þpðx0; y2Þ

× hϕjT∶Φ†ðy1ÞΦðy1Þ∶∶Φ†ðy2ÞΦðy2Þ∶j0i: ð111Þ

The main difficulty now rests in evaluating the time-
ordered expectation values

hgjTμðt1Þμðt2Þjgi ð112Þ

and

hϕjT∶Φ†ðy1ÞΦðy1Þ∶∶Φ†ðy2ÞΦðy2Þ∶j0i: ð113Þ

Higher orders.—Generalizing the above example to
order n and arbitrary initial and final states, we need to
evaluate expressions of the form

hgj½σ−�a½Tμðt1Þ � � � μðtnÞ�½σþ�bjgi ð114Þ

for the detector, where a; b ∈ f0; 1g to allow for initial and
final states jgi and jei. Similarly, for model 1 and quantized
real fields we need to calculate

h0jðapÞp½TΦðy1Þ � � �ΦðynÞ�ða†kÞkj0i; ð115Þ
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where ða†kÞk ≡ a†k1…a†kN is an arbitrary product of creation

operators [such as, e.g., ða†kÞk ¼ a†k1a
†
k2
a†k3a

†
k1
or ða†kÞk ¼ 1]

allowing for arbitrary number eigenstates content in the
initial state, and ðapÞp are annihilation operators for
arbitrary final states. In case of model 3 (for quantized
complex fields), we need

h0jðapÞpðbp̄Þp̄½T∶Φ†ðy1ÞΦðy1Þ∶ � � �
� � � ∶Φ†ðynÞΦðynÞ∶�ða†kÞkðb†k̄Þk̄j0i ð116Þ

and in the case of model 2 (for quantized real fields), the
previous expression simplifies because the field is self-
adjoint, Φ† ¼ Φ, and there is only one type of ladder
operators. Finally, for model 4 coupling to quantized spinor
fields expressions of the form

h0jðap;rÞp;rðbp̄;r̄Þp̄;r̄½T∶Ψðy1ÞΨðy1Þ∶ � � �
� � � ∶ΨðynÞΨðynÞ∶�ða†k;sÞk;sðb†k̄;s̄Þk̄;s̄j0i ð117Þ

appear.
In short, we need to evaluate the vacuum expectation

value of time-ordered products of field operators, whichmay
contain normal-ordered subproducts, with a prepended
product of annihilation operators and an appended product
of creation operators. Since the field operators and the
monopole operator are essentially sums of ladder operators
as well, a good strategy is to normal-order the entire product
by successively commuting (or anticommuting) ladder
operators. This procedure will furnish us with variants of
Wick’s theorem. Moreover, the presence of the time-order-
ing symbol leads to the appearance ofFeynman propagators
instead of ordinary commutators. This approach is closely
related to standard techniques in elementary particle phys-
ics, where elements of the scattering matrix S are computed
to obtain probabilistic predictions about the outcome of
scattering experiments. There, the Lehmann-Symanzik-
Zimmermann reduction formula similarly allows one to
express elements of S in terms of vacuum expectation values
of products of time-ordered fields [43,47].
Time- and normal-ordering.—Let us briefly revise the

definition of time-ordering and normal-ordering for
bosonic and fermionic fields. In the bosonic case, the
time-ordering symbol is defined as

TΦðxÞΦðyÞ
¼ Θðx0 − y0ÞΦðxÞΦðyÞ þ Θðy0 − x0ÞΦðyÞΦðxÞ: ð118Þ

In particular, exchanging two operators inside a time-
ordered expression does not engender any change:

TΦðxÞΦðyÞ ¼ TΦðyÞΦðxÞ: ð119Þ

Normal-ordering is achieved by moving all annihilation
operators to the right:

∶aka
†
p∶ ¼ a†pak; ∶a†pak∶ ¼ a†pak: ð120Þ

For fermionic fields, however,

TΨðxÞΨðyÞ
¼ Θðx0 − y0ÞΨðxÞΨðyÞ − Θðy0 − x0ÞΨðyÞΨðxÞ ð121Þ

so exchanging two fields introduces an additional sign

TΨðxÞΨðyÞ ¼ −TΨðyÞΨðxÞ: ð122Þ
Similarly, a sign is introduced when exchanging ladder
operators in normal-ordering:

∶ak;sa
†
p;r∶ ¼ −a†p;rak;s; ∶a†p;rak;s∶ ¼ a†p;rak;s: ð123Þ

A. The monopole moment as a field

A two-level particle detector is, in a way, a fermionic
system: the ladder operators Eq. (6) of the monopole
operator satisfy the anticommutation relations

fσþ; σþg ¼ 0; fσþ; σ−g ¼ 1;

fσ−; σ−g ¼ 0: ð124Þ

By comparison with the ladder operators of the quantized
spinor field it is easy to see that, formally, σ−, σþ correspond
to the ladder operators of a fermionic fieldwhich (1) has only
one mode, (2) does not have spin degrees of freedom, and
(3) has particle modes which are their own antiparticles.
The analogy extends to the monopole operator: in the

Heisenberg picture,

μðtÞ ¼ σþeþiΩt þ σ−e−iΩt; ð125Þ

which can be seen as a simplification of the mode
expansion of the quantized spinor field Eq. (A58). In the
following, we will therefore regard the monopole operator
as a fermionic quantum field μðxÞ ¼ μðt; xÞ≡ μðtÞ on
ð1; nÞ-dimensional Minkowski spacetime which is constant
in space, rather than as an observable of a system in first
quantization. The time-evolution of this field is described
by a Klein-Gordon equation: from Eq. (125) immediately
follows ð∂2

t þ Ω2ÞμðtÞ ¼ 0, which can be rewritten as

ð□þΩ2ÞμðxÞ ¼ 0 ð126Þ

since ΔμðxÞ ¼ 0. While this field is defined on the entire
spacetime, it interacts with the quantum field only for a
limited time and in a certain place, according to the
detector’s spacetime profile f.
In terms of particle number eigenstates, this field is very

simple: since there is only one mode, no spin quantum
numbers and no distinct antiparticles, there can at most be
one quantum; excitation of more quanta is forbidden
by the Pauli exclusion principle. The two particle number
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eigenstates are simply the two energy eigenstates of the
detector: the ground state jgi for no quantum, the excited
state jei for one quantum. The detector behaves as a sort of
completely delocalized Grassman scalar [48–50].

B. Feynman propagators

Deriving the Feynman propagator DF of the UDW-type
detector (or, more precisely, its monopole moment) runs
analogously to the derivation of the Feynman propagator
SF of the quantized spinor field. We will treat the detector
first, and generalize to the well-known Feynman propa-
gators of the other fields for the sake of completeness.

1. UDW-type detector

The Feynman propagator of the UDW-type detector is
defined as the time-ordered vacuum expectation value

DFðt; sÞ≡ hgjTμðtÞμðsÞjgi; ð127Þ

the resulting two 2-point correlators are

DFðt; sÞ≡DFðt − sÞ ¼
�

e−iΩðt−sÞ for t > s

−eþiΩðt−sÞ for t < s
: ð128Þ

Note that DFð0Þ is ill defined, since DF → �1, depending
on whether t<s or t > s. For t ≠ s, we may simply express
the Feynman propagator using the step function Θ as

DFðt; sÞ ¼ Θðt − sÞe−iΩðt−sÞ − Θðs − tÞeþiΩðt−sÞ: ð129Þ
This form of the Feynman propagator has the disadvantage
that the exponential factor switches signs depending on
which time is larger—in calculations of transition proba-
bilities, one would therefore not end up with the Fourier
transform of the spacetime profile f when integrating over
all times in the Feynman rules later on. It is therefore useful
to rewrite the expression using a complex contour integral
(as it is usually for the Feynman propagator of a quantum
field [47]). The two cases of time-ordering are then
implemented as two different contours.
By the residue theorem, we can rewrite

e−iΩðt−sÞ ¼ 2Ω
I
Γ1

dω
2π

i
ðω −ΩÞðωþΩÞ e

−iωðt−sÞ; ð130Þ

where the curve Γ1 is given in the first part of Fig. 3 and
encloses the pole at ω ¼ þΩ. Similarly,

eþiΩðt−sÞ ¼ 2Ω
I
Γ2

dω
2π

i
ðω − ΩÞðωþ ΩÞ e

−iωðt−sÞ ð131Þ

for Γ2 as shown in the second part of Fig. 3, enclosing the
pole at ω ¼ −Ω. In order to be able to integrate along the
real axis, we shift the poles off the axis by �iϵ and
straighten out the curves as shown in Fig. 4. After the
evaluation of the integrals, we will take the limit ϵ → 0.

Since Γ0
1 ¼ ΓðrÞ∪Γ1ðrÞ and Γ0

2 ¼ ΓðrÞ∪Γ2ðrÞ as drawn in
Fig. 4, the integral over each of the entire closed curves can
be split into two integrals. In the limit r → ∞, the first
integral simply turns into an integral over the entire real

FIG. 3. Curves for the complex contour integrations in
Eqs. (130) and (131).

FIG. 4. Curves for the complex contour integration in Eqs. (132)
and (133).
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line. The second one, on the other hand, evaluates to zero in
both cases:

Θðt − sÞe−iΩðt−sÞ
¼ Θðt − sÞlim

ϵ→0
2Ω

×
Z

∞

−∞

dω
2π

i
ðω −Ωþ iϵÞðωþ Ω − iϵÞ e

−iωðt−sÞ ð132Þ

and

Θðs − tÞeþiΩðt−sÞ

¼ Θðs − tÞlim
ϵ→0

2Ω

×
Z

∞

−∞

dω
2π

i
ðω −Ωþ iϵÞðωþ Ω − iϵÞ e

−iωðt−sÞ:

ð133Þ

By introducing time derivatives

e−iΩðt−sÞ ¼ i∂t

Ω
e−iΩðt−sÞ;

eþiΩðt−sÞ ¼ −
i∂t

Ω
eþiΩðt−sÞ ð134Þ

and evaluating them inside the integral, we obtain

DFðt − sÞ

¼ lim
ϵ→0

2

Z
∞

−∞

dω
2π

iω
ðω − Ωþ iϵÞðωþΩ − iϵÞ e

−iωðt−sÞ:

ð135Þ
Since in the limit

lim
ϵ→0

ðω −Ωþ iϵÞðωþ Ω − iϵÞ ¼ lim
δ→0

ω2 −Ω2 þ iδ; ð136Þ

the above expression is abridged in the usual way to

DFðt − sÞ ¼ lim
ϵ→0

2

Z
∞

−∞

dω
2π

iω
ω2 −Ω2 þ iϵ

e−iωðt−sÞ: ð137Þ

If the arguments of the propagator are exchanged, a sign
is picked up,

DFðs − tÞ ¼ −DFðt − sÞ; ð138Þ

since TμðtÞμðsÞ ¼ −TμðsÞμðtÞ.

2. Quantized scalar field

Although well known in the literature, we repeat the
definition of the Feynman propagator for quantized scalar
fields:

GFðx − yÞ≡ h0jTΦðxÞΦ†ðyÞj0i: ð139Þ

It can be expressed as

GFðx − yÞ

¼ lim
ϵ→0

1

Ln

X
k

Z
∞

−∞

dk0

2π

i
k2 −m2 þ iϵ

e−ikðx−yÞ; ð140Þ

see, for example, Ref. [47]. Note that for x ¼ y,

GFð0Þ ¼
1

2Ln

X
k

1

ωk
→ ∞: ð141Þ

Unlike for the detector, no sign is picked up under
exchange of the arguments:

GFðx − yÞ ¼ GFðy − xÞ: ð142Þ

3. Quantized spinor field

The Feynman propagator of the quantized spinor field is,
by definition,

SFðx − yÞAB ≡ h0jTΨAðxÞΨBðyÞj0i; ð143Þ

and can be expressed as [47]

SFðx − yÞAB
¼ lim

ϵ→0

1

Ln

X
k

Z
∞

−∞

dk0

2π

i½k · γ þm�AB
k2 −m2 þ iϵ

e−ikðx−yÞ: ð144Þ

The above expression is valid in ð1; nÞ dimensions, for both
n ¼ 1 and n ¼ 3; the massless case is correctly recovered
by setting m ¼ 0.
It is straightforward to check that the Feynman propa-

gator diverges in the coincidence limit

SFð0Þ → ∞: ð145Þ

Unlike for the detector, where the exchange of the
propagator’s argument only produced a sign, there is no
simple relation between SFðx − yÞ and SFðy − xÞ:

SFðy − xÞAB
¼ −lim

ϵ→0

1

Ln

X
k

Z
∞

−∞

dk0

2π

i½k · γ −m�AB
k2 −m2 þ iϵ

e−ikðx−yÞ: ð146Þ

C. Wick’s theorem

In this section we will first address Wick’s theorem for
quantized scalar fields. Then, we will formulate the
fermionic version of the theorem for spinor fields, and
subsequently simplify it in order to arrive to the case of the
detector (monopole field). Notice that full proofs of the
theorems are given in Appendix C.
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1. Quantized complex field

Ultimately, we want to calculate expectation values like
Eq. (116), or more generally:

h0jðapÞpðbp̄Þp̄½TΦϵ1ðx1Þ � � �
� � �ΦϵnðxnÞ�ða†kÞkðb†k̄Þk̄j0i; ð147Þ

where the index ϵi indicates that the fields may be
conjugated or not. Since the vacuum expectation value
of normal-ordered products of operators vanishes, it is
useful to rewrite the original sequence of operators as a
sum of normal-ordered expressions. To achieve normal-
ordering, the fields need to be expanded in terms of ladder
operators, and the ladder operators commuted with each
other until normal-ordering is reached. The well-known
Wick theorem allows to do so systematically. We will
proceed in two steps in evaluating the above expression. In
the first step, we present Wick theorem for time-ordered
products of field operators. In the second step, we then
extend this theorem and allow for more ladder operators to
be prepended and appended.
It is useful to decompose the field operator into a part

containing the creation operators and a second one con-
taining the annihilation operators:

ΦðxÞ ¼ ΦaðxÞ þ Φ†
bðxÞ; ð148Þ

where

ΦaðxÞ≡
X
k

akφkðxÞ; ΦbðxÞ≡
X
k

bkφkðxÞ ð149Þ

and φk are the mode functions of the quantised scalar field.
Time-ordered product of quantized complex fields.—

The above separation facilitates normal-ordering series of
fields. If there are only a few field operators, this can still
rapidly be done by hand. For example,

ΦðxÞΦ†ðyÞ ¼ ∶ΦðxÞΦ†ðyÞ∶þ ½ΦaðxÞ;Φ†
aðyÞ�: ð150Þ

It is straightforward to check that the commutator is
identical to a nontrivial two-point function of the quantized
complex field:

½ΦaðxÞ;Φ†
aðyÞ� ¼ 1h0jΦðxÞΦ†ðyÞj0i: ð151Þ

Thus, time-ordering of the fields introduces the Feynman
propagator, such that for example:

TΦðxÞΦ†ðyÞ ¼ ∶ΦðxÞΦ†ðyÞ∶þ 1GFðx − yÞ: ð152Þ

These results are readily generalized if more fields are
included. To keep the notation light, Feynman propagators
are customarily written as contractions

ð153Þ

Theorem VI.1 (Wick’s theorem for time-ordered
quantized complex fields). A product of n time-ordered
field operators of the quantized complex field Φ, which
may contain subproducts that are normal-ordered, can be
rewritten as follows:

ð154Þ

Two contracted fields belonging to different normal-
ordered subproducts are to be replaced as follows:

ð155Þ

Contraction of any pair of fields belonging to the same
normal-ordered subproduct vanish.
For three fields, for example,

ð156Þ

This theorem is a canonical result in quantum field
theory [43,47].
Theorem VI.2 (Wick’s theorem for full expectation

values of the quantized complex field). Consider a
time-ordered product of quantized complex fields
TΦϵ1ðx1Þ � � �ΦϵnðxnÞ that may contain normal-ordered sub-
products. The indices ϵi ∈ f∘; †g indicate whether the field
operator is conjugated (ϵi ¼ †, such that Φϵi ¼ Φ†) or not
(ϵi ¼ ∘, such that Φϵi ¼ Φ). Then prepend products of
annihilation operators

ðapÞp ≡ ap1…apM ; ðbp̄Þp̄ ≡ bp̄1…bp̄M̄ ð157Þ
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and append products of creation operators

ða†kÞk ≡ a†k1…a†kN ; ðb†
k̄
Þk̄ ≡ b†

k̄1
…b†

k̄N̄
: ð158Þ

The vacuum expectation value of the resulting product of
operators vanishes if the total number of operators is odd. If
it is even, it can be expressed as the sum over all full
contractions:

ð159Þ

The contractions between fields that do not belong to the
same normal-ordered subproducts are

ð160Þ

the contractions between ladder operators

ð161Þ

and, finally, the mixed contractions

ð162Þ

All other contractions vanish, in particular contractions
between fields belonging to the same normal-ordered
subproducts.
A proof of this theorem is given in Appendix C 1.

2. Quantized real field

Note that the field operator can be separated as

ΦðxÞ ¼ ΦaðxÞ þ Φ†
aðxÞ: ð163Þ

Unlike for the quantized complex field, the commutator

½ΦaðxÞ;ΦðyÞ� ¼ h0jΦðxÞΦðyÞj0i ð164Þ
does not vanish. This changes the contractions in the
equivalent of theorem VI.1 for the quantized real field:
contractions between ΦðxÞ and ΦðyÞ do not vanish for the
quantized real field. Similarly, the contraction between ak
andΦðxÞ does not vanish in the equivalent of theorem VI.2,
since

½ak;ΦðxÞ� ¼ 1φ�
kðxÞ

½ΦðxÞ; a†k� ¼ 1φkðxÞ ð165Þ
are now nonzero. Keeping this in mind, we can immedi-
ately state:
Theorem VI.3 (Wick’s theorem for full expectation

values of the quantized real field). Consider a time-ordered
product of quantized real fields TΦðx1Þ � � �ΦðxnÞ that may
contain normal-ordered subproducts. Then prepend prod-
ucts of annihilation operators

ðapÞp ≡ ap1…apM ð166Þ
and append products of creation operators

ða†kÞk ≡ a†k1…a†kN : ð167Þ
The vacuum expectation value of the resulting product of
operators vanishes if the total number of operators is odd. If
it is even, it can be expressed as the sum over all full
contractions:

ð168Þ

The contractions between fields that do not belong to the
same normal-ordered subproduct are

ð169Þ

the contractions between ladder operators

ð170Þ

and the mixed contractions

ð171Þ

All other contractions vanish, in particular contractions
between fields belonging to the same normal-ordered
subproducts.

3. Quantized spinor field

For spinor fields, we need to work out how to evaluate
vacuum expectation values of the form

h0jðap;rÞp;rðbp̄;r̄Þp̄;r̄½TΨϵ1ðx1Þ � � �
� � �ΨϵnðxnÞ�ða†k;sÞk;sðb†k̄;s̄Þk̄;s̄j0i ð172Þ

where once more the index ϵi indicates whether the field
is conjugated (Ψ), or not (Ψ). Let us again split the field in
two parts, according to the ladder operators, by defining
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ΨaðxÞ≡
X
k;s

ak;sψk;s;þðxÞ

ΨbðxÞ≡
X
k;s

b†k;sψk;s;−ðxÞ; ð173Þ

such that

ΨðxÞ ¼ ΨaðxÞ þΨbðxÞ
ΨðxÞ ¼ ΨaðxÞ þΨbðxÞ: ð174Þ

Note that this convention varies slightly from Eqs. (149)
and (148) used for quantized scalar fields.
Time-ordered products of quantized spinor fields.—Two

spinor fields are easily normal-ordered by hand, for
example:

ΨðxÞΨðyÞ ¼ ∶ΨðxÞΨðyÞ∶þ fΨaðxÞ;ΨaðyÞg: ð175Þ

The anticommutators can be evaluated using Eq. (A36) for
massive fields in (1, 3) dimensions [and the analogous
equations for massless fields, and in (1, 1) dimensions
respectively]. It is straightforward to see that

fΨA
aðxÞ;Ψa;BðyÞg ¼ 1h0jΨAðxÞΨBðyÞj0i: ð176Þ

The Feynman propagator appears again if the fields are
time-ordered. For example,

TΨðxÞΨðyÞ ¼ ∶ΨðxÞΨðyÞ∶þ 1SFðx − yÞ; ð177Þ

where we have used that ∶ΨðyÞΨðxÞ∶ ¼ −∶ΨðxÞΨðyÞ∶.
The generalization of the above is given by the fermionic

version of Wick’s theorem for spinor fields:
Theorem VI.4 (Wick’s theorem for time-ordered

quantized spinor fields). Consider a time-ordered product
of spinor fields TΨϵ1ðx1Þ � � �ΨϵnðxnÞ which may contain
normal-ordered subproducts. The indices ϵi ∈ f∘; ¯g indi-
cate whether the field operator is Dirac conjugated (ϵi ¼ −,
such that Ψϵi ¼ Ψ) or not (ϵi ¼ ∘, such that Ψϵi ¼ Ψ). It
can be normal-ordered as follows:

ð178Þ

Contractions of any pair of fields belonging to the same
normal-ordered subproduct vanish. Two contracted fields
belonging to different normal-ordered subproducts are to be
replaced as follows:

ð179Þ

If contracted operators are not adjacent, the term has to be
reordered until they are, with every exchange of two
operators introducing an overall factor of ð−1Þ to the term.
The last requirement that contracted operators need to be

adjacent means for example that

ð180Þ

Since this is again a canonical result [43,47], we abstain
from giving the proof here.
Theorem VI.5 (Wick’s theorem for full expectation

values of the quantized spinor field). Consider a time-
ordered product of spinor fields TΨϵ1ðx1Þ � � �ΨϵnðxnÞ like
in theorem VI.4. Then prepend products of annihilation
operators

ðap;rÞp;r ≡ aðp;rÞ1…aðp;rÞM
ðbp̄;r̄Þp̄;r̄ ≡ bðp̄;r̄Þ1…bðp̄;r̄ÞM̄ ; ð181Þ

and append products of creation operators

ða†k;sÞk;s ≡ a†ðk;sÞ1…a†ðk;sÞN
ðb†

k̄;s̄
Þk̄;s̄ ≡ b†ðk̄;s̄Þ1…b†ðk̄;s̄ÞN̄ : ð182Þ

The vacuum expectation value of the resulting product of
operators vanishes if the total number of operators is odd. If
it is even, it can be expressed as the sum over all full
contractions:

ð183Þ
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The contractions between fields that do not belong to the
same normal-ordered subproduct are

ð184Þ

the contractions between ladder operators

ð185Þ

and the mixed contractions

ð186Þ

If contracted operators are not adjacent, the term has to be
reordered until they are,with every exchangeof twooperators
introducing an overall factor of ð−1Þ to the term. All other
contractions vanish, in particular contractions between fields
belonging to the same normal-ordered subproduct.
A proof is given in Appendix C 2.

4. UDW-type detector

Last but not least, we would like to compute vacuum
expectation values of the from given in Eq. (114),

hgj½σ−�a½Tμðt1Þ � � � μðtnÞ�½σþ�bjgi: ð187Þ
As before, we decompose the monopole operator into a
creation and an annihilation part,

μ−ðtÞ≡ e−iΩtσ−; μþðtÞ≡ eþiΩtσþ; ð188Þ
such that

μðtÞ ¼ μ−ðtÞ þ μþðtÞ: ð189Þ
Time-ordered products of monopole operators.—For

two monopole operators, normal-ordering is swiftly accom-
plished and yields

μðt1Þμðt2Þ ¼ ∶μðt1Þμðt2Þ∶þ fμ−ðt1Þ; μþðt2Þg; ð190Þ

where

fμ−ðt1Þ; μþðt2Þg ¼ 1e−iΩðt1−t2Þ: ð191Þ

Now consider what happens if the product of monopole
operators is time-ordered. For example,

Tμðt1Þμðt2Þ ¼ ∶μðt1Þμðt2Þ∶þ 1DFðt1 − t2Þ; ð192Þ

using the definition of the Feynman propagator Eq. (129).
Since the monopole operator μðxÞ (as a field) has basically
the same structure as the quantized spinor field, we can
directly conclude that the generalization to n operators is
given by
Theorem VI.6 (Wick’s theorem for time-ordered

monopole operators). A product of n time-ordered monop-
ole operators μ can be rewritten as a sum of normal-ordered
products as follows:

ð193Þ

The contraction of adjacent operators is defined as

ð194Þ

If contracted operators are not adjacent, the term has to be
reordered until they are, with every exchange of two
operators introducing an overall factor of ð−1Þ to the term.
Similar to the spinor field, this last remark implies, for

example,

ð195Þ

5. Full expectation value

When prepending zero or one annihilation operator σ−

and appending zero or one creation operator σþ and taking
the vacuum expectation value, more contractions appear:
Theorem VI.7 (Wick’s theorem for the full expect-

ation value of the detector). Consider a product of n time-
ordered monopole operators μ with a ∈ f0; 1g annihilation
operators and b ∈ f0; 1g creation operators. Its vacuum
expectation value is

ð196Þ
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The contraction between two adjacent monopole fields is
defined as

ð197Þ

the contraction between ladder operator and monopole field

ð198Þ

and finally the contraction between ladder operators

ð199Þ

If contracted operators are not adjacent, the term has to be
reordered until they are, with every exchange of two
operators introducing an overall factor of ð−1Þ to the term.
The proof is presented in Appendix C 3.

D. Diagrammatic computation

A usual way to visualize the contractions between field
operators in the above theorems, as well as the next step
towards Feynman diagrams, is the use of line diagrams.
Operators in a given product are represented by points
(vertices), and contractions are visualized as lines between
the vertices. The vacuum expectation value of a given
product of operators can be obtained in a structured manner
by drawing such a diagram for every nontrivial full
contraction (meaning that there are no wholly unconnected
vertices), assigning the corresponding contraction as a
factor to each line, and then summing up the terms obtained
from each diagram.
To distinguish them from the fully fledged Feynman

diagrams that we will develop in Sec. VIII, we will in the
following sometimes refer to these diagrams as auxiliary
diagrams.

1. UDW-type detector

The following set of rules can be applied as a help in
evaluating expectation values of the form Eq. (187) using
theorem VI.7:
Auxiliary diagrams for the detector.
(1) If a creation operator is present, draw a vertex on the

left end of the diagram. If an annihilation operator is
present, draw a vertex on the right end of the
diagram. These vertices will be referred to as
external vertices (ingoing on the left and outgoing
on the right).

(2) In the middle, draw a horizontal series of vertices,
one for each ti, starting with tn on the left, and label
them accordingly. These vertices will be referred to
as internal vertices.

(3) To account for the nontrivial contractions Eqs. (197),
(198) and (199), connect all vertices by lines such

that each external and internal vertex has one line
attached to it.

(4) Draw one diagram for every way to connect all
vertices using the rules in 3, such that no vertex is
left completely unconnected. If this is impossible,
the expectation value is zero.

(5) Associate the following factors to each line in a
diagram:
(a) 1 to a line connecting two external vertices
(b) e−iΩti to a line connecting an ingoing vertex with

an internal vertex ti
(c) eþiΩti to a line connecting an outgoing vertex

with an internal vertex ti
(d) DFðti − tjÞ to a line connecting two internal

vertices ti, tj; since DFðti − tjÞ ¼ −DFðtj − tiÞ,
and the overall sign is determined in other ways,
the order is irrelevant.

(6) To obtain the correct overall sign of a diagram, fall
back to the interaction picture and reorder the
operators such that contracted pairs are adjacent,
as described in theorem VI.7.

(7) The vacuum expectation value is obtained by sum-
ming up the values associated with each diagram.

Example.—Assume the detector is excited both at the
beginning and at the end. Including second order correc-
tions to the amplitude, one encounters the expectation value

E ¼ h0jσ−½Tμðt1Þμðt2Þ�σþj0i: ð200Þ

There are three full contractions which can be written as
follows:

ð201Þ

according to theorem VI.7. Up to the signs, the same is
obtained from the three corresponding diagrams shown
in Fig. 5.

2. Linear coupling to quantized real fields

To simplify the use of theorem VI.3 to evaluate the
vacuum expectation values of the form

h0jðapÞp½TΦðy1Þ � � �ΦðynÞ�ða†kÞkj0i; ð202Þ

the following equivalent diagrammatic method can be used:
Auxiliary diagrams for quantized real fields, linear

coupling.
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(1) On the left end of the diagram, draw vertices for
every creation operator, and label them by their
momenta. Similarly, draw vertices for every anni-
hilation operator on the right-hand side and label
them by their momenta. As before, these vertices
will be referred to as external vertices (ingoing on
the left and outgoing on the right).

(2) In the middle, draw a horizontal series of vertices,
one for each yi, starting with yn on the left, and label
them accordingly. Once again, these are the internal
vertices.

(3) To account for the nontrivial contractions Eqs. (169),
(170) and (171), connect all vertices by lines in the
following way:
(a) both external and internal vertices have one line

attached
(c) direct connections between ingoing vertices are

forbidden; direct connections between outgoing
vertices are forbidden

(4) Draw one diagram for every way to connect all
vertices using the rules in 3. If this is not possible,
the expectation value is zero.

(5) Associate the following factors to each line in a
diagram:
(a) δk;p to a line connecting two external vertices k

and p
(b) φkðyiÞ to a line connecting an ingoing vertex k

with an internal vertex yi
(c) φ�

kðyiÞ to a line connecting an outgoing vertex k
with an internal vertex yi

(d) GFðyi − yjÞ to a line connecting two internal
vertices yi, yj; since GFðxi − xjÞ ¼ GFðxj − xiÞ,
the order is irrelevant.

(6) The vacuum expectation value is obtained by sum-
ming up the values associated with each diagram.

Example.—Add two annihilation operators in front of
the two time-ordered fields. The calculations can still be
performed by hand in a reasonable time, yielding:

h0jakap½TΦðy1ÞΦðy2Þ�j0i
¼ φ�

kðy2Þφ�
pðy1Þ þ φ�

kðy1Þφ�
pðy2Þ: ð203Þ

Indeed, applying the above diagrammatic rules results in the
two diagrams depicted in Fig. 6 and gives the same result.

3. Quadratic coupling to quantized real fields

If the detector model 2 coupling quadratically to a
quantized real field is used instead, expectation values of
the following type are encountered:

h0jðapÞp½T∶Φðy1ÞΦðy1Þ∶ � � �
� � � ∶ΦðynÞΦðynÞ∶�ða†kÞkj0i: ð204Þ

Since there are now normal-ordered subproducts of fields
with the same argument, the above rules have to be adapted.
Auxiliary diagrams for quantized real fields, quadratic

coupling.
The rules for quantized real fields and linear coupling

still apply, with one exception in point 3: internal vertices
have two lines attached; these are not interchangeable.
Example.—We evaluate an expectation value similar to

the example for linear coupling. There are four ways
to contract two fields Φðy1Þ, Φðy2Þ, and then two ways
to contract the remaining fields with the ladder operators. In
consequence there are eight terms in total, yielding:

h0jakap½T∶Φðy1ÞΦðy1Þ∶∶Φðy2ÞΦðy2Þ∶�j0i
¼ 4GFðy1 − y2Þ½φ�

kðy2Þφ�
pðy1Þ þ φ�

kðy1Þφ�
pðy2Þ�: ð205Þ

The corresponding diagrams are drawn in Fig. 7. The same
result can be obtained more economically by dropping the
distinction between the two lines attached to each internal
vertex, leading to merely two distinct diagrams in Fig. 8. To
compensate, we assign an additional symmetry factor of
four to the line between the two vertices, which counts the
different ways the fields Φðy1Þ and Φðy2Þ can be contracted
while now resulting in the same diagram. In accordance
with the convention in particle physics, we will in the
following use symmetry factors rather than distinguishing
different legs of the same vertex.

FIG. 5. The three diagrams belonging to the example for the
monopole operator.

FIG. 6. The two diagrams belonging to the example for linear
coupling to quantized real fields.
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4. Quadratic coupling to quantized complex fields

Theorem VI.2 is useful to evaluate the vacuum expect-
ation values of the form

h0jðapÞpðbp̄Þp̄½T∶Φ†ðy1ÞΦðy1Þ∶ � � �
� � � ∶Φ†ðynÞΦðynÞ∶�ða†kÞkðb†k̄Þk̄j0i; ð206Þ

which arise when calculating the response of the quadrati-
cally coupling detector model 3. Here, the existence of two
independent types of ladder operators (and accordingly the
fact that the field is no longer self-adjoint) has to be taken
into account. This is most conveniently achieved by giving
the connection lines between vertices a direction, that is, by
turning them into arrows. The following rules can be used
to apply the theorem:
Auxiliary diagrams for quantized complex fields, quad-

ratic coupling.
(1) On the left end of the diagram, draw vertices for

every creation operator a†k1 and b†k2 , and label them

by their momenta with k1, k2, where the bar is used
to mark antiparticle operators. Similarly, draw ver-
tices for every annihilation operator ap1 and bp2 on
the right-hand side and label them by their momenta
p1 and p2.

(2) In the middle, draw a horizontal series of vertices for
each yi, starting with yn on the left, and label them
accordingly.

(3) To account for the nontrivial contractions Eqs. (160),
(161) and (162), connect all vertices by arrows in the
following way:
(a) vertices representing a† and b are origins of one

arrow each
(b) vertices representing a and b† are endpoints of

one arrow each
(c) vertices representing yi are origin of one arrow,

and endpoint of one arrow each
(d) direct connections between ingoing vertices are

forbidden; direct connections between outgoing
vertices are forbidden

(e) connecting an internal vertex with itself is
forbidden

(f) arrow directions must not collide
(4) Draw one diagram for every way to connect all

vertices using the rules in 3. If this is not possible,
the expectation value is zero.

(5) Associate the following factors to each arrow in a
diagram:
(a) δk;p to an arrow connecting two external vertices

k and p
(b) φkðyiÞ to an arrow connecting an ingoing vertex

k with an internal vertex yi
(c) φ�

kðyiÞ to an arrow connecting an outgoing
vertex k with an internal vertex yi

(d) GFðyi − yjÞ to an arrow connecting two internal
vertices yi, yj

(6) The vacuum expectation value is obtained by sum-
ming up the values associated with each diagram.

Example 1.—Consider the term

h0jT∶Φ†ðy1ÞΦðy1Þ∶∶Φ†ðy2ÞΦðy2Þ∶j0i: ð207Þ

There is only one contributing diagram, drawn in Fig. 9,
and we can immediately read off that

h0jT∶Φ†ðy1ÞΦðy1Þ∶∶Φ†ðy2ÞΦðy2Þ∶j0i
¼ ½GFðy1 − y2Þ�2; ð208Þ

FIG. 7. The eight diagrams belonging to the example for
quadratic coupling to quantized real fields. In each of the two
lines, all four ways to connect the two internal vertices are
realized. In the upper line, one field Φðy2Þ is always contracted
with ak, and one fieldΦðy1Þ with ap. In the lower line, the inverse
case is accounted for.

FIG. 8. Diagrams belonging to the example for quadratic
coupling to quantized real fields, reduced to two distinct diagrams
by dropping the distinction between upwards and downwards
lines of internal vertices. To compensate, an additional factor four
is assigned to their contraction.

FIG. 9. Diagram belonging to Example 1 for quantized com-
plex fields.
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where we have used that GFðy2 − y1Þ ¼ GFðy1 − y2Þ. The
same result is obtained when doing the ladder operator
algebra directly by hand.
Example 2.—Now consider the analogue of the expect-

ation value from the example for quadratic coupling to
quantized real fields. Both annihilation operators have to be
contracted, and according to theorem VI.2, they can
only (nontrivially) be contracted with conjugated fields
Φ†ðyiÞ. This only leaves Φðy1Þ, Φðy2Þ, whose contraction
vanishes—unlike for the quantized real field, this expect-
ation value vanishes for a quantized complex field:

h0jakap½T∶Φ†ðy1ÞΦðy1Þ∶∶Φ†ðy2ÞΦðy2Þ∶�j0i ¼ 0: ð209Þ

This is reflected in the diagrammatic rules through the
orientation of the lines, and is the manifestation of Uð1Þ
charge conservation.
Example 3.—We replace one outgoing particle state with

an antiparticle state. The two corresponding diagrams are
shown in Fig. 10, and give

h0jakbp½T∶Φ†ðy1ÞΦðy1Þ∶∶Φ†ðy2ÞΦðy2Þ∶�j0i
¼ GFðy1 − y2Þ½φ�

kðy2Þφ�
pðy1Þ þ φ�

kðy1Þφ�
pðy2Þ�: ð210Þ

Unlike in the example for quadratic coupling to quantized
real fields, there is only one possibility to draw a diagram if
y2 is connected to k instead of four, and a second possibility
if y2 is connected to p; in total, there are thus two instead of
eight diagrams.

5. Quadratic coupling to quantized spinor fields

For spinor fields, the rules need to be extended once
more to account for the fermionic nature of the field. To
evaluate expressions of the type

h0jðap;rÞp;rðbp̄;r̄Þp̄;r̄½T∶ΨA1
ðy1ÞΨA1ðy1Þ∶ � � �

� � � ∶ΨAn
ðynÞΨAnðynÞ∶�ða†k;sÞk;sðb†k̄;s̄Þk̄;s̄j0i ð211Þ

using theorem VI.5, the following set of rules may be
employed:
Auxiliary diagrams for quantized spinor fields, quad-

ratic coupling.

(1) On the left end of the diagram, draw vertices for
every creation operator a†k1;s1 and b†k2;s2 , and label

them by their momenta and spins ðk1; sÞ, ðk2; s2Þ,
where the bar is used to mark antiparticle operators.
Similarly, draw vertices for every annihilation oper-
ator ap1;r1 and bp2;r2 on the right-hand side and label
them by their momenta and spins ðp1; r1Þ and
ðp2; r2Þ. Include a horizontal setoff between all
vertices, such that the leftmost annihilation operator
ends up at the very right, and the rightmost creation
operator on the very left. The ordering of all vertices
has to be inverse to the ordering of the corresponding
ladder operators.

(2) In the middle, draw a horizontal series of vertices for
each yi, starting with yn on the left, and label them
accordingly. Also, indicate the appropriate spinor
index Ai.

(3) To account for the nontrivial contractions Eqs. (184),
(185) and (186), connect all vertices by arrows in the
following way:
(a) external vertices representing a† and b are

origins of one arrow each
(b) external vertices representing a and b† are

endpoints of one arrow each
(c) internal vertices representing yi are origin of one

arrow, and endpoint of one arrow each
(d) direct connections between ingoing vertices are

forbidden; direct connections between outgoing
vertices are forbidden

(e) connecting an internal vertex with itself is
forbidden

(f) arrow directions must not collide
(4) Draw one diagram for every way to connect all

vertices using the rules in 3. If this is not possible,
the expectation value is zero.

(5) Associate the following factors to each arrow in a
diagram:
(a) δk;pδs;r to an arrow connecting two external

vertices ðk; sÞ, ðp; rÞ (or their antiparticle
pendants)

(b) ψA
k;s;þðxÞ to an arrow connecting an ingoing

particle vertex ðk; sÞwith an internal vertex ðx; AÞ
(c) ψk;s;−;AðxÞ to an arrow connecting an ingoing

antiparticle vertex ðk; sÞ with an internal vertex
ðx; AÞ

(d) ψp;r;þ;AðxÞ to an arrow connecting an outgoing
particle vertex ðp; rÞ with an internal vertex
ðx; AÞ

(e) ψA
p;r;−ðxÞ to an arrow connecting an outgoing

antiparticle vertex ðp; rÞ with an internal vertex
ðx; AÞ

(f) SFðx − yÞAB to an arrow going from an internal
vertex ðy; BÞ to an internal vertex ðx; AÞFIG. 10. The two diagrams belonging to Example 3 for

quantized complex fields.
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(6) To determine the overall sign of a diagram, fall back
to the interaction picture calculations and order the
operators according to the contractions, as described
in theorem VI.5.

(7) The vacuum expectation value is obtained by sum-
ming up the values associated with each diagram.

Example 1.—Consider the following term, which allows
only one nontrivial contraction according to theorem VI.5:

ð212Þ

where the trace is over spinor indices. The same factors are
obtained diagrammatically from Fig. 11.
Example 2.—Consider the term

E ¼ h0jak;sbp;r½T∶Ψðy1ÞΨðy1Þ∶∶Ψðy2ÞΨðy2Þ∶�j0i: ð213Þ

According to theorem VI.5, there are two nontrivial ways to
contract. By reordering and writing out the contractions it
can be cast into the form:

ð214Þ

The two corresponding diagrams are shown in Fig. 12.

VII. SECOND ORDER: VACUUM
NO-RESPONSE PROBABILITY

We now turn to calculating the VNRP Eq. (107) for all
four detector models up to second order as an example. The
emerging patterns can then easily be generalized to full
Feynman rules. We have already determined the transition

amplitudes Að0Þ
a;g in Eq. (109), and Að1Þ

a;g vanishes. Only the

second order amplitude Að2Þ
a;g given in Eq. (110) remains to

be evaluated.

A. Linear coupling to quantized real fields

To calculate the VNRP for the original UDW detector,
model 1 in Table I, we insert the interaction Hamiltonian
Eq. (14) in the amplitude Eq. (110). Combining the
switching function and the spatial profile into the spacetime
profile f gives the amplitude

Að2Þ
ϕ;g ¼ ð−iλÞ2e−iωϕ

Z
dy1fðy1Þ

Z
dy2fðy2Þ

×hgjTμðy1Þμðy2ÞjgihϕjTΦðy1ÞΦðy2Þj0i; ð215Þ

where each integration runs over ½t0; t� ×Rn, and jϕi are
energy eigenstates with energy ωϕ. Theorem VI.3 and
theorem VI.7, and their diagrammatic representations can
now be applied to evaluate these amplitudes for any given
final state ϕ of the quantized real field. If the final state is
the vacuum, jϕi ¼ j0i, there is only one way to contract all
fields:

ð216Þ

The corresponding auxiliary diagrams for detector and field
share the same vertices, and can be combined as shown in
Fig. 13. Writing the propagators out introduces factors of
the form e�id·yi—where d ¼ ðω; 0Þ—in case of the detec-
tor, and e�ik·yi in case of the field. This allows to perform
the integration over the yi; for example:

Z
dy1fðy1Þe−iðdþkÞy1 ≡ ~fðdþ kÞ; ð217ÞFIG. 11. Diagram belonging to Example 1 for quantized spinor

fields.

FIG. 12. The two diagrams belonging to Example 2 for
quantized spinor fields.

FIG. 13. Linear coupling to quantized real field: auxiliary
diagram for detector and field if final state jϕi ¼ j0i.
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where the domain of integration is ½t0; t� ×Rn. In the limit
t0 → −∞, t → ∞, this is just the Fourier transform of f as
defined in Eq. (53). For simplicity, the same symbol ~f will
be used both for finite times and in the limit �∞. The
amplitude then reads

Að2Þ
0;g ¼ lim

ϵ→0
lim
δ→0

Z
∞

−∞

dω
2π

1

Ln

X
k

Z
∞

−∞

dk0

2π
ð−iλÞ ~fðdþ kÞ

×
2iω

ω2 −Ω2 þ iϵ
i

k2 −m2 þ iδ
ð−iλÞ ~fð−d − kÞ:

ð218Þ

The factors and integrals that now additionally appear in
the amplitude can be incorporated directly into the dia-
grammatic rules to obtain Feynman rules: For example, the
last amplitude as a whole can be represented by the
Feynman diagram shown in Fig. 14. To regain the ampli-
tude from the diagram, we simply have to integrate (sum)
the product of all the factors over the energies and momenta
d, k running in the loop (with the appropriate measure).
If the final state contains one particle, jϕi ¼ j1ki, the

amplitude vanishes,

Að2Þ
1k;g

∼ h0jakTΦðy1ÞΦðy2Þj0i ¼ 0; ð219Þ

since the presence of three operators does not allow for a
full contraction.
If the final state is jϕi ¼ j1k; 1pi, there are two ways to

contract the operators in the field part:

ð220Þ

We have already calculated these contractions in Eq. (203);
the corresponding diagrams were drawn in Fig. 6. The
resulting amplitude is

Að2Þ
1k;1p;g

¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffi
2ωkLnp e−iωkt

1ffiffiffiffiffiffiffiffiffiffiffiffiffi
2ωpLn

p e−iωpt

×
Z

∞

−∞

dω
2π

2iω
ω2 −Ω2 þ iϵ

× ½ð−iλÞ ~fðd − pÞð−iλÞ ~fð−d − kÞ
þ ð−iλÞ ~fðd − kÞð−iλÞ ~fð−d − pÞ�; ð221Þ

where we have suppressed the limit ϵ → 0, the two
corresponding Feynman diagrams are drawn in Fig. 15.
Note that both diagrams essentially have the same ampli-
tude since the two outgoing momenta k, p appear sym-
metrically.
Final states jϕi with more outgoing field quanta cannot

contribute, because there are only two fields available to
contract annihilation operators (outgoing states) with.
Equivalently, on the level of Feynman diagrams, there
are no further diagrams at second order. The vacuum no-
response probability is now obtained by inserting all
amplitudes in Eq. (107); we refrain from writing it out here.

B. Quadratic coupling to quantized scalar fields

1. Quantized real fields

For model 2 with the interaction Hamiltonian Eq. (85),
there are three nonzero amplitudes of the form

Að2Þ
ϕ;g ¼ ð−iλÞ2e−iωϕ

Z
dy1fðy1Þ

Z
dy2fðy2Þ

× hgjTμðy1Þμðy2Þjgi
× hϕjT∶Φðy1ÞΦðy1Þ∶∶Φðy2ÞΦðy2Þ∶j0i: ð222Þ

For final state j0i, there are two ways to contract all field
operators. There is a single corresponding Feynman dia-
gram, drawn in Fig. 16, its amplitude therefore contains a
symmetry factor of two:

FIG. 14. Linear coupling to quantized real field: Feynman
diagram at second order for the VNRP amplitude, final state
jϕi ¼ j0i.

FIG. 15. Linear coupling to quantized real field: Feynman
diagrams at second order for the VNRP amplitude, final state
jϕi ¼ j1k; 1pi. The vertex factors and the detector propagator are
not shown.
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Að2Þ
0;g ¼ 2

Z
∞

−∞

dω
2π

1

Ln

X
k

Z
∞

−∞

dk0

2π

1

Ln

X
p

Z
∞

−∞

dp0

2π

× ð−iλÞ ~fðdþ kþ pÞ 2iω
ω2 −Ω2 þ iϵ

i
k2 −m2 þ iδ

×
i

p2 −m2 þ iν
ð−iλÞ ~fð−d − k − pÞ: ð223Þ

If the final state contains two field quanta, the expect-
ation value in the field part corresponds to Eq. (205). Recall
that there are eight ways to fully contract this expression;
the two corresponding diagrams are drawn in Fig. 8. The
complete Feynman diagrams are drawn in Fig. 17 and have
symmetry factor four. The sum of the corresponding
amplitudes is

Að2Þ
1k;1p;g

¼ 4
e−iωktffiffiffiffiffiffiffiffiffiffiffiffiffi
2ωkLnp e−iωptffiffiffiffiffiffiffiffiffiffiffiffiffi

2ωpLn
p Z

∞

−∞

dω
2π

1

Ln

X
q

Z
∞

−∞

dq0

2π

× ½ð−iλÞ ~fðd − pþ qÞ 2iω
ω2 −Ω2 þ iϵ

×
i

q2 −m2 þ iδ
ð−iλÞ ~fð−d − k − qÞ

þ ð−iλÞ ~fðd − kþ qÞ 2iω
ω2 − Ω2 þ iϵ

×
i

q2 −m2 þ iδ
ð−iλÞ ~fð−d − p − qÞ�: ð224Þ

Finally, if the final state has four particles, there are
four ladder operators for the outgoing states that
must be contracted with four field operators, which gives
4! ¼ 24 possible combinations. Figure 18 shows the six

corresponding distinct Feynman diagrams. The symmetry
factor for each diagram is four, and their amplitude totals to

Að2Þ
1k;1p;1q;1l

¼4
e−iωktffiffiffiffiffiffiffiffiffiffiffiffiffi
2ωkLnp e−iωptffiffiffiffiffiffiffiffiffiffiffiffiffi

2ωpLn
p e−iωqtffiffiffiffiffiffiffiffiffiffiffiffiffi

2ωqLn
p e−iωltffiffiffiffiffiffiffiffiffiffiffiffiffi

2ωlLnp

×
Z

∞

−∞

dω
2π

ð−iλÞ2 2iω
ω2−Ω2þ iϵ

× ½ ~fðd−p−qÞ ~fð−d−k− lÞþ ~fðd−p− lÞ ~fð−d−k−qÞ
þ ~fðd−q− lÞ ~fð−d−k−pÞþ ~fðd−k−qÞ ~fð−d−p− lÞ
þ ~fðd−k−pÞ ~fð−d−q− lÞþ ~fðd−k− lÞ ~fð−d−p−qÞ�:

ð225Þ

2. Quantized complex fields

When considering model 3 for the quantized complex
field, there are again three nonzero amplitudes of the form

Að2Þ
ϕ;g ¼ ð−iλÞ2e−iωϕ

Z
dy1fðy1Þ

Z
dy2fðy2Þ

× hgjTμðy1Þμðy2Þjgi
× hϕjT∶Φ†ðy1ÞΦðy1Þ∶∶Φ†ðy2ÞΦðy2Þ∶j0i: ð226Þ

If the final state is the vacuum, there is only one way to fully
contract, unlike for the quantized real field. The expression
in the field part was already evaluated in Eq. (207), the
corresponding auxiliary diagram is given in Fig. 9. In
combination with the diagram of the detector’s Feynman
propagator, it becomes the Feynman diagram Fig. 19. Its

FIG. 16. Quadratic coupling to quantized real field: Feynman

diagram contributing to Að2Þ
0;g.

FIG. 17. Quadratic coupling to quantized real field: two out of

eight Feynman diagrams contributing to Að2Þ
1k;1p;g

.

FIG. 18. Quadratic coupling to quantized real field: six out 24

Feynman diagrams contributing to Að2Þ
1k;1p;1q;1l ;g

.

FIG. 19. Quadratic coupling to quantized complex field: Feyn-

man diagram corresponding to Að2Þ
0;g.
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amplitude is simply half of the amplitude in the case of a
quantized real field as given in Eq. (223).
If the final state of the quantized complex field contains

one particle and one antiparticle, the amplitude admits two
different ways to fully contract. The expression in the field
has already been calculated in Eq. (210); the two corre-
sponding Feynman diagrams based on Fig. 10 are given in
Fig. 20. The resulting amplitude is

Að2Þ
1k;1̄p;g

¼ 1

4
Að2Þ

1k;1p;g
; ð227Þ

differing from Að2Þ
1k;1p;g

in Eq. (224) only by lack of the

symmetry factor.
If the final state has two particles and two antiparticles,

there are only four full contractions possible, as opposed to
the quantized real field with 24 contractions. They corre-
spond to the diagrams in Fig. 21, and the resulting
amplitude is

Að2Þ
1k;1̄p;1q;1̄l

¼ e−iωktffiffiffiffiffiffiffiffiffiffiffiffiffi
2ωkLnp e−iωptffiffiffiffiffiffiffiffiffiffiffiffiffi

2ωpLn
p e−iωqtffiffiffiffiffiffiffiffiffiffiffiffiffi

2ωqLn
p e−iωltffiffiffiffiffiffiffiffiffiffiffiffiffi

2ωlLnp

×
Z

∞

−∞

dω
2π

ð−iλÞ2 2iω
ω2−Ω2þ iϵ

½ ~fðd−p−qÞ ~fð−d−k− lÞ

þ ~fðd−q− lÞ ~fð−d−k−pÞþ ~fðd−k−pÞ ~fð−d−q− lÞ
þ ~fðd−k− lÞ ~fð−d−p−qÞ�: ð228Þ

C. Quadratic coupling to quantized spinor fields

For the spinor field detector, model 4, the missing
amplitudes are of the form

Að2Þ
ψ ;g ¼ ð−iλÞ2e−iωψ t

Z
dy1fðy1Þ

Z
dy2fðy2Þ

× hgjTμðy1Þμðy2Þjgi
× hψ jT∶Ψðy1ÞΨðy1Þ∶∶Ψðy2ÞΨðy2Þ∶j0i: ð229Þ

If the final state is j0i, there is only one full contraction. The
expression involving the field operators has already been
evaluated in Eq. (212) and yields twice the Feynman
propagator of the spinor field. Writing it out according
to Eq. (144), the amplitude can be expressed as

Að2Þ
0;g ¼ −

Z
∞

−∞

dω
2π

1

Ln

X
k

Z
∞

−∞

dk0

2π

1

Ln

X
p

Z
∞

−∞

dp0

2π

× ð−iλÞ ~fðd − kþ pÞ × 2iω
ω2 −Ω2 þ iϵ

i½kþm�BA
k2 −m2 þ iδ

×
i½pþm�AB

p2 −m2 þ iν
ð−iλÞ ~fð−dþ k − pÞ; ð230Þ

where we have used Feynman slash notation k ¼ k · γ.
Combining the two auxiliary diagrams corresponding
to this contraction yields the Feynman diagram
Fig. 22. Note the overall sign −1 of the amplitude
that arises from the reordering of the fermionic field
operators.
If there are two field quanta in the final state (particle and

antiparticle), there are twoways to fully contract, analogous
to the quantized complex field. The expression in the field
part is similar to the one given in Eq. (214), but the
annihilation operators are exchanged. This introduces an
overall sign −1, such that

FIG. 20. Quadratic coupling to quantized complex field: the

two Feynman diagrams contributing to Að2Þ
1k;1̄p;g

.

FIG. 21. Quadratic coupling to quantized complex field: the

four Feynman diagrams contributing to Að2Þ
1k;1̄p;1q;1̄l ;g

.

FIG. 22. Quadratic coupling to quantized spinor field: Feynman

diagram with factors corresponding to Að2Þ
0;g. Note that the sign of

the momentum in the spinor field propagator is such that it flows
into the direction of the field line (fermion flow).
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Að2Þ
1k;s;1̄p;r;g

¼
ffiffiffiffiffiffiffiffiffiffiffi
m

ωkLn

r
e−iωktūk;s;B

ffiffiffiffiffiffiffiffiffiffiffi
m

ωpLn

r
e−iωptvAp;r

Z
∞

−∞

dω
2π

1

Ln

X
q

Z
∞

−∞

dq0

2π
ð−iλÞ ~fðd − p − qÞ 2iω

ω2 −Ω2 þ iϵ

×
i½qþm�BA

q2 −m2 þ iδ
ð−iλÞ ~fð−d − k − qÞ þ

ffiffiffiffiffiffiffiffiffiffiffi
m

ωkLn

r
e−iωktūk;s;A

ffiffiffiffiffiffiffiffiffiffiffi
m

ωpLn

r
e−iωptvBp;r

Z
∞

−∞

dω
2π

×
1

Ln

X
q

Z
∞

−∞

dq0

2π
ð−iλÞ ~fðd − kþ qÞ 2iω

ω2 − Ω2 þ iϵ
i½qþm�BA

q2 −m2 þ iδ
ð−iλÞ ~fð−d − p − qÞ: ð231Þ

The expression for massless fields is recovered by mω−1
k L−n → L−n. The corresponding Feynman diagrams are drawn

in Fig. 23.
The only other final state with nonzero probability amplitude contains two particle states and two antiparticle states. Note

that the fermionic nature of the field requires ðk; sÞ ≠ ðq; uÞ and ðp; rÞ ≠ ðl; vÞ due to the Pauli exclusion principle. As for
the quantized complex field in the comparable situation, there are four possible contractions—see Fig. 24 for the
corresponding Feynman diagrams. For massive fields, the amplitude is

Að2Þ
1k;s;1̄p;r;1q;u;1̄l;v;g

¼ ð−iλÞ2
ffiffiffiffiffiffiffiffiffiffiffi
m

ωkLn

r
e−iωkt

ffiffiffiffiffiffiffiffiffiffiffi
m

ωpLn

r
e−iωpt

ffiffiffiffiffiffiffiffiffiffiffi
m

ωqLn

r
e−iωqt

ffiffiffiffiffiffiffiffiffiffi
m

ωlLn

r
e−iωlt

Z
∞

−∞

dω
2π

2iω
ω2 −Ω2 þ iϵ

× ½ ~fðd − p − qÞ ~fð−d − k − lÞðūq;u;AvAp;rÞðūk;s;BvBl;vÞ þ ~fðd − q − lÞ ~fð−d − k − pÞðūq;u;AvAl;vÞðūk;s;BvBp;rÞ
þ ~fðd − k − pÞ ~fð−d − q − lÞðūk;s;AvAp;rÞðūq;u;BvBl;vÞ þ ~fðd − k − lÞ ~fð−d − p − qÞðūk;s;AvAl;vÞðūq;u;BvBp;rÞ�;

ð232Þ

and the case of a massless field is recovered like for
Eq. (231).

VIII. FEYNMAN RULES
FOR DETECTOR MODELS

Feynman diagrams and Feynman rules can be under-
stood as an extension of the diagrammatic representation of
Wick’s theorem. In order to obtain a transition amplitude,
there are additional factors and summations (integrations)
to be performed. Since their occurrence also follows simple
patterns, it is straightforward to include them into the
diagrammatic rules: Combining the auxiliary diagrams of
the different field types into one diagram containing all
field types gives us a Feynman diagram, and incorporating
all additional operations into the rules for evaluating
auxiliary diagrams gives Feynman rules.
Note that the formalism presented here does not make

use of asymptotic free states, in contrast to the usual
Feynman rules of particle physics. Rather, ingoing and
outgoing states are tensor products of Fock states of the
noninteracting systems.

A. Towards Feynman rules

Feynman diagrams.—Consider, for example, the
expression

hgjσ−Tμðy1Þμðy2Þσþjgi
× h0jbp;rak;sT∶Ψðy1ÞΨðy1Þ∶∶Ψðy2ÞΨðy2Þ∶j0i: ð233Þ

The detector part allows for three different contractions,
giving rise to three terms and the three corresponding

FIG. 23. Quadratic coupling to quantized spinor field: the two

Feynman diagrams contributing to Að2Þ
1k;s;1̄p;r ;g

.

FIG. 24. Quadratic coupling to quantized spinor field: the four

Feynman diagrams contributing to Að2Þ
1k;s;1̄p;r ;1q;u;1̄l;v;g

.
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diagrams drawn in Fig. 5. The field part has two possible
contractions, with diagrams shown in Fig. 12. Since these
two parts are multiplied, one arrives at six summands in
total. Both the diagrams for the detector and the field
always have the same amount of vertices (equal to the order
in perturbation theory), and can be combined into six
Feynman diagrams which simultaneously show contrac-
tions for the detector and the field.
Feynman rules.—From the VNRP calculations in

Sec. VII, we can directly deduce that outgoing quanta
contribute the factors

e−iΩt0 ;
1ffiffiffiffiffiffiffiffiffiffiffiffiffi

2ωkLnp e−iωkt0 ;

mffiffiffiffiffiffiffiffiffiffiffi
ωkLnp e−iωkt0uAk;s;

mffiffiffiffiffiffiffiffiffiffiffi
ωkLnp e−iωkt0 v̄k;s;A ð234Þ

to the amplitude [for the detector, quantized scalar fields,
quantized spinor field particles and (massive) spinor field
antiparticles from left to right and top to bottom]. Internal
lines between vertices give (Fourier transformed) Feynman
propagators as usual; for the detector, scalar fields, and
(massive) spinor fields from left to right:

2iω
ω2 −Ω2 þ iϵ

;
i

k2 −m2 þ iϵ
;

i½kþm�AB
k2 −m2 þ iϵ

: ð235Þ

Each vertex contributes ~fðkÞ where k is the energy-
momentum flowing into the vertex. Finally, all internal
momenta (the ones in the propagators) need to be integrated
or summed according to

Z
∞

−∞

dω
2π

;
1

Ln

X
k

Z
∞

−∞

dk0

2π
ð236Þ

for the detector (left) and the fields (right).
Let us now consider the factors associated with incoming

quanta on one hand, and cases where two ladder operators
are contracted, i.e., diagrammatically, when an incoming
line is directly connected to an outgoing line. The con-
tractions related to the first case are for

the detector, for a quantized real

field, and so on. The exponential functions simply con-
tribute to the Fourier transform of f, such that the incoming
momenta appear in the momentum balance of the vertex
they are attached to. The normalization factors and spinors
are left over and assigned to the incoming diagram leg.
Moreover, since we are working in the interaction picture,
there is a time-dependent phase in addition to the ladder
operator creating the state, for example,

je; t0i ¼ eþiΩt0 jei; j1k; t0i ¼ eþiωkt0 j1ki: ð237Þ

Altogether, the incoming legs of the diagram contribute
factors

eþiΩt;
1ffiffiffiffiffiffiffiffiffiffiffiffiffi

2ωkLnp eþiωkt;

mffiffiffiffiffiffiffiffiffiffiffi
ωkLnp eþiωktūk;s;A;

mffiffiffiffiffiffiffiffiffiffiffi
ωkLnp eþiωktvAk;s ð238Þ

in the same order as before.
If two ladder operators are contracted, they merely

contribute Kronecker deltas ensuring that both are of the
same type (momentum, spin) according to Eqs. (170),
(161), (185) and (199). In the full amplitude, they addi-
tionally contribute phases from the interaction picture. For
example, in case of a quantized real field:

h1k; g; tjUð0Þðt; t0Þj1p; g; t0i ¼ e−iωkðt−t0Þδk;p: ð239Þ

Similar results hold for the monopole moment, and the
remaining fields. Disconnected lines from the left to the
right end of the diagram will thus contribute

e−iΩðt−t0Þ; e−iωkðt−t0Þδk;p; e−iωkðt−t0Þδk;pδs;r ð240Þ

for the detector, quantized scalar fields, and quantized
spinor fields, in that order.
The Feynman diagrams presented in this chapter, as well

as the auxiliary diagrams in Sec. VI D, do not contain lines
for the detector in its ground state—in this they differ from
the representations we used in Secs. III and IV and it
differs from the diagrams used in [21]. The reason for this is
that Feynman diagrams generally describe the energy-
momentum flows involved in the interaction processes.
The detectors (as macroscopic physical objects) do carry
energy and momentum, but in the UDW-type detector
models, only the excitations of its internal degree of
freedom couple to the field. This is why lines are drawn
not for the detector itself but instead for the excitation, i.e.,
for the quantum of energy, that the detector can carry.

B. Feynman rules for single detectors

We summarize the Feynman rules for all four UDW-type
detector models considered in this work. The rules are
applicable for detectors on Minkowski spacetime, the
trajectory of the detector is determined by its spacetime
profile f: if the spatial dependence varies with time in the
restframe of the field, the detector is moving. Assume the
field is initially in the number eigenstate jaii at time t0, and
the detector in the state jβii (which may either be the
ground state jgi or the excited state jei). The aim is to
calculate the probability amplitude

A ¼ haf; βf; tjUðt; t0Þjai; βi; t0i ð241Þ
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for the detector to end up in the state jβfi and the field in
jafi at time t > t0 to order λn in perturbation theory. In
general, this is accomplished by combining the perturbative
expansion Eqs. (25) and (26) of the time-evolution operator
with the appropriate Wick theorem.
The calculations can be organized using a set of

Feynman rules; the procedure itself is independent of the
detector model and the type of field:
Generic Feynman rules. In order to calculate a proba-

bility amplitude of the type Eq. (241) to order λn in
perturbation theory, proceed as follows:
(1) At a given order k ≤ n, draw all possible Feynman

diagrams using the rules appropriate for the detector
model and field in question, as described in the
following sections.

(2) Evaluate the amplitude AðkÞ
i of each diagram by

first multiplying the factors associated with the
individual parts of that diagram, and then summing
(integrating) over all undetermined energies and
momenta.

(3) Sum up the amplitudes at order k: their contribution
to the total amplitude A is

AðkÞ ¼
X
i

AðkÞ
i : ð242Þ

(4) Repeat the above steps for every order 0 ≤ k ≤ n,
and add the resulting amplitudes to obtain A:

A ¼
Xn
k¼0

1

k!
AðkÞ: ð243Þ

The four sections below specify how to draw and
evaluate the Feynman diagrams at a given order k for
the different detector models and fields.

1. Linear coupling to quantized real fields

The Feynman diagrams for the detector model 1 cou-
pling a single UDW-type detector to a quantized real field
consist of the seven different types of elements listed below.
Each element is associated with a factor in the amplitude

AðkÞ
i of an individual diagram. The corresponding factor is

printed to the right of each element. Straight lines represent
excitations of the quantized scalar field, wiggly lines
excitations of the UDW-type detector.
Elements in Feynman diagrams

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)

Here,

~fðd − kÞ ¼
Z

t

t0

dx0
Z
Rn

dxfðxÞe−ixðd−kÞ ð244Þ

is the temporally cutoff Fourier transform of the detector’s
spacetime profile f. Momentum flowing into a vertex has
sign þ1 and is indicated by an arrow pointing towards the
vertex, momentum flowing out of a vertex has sign −1 and
is indicated by an arrow pointing away from the vertex.
Depending on the situation, the direction of any momentum
in the vertex (element 9) could of course be reversed.
Constructing a Feynman diagram. To construct a

Feynman diagram at order k and evaluate its amplitude

AðkÞ
i , adhere to the following rules:
(1) Draw a horizontal series of k vertices. These will be

referred to as internal vertices.
(2) If the detector is initially excited, jβii ¼ jei, draw a

wiggly line entering the diagram from the left
(element 3).

(3) For every quantum in the initial state of the field jaii,
draw a plain line entering the diagram from the left
(element 4).

(4) If the detector is excited in the end, jβfi ¼ jei, draw
a wiggly line leaving the diagram on the right
(element 5).

(5) For every quantum in the final state of the field jafi,
draw a plain line leaving the diagram on the right
(element 6).

(6) Connect the ingoing lines with outgoing lines
(elements 1 and 2) or vertices, and the remaining
outgoing lines with vertices as well. Connect the
vertices with each other (elements 7 and 8). In the
end, each vertex has to have one detector line and
one field line attached (element 9).

(7) If this is impossible, AðkÞ
i ¼ 0 and AðkÞ ¼ 0.

(8) Else, multiply the factors corresponding to the
elements in the diagram, integrate over the momenta
running in the propagators (elements 7 and 8) by
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Z
∞

−∞

dω
2π

;
1

Ln

X
k

Z
∞

−∞

dk0

2π
ð245Þ

and finally take the limit ϵ → 0 for any propagator

present to obtain the amplitude AðkÞ
i of the diagram.

2. Quadratic coupling to quantized real fields

The Feynman rules for the detector model 2 coupling
quadratically to quantized real fields through Eq. (85)
(renormalized at leading order) are largely equal to the
ones given in the previous section.
Elements in Feynman diagrams. Having quadratic cou-

pling instead of linear coupling merely changes the vertex,
all other elements are identical to the ones listed in the
previous section:

(9’)

Constructing a Feynman diagram. Construction of a
Feynman diagram at a given order k proceeds as before,
with the exception of
(6’) […] In the end, each vertex has to have one detector

line and two field lines attached (element 9’).
and the appearance of symmetry factors because each
vertex corresponds to two identical field operators
ΦðyiÞΦðyiÞ:
(9) Multiply the amplitude with the symmetry factor of

the diagram (compare Sec. VI D 3).

3. Quadratic coupling to quantized complex fields

In case of the (leading order renormalized) model 3 and a
quantized complex field, one additionally has to distinguish
between particle and antiparticle quanta. Diagrammatically,
this is achieved by turning field lines into arrows.
Elements in Feynman diagrams

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)

Constructing a Feynman diagram. For quantized complex
fields, step 6. from Sec. VIII B 1 has to be amended once
more:
(6’) […] In the end, each vertex has to have one detector

line and two field lines attached (element 9). Arrow
directions must not collide.

Unlike for the quantized real field, there is no need for
introducing symmetry factors, since the two field operators
underlying a vertex, Φ†ðyiÞΦðyiÞ, are not identical (see
Sec. VI D 4).

4. Quadratic coupling to quantized spinor fields

For a quantized spinor field coupled to an UDW-type
detector through Eq. (84), the same elements appear, but
are assigned different factors:
Elements in Feynman diagrams—massive field.

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)

(10)

(11)

When dealing with massless fields, the redefinition
of the normalization factors in the mode functions (see
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Appendix A 2) requires redefinition of part of the Feynman
rules just stated:
Elements in Feynman diagrams—massless field.

(5’)

(6’)

(8’)

(9’)

(11’)

Constructing a Feynman diagram. For spinor fields, the
steps from Sec. VIII B 3 are still applicable, but it is
convenient keep track of spinor indices in addition:
(1’) Draw a horizontal series of k vertices, and label each

one with a spinor index Ai. These will be referred to
as internal vertices.

Note that these rules do not provide the overall sign of the

amplitude AðkÞ
i of an individual diagram at order k. As for

the auxiliary diagrams in Sec. VI D, the sign is most easily
determined by writing out the underlying contractions and
reordering the operators explicitly.

C. Feynman rules for multiple detectors

For questions in relativistic quantum information
theory, often two or more detectors coupled to the same
quantum field F are considered. Each detector i has its
own Hilbert space, and a monopole operator μðiÞ acting
on it. For N detectors, the Hamiltonian of the entire
system is

H ¼ HF þ
XN
i¼1

HðiÞ
d þHðiÞ

int ð246Þ

where each HðiÞ
d is the Hamiltonian of a free detector as

given in Eq. (5), and each detector by itself interacts with
the field as before. The above Feynman rules readily
generalize to such situations: each additional detector is
equivalent to an additional monopole field μðiÞðxÞ. Because
each of these has its own Hilbert space, quanta (and the
corresponding lines in Feynman diagrams) of different
detectors always need to be distinguished. Since there are
only two fields (for linear coupling) or three fields
(for quadratic coupling) present in each interaction
Hamiltonian, there are still only two- or three-legged
vertices, respectively. While direct interactions of the
detectors do not occur in this model, they can of course
interact indirectly through the quantum field they probe—
Fig. 25 demonstrates such a process.

IX. CONCLUSIONS AND OUTLOOK

A key feature of Unruh-DeWitt detectors, i.e., of first
quantized systems that are coupled to quantum fields, is
that they can be localized in space and time. UDW detectors
therefore provide an excellent tool for extracting spatio-
temporal information from quantum fields, at least in
gedanken experiments. So far, most studies have used
the simplest kind of Unruh-DeWitt detectors, namely
detectors that couple linearly to a bosonic real scalar field.
The use of those Unruh-DeWitt detector models has
yielded important results, for example about the Unruh
and Hawking effects [2,15,51–53], and, more recently,
about the extraction of entanglement from the vacuum and
communication via quantum fields [4,5].
These successes motivate the development of Unruh-

DeWitt detector models also for the detection of quanta
other than real scalar bosons, such as fermionic and
complex quanta. There are pioneering studies in this
direction [17,20,32,33], but so far they have not gone
further than the calculation of transition rates. Indeed, we
found that a direct application of these models beyond the
computation of transition rates leads to divergencies that
cannot be regularized in the usual fashion, i.e., through
spatial smearing and smooth switching functions.
Here, we introduced improved Unruh-DeWitt type

detector models that cure these divergencies by means of
renormalization. The new UDW detector models therefore
possess the full versatility of the usual bosonic Unruh-
DeWitt detectors. For example, they now allow for the
investigation of the entanglement structure of the fermionic
vacuum.
To this end, we started by analyzing the four different

particle detector models summarized in Table I. We then
showed that, without further treatment, the vacuum exci-
tation probability is already divergent at leading order in
perturbation theory for the models 2–4, which are coupling
quadratically in the field. These divergences cannot be
regularized by the introduction of a spacetime profile

FIG. 25. Example of a leading-order process involving two
different detectors, blue and red (upper and
lower wavy lines), quadratically interacting with a quantized
complex or spinor field. Initially, the blue (upper) detector is
excited. By exchange of a field quantum, the excitation is
swapped to the red (lower) detector under emission of a
particle-antiparticle pair.
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(switching function and spatial smearing), unlike diver-
gencies appearing in the case of the traditional linearly
coupled UDW detector [13,20,34,35].
We found the origin of these divergences to be the fact

that the quadratic coupling gives rise to loop diagrams (see
left side of Fig. 1) which are the exact equivalent of tadpole
diagrams in quantum electrodynamics (QED) [45], with the
detector playing the role of the electromagnetic field.
Motivated by the analogy to QED we renormalized models
2-4 at leading order in perturbation theory by normal-
ordering the interaction Hamiltonian. Physically, this cor-
responds to setting the (otherwise infinite) interaction
energy to zero.
Finally, we derived Feynman rules for all four detector

models in Sec. VIII. The Feynman rules allow for the
systematic, graph-based calculation and renormalization of,
for example, transition probabilities to arbitrary order, in
the way familiar from particle physics.
With the Feynman rules for the various detector models

at hand, one can now straightforwardly study the behaviors
not only of bosonic but also of fermionic fields, for
example, concerning the communication between two first
quantized quantum systems (UDW detectors) via a quan-
tum field, or the harvesting or farming of entanglement
from the vacuum. In particular, the latter may now also
allow one to develop quantitative tools to measure entan-
glement in the fermionic vacuum.
There are various further promising possibilities, in

particular for applying the new renormalized detector
model for spinor fields. Among others, this detector model
can now be used to study the fermionic Unruh effect
beyond the detector transition rates. This should allow one
to study the universality and the thermalization of a detector
in the fermionic Unruh effect [46] and to study possible
finite time effects (see for instance [54]).
We also addressed the question of which bosonic

detector model allows for a fair comparison with a
fermionic model. We found that the leading order behavior
of the renormalized models 3 and 4 can be compared on
equal footing.
Finally, while UDW detectors are of great value for

gedanken experiments, let us recall that the UDW detector
for bosonic fields can be viewed as an idealization of a
realistic system, such as the lowest two energy levels of an
atom or molecule [27,28]. The atom detects photons by
internal excitation that can later be measured via standard
experimental procedures. It should be interesting to explore
to what extent the UDW detector for fermionic fields,
model 4 in Table I, can also be viewed as a simple
idealization of a realistic system, such as the optical cavity
envisioned in the introduction, which would detect fer-
mions through electromagnetic mode excitations. More
generally, it should be interesting to further investigate how
the proposed detector models along with their mode

selection and switching functions could find experimental
realizations.

APPENDIX A: NOTES ON QUANTUM FIELDS

In this section, we summarize results of the classical and
quantum field theory of scalar fields on Minkowski
spacetime, as well as spinor fields on R1;1 and R1;3. All
fields are spatially restricted to the cavity

B ¼ ½−L=2; L=2�n ⊂ Rn ðA1Þ

with periodic boundary conditions

Φðt; xþ δÞ ¼ Φðt; xÞ ∀ δ ∈ L · Zn: ðA2Þ

The objective is to establish notation and provide a
reference basis for the main body of this paper. These
results are obtained in close analogy to the standard
treatment of unrestricted fields; see e.g. [43,47].

1. Scalar fields

a. Results in classical theory

Consider a real or complex field Φ on Minkowski
spacetime. The dynamics of this field are determined by
the Lagrangian densities

LΦ ¼ 1

2
ð∂μΦÞð∂μΦÞ − 1

2
m2Φ2

Lc
Φ ¼ ð∂μΦ�Þð∂μΦÞ −m2Φ�Φ ðA3Þ

(for the real and the complex field, respectively), which
both yield Klein-Gordon equation

ð∂μ∂μ þm2ÞΦðt; xÞ ¼ 0 ðA4Þ

as equation of motion. A solution space to the Klein-
Gordon equation is spanned by the family of mode
functions

~φkðt; xÞ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffi

2ωkLnp e−ik·x; ðA5Þ

where the momentum takes the following values:

k ∈ 2π=L · Zn: ðA6Þ

The energy ωk is determined by the dispersion relation

ωk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jkj2 þm2

q
: ðA7Þ

These mode functions have been normalized according to
the condition
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ð ~φk; ~φpÞ ¼ δk;p ðA8Þ

with respect to the Klein-Gordon product

ðΦ1;Φ2Þ≡ −i
Z
B
Φ1ðt; xÞ½∂0Φ�

2ðt; xÞ�

− ½∂0Φ1ðt; xÞ�Φ�
2ðt; xÞdx: ðA9Þ

It is useful to define purely spatial mode functions

φkðxÞ ¼
1ffiffiffiffiffiffi
Ln

p eik·x: ðA10Þ

These are orthonormal with respect to the L2-scalar product

hφk;φpi ¼
Z
B
φ�
kðxÞφpðxÞdx ¼ δk;p: ðA11Þ

To avoid cluttered notation, we will sometimes drop the
tilde distinguishing time-dependent from time-independent
mode functions.

b. Elements of canonical quantization

Canonical quantization of the free real field leads to the
mode expansion

Φðt; xÞ ¼
X
k

ak ~φkðt; xÞ þ a†k ~φ
�
kðt; xÞ ðA12Þ

for the Heisenberg picture field operator in terms of the
annihilators ak and creators a†k. In the Schrödinger picture,

ΦðxÞ ¼
X
k

1ffiffiffiffiffiffiffiffi
2ωk

p ½akφkðxÞ þ a†kφ
�
kðxÞ�: ðA13Þ

The field operator is self-adjoined, Φ† ¼ Φ, and the ladder
operators satisfy the canonical commutation relations

½ak; a†p� ¼ 1δk;p

½ak; ap� ¼ 0 ¼ ½a†k; a†p�: ðA14Þ
After renormalizing the vacuum energy by normal-
ordering, the dynamics of the system are determined by
the Hamilton operator

HΦ ¼
X
k

ωka
†
kak: ðA15Þ

Particle number eigenstates are created by acting on the
vacuum state with creation operators

jðnkÞki ¼
Y
k

1ffiffiffiffiffiffiffi
nk!

p ða†kÞnk j0i: ðA16Þ

Creation operators commute, so their ordering is not
relevant.

Quantization of the free complex field leads to the mode
expansion

Φðt; xÞ ¼
X
k

1ffiffiffiffiffiffiffiffi
2ωk

p ½ake−iωktφkðxÞ þ b†ke
þiωktφ�

kðxÞ�

ðA17Þ
in the Heisenberg picture. The field operator is not self-
adjoint, the ladder operators satisfy the canonical commu-
tation relations

½ak; a†p� ¼ 1δk;p; ½bk; b†p� ¼ 1δk;p; ðA18Þ
and all other commutators not yet fixed by these relations
vanish. The Hamilton operator of the free complex field is

H ¼
X
k

ωkða†kak þ b†kbkÞ; ðA19Þ

and particle number eigenstates are again generated by
applying the creation operators on the vacuum. The
complex field has Uð1Þ charge, so we need to distinguish
between particle states created by a and antiparticle states
created by b:

jðnkÞk; ðn̄pÞpi ¼
Y
k

1ffiffiffiffiffiffiffi
nk!

p ða†kÞnk

×
Y
p

1ffiffiffiffiffiffiffi
n̄p!

p ðb†pÞn̄p j0i: ðA20Þ

2. Spinor fields

a. Results in classical theory

Let Ψ be a spinor field on Minkowski spacetime R1;1 or
R1;3, taking values in C4 as a representation space of the
Clifford algebras Cliff(1,1) or Cliff(1,3), respectively. In
(1,3) dimensions we choose the irreducible Dirac repre-
sentation, generated by the Dirac matrices

γ0 ¼
�
12 0

0 −12

�
; γi ¼

�
0 σi

−σi 0

�
; ðA21Þ

where 12 is the two-dimensional identity matrix, and

σ1 ¼
�
0 1

1 0

�
; σ2 ¼

�
0 −i
i 0

�
; σ3 ¼

�
1 0

0 −1

�
ðA22Þ

are the Pauli matrices. The Dirac matrices satisfy the
anticommutation relations

fγμ; γνg ¼ 2ημν12

for μ; ν ∈ f0; 1; 2; 3g, and therefore generate a representa-
tion of the Clifford algebra Cliffð1; 3ÞC on C4. In (1,1)
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dimensions, we use γ0 and γ3 to generate a (reducible)
representation of Cliff(1,1) on C4 very similar to the Dirac
representation.
The dynamics of the field are governed by the Lagrange

density

LΨ ¼ Ψðiγμ∂μ −mÞΨ; ðA23Þ

leading to the Dirac equation:

ðiγμ∂μ −mÞΨðt; xÞ ¼ 0: ðA24Þ

Here γμ are the Dirac matrices. Solutions to the Dirac
equation are linear combinations of the mode functions

~ψk;s;ϵðt; xÞ ¼ ψk;s;ϵðxÞe−ϵiωkt; ðA25Þ

where s ∈ f−1=2; 1=2g describes the spin degree of free-
dom, and k and ϵ can take the same values as in Eq. (A6).
These mode functions are taken to be normalized according
to the condition

h ~ψk;s;ϵ; ~ψp;r;δi ¼ δk;pδs;rδϵ;δ ¼ hψk;s;ϵ;ψp;r;δi; ðA26Þ

where we use the (generalized) scalar product

hΨ1;Ψ2i≡
Z
B
Ψ†

1ðt; xÞΨ2ðt; xÞdx: ðA27Þ

Again, to lighten notation, we will sometimes drop the tilde
if safely possible.
The solution of the Dirac equation in the cavity B can be

accomplished in close analogy to the case of a free spinor
field, a detailed treatment of the latter can e.g. be found in
[43]. The actual form and the properties of the mode
functions depend on the spatial dimension as well as on the
mass parameter m.
(1,3) dimensions.—In case of a finite mass m ≠ 0, the

mode functions in three spatial dimensions can be decom-
posed as

ψk;s;ϵðxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffi
m

ωkL3

r
uk;s;ϵeþϵikx; ðA28Þ

where the spatial dependence has been separated from the
spinorial part. For the latter, we will use the well-
established notation uk;s;ϵ¼þ1 ¼ uk;s and uk;s;ϵ¼−1 ¼ vk;s.
Explicitly, they are

uk;s ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ωk þm
2m

r � ξs
1

ωkþm

	P
3
i¼1 σ

iki


ξs

�

vk;s ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ωk þm
2m

r �
1

ωkþm

	P
3
i¼1 σ

iki


ξs

ξs

�
; ðA29Þ

where σi are the Pauli matrices, and

ξ1=2 ¼
�
1

0

�
; ξ−1=2 ¼

�
0

1

�
ðA30Þ

are eigenvectors of σ3. Multiplying two spinors yields

ūk;sup;r ¼
1

2m

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðωk þmÞðωp þmÞ

q

−
2siðk1p2 − k2p1Þ þ k · pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðωk þmÞðωp þmÞp �

δs;r

þ 1

2m
2sðk1p3 − k3p1Þ − iðk2p3 − k3p2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðωk þmÞðωp þmÞp δs;−r

ðA31Þ

ūk;svp;r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðωk þmÞðωp þmÞp

2m

×

��
2sp3

ωp þm
−

2sk3

ωk þm

�
δs;r

þ
�
p1 − 2sip2

ωp þm
−
k1 − 2sik2

ωk þm

�
δs;−r

�
ðA32Þ

and

v̄k;svp;r ¼ −ūk;sup;r ðA33Þ

v̄k;sup;r ¼ −ðūk;svp;rÞ�: ðA34Þ

The bar indicates the Dirac conjugate ū ¼ u†γ0 as usual. In
particular, the normalization is chosen such that for k ¼ p
all products simplify to

ūk;s;ϵuk;r;δ ¼ ϵδs;rδϵ;δ: ðA35Þ

Moreover, products with the inverse order of spinors (such
that they multiply to a 4 × 4 matrix) can be brought into a
compact form as well:

X
s

uAk;sūk;s;B ¼ 1

2m
½k · γ þ 14m�AB

X
s

vAk;sv̄k;s;B ¼ 1

2m
½k · γ − 14m�AB: ðA36Þ

For vanishing mass m ¼ 0, the mode functions

ψk;s;ϵðxÞ ¼
1ffiffiffiffiffiffi
L3

p uk;s;ϵeþϵik·x ðA37Þ

are simply the limit m → 0 of Eq. (A28), but the normali-
zation of the spinor parts is changed:
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uk;s ¼
1ffiffiffi
2

p
� ξs

1
jkj
	P

3
i¼1 σ

iki


ξs

�

vk;s ¼
1ffiffiffi
2

p
�

1
jkj
	P

3
i¼1 σ

iki


ξs

ξs

�
: ðA38Þ

This ensures that products of spinors are still finite.
Explicitly,

ūk;sup;r ¼
1

2

�
1−

1

jk∥pj ð2siðk
1p2 − k2p1Þ þ k · pÞ

�
δs;r

þ 1

2

1

jk∥pj ½2sðk
1p3 − k3p1Þ− iðk2p3 − k3p2Þ�δs;−r

ðA39Þ

ūk;svp;r ¼
1

2

�
2sp3

jpj −
2sk3

jkj
�
δs;r

×
1

2

�
p1 − 2sip2

jpj −
k1 − 2sik2

jkj
�
δs;−r ðA40Þ

v̄k;svp;r ¼ −ūk;sup;r ðA41Þ

v̄k;sup;r ¼ −ðūk;svp;rÞ�; ðA42Þ

and for k ¼ p all products vanish:

ūk;s;ϵuk;r;δ ¼ 0: ðA43Þ

Note that these products are not simply the limits m → 0 of
Eqs. (A32) and (A35). Finally,

X
s

uAk;sūk;s;B ¼ 1

2jkj ½k · γ�
A
B

X
s

vAk;sv̄k;s;B ¼ 1

2jkj ½k · γ�
A
B: ðA44Þ

(1,1) dimension.—For finite mass m ≠ 0, the mode
functions can be decomposed as

ψk;s;ϵðxÞ ¼
ffiffiffiffiffiffiffiffiffi
m
ωkL

r
uk;s;ϵeþϵikx; ðA45Þ

where the spinorial parts are

uk;s ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ωk þm
2m

r � ξs
k

ωkþm σ
3ξs

�

vk;s ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ωk þm
2m

r � k
ωkþm σ

3ξs

ξs

�
: ðA46Þ

Here, σ3 is the third Pauli matrix. The products of spinors
are

ūk;sup;r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðωk þmÞðωp þmÞp

2m

×

�
1 −

kp
ðωk þmÞðωp þmÞ

�
δs;r ðA47Þ

ūk;svp;r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðωk þmÞðωp þmÞp

2m

×

�
2sp

ωp þm
−

2sk
ωk þm

�
δs;r ðA48Þ

v̄k;svp;r ¼ −ūk;sup;r ðA49Þ

v̄k;sup;r ¼ −ūk;svp;r: ðA50Þ

For k ¼ p, all relations simplify to

ūk;s;ϵuk;r;δ ¼ ϵδs;rδϵ;δ ðA51Þ

as before. Finally,

X
s

uAk;sūk;s;B ¼ 1

2m
½kμγμ þ 14m�AB

X
s

vAk;sv̄k;s;B ¼ 1

2m
½kμγμ − 14m�AB; ðA52Þ

where here kμγμ ¼ k0γ0 − k3γ3 ≡ ωkγ
0 − kγ3.

In case of vanishing massm ¼ 0, the mode functions can
be decomposed as

ψk;s;ϵðxÞ ¼
1ffiffiffiffi
L

p uk;s;ϵeþϵikx ðA53Þ

with spinors

uk;s ¼
1ffiffiffi
2

p
�

ξs

sgnkσ3ξs

�

vk;s ¼
1ffiffiffi
2

p
�
sgnkσ3ξs

ξs

�
: ðA54Þ

The products then read

ūk;sup;r ¼
1

2
½1 − sgnðkpÞ�δs;r

ūk;svp;r ¼ s½sgnp − sgnk�δs;r
v̄k;svp;r ¼ −ūk;sup;r
v̄k;sup;r ¼ −ūk;svp;r; ðA55Þ

and for k ¼ p all products vanish like in four dimensions

ūk;s;ϵuk;r;δ ¼ 0: ðA56Þ
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Lastly,

X
s

uAk;sūk;s;B ¼ 1

2jkj ½kμγ
μ�AB

X
s

vAk;sv̄k;s;B ¼ 1

2jkj ½kμγ
μ�AB: ðA57Þ

b. Elements of canonical quantization

Canonical quantization of the free spinor field results in
the mode expansion

Ψðt; xÞ ¼
X
k;s

ak;s ~ψk;s;þðt; xÞ þ b†k;s ~ψk;s;−ðt; xÞ ðA58Þ

in the Heisenberg picture, or

ΨðxÞ ¼
X
k;s

ak;sψk;s;þðxÞ þ b†k;sψk;s;−ðxÞ ðA59Þ

in the Schrödinger picture. Here, ak;s and bk;s are particle
and antiparticle ladder operators. They satisfy the canonical
anticommutation relations

fak;s; a†p;rg ¼ δk;pδs;r; fbk;s; b†p;rg ¼ δk;pδs;r; ðA60Þ

and all yet undetermined relations vanish. Again after
renormalizing the vacuum energy, the Hamiltonian of the
free spinor field is

HΨ ¼
X
k;s

ωkða†k;sak;s þ b†k;sbk;sÞ: ðA61Þ

As before, particle number eigenstates are generated from
the vacuum by application of creation operators. However,
the order of the creation operators is now relevant, because
they anticommute.

APPENDIX B: ON THE NORMALIZATION
OF FIELD MODES

We briefly sketch why the mode functions of the scalar
field are normalized with respect to Eq. (96), and those of
the spinor field according to Eq. (97).
The underlying reason is that the Lagrange density of the

free scalar field Φ given in Eq. (A3) contains a double time
derivative of the field, which leads to the conjugate
momentum Π ¼ ∂0Φ. The Lagrange density Eq. (A23)
for spinor fieldsΨ, on the other hand, only contains a single
time derivative of the field, and leads to the conjugate
momentum Π ¼ iΨ†. This in turn makes said normaliza-
tion conditions necessary to ensure that the canonical (anti)
commutation relations of the ladder operators are met. To
make the connection evident, assume the modified relations

½ak; a†p� ¼ αδk;p; fak;s; a†p;rg ¼ αδk;pδs;r; ðB1Þ

and so on.

1. Scalar field

To see how the normalization arises naturally, quantize
the scalar field directly in the Heisenberg picture. The task
is to find a linear operator ΦðxÞ which (a) solves the Klein-
Gordon equation

ð□þm2ÞΦðxÞ ¼ 0 ðB2Þ

as an operator equation, (b) satisfies the usual commutation
relations with its canonical conjugate field Π ¼ ∂0Φ,
namely

½ΦðxÞ;ΠðxÞ�jx0¼y0
¼ iδðx − yÞ; ðB3Þ

and (c) is self-adjoint:

Φ†ðxÞ ¼ ΦðxÞ; Π†ðxÞ ¼ ΠðxÞ: ðB4Þ

In the first step, assume that Φ can be expanded in a
Fourier series using the mode functions Eq. (A10):

ΦðxÞ ¼
X
k

ΦkðtÞφkðxÞ;

ΠðxÞ ¼
X
k

ΠkðtÞφkðxÞ; ðB5Þ

where ΠkðtÞ ¼ ∂0ΦkðtÞ. In the Fourier domain, the Klein-
Gordon equation becomes

ð∂2
0 þ ω2

kÞΦkðtÞ ðB6Þ

and the canonical commutation relations imply

½ΦkðtÞ;Π†
pðtÞ� ¼ iδk;p; ðB7Þ

where we have already exploited that

Φ†
kðtÞ ¼ Φ−kðtÞ; Π†

kðtÞ ¼ Π−kðtÞ: ðB8Þ

Solving the problem now amounts to finding ΦkðtÞ.
The next step is to make an ansatz for Φk:

ΦkðtÞ ¼ ukðtÞak þ u�−kðtÞa†−k: ðB9Þ

The ukðtÞ are simply functions, while ak are linear
operators. The Klein-Gordon equation reduces to

ð∂2
0 þ ω2

kÞukðtÞ ¼ 0; ðB10Þ

which means that uk is a linear combination of e�iωkt.
Requiring the commutation relations Eq. (B1) for the
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ladder operators, the commutation relations Eq. (B7) for the
field lead to the condition

−iα½ukðtÞ∂0u�kðtÞ − u�kðtÞ∂0ukðtÞ� ¼ 1: ðB11Þ

In combination with hφp;φki ¼ δk;p, we obtain

ð ~φk; ~φpÞ ¼
1

α
δk;p; ðB12Þ

which, in case of the canonical commutation relations of
the ladder operators α ¼ 1, is indeed the normalization
condition Eq. (96).

2. Spinor field

A very similar analysis for spinor fields leads to the
normalization Eq. (97) for spinor mode functions. This
time, the task is to find a linear operators ΨðxÞ which
(a) solves the Dirac equation

ðiγμ∂μ −mÞΨðxÞ ¼ 0 ðB13Þ

as an operator equation, and (b) satisfies the canonical
anticommutation relations with its conjugate field
Π ¼ iΨ†:

fΨAðxÞ;ΠBðyÞgjx0¼y0
¼ iδðx − yÞδAB: ðB14Þ

The Hermitian conjugate of the field is automatically
Ψ†

BðxÞ ¼ −iΠBðxÞ by definition of Π.
Now assume once again that the operator can be

expanded in a Fourier series

ΨAðxÞ ¼
X
k

ΨA
k ðtÞφkðxÞ;

ΠBðxÞ ¼
X
k

Πk;BðtÞφkðxÞ; ðB15Þ

where Πk;BðtÞ ¼ iΨ†
−k;BðtÞ. Translated to the Fourier

domain, the problem becomes the following: find a linear
operator ΨA

k ðtÞ that solves the differential equation

ðiγ0∂0 þ γiki −mÞΨA
k ðtÞ ¼ 0 ðB16Þ

and satisfies

fΨA
k ðtÞ;Π−p;BðtÞg ¼ iδk;pδAB: ðB17Þ

In the next step, make an ansatz that again separates the
functional part from the operator part:

ΨA
k ðtÞ ¼

X
s

uAk;sðtÞak;s þ vA−k;sðtÞb†−k;s;

Πk;BðtÞ ¼ i
X
s

v†k;s;BðtÞbk;s þ u†−k;s;BðtÞa†−k;s: ðB18Þ

The Dirac equation then reduces to

ðiγ0∂0 þ γiki −mÞuAk;sðtÞ ¼ 0;

ðiγ0∂0 − γiki −mÞvAk;sðtÞ ¼ 0: ðB19Þ

The spinors Eq. (A29) that solve the classical Dirac
equation satisfy

ðγμkμ −mÞuk;s ¼ 0;

ðγμkμ þmÞvk;s ¼ 0; ðB20Þ

so it is easy to see that the above equations are solved by

uAk;sðtÞ ¼ Csuk;se−iωkt;

vAk;sðtÞ ¼ Dsvk;seþiωkt; ðB21Þ

where Cs, Ds ∈ C. Our ansatz thus reads

ΨA
k ðtÞ ¼

X
s

CsuAk;se
−iωktak;s þDsvA−k;se

þiωktb†−k;s: ðB22Þ

The anticommutation relations Eq. (B17), together with
those for the ladder operators Eq. (B1), then lead to the
condition

α
X
s

C2
suAk;su

†
k;r;B þD2

svA−k;sv
†
−k;r;B ¼ δAB: ðB23Þ

Direct computation shows that this condition is met for
Cs ¼ Ds ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mðαωkÞ−1

p
. The field operator thus enjoys

the mode expansion

ΨAðxÞ ¼
X
k;s

~ψk;s;þðxÞak;s þ ~ψk;s;−ðxÞb†k;s ðB24Þ

with mode functions

~ψk;s;þðxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
m

αωkLn

r
uk;se−ik·x;

~ψk;s;−ðxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
m

αωkLn

r
vk;seþik·x: ðB25Þ

These satisfy

h ~ψk;s;ϵ; ~ψp;r;δi ¼
1

α
δk;pδs;rδϵ;δ; ðB26Þ

and, choosing α ¼ 1, we finally obtain Eq. (97).
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APPENDIX C: PROOFS OF WICK
NORMAL-ORDERING

1. Quantized scalar field

In this section, theorem VI.2 is proven on the basis of
theorem VI.1. We already know from theorem VI.1 how to
rewrite the time-ordered product of fields as a sum of
normal-ordered products with more and more contractions.
To normal-order the entire product and obtain the expression
stated in the theorem, we therefore merely need to commute
all creation operators from right to the very left, and all
annihilation operators from the left to the very right. In doing
so, we will pick up commutators, between ladder operators
and fields as well as between the different ladder operators
themselves. By theorem VI.1, the full product

ðapÞpðbp̄Þp̄½TΦϵ1ðx1Þ � � �ΦϵnðxnÞ�ða†kÞkðb†k̄Þk̄
can be reduced to a sum of products of the form

ðapÞpðbp̄Þp̄∶ Φϵ1ðx1Þ � � �ΦϵnðxnÞ∶ ða†kÞkðb†k̄Þk̄:

For these holds:
Lemma C.1. Using the notation of theorem VI.2, the

following identity holds:

ðC1Þ

where contractions are only allowed between two ladder
operators, and between a ladder operator and a field (not
between two fields).
Proof of Lemma C.1.—To achieve normal-ordering, the

annihilation operators have to be moved past the field
operators as well as the creation operators to the very right
of the expression. Then, the creation operators have to be
commuted past the field operators to the very left. Recall
the commutation relations of the ladder operators of the
quantized complex field Eq. (A14), with all other pairings
vanishing. In the first step, we need the resulting commu-
tation relations between annihilation operators and the field
parts. The four possible commutators are

½ak;ΦðxÞ� ¼ 0; ½ak;Φ†ðxÞ� ¼ 1φ�
kðxÞ;

½bk;ΦðxÞ� ¼ 1φ�
kðxÞ; ½bk;Φ†ðxÞ� ¼ 0: ðC2Þ

Consider the simplest case, when there is only one
annihilation operator ak on the left, and no annihilation

operators on the right. To move ak to the right, it has to be
commuted with each and every field ΨϵiðxiÞ operator
sooner or later—or more precisely with their constituent
ladder operators. Each field operator decomposes into two
part, one containing the annihilation operators, and the
other the creation operators:

ak∶ Φϵ1ðx1Þ � � �ΦϵnðxnÞ∶
¼ ak∶ Φϵ1ðx1Þ � � � ½Φϵi

a ðxiÞ þ Φ†ϵi
b ðxiÞ� � � �ΦϵnðxnÞ∶:

ðC3Þ

This decomposition can be done for all the other n − 1 field
operators as well. The result are 2n−1 summands containing
Φϵi

a as a factor (and all possible combinations of the parts of
the other fields), and another set of 2n−1 summands
containing Φ†ϵi

b multiplied with the same set of combina-
tions of parts of the other fields. Let us pick one such set
and call it S for brevity. For example, S might be

S ¼ Φϵ1
a ðx1Þ � � �Φϵi−1

a ðxi−1ÞΦϵiþ1
a ðxiþ1Þ � � �Φϵn

a ðxnÞ:

Note that

X
S

S ¼ ∶Φϵ1ðx1Þ � � �bΦϵiðxiÞ � � �ΦϵnðxnÞ∶; ðC4Þ

where the term with hat is omitted. Since the entire product
is normal-ordered at the end, Φϵi

a and Φ†ϵi
b will end up at

different positions inside S:

∶Φϵ1ðx1Þ � � �ΦϵnðxnÞ∶
¼

X
S

½S1Ψϵi
a ðxiÞS2 þ S�1Ψ

†ϵi
b ðxiÞS�2�; ðC5Þ

where Si, S�i are two differen partitions of S: S1S2 ¼ S and
S�1S

�
2 ¼ S. Thus,

ak∶ Φϵ1ðx1Þ � � �ΦϵnðxnÞ∶
¼ � � � þ akS1ΦϵiðxiÞS2 þ akS�1Φ

†ϵi
b ðxiÞS�2 þ � � � : ðC6Þ

We now start moving ak to the right, and the contribution
from ΦðxiÞ will be the following: ak is commuted through
S1 (creating an additional term containing the commutator
with other field parts in each step), and will eventually end
up next to ΦϵiðxiÞ. Commuting ak and ΦϵiðxiÞ gives two
terms

S1akΦϵiðxiÞS2 ¼ ½ak;ΦϵiðxiÞ�Sþ S1akΦϵiðxiÞS2; ðC7Þ

where we have used that the commutator is proportional to
the identity operator 1 in any case. The same is true for the
second term containing Φ†ϵi

b :
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S�1akΦ
†ϵi
b ðxiÞS�2

¼ ½ak;Φ†ϵi
b ðxiÞ�Sþ S�1akΦ

†ϵi
b ðxiÞS�2: ðC8Þ

After combining the two commutators one obtains

ak∶ Φϵ1ðx1Þ � � �ΦϵnðxnÞ∶
¼ � � � þ ½ak;ΦϵiðxiÞ�Sþ S1ΦϵiðxiÞakS2
þ S�1Φ

†ϵi
b akS�2 þ � � � : ðC9Þ

All the terms containing commutators with the other fields
have not been made explicit. Since this works for any
combination S of the ladder operators of the other fields, the
sum of all these will just give

½ak;ΦϵiðxiÞ�∶ Φϵ1ðx1Þ � � �bΦϵiðxiÞ � � �ΦϵnðxnÞ∶ ðC10Þ

from the first term according to Eq. (C4). The other two
terms need to be processed further, giving rise to commu-
tators with the other fields. In the end, after commuting ak
all the way through S there will be a commutator term like
the above for every field, and a term which yields

X
S

½S1Ψϵi
a ðxiÞS2 þ S�1Ψ

†ϵi
b ðxiÞS�2�ak

¼ ∶Φϵ1ðx1Þ � � �ΦϵnðxnÞ∶ ak

¼ ∶akΦϵ1ðx1Þ � � �ΦϵnðxnÞ∶ ðC11Þ

according to Eq. (C5). By virtue of the commutators
Eq. (C2) and the definition Eq. (162) of the contractions,
we finally obtain

ðC12Þ

Since it was nowhere used that a is a particle annihilation
operator, the same relation holds for antiparticle annihi-
lation operators b.

Now, if there is a single creation operator on the right
instead, the relevant commutation relations are:

½ΦðxÞ; a†k� ¼ 1φkðxÞ; ½Φ†ðxÞ; a†k� ¼ 0;

½ΦðxÞ; b†k� ¼ 0; ½Φ†ðxÞ; b†k� ¼ 1φkðxÞ; ðC13Þ

and a similar reasoning eventually gives

ðC14Þ

in terms of the contractions Eq. (162).
If both types are present, Eq. (C12) immediately allows

to write:

ðC15Þ

The first term on the right-hand side evaluates to

ðC16Þ

using the contractions Eq. (161). The second term in
Eq. (C15), as well as the first term in Eq. (C16) can then
be evaluated using Eq. (C14). In total, one obtains

ðC17Þ

Repeated application of Eqs. (C12) and (C14) finally yields
Eq. (C1) in the general case. □

Proof of theorem VI.2—Combining theorem VI.1 and
lemma C.1 directly allows one to express

ðapÞpðbp̄Þp̄½TΦϵ1ðx1Þ � � �ΦϵnðxnÞ�ða†kÞkðb†k̄Þk̄

as normal-ordered, plus sums of the same normal-ordered
products with all the contractions (single, double,… fully
contracted), defined in Eqs. (155), (161) and (162). If the
vacuum expectation value is taken, all terms which still
contain uncontracted normal-ordered operators vanish. If
the total number of operators (ladder operators and field
operators) is odd, there will be at least one normal-ordered
operator remaining and all terms vanish. Only if the number
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of operators is even, the terms where all operators are
contracted survives since all the contractions are propor-
tional to the identity operator. Note that some or all of these
surviving terms can still be zero, since many of the
contractions also vanish. □

2. Quantized spinor field

We now prove theorem VI.5. Analogous to the proof of
theorem VI.2, we first prove the following
Lemma C.2. Using the notation of theorem VI.5, the

following identity holds:

ðC18Þ

where contractions are only allowed between two ladder
operators, and between a ladder operator and a field (not
between two fields).The proof is very similar to the proof of
lemma C.1, but with the additional complexity that one has
to keep track of signs introduced by anticommuting the
involved operators.
Proof of Lemma C.2—To achieve normal-ordering, the

annihilation operators have to be moved past the field
operators and the creation operators to the right, and the
creation operators subsequently past the fields to the left.
Recall the anticommutation relations between the ladder
operators Eq. (A60), with all remaining anticommutators
vanishing. For the first step, we need to know how the
annihilation operators anticommute with the fields. From
the above relations and the separation of the spinor field
according to Eqs. (173) and (174) one obtains:

fak;s;ΨðxÞg ¼ 0; fak;s;ΨðxÞg ¼ 1ψk;s;þðxÞ;
fbk;s;ΨðxÞg ¼ 0; fbk;s;ΨðxÞg ¼ 1ψk;s;−ðxÞ: ðC19Þ

Let us begin with one annihilation operator on the left: to
move it to the right, it has to be anticommuted with any
field operator ΨϵiðxiÞ at some point, picking up an anti-
commutator in the process. Each field operator decomposes
into two parts, one containing the creation operators, one
the annihilation operators

ak;s∶ Ψϵ1ðx1Þ � � �ΨϵiðxiÞ � � �ΨϵnðxnÞ∶
¼ ak;s∶ Ψϵ1ðx1Þ � � � ½Ψϵi

a ðxiÞ þΨϵi
b ðxiÞ� � � �ΨϵnðxnÞ∶:

ðC20Þ

The same can be done for the other fields, and we
essentially end up with sums of products of ladder
operators (with sums in front, and multiplied mode func-
tions), where each term contains one ladder operator per
field. Let us pick out one of these products of ladder
operators from the field Ψϵ1ðx1Þ;…;ΨϵnðxnÞ without
ΨϵiðxiÞ and denote it S for brevity. Both parts of ΨϵiðxiÞ
are multiplied with S, but since the entire product of field
operators is then normal-ordered, the position where they
are inserted into S will be different. Through normal-
ordering, Ψϵi

a ðxiÞ will be shifted from position i to some
position iþm, picking up a sign ð−1Þm, andΨϵi

b ðxiÞwill be
shifted from position i to some other position iþ l, picking
up a sign ð−1Þl. Therefore,

ak;s∶ Ψϵ1ðx1Þ � � �ΨϵiðxiÞ � � �ΨϵnðxnÞ∶
¼ � � � þ ak;sð−1ÞmS1Ψϵi

a ðxiÞS2
þ ak;sð−1ÞlS�1Ψϵi

b ðxiÞS�2 þ…; ðC21Þ

where S1S2 ¼ S ¼ S�1S
�
2. Consider the first term, contain-

ing Ψϵi
a ðxiÞ: the ladder operator ak;s is successively anti-

commuted through the operators of S1, creating an
additional term containing the anticommutator, and picking
up a sign for ak;s in each step. By the time ak;s reaches
Ψϵi

a ðxiÞ, it already had to be anticommuted through the
ðiþm − 1Þ normal-ordered ladder operators in S1 and has
therefore picked up a sign ð−1Þiþm−1, which leaves us with
an overall sign ð−1Þiþ2m−1 ¼ ð−1Þi−1. Anticommuting ak;s
and Ψϵi

a ðxiÞ, we get two terms:

ð−1Þi−1S1ak;sΨϵi
a ðxiÞS2 ¼ ð−1Þi−1fak;s;Ψϵi

a ðxiÞgS
− ð−1Þi−1S1Ψϵi

a ðxiÞak;sS2;
ðC22Þ

where we have used the fact that the anticommutator is
proportional to the identity operator in any case, and can
therefore be pulled in front of the product S1S2 ¼ S. The
same argumentation works on the second term,Ψϵi

b ðxiÞ, and
we obtain

ð−1Þi−1S�1ak;sΨϵi
b ðxiÞS�2 ¼ ð−1Þi−1fak;s;Ψϵi

b ðxiÞgS
− ð−1Þi−1S�1Ψϵi

b ðxiÞak;sS�2:
ðC23Þ

The two anticommutators can be combined to

fak;s;Ψϵi
a ðxiÞg þ fak;s;Ψϵi

b ðxiÞg ¼ fak;s;ΨϵiðxiÞg ðC24Þ
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such that Eq. (C21) becomes

ak;s∶ Ψϵ1ðx1Þ � � �ΨϵiðxiÞ � � �ΨϵnðxnÞ∶
¼ � � � þ ð−1ÞiS1Ψϵi

a ðxiÞak;sS2 þ ð−1ÞiS�1Ψϵi
b ðxiÞak;sS�2

þ ð−1Þi−1fak;s;ΨϵiðxiÞgSþ…: ðC25Þ

We have not written out the anticommutators ak;s has
picked up with the operators in S1 and S�1. Since this needs
to be done for any of the field operators, we end up with

ak;s∶ Ψϵ1ðx1Þ � � �ΨϵnðxnÞ∶
¼ ð−1Þn∶ Ψϵ1ðx1Þ � � �ΨϵnðxnÞ∶ ak;s

þ
Xn
i¼1

ð−1Þi−1fak;s;ΨϵiðxiÞg∶ Ψϵ1ðx1Þ � � �

� � �bΨϵiðxiÞ � � �ΨϵnðxnÞ∶:ðC26Þ

The first term on the right-hand side is normal-ordered, and
the sign can be absorbed into anticommuting the annihi-
lation operator back to the beginning of the product. The
second term can be rewritten by taking into account the
anticommutation relations Eq. (C19) and defining contrac-
tions like in Eq. (186)

ðC27Þ

Note in particular that the sign is absorbed into the
definition of the contraction. Since we have nowhere used
that a is a particle annihilation operator, the same identity
holds for antiparticle annihilation operators b.

Now consider what happens if a creation operator is
added at the right. Using the last two equations, we can
immediately write

ðC28Þ

Taking into account the anticommutation relations between
the ladder operators and defining contractions Eq. (185),
the first term on the right-hand side can be expressed as

ðC29Þ

To handle the remaining terms, we need to evaluate
expressions of the form

∶Ψϵ1ðx1Þ � � �ΨϵiðxiÞ � � �ΨϵnðxnÞ∶ a†p;r: ðC30Þ

The relevant anticommutation relations are

fΨðxÞ; a†k;sg ¼ 0; fΨðxÞ; a†k;sg ¼ 1ψk;s;þðxÞ;
fΨðxÞ; b†k;sg ¼ 0; fΨðxÞ; b†k;sg ¼ 1ψk;s;−ðxÞ; ðC31Þ

and a reasoning analogous to the one that led to Eq. (C27)
eventually yields

ðC32Þ

Using this in Eqs. (C28) and (C29), one obtains

ðC33Þ
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Iterative application of Eqs. (C27) and (C32) then yields
Eq. (C18) in the general case. □

Proof of theorem VI.5—Similar to the proof of
theorem VI.2, combining theorem VI.4 with
lemma C.2 yields theorem VI.5: at first, one obtains a
completely normal ordered term plus all normal-ordered
terms with single contractions (between two fields,
between two ladder operators and between ladder oper-
ator and field) plus all normal-ordered term with two
contractions and so on. Taking the vacuum expectation
value, all terms vanish due to the normal-ordering, with
the exception of those terms that are fully contracted and
therefore proportional to the identity 1. Full contraction
is only possible for an even number of operators, such
that products containing an odd number of operators
vanish. □

3. UDW-type detector

Theorem VI.7 is essentially a simplification of the
theorem VI.5 proven in the previous section. Again, first
consider
Lemma C.3 Using the notation of theorem VI.7, the

following identity holds:

ðC34Þ
Proof of lemma C.3.—The proof runs analogous to the

proof of lemmaC.2, but is somewhat simpler since there is only
one type of ladder operator (σ) instead of two (a, b), and the
monopole operator is self-adjoint, unlike the spinor field. This
time, the relevant anticommutation relations are Eq. (124), and

fσ−; μðtÞg ¼ 1eþiΩt; fμðtÞ; σþg ¼ 1e−iΩt ðC35Þ

instead of Eq. (C19) and Eq. (C31). This gives rise to the
contractions defined in Eqs. (198) and (199). Beyond that, the
proof is follows the exact same steps as before. □

Proof of theorem VI.7.—The theorem follows directly
from theorem VI.6 and lemma C.3, analogous to the proof
of theorem VI.5. □
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