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We prove the quantum null energy condition (QNEC), a lower bound on the stress tensor in terms of the
second variation in a null direction of the entropy of a region. The QNEC arose previously as a consequence
of the quantum focusing conjecture, a proposal about quantum gravity. The QNEC itself does not involve
gravity, so a proof within quantum field theory is possible. Our proof is somewhat nontrivial, suggesting
that there may be alternative formulations of quantum field theory that make the QNECmore manifest. Our
proof applies to free and super-renormalizable bosonic field theories, and to any points that lie on stationary
null surfaces. An example is Minkowski space, where any point p and null vector ka define a null plane N
(a Rindler horizon). Given any codimension-2 surface Σ that contains p and lies on N, one can consider the
von Neumann entropy Sout of the quantum state restricted to one side of Σ. A second variation S00out can be
defined by deforming Σ along N, in a small neighborhood of p with area A. The QNEC states that
hTkkðpÞi ≥ ℏ

2π limA→0S00out=A.
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I. INTRODUCTION

The null energy condition (NEC) states that
Tkk ≡ Tabkakb ≥ 0, where Tab is the stress tensor and ka

is a null vector. This condition is satisfied by most reasonable
classical matter fields. In Einstein’s equation, it ensures that
light rays are focused, never repelled, by matter. The NEC
underlies the area theorems [1,2] and singularity theorems
[3–5], and many other results in general relativity [6–14].
However, quantum fields violate all local energy con-

ditions, including the NEC [15]. The energy density hTkki
at any point can be made negative, with magnitude as large
as we wish, by an appropriate choice of quantum state. In a
stable theory, any negative energy must be accompanied by
positive energy elsewhere. Thus, positive-definite quan-
tities linear in the stress tensor that are bounded below may
exist, but must be nonlocal. For example, a total energy
may be obtained by integrating an energy density over all of
space; an “averaged null energy” is defined by integrating
hTkki along a null geodesic [16–21]. In some field theories,
“quantum energy inequalities” have also been shown, in
which an integral of the stress tensor need not be positive,
but is bounded below [22].
In this article, we will consider a new type of lower

bound on hTkki at a single point p. Here the bound itself
is computed from a nonlocal object: the von Neumann
entropy Sout½Σ�≡ −Trðρ ln ρÞ of the quantum fields
restricted to some finite or infinite spatial region whose
boundary Σ contains p, is normal to ka, and has vanishing
null expansion at p. [There are infinitely many ways of
choosing such Σ for any ðp; kaÞ.] Then a lower bound is
given by the second derivative of Sout, under deformations

of an infinitesimal area elementA of Σ in the ka direction at
p (see Fig. 1):

hTkki ≥
ℏ

2πA
S00out½Σ�: ð1Þ

We call Eq. (1) the quantum null energy condition
(QNEC) [23]. The quantity Sout is divergent but its
derivatives are finite. (A more rigorous formulation in
terms of functional derivatives will be given in the main
text.) Note that the right-hand side can have any sign. If it is
positive, then the QNEC is stronger than the NEC; but since
it can be negative, it can accommodate situations where the
NEC would fail. By integrating the QNEC along a null
generator, we can obtain the averaged null energy condition
(ANEC), in situations where the boundary term S0out
vanishes at early and late times.
Intriguingly, the QNEC—an intrinsically field-theoretic

statement—was recognized by studying conjectured prop-
erties of the generalized entropy,

Sgen½Σ� ¼
A½Σ�
4Gℏ

þ Sout½Σ�; ð2Þ

a key concept arising in quantum gravity [24–26]. Here Σ is
a codimension-2 surface which divides a Cauchy surface in
two, A½Σ� is its area and Sout is the von Neumann entropy of
the matter fields on one side of Σ.
The generalized second law (GSL) is the conjecture [24]

that the generalized entropy cannot decrease as Σ is moved
up along a causal horizon. Equation (1) first appeared as a
sufficient condition for the GSL, satisfied by a nontrivial
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class of states of a 1þ 1-dimensional conformal field
theory (CFT) [27]. The QNEC emerged as a general
constraint on quantum field theories when it was noted
that the quantum focusing conjecture (QFC) implies Eq. (1)
in an appropriate limit [23]. We will briefly describe the
QFC and outline how the QNEC arises from it.
A generalized entropy can be ascribed not only to

horizon slices, but to any surface that splits a Cauchy
surface [28–32]. Moreover, one can define a quantum
expansion Θ½Σ; y1�, the rate (per unit area) at which the
generalized entropy changes when the infinitesimal area
element of ν at a point y1 is deformed in one of its future
orthogonal null directions [23] (see Fig. 1). This quantity
limits to the classical (geometric) expansion as ℏ → 0. The
QFC states that the quantum expansion Θ½Σ; y1� will not
increase under any second variation of Σ along the same
future congruence, be it at y1 or at some other point y2 [23].
The QFC, in turn, was proposed as a quantum version of

the covariant entropy bound (Bousso bound) [33–35], a
quantum gravity conjecture which bounds the entropy on a
nonexpanding null surface in terms of the difference
between its initial and final area. The QFC implies the
Bousso bound; but because the generalized entropy appears
to be insensitive to the UV cutoff [36–38], the QFC remains
well defined in more general settings. (The QFC is distinct
from the quantum Bousso bound of Refs. [39,40], which
defines the entropy by vacuum subtraction [41], a pro-
cedure applicable if the gravitational effects of matter are
negligible.)
In the case where y1 ≠ y2, it can be shown [23] that the

QFC follows from strong subadditivity, an entropy inequal-
ity which all quantum systems must obey.1 For y1 ¼ y2, the
QFC remains a conjecture in general, but in special cases
it can be proven. The QFC constrains a combination of
“geometric” terms proportional to G−1 that stem from the
classical expansion, as well as “matter entropy” terms that
stem from Sout and do not involve Newton’s constant. The
classical expansion is governed by Raychaudhuri’s equa-
tion, θ0 ¼ −θ2=2 − σ2 − 8πGhTkki.2 If the expansion θ and
the shear σ vanish at y1, then the rate of change of the
expansion is governed by a term proportional to G. In this
case, all G’s cancel in the terms of the QFC, and Eq. (1)
emerges as an apparently nongravitational statement.

A. Outline

In this paper, we will prove the QNEC in a broad arena.
Our proof applies to free or super-renormalizable, massive

or massless bosonic fields, in all cases where the surface Σ
lies on a stationary null hypersurface (one with everywhere
vanishing expansion). The most important example is
Minkowski space, with Σ lying on a Rindler horizon.
Such a horizon exists at every point p, with every
orientation ka, so the QNEC constrains all null components
of the stress tensor everywhere in Minkowski space.
A similar situation arises in a de Sitter background,

where p and ka specify a de Sitter horizon, and in anti–de
Sitter space, where they specify a Poincaré horizon. Other
examples include an eternal Schwarzschild or Kerr black
hole, but in this case our proof applies only to points on the
horizon, with ka tangent to the horizon generators. These
should all be viewed as fixed background spacetimes with
no dynamical gravity; our proof establishes that a free
scalar field theory on these backgrounds satisfies Eq. (1).
We give a brief review of the formal statement of the

QNEC in Sec. II. We then set up the calculation of all
relevant terms in Sec. III. In Sec. III A, we review the null
surface quantization of the theory, on the particular null
surface N that is orthogonal to Σ with tangent vector ka.
Null quantization has the remarkable feature that thevacuum
state factorizes in the transverse spatial directions. This
reduces any purely kinematic problem (such as ours) to the
analysis of a large number of copies of the free chiral scalar
CFT in 1þ 1 dimensions. We then restrict attention to the
particular chiral CFT on the infinitesimal pencil that passes
through the pointpwhereΣ is varied. The state on this pencil
is entangled with an auxiliary quantum system which
contains both the information crossing the other generators
of N, and the information that does not fall across N at all.

FIG. 1. The spatial surface Σ splits a Cauchy surface, one side
of which is shown in yellow. The generalized entropy Sgen is the
area of Σ plus the von Neumann entropy Sout of the yellow region.
The quantum expansion Θ at one point of Σ is the rate at which
Sgen changes under a small variation dλ of Σ, per cross-sectional
area A of the variation. The quantum focusing conjecture states
that the quantum expansion cannot increase under a second
variation in the same direction. If the classical expansion and
shear vanish (as they do for the green null surface in the figure),
the quantum null energy condition is implied as a limiting case.
Our proof involves quantization on the null surface; the entropy
of the state on the yellow spacelike slice is related to the entropy
of the null quantized state on the future (brighter green) part of the
null surface.

1Some recent articles [42,43] considered a different type of
second derivative of the entropy in 1þ 1 field theory. These
inequalities involve varying the two end points of an interval
independently, and therefore follow from strong subadditivity
alone, without making reference to the stress tensor.

2Raychaudhuri’s equation immediately implies that, in cases
where the classical geometrical terms dominate, the QFC is true
iff the classical spacetime obeys the null curvature condition.
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In the 1þ 1 chiral CFT, the pencil state is very close to
the vacuum, but not so close that the QNEC would be
trivially saturated by application of the first law of the
entanglement entropy. To constrain the second-order var-
iations of Sout (the Fisher information), we must keep track
of the deviation of the pencil state from the vacuum to
second order. We discuss the appropriate expansion of the
overall state in Sec. III B. We write the state in terms of
operators inserted on the Euclidean plane corresponding to
the pencil and expand in a basis of the auxiliary system.
Then in Sec. III C, we expand the entropy and identify the
parts of our expansion that enter into the second derivative.
In Sec. IV, we compute the sign of hTkki − ℏ

2πA S00out. In
Sec. IVAwe review the replica trick for computing the von
Neumann entropy by the analytic continuation of Renyi
entropies. We extract two terms relevant to the QNEC,
which are computed in Sec. IV B and IV C respectively.
The most subtle part of the calculation is the analytic
continuation of the second of these terms, in Sec. IV D. In
Sec. IV E, we combine the terms and conclude that the
QNEC holds for all states.
In Sec. V, we extend our result to establish the QNEC

also for super-renormalizable scalar fields, and for bosonic
fields of higher spin. We also discuss the extension to
interacting theories. We expect that the proof we have given
can be extended to fermionic fields, but we leave this task
for the future.

B. Discussion

Our result establishes a new and surprising link between
quantum information and a more familiar physical quantity,
the stress tensor. The QNEC identifies the “acceleration” of
information transfer as a lower bound on the energy
density. Equivalently, the stress tensor can be viewed as
imposing a constraint on the second derivative of the von
Neumann entropy. The latter can be difficult to calculate
but plays an important role in quantum information theory,
condensed matter, and high-energy physics.
Our proof of the QNEC requires no assumptions beyond

the known properties of free quantum fields, but it is quite
lengthy and somewhat involved. Yet, the QNEC follows
almost trivially from a statement involving gravity, the
quantum focusing conjecture. This perplexing situation is
somewhat reminiscent of the proof of the quantum Bousso
bound [39], particularly in the interacting case [40]. It is
intriguing that the study of quantum gravity can lead us to
simple conjectures such as Eq. (1) which can be proven
entirely within the nongravitational sector, where they are
far from obvious—so far, indeed, that they had not been
recognized until they emerged as implications of holographic
entropy bounds or of properties of the generalized entropy.
It is becoming clear that the structure of known quantum

field theories carries a deep imprint of causal and infor-
mation-theoretic properties ultimately dictated by quantum
gravity. This adds to the evidence that “quantizing gravity”

has nothing to do with the inclusion of one last force in a
quantization program. It would be interesting to try to
formulate models of quantum gravity in which focusing of
the entropy occurs naturally.
Remarkably, the QNEC does not seem to follow from

any of the standard identities that apply purely at the level
of quantum information. Our proof did involve additional
structure supplied by quantum field theory. The QNEC is
related to the relative entropy SðρjσÞ ¼ Trðρ ln ρÞ−
Trðρ ln σÞ, which equals −Sgen (up to a constant) when σ
is taken to be the vacuum state. The relative entropy
satisfies positivity, which guarantees that SgenðρÞ is less
than in the vacuum state. It also enjoys monotonicity, which
implies that Sgen is increasing under restrictions; this
constrains the first derivative, which is the GSL [44]. It
may appear that the QNEC can be proven using properties
of the relative entropy. But the QNEC is a statement about
the second derivative of the generalized entropy. It is
possible that the QNEC hints at more general quantum
information inequalities, which are yet to be discovered. It
is interesting that a recently proposed new GSL, which
applies in strongly gravitating regions such as cosmology,
also can be shown to follow from the QFC [45].

II. STATEMENT OF THE QUANTUM NULL
ENERGY CONDITION

The statement of the QNEC involves the choice of a
point p, a null vector ka at p, and a smooth codimension-2
surface Σ orthogonal to ka at p such that Σ splits a Cauchy
surface into two portions. The null vector ka is a member of
a vector field orthogonal to Σ defined in a neighborhood of
p, kaðyÞ. Here and below we use y as a coordinate label on
Σ, also called the “transverse direction.” We can consider a
family of surfaces Σ½λðyÞ� obtained by deforming Σ along
the null geodesics generated by kaðyÞ by the affine
parameters λðyÞ.
The deformed surfaces will also be Cauchy-splitting

[46]. This allows us to define a family of entropies
Sout½λðyÞ�, which are the von Neumann entropies of the
quantum fields restricted to the Cauchy surface on one side
of Σ½λðyÞ�. The choice of Cauchy surface is unimportant,
since by unitarity the entropy will be independent of that
choice. The choice of side of Σ½λðyÞ� also does not matter,
because the QNEC is symmetric with respect to ka → −ka.
Once we have defined Sout½λðyÞ�, we can consider its

functional derivatives. In general, the second functional
derivative will contain diagonal and off-diagonal terms
(present because Sout is a nonlocal functional), and the
diagonal terms will be proportional to a δ function. We
define the second functional derivative at coincident points
by factoring out that δ function:

δ2Sout
δλðyÞδλðy0Þ ¼

δ2Sout
δλðyÞ2 δðy − y0Þ þ off-diagonal: ð3Þ
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Then if the expansion and the shear of kaðyÞ vanish at p, we
have the general conjecture

hTkkðpÞi ≥
ℏ

2π
ffiffiffiffiffiffiffiffiffiffi
hðpÞp δ2Sout

δλðpÞ2
����
λðyÞ¼0

; ð4Þ

where h is the determinant of the induced metric on Σ and
Tkk ≡ Tabkakb. We will find it convenient below to work
with a discretized version of the functional derivative,
obtained by dividing Σ into regions of small area A and
considering variations locally constant in those regions.
Then Eq. (4) reduces to the form advertised in Eq. (1):

hTkki ≥
ℏ

2πA
S00out: ð5Þ

III. REDUCTION TO A 1þ 1 CFT
AND AUXILIARY SYSTEM

A. Null quantization

The proof that follows applies when Σ is a section of a
general stationary null surface N in D > 2 (the case D ¼ 2
will be treated separately, in Sec. V). We consider defor-
mations of Σ along N toward the future, so the deformation
vector ka is future-directed, and we choose to take the
“outside” direction to be the side towards which ka points.
As mentioned above, a proof of this case automatically
implies a proof for the opposite choice of outside. By
unitary time evolution of the spacelike Cauchy data, we can
consider the state to be defined on the portion of N in the
future of Σ together with a portion of future null infinity.
We rely on null quantization on N, which requires that N

be stationary [44]. Null quantization is simplest if we first
discretize N along the transverse direction into regions of
small transverse area A. These regions, which are fully
extended in the null direction, are called pencils. Ultimately
we will take the continuum limit A → 0, and the QNEC
will be shown to hold in this limit. At intermediate stages,
A acts as a small expansion parameter.3 This is the reason
why we are restricting ourselves to D > 2 spacetime
dimensions for now: without a transverse direction to
discretize, there would be no small expansion parameter.
Also, while logically independent from the discretization
used to define the QNEC in Eq. (1), we will take these two
discretizations to be the same. That is, we will consider
deformations of the surface Σ which are localized to the
same regions of size A that define the discretized null
quantization.
There is a distinguished pencil that contains the point p;

this is the pencil on which we will perform our

deformations. The total Hilbert space of the system can
be decomposed asH ¼ Hpen ⊗ Haux, whereHpen refers to
the fields on the distinguished pencil andHaux is everything
else. “Everything else” includes both the remaining pencils
on N restricted to the future of Σ, as well as the relevant
portion of null infinity. We do not have to be specific about
the exact structure of the auxiliary system; our proof does
not assume anything about it other than what is implied by
quantummechanics. Beginning with a density matrix onH,
we obtain a one-parameter family of density matrices ρðλÞ
by tracing out the part of the pencil in the past of affine
parameter λ. When λ → −∞ the pencil is fully extended,
and when λ → þ∞ the entire pencil has been traced out.
λ ¼ 0 corresponds to no deformation of the original
surface.
When restricted to N, the theory decomposes into a

product of 1þ 1-dimensional free chiral CFTs, with one
CFT associated to each pencil of N. In particular, this
means that the vacuum state factorizes with respect to the
pencil decomposition of N [44].
Crucially, when A is small, the state of the pencil is near

the vacuum. This can be seen as follows. For a region of
small sizeA, the amplitude to have n particles on the pencil
scales like An=2 (so the probability is appropriately exten-
sive), and therefore the coefficient of jnihmj in the pencil
Fock basis expansion of the state scales like AðnþmÞ=2.
Hence for small A we can write the state as

ρðλÞ ¼ ρð0ÞpenðλÞ ⊗ ρð0Þaux þ σðλÞ; ð6Þ

where ρð0ÞpenðλÞ is the vacuum state density matrix on the part

of the pencil with affine parameter greater than λ, ρð0Þaux is
some state in the auxiliary system (not necessarily the
vacuum), and the perturbation σðλÞ is small: the largest
terms are obtained by taking the partial trace of j0ih1j and
j1ih0j in the pencil Fock basis, and these terms have
coefficients which scale like A1=2. Entanglement between
the pencil and the auxiliary system is also present in σ; we
will explore the form of σ in more detail in the following
section.

B. Expansion of the state

As discussed above, the pencil state can be described in
terms of a 1þ 1-dimensional free chiral CFT, with fields
that depend only on the coordinate z ¼ xþ t. In this
notation, translations along the Rindler horizon in the
1þ 1 CFT are translations in z, and are generated by
∂ ≡ ∂

∂z. In a chiral theory, this is equivalent to translations
in the spatial coordinate x. Therefore the shift in affine
parameter λ of the previous section can be replaced by a
shift in the spatial coordinate for the purposes of the CFT
calculation. In addition, quantization on a surface of
constant Euclidean time τ ¼ it ¼ 0 in a chiral theory is
equivalent to quantization on the Rindler horizon. Thus

3The dimensionless expansion parameter is A in units of a
characteristic length scale of the state we are interested in, e.g.,
the wavelength of typical excitations. The state remains fixed as
A → 0.
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when we construct the state we can use standard Euclidean
methods for two-dimensional CFTs.
We have argued that, at orderA1=2, the perturbation σ on

the full pencil must be of the schematic form j0ih1j (plus
Hermitian conjugate). So on the full pencil, we have the
state

ρ ¼ ρð−∞Þ
¼ j0ih0j ⊗ ρð0Þaux þA1=2

X
ij

ðj0ihψ ijj þ jψ jiih0jÞ ⊗ jiihjj

þ � � � ; ð7Þ

where jiihjj is a basis of operators in the auxiliary system
and “� � �” denotes terms which vanish more quickly as
A → 0. We will argue in Sec. III C that those terms are not
relevant for the QNEC, and so we will ignore them from
now on. For later convenience, we will take the basis jii in
the auxiliary system to be the one in which ρð0Þaux is diagonal.
The states jψ iji are single-particle states in the CFT, and we
have ensured that the state is Hermitian. The CFT part of
the state can be constructed by acting on the vacuum with a
single copy of the field operator. In a Euclidean path-
integral picture, we can get the most general single-particle
state by allowing arbitrary single-field insertions on the
Euclidean plane. This is shown in Fig. 2.
To obtain the state at a finite value of λ, we need to take

the trace of Eq. (7) over the region x < λ. Alternatively, we
can hold fixed the inaccessible region, x < 0, but translate
the field operators used to construct the state by λ. From this
point of view the vacuum is independent of λ and we write
it as

ρð0Þpen ¼ e−2πKpen ; ð8Þ

where, up to an additive constant, the modular Hamiltonian
Kpen coincides with the Rindler boost generator for the CFT
[47,48]. Specializing to the case of a single chiral scalar
field (extensions will be discussed in Sec. V), the trace of
Eq. (7) becomes

ρðλÞ ¼ e−2πKpen ⊗ ρð0Þaux

þA1=2
X
ij

�
e−2πKpen

Z
drdθfijðr; θÞ∂Φðreiθ − λÞ

�

⊗ jiihjj; ð9Þ

where ∂ΦðzÞ is now a holomorphic local operator on a two-
dimensional Euclidean plane4 and ðr; θÞ are polar coor-
dinates on that plane, with z ¼ reiθ. Rotations in θ are
generated by Kpen. Thus the operator ∂Φ is defined by5

∂ΦðreiθÞ ¼ e−iθeθKpen∂ΦðrÞe−θKpen : ð10Þ

All of the operators in Eq. (9) are manifestly operators on
the Hilbert space corresponding to x > 0, τ ¼ 0. We are
taking Φ to be a real scalar field, so in particular ∂Φ is a
Hermitian operator for real arguments. Then in order for ρ
to be Hermitian, we must have

fijðr; θÞ ¼ fjiðr; 2π − θÞ�: ð11Þ

Aside from this reality condition, letting f be completely
general gives all possible single-particle states.
To facilitate our later calculations, we will modify Eq. (9)

in order to put the auxiliary system on equal footing with
the CFT. To that end, define Kaux through the equation

ρð0Þaux ¼ expð−2πKauxÞ. We can invent a coordinate θ for the
auxiliary system and declare that evolution in θ is generated
by Kaux. Then define the operators

EijðθÞ≡ eθKaux jiihjje−θKaux ¼ eθðKi−KjÞjiihjj: ð12Þ

Since Kaux is diagonal in the jii basis, with eigenvalues Ki,
EijðθÞ is just a rescaled jiihjj. More generally, multiplying
jiihjj on either side by arbitrary functions of Kaux results in
the same operator up to an ði; jÞ-dependent numerical
factor. So by making the replacement

fijðr; θÞ → eð2π−θÞKieθKjfijðr; θÞ; ð13Þ

which does not alter the reality condition on f, we can write

ρðλÞ ¼ e−2πKtot þA1=2e−2πKtot

X
ij

Z
drdθfijðr; θÞ

× ∂Φðreiθ − λÞ ⊗ EijðθÞ; ð14Þ

FIG. 2. The state of the CFT on x > λ can be defined by
insertions of ∂Φ on the Euclidean plane. The red lines denote a
branch cut where the state is defined.

4We insert ∂Φ instead of Φ in order to remove any zero-mode
subtleties. We have checked that the proof still works formally if
one inserts Φ instead of ∂Φ, and in fact continues to work when
an arbitrary number of derivatives, ∂lΦ, are used. This latter fact
is not surprising since insertions of Φ alone (or ∂Φ if we drop the
zero mode) are sufficient to generate all single particle states. See
Refs. [44,49] for details on the zero mode.

5Here θ is restricted to be in the range ½0; 2πÞ.

PROOF OF THE QUANTUM NULL ENERGY CONDITION PHYSICAL REVIEW D 93, 024017 (2016)

024017-5



where Ktot ≡ Kpen þ Kaux. From now on, we will simply
write K for Ktot.
Below it will be useful to write σðλÞ as

σðλÞ≡A1=2ρð0ÞOðλÞ: ð15Þ

Thus comparing with Eq. (14), we find

OðλÞ ¼
X
ij

Z
dr dθfijðr; θÞ∂Φðreiθ − λÞ ⊗ EijðθÞ:

ð16Þ

As a side comment, we note that one could prepare the
state (14) via a Euclidean path integral over the entire plane
with an insertion of O and boundary field configurations
defined at θ ¼ 0þ and θ ¼ ð2πÞ−.

C. Expansion of the entropy

In the previous sections we saw that null quantization
gives us a state of the form

ρðλÞ ¼ ρð0ÞpenðλÞ ⊗ ρð0Þaux þ σðλÞ; ð17Þ

where ρð0ÞpenðλÞ is the vacuum state reduced density matrix
on the part of the pencil with affine parameter greater

than λ, ρð0Þaux is an arbitrary state in the auxiliary system,
and the perturbation σ is proportional to the small
parameter A1=2. In this section, we will expand the
entropy perturbatively in σ and show that the QNEC
reduces to a statement about the contributions of σ to the

entropy. We will assume that both ρðλÞ and ρð0ÞðλÞ≡
ρð0ÞpenðλÞ ⊗ ρð0Þaux are properly normalized density matrices,
so TrðσÞ ¼ 0.
The von Neumann entropy of ρðλÞ is SoutðλÞ. We will

expand it as a perturbation series in σðλÞ:

SoutðλÞ ¼ Sð0ÞðλÞ þ Sð1ÞðλÞ þ Sð2ÞðλÞ þ � � � ð18Þ

where SðnÞðλÞ contains n powers of σðλÞ. At zeroth order,
since ρð0Þ is a product state, we have

Sð0ÞðλÞ ¼ −Tr½ρð0ÞðλÞ log ρð0ÞðλÞ�
¼ −Tr½ρð0ÞpenðλÞ log ρð0ÞpenðλÞ� − Tr½ρð0Þaux log ρ

ð0Þ
aux�:

ð19Þ

The first term on the right-hand side is independent of λ
because of null translation invariance of the vacuum: all
half-pencils have the same vacuum entropy. The second
term is manifestly independent of λ. So Sð0Þ is λ indepen-
dent and does not play a role in the QNEC.

Now we turn to Sð1ÞðλÞ:

Sð1ÞðλÞ ¼ −Tr½σðλÞ log ρð0ÞðλÞ�
¼ −Tr½σðλÞ log ρð0ÞpenðλÞ� − Tr½σðλÞ log ρð0Þaux�: ð20Þ

Once again, the second term is λ independent, which
we can see by evaluating the trace over the pencil
subsystem:

Tr½σðλÞ log ρð0Þaux� ¼ Traux½½TrpenσðλÞ� log ρð0Þaux�
¼ Traux½σð∞Þ log ρð0Þaux�: ð21Þ

To evaluate the first term, we use the fact that ρð0ÞpenðλÞ is
thermal with respect to the boost operator on the pencil.
Then we have

−Tr½σðλÞ log ρð0ÞpenðλÞ� ¼ 2πA
ℏ

Z
∞

λ
dλ0ðλ0 − λÞhTkkðλ0Þi;

ð22Þ

where the integral is along the generator which defines
the pencil and the expectation value is taken in the
excited state. This is the first λ-dependent term we have
in the perturbative expansion of SðλÞ. Taking two
derivatives and evaluating at λ ¼ 0 gives the identity

ðSð0Þ þ Sð1ÞÞ00 ¼ 2πA
ℏ

hTkki: ð23Þ

Subtracting S00out from both sides of this equation shows
that

ℏ
2πA

S00out − hTkki ¼
ℏ

2πA
ðSout − Sð0Þ − Sð1ÞÞ00

¼ ℏ
2πA

Sð2Þ00 þ � � � ; ð24Þ

where “� � �” contains terms higher than quadratic order
in σ. The QNEC [Eq. (1)] is the statement that this
quantity is negative in the limit A → 0. Earlier we
showed that σ was proportional to A1=2. Then Sð2Þ is
proportional to A, and we must check that Sð2Þ00 is
negative. However, the higher-order terms SðlÞ for l > 2
vanish more quickly with A and therefore drop out in
the limit A → 0.
We have shown that the QNEC reduces to the statement

that Sð2Þ00 ≤ 0 for perturbations from the vacuum. In fact, we
have shown something a little stronger. In general, the
perturbation σ will have terms proportional to An=2 for all
n ≥ 1. Our arguments show that only the term proportional
to A1=2 matters for the QNEC, and furthermore that this
term is off-diagonal in the single-particle/vacuum subspace.
So we can simplify matters by considering states which
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contain only such a term proportional toA1=2 and no higher
powers of A. In other words, we can take the state to be of
the form in Eq. (7) with the unwritten “� � �” terms set equal
to zero. Now we only need to show that Sð2Þ00 ≤ 0 for such
states.

IV. CALCULATION OF THE ENTROPY

A. The replica trick

The replica trick prescription is to use the following
formula for the von Neumann entropy [50]:

Sout ¼ −Tr½ρ log ρ� ¼ ð1 − n∂nÞ log Tr½ρn�jn¼1: ð25Þ

This can be written as

Sout ¼ D log ~Zn ð26Þ

where ~Zn ≡ Tr½ρn�6 and the operator D is defined by

DfðnÞ≡ ð1 − n∂nÞfðnÞjn¼1 ð27Þ

where fðnÞ is some function of n. Since ~Zn is only defined
for integer values of n, we first must analytically continue
to real n > 0 in order to apply the D operator. The analytic
continuation step is in general quite tricky, and will require
care in our calculation. (Our analytic continuation is
performed in Sec. IV D.)
On general grounds discussed above, we must study the

second-order term in a perturbative expansion of the
entropy about the state ρð0Þ. Suppressing all λ dependence,
we have

~Zn ¼ Tr½ðρð0Þ þ σÞn�: ð28Þ

Expanding ~Zn to quadratic order to isolate Sð2Þ00, we have

~Zn ¼ Tr½ðρð0ÞÞn� þ nTr½σðρð0ÞÞn−1�

þ n
2

Xn−2
k¼0

Tr½ðρð0ÞÞkσðρð0ÞÞn−k−2σ� þ � � � : ð29Þ

Using the notation introduced in Eq. (15) we can write

~Zn ¼ Tr½ðρð0ÞÞn� þ nTr½Oðρð0ÞÞn�

þ n
2

Xn−1
k¼1

Tr½ðρð0ÞÞ−kOðρð0ÞÞkOðρð0ÞÞn� þ � � � : ð30Þ

We denote by OðkÞ the operator O conjugated by ðρð0ÞÞk:

OðkÞ ≡ ðρð0ÞÞ−kOðρð0ÞÞk ð31Þ

¼ e2πkKOe−2πkK: ð32Þ

This is equivalent to a Heisenberg evolution of O in the
angle θ by an amount 2πk. Since O is the integral of
operators with angles 0 ≤ θ < 2π, it follows that OðkÞ
will be an integral over operators with angles
2πk < θ < 2πðkþ 1Þ.7 Furthermore, since rotations by
2πk commute with translations by λ, we can obtain OðkÞ
from O simply by letting the range of integration that
defines O shift from ½0; 2π� to ½2πk; 2πðkþ 1Þ�, as long as
we define fijðr; θÞ to be periodic in θ with period 2π.
It will also be convenient to introduce an angle-ordered

expectation value, defined as

h…in ≡ Tr½ðρð0ÞÞnT ½…��
Tr½ðρð0ÞÞn� ; ð33Þ

where T ½…� is θ ordering. Then Eq. (30) can be written as

~Zn ¼ Tr½ðρð0ÞÞn�
�
1þ nhOin þ

n
2

Xn−1
k¼1

hOðkÞOin
�
þ � � � :

ð34Þ

Taking the logarithm of ~Zn and extracting the part quadratic
in σ gives

log ~Zn ⊃
n
2

Xn−1
k¼1

hOðkÞOin −
n2

2
hOi2n; ð35Þ

where we have kept only the part quadratic in O. The
contribution of the second term to the entanglement entropy
will be proportional to hOi, which vanishes because of the
tracelessness of σ. Therefore we only need to consider the
first term.
Since we are considering angle-ordered expectation

values, we have the identity

��Xn−1
k¼0

OðkÞ
�2�

n

¼ n
Xn−1
k¼0

hOðkÞOin; ð36Þ

and so from the first term in Eq. (35) the relevant part of
log ~Zn can be written as

log ~Zn ⊃ −
n
2
hOOin þ

1

2

��Xn−1
k¼0

OðkÞ
�2�

n

: ð37Þ

Restoring the λ dependence and taking λ derivatives gives
6In the replica trick one often works with the partition function

Zn, in terms of which ~Zn ¼ Zn=ðZ1Þn. Choosing Zn over ~Zn is
equivalent to choosing a different normalization for ρ, but we find
it convenient to keep Trρ ¼ 1.

7One could worry that the phase factor in Eq. (10) spoils this
relation, but notice that the phase has period 2π in θ and so does
not appear when shifting by 2πk.
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Sð2Þ00 ¼ ∂2

∂λ2
����
λ¼0

D log ~ZnðλÞ ð38Þ

¼ D
−n
2

hOOi00n þD
1

2

��Xn−1
k¼0

OðkÞ
�2�00

n

: ð39Þ

The h…i00n notation means take two λ derivatives and then
set λ ¼ 0. In the following sections we will compute these
two terms separately.
We note that the two terms in Eq. (39) are analogous to

δSð1ÞEE and δSð2ÞEE of Ref. [51], where a similar perturbative
computation of the entropy was performed. Though the
details of the two calculations differ (in particular we have
an auxiliary system as well as a CFT), it would be
interesting to explore further the connection between our
present work and that of Ref. [51].

B. Evaluation of same-sheet correlator

In this section we consider the term hOOi00n appearing in
Eq. (39). The analytic continuation of this term in n is
straightforward. We first apply D:

D
−n
2

hOOin ¼ D
−n
2

Tr½e−2πnKT ½OO��
Tr½e−2πnK� ð40Þ

¼ −πhOOΔKi ð41Þ

where ΔK ≡ K − hKi is the vacuum-subtracted modular
Hamiltonian. When an expectation value h…i appears
without a subscript it is understood to refer to the
normalized expectation value h…in with n ¼ 1, i.e., the
angle-ordered expectation value with respect to ρð0Þ. Also
note that K appears outside of the angle ordering in the
trace form of the expectation value, which is formally
equivalent to being inserted at θ ¼ 0.
We now consider the λ dependence. Recall that K is

defined to be λ independent, and the λ dependence of O
enters through a shift in the coordinate insertion of ∂Φ [see
Eq. (16)]. We first split ΔK into ΔKpen and ΔKaux. The
expectation value involving ΔKaux will be independent of λ
because of translation invariance of the CFT, and so can be
ignored. Since Kpen is the CFT boost generator on the half-
line x > 0, ΔKpen has a well-known expression in terms of
the energy-momentum tensor of the CFT [47,48]:

ΔKpen ¼ A
Z

∞

0

dx xTkkðxÞ ¼ −
1

2π

Z
∞

0

dx xTðxÞ: ð42Þ

Therefore the correlation function (41) is expressed in terms
of the correlation functions h∂Φðz − λÞ∂Φðw − λÞTðxÞi,
which are the same as h∂ΦðzÞ∂ΦðwÞTðxþ λÞi by trans-
lation invariance. This makes the λ derivatives easy to
evaluate. We find

D
−n
2

hOOi00n ¼
1

2
hOOTð0Þi: ð43Þ

Inserting the explicit form of O gives

hOOTð0Þi

¼ 1

ð2πÞ2
X
i;j;i0j0
m;m0

Z
dr dr0 dθ dθ0ðfðmÞ

ij ðrÞfðm0Þ
i0j0 ðr0Þe−imθe−im

0θ0

× h∂ΦðreiθÞ∂Φðr0eiθ0 ÞTð0ÞihEijðθÞEi0j0 ðθ0ÞiÞ; ð44Þ

where we have introduced Fourier representations of
fijðr; θÞ defined by

fijðr; θÞ ¼
1

2π

X∞
m¼−∞

fðmÞ
ij ðrÞe−imθ: ð45Þ

The correlation functions we need are evaluated in the
Appendix. Plugging Eq. (A12) with n ¼ 1 and Eq. (A6) into
Eq. (44) yields

hOOTð0Þi

¼ −2
ð2πÞ3

X
i;j;p
m;m0

Z
drdr0dθdθ0

ðrr0Þ2 fðmÞ
ij ðrÞfðm0Þ

ji ðr0Þ

× e−πðKiþKjÞ sinhπαij
ipþαij

eiθð−p−m−2Þeiθ0ðp−m0−2Þ

¼ 1

π

X
i;j;m

Z
drdr0

ðrr0Þ2 f
ðm−2Þ
ij ðrÞfð−m−2Þ

ji ðr0Þe−πðKiþKjÞ sinhπαij
im−αij

;

ð46Þ

where we used the Kronecker deltas coming from the θ
integration and redefined the dummy variable m → m − 2,
andαij ≡ Ki − Kj is the difference between two eigenvalues
of Kaux. Note that we reserve the letters p and q throughout
to denote integers divided by n, but in this case n ¼ 1 and so
p ranges over the integers. Substituting Eq. (46) into
Eq. (43), we find

D
−n
2

hOOi00n ¼
1

2π

X
i;j;m

Z
dr dr0

ðrr0Þ2 f
ðm−2Þ
ij ðrÞfð−m−2Þ

ji ðr0Þ

× e−πðKiþKjÞ sinh παij
im − αij

: ð47Þ

C. Evaluation of multisheet correlator

We now turn to the second term in Eq. (39),

1

2
D
��Xn−1

k¼0

OðkÞ
�2�00

n

: ð48Þ

The analytic continuation of this term to real n will turn out
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to be much more challenging than that of the first term of
Eq. (39), because n appears in the upper summation limit.
Using Eq. (16), can write the sum over replicas in

Eq. (48) as follows:��Xn−1
k¼0

OðkÞ
�2�

n

¼
��X

i;j

Z
2πn

0

dr dθ fijðr; θÞ∂Φðr; θ; λÞ ⊗ EijðθÞ
�

2
�

n
:

ð49Þ

This equality comes from interpretingOðkÞ asO inserted on
the (kþ 1)th replica sheet [see Eq. (31)]. Summing over
sheets and integrating θ ∈ ½0; 2π� on each one is equivalent
to just integrating θ ∈ ½0; 2πn�, which covers the entire
replicated manifold. The definition of ∂Φ for angles greater
than 2π is given by the Heisenberg evolution rule, the right-
hand side of Eq. (10). The field is still holomorphic, but it
would be misleading to write it as a function of reiθ since it
is not periodic in θ with period 2π.
Because the fijðr; θÞ are not dynamical, they should be

identical on each sheet. In the Fourier representation as in
Eq. (45), this means keeping the Fourier coefficients fixed
and keeping the m parameters integer. Thus we have

1

2
D
��Xn−1

k¼0

OðkÞ
�2�00

n

¼ D
1

2ð2πÞ2
X
i;j;i0;j0
m;m0

Z
dr dr0dθdθ0fðmÞ

ij ðrÞfðm0Þ
i0j0 ðr0Þe−imθe−im

0θ0

× h∂Φðr; θÞ∂Φðr0; θ0Þi00nhEijðθÞEi0j0 ðθ0Þin: ð50Þ

The CFT two-point function is calculated in
Appendix A 1:

h∂ΦðzÞ∂ΦðwÞi00n
¼ 1

nðzwÞ2
X
jqj<1

signðqÞqðq2 − 1Þ
�
w
z

�
q

ð51Þ

¼ 1

nðrr0Þ2
X
jqj<1

signðqÞPðq; r; r0Þeiθð−q−2Þeiθ0ðq−2Þ ð52Þ

where q takes values in the integers divided by n, and

Pðq; r; r0Þ≡ qðq2 − 1Þ
�
r0

r

�
q
: ð53Þ

When n ¼ 1 there are no nonzero terms in the sum, but
when n > 1 the answer is nonzero. For future convenience,
we separated the parts which depend on θ from those that
do not.

The auxiliary system two-point function is calculated in
Appendix A 2:

hEijðθÞEi0j0 ðθ0Þin
¼ δij0δji0e−2πnKi

1

πn ~Zaux
n

X
p

e−ipðθ−θ0Þ
sinh nπαij
ipþ αij

enπαij ;

ð54Þ

where p is also an integer divided by n and ~Zaux
n ≡

Tr½e−2πnKð0Þ
aux � is a normalization factor. Substituting this

equation as well as Eq. (52) into Eq. (50) gives

D
1

n2ð2πÞ3 ~Zaux
n

X
i;j;p
m;m0

Z
dr dr0 dθ dθ0

ðrr0Þ2 fðmÞ
ij ðrÞfðm0Þ

ji ðr0Þ

× eiθð−q−p−2−mÞeiθ0ðqþp−2−m0Þ

×
sinh πnαij
ipþ αij

e−πnðKiþKjÞ
X
jqj<1

signðqÞPðq; r; r0Þ: ð55Þ

The angle integrations give Kronecker deltas multiplied
by 2πn. The result is

D
i

2π ~Zaux
n

X
i;j;m

Z
dr dr0

ðrr0Þ2 f
ðm−2Þ
ij ðrÞfð−m−2Þ

ji ðr0Þ sinh πnαij

× e−πnðKiþKjÞ
"X
jqj<1

signðqÞPðq; r; r0Þ
qþmþ iαij

#

¼ i
2π

X
i;j;m

Z
dr dr0

ðrr0Þ2 f
ðm−2Þ
ij ðrÞfð−m−2Þ

ji ðr0Þ sinh παij

× e−πðKiþKjÞD

"X
jqj<1

signðqÞPðq; r; r0Þ
qþmþ iαij

#
: ð56Þ

In going to the last line, we used the fact that the sum in
brackets vanishes when n ¼ 1 and that, for any two
functions fðnÞ, gðnÞ such that fð1Þ and ½ ddn fðnÞ�n¼1

are
finite and gð1Þ ¼ 0, the following relation holds:

DðfðnÞgðnÞÞ ¼ fð1ÞDgðnÞ: ð57Þ

We now turn to the analytic continuation and application
of D on the term in brackets in Eq. (56). We will take
care of the awkward signðqÞ by writing the q-dependent
part of the sum as two sums with positive argument. We
will suppress the ðr; r0Þ dependence for the rest of the
calculation:

PROOF OF THE QUANTUM NULL ENERGY CONDITION PHYSICAL REVIEW D 93, 024017 (2016)

024017-9



X
jqj<1

signðqÞPðqÞ
qþmþ iαij

¼
X
0<q<1

PðqÞ
qþmþ iαij

þ Pð−qÞ
q −m − iαij

:

ð58Þ

Now wewrite q ¼ k=n to turn this into a sum over integers:

X
0<q<1

�
PðqÞ

qþmþ iαij
þ Pð−qÞ
q −m − iαij

�

¼
Xn−1
k¼1

�
PðknÞ

k
n þmþ iαij

þ Pð− k
nÞ

k
n −m − iαij

�
: ð59Þ

In the next section we will see how to evaluate and
analytically continue such sums quite generally.

D. Analytic continuation

We need to evaluate

D
Xn−1
k¼1

�
PðknÞ
k
n − z

þ Pð− k
nÞ

k
n þ z

�
; ð60Þ

where PðzÞ is given by Eq. (52). However, for the
remainder of this section, we will consider PðzÞ to be an
arbitrary analytic function whose functional form is inde-
pendent of n. We will specialize to the form given by
Eq. (52) in Sec. IV E.
We start by writing the sum in Eq. (60) as

D
Xn−1
k¼1

�
PðknÞ − PðzÞ

k
n − z

þ Pð− k
nÞ − PðzÞ
k
n þ z

�

þD
Xn−1
k¼1

�
PðzÞ
k
n − z

þ PðzÞ
k
n þ z

�
ð61Þ

and then we evaluate the terms separately. Consider the first
term in the first set of parentheses. Because PðzÞ is analytic,
we can expand it in a power series with positive powers of
z: PðzÞ ¼ P∞

r¼0 arz
r. This gives

D
Xn−1
k¼1

X∞
r¼1

ar
ðknÞr − zr

k
n − z

: ð62Þ

We can simplify the fraction using polynomial division;
for r ≥ 1,

ðknÞr − zr

k
n − z

¼
Xr−1
s¼0

zr−s−1
�
k
n

�
s
; ð63Þ

which means the first term in the first set of parentheses in
Eq. (61) is

D
Xn−1
k¼1

PðknÞ − PðzÞ
k
n − z

¼
X∞
r¼1

Xr−1
s¼0

arzr−s−1D
Xn−1
k¼1

�
k
n

�
s
: ð64Þ

The advantage of writing it this way is that it isolates the n
dependence into something which can be easily analyti-
cally continued. First, recall that overall factors of powers
of n do not matter if the expression they multiply vanishes
at n ¼ 1, as in Eq. (57). Next, note that the resulting
expression is actually a polynomial in n. It can be expressed
this way using Faulhaber’s formula:

Xn−1
k¼1

ks ¼ 1

sþ 1

Xs

j¼0

ð−1Þj
�
sþ 1

j

�
Bjðn − 1Þs−jþ1; ð65Þ

where Bs is the jth Bernoulli number in the convention
that B1 ¼ −1=2. This makes the application of D straight-
forward:

D
Xn−1
k¼1

�
k
n

�
s
¼ D

Xn−1
k¼1

ks ¼ −ð−1ÞsBs: ð66Þ

Thus for the first term in Eq. (61) we have

D
Xn−1
k¼1

PðknÞ − PðzÞ
k
n − z

¼ −
X∞
r¼1

Xr−1
s¼0

arzr−s−1ð−1ÞsBs: ð67Þ

The second term follows completely analogously:

D
Xn−1
k¼1

Pð− k
nÞ − PðzÞ
k
n þ z

¼
X∞
r¼1

Xr−1
s¼0

arzr−s−1Bs: ð68Þ

Combining these results, the first set of large parentheses in
Eq. (61) is

−
X∞
r¼1

Xr−1
s¼0

arzr−s−1Bs½ð−1Þs − 1�: ð69Þ

For even s this is zero. For odd s > 1, Bs ¼ 0, and so only
s ¼ 1 can contribute. Substituting B1 ¼ −1=2 gives

−
PðzÞ
z2

þ a1
z
þ a0

z2
: ð70Þ

We now turn to the second set of parentheses in Eq. (61).
These two terms can be evaluated simultaneously. First, we
can multiply through by n=n to give an overall factor of n
(which is irrelevant) and convert the denominators to
k − zn and kþ zn. We also pull PðzÞ through D because
it is independent of n:

PðzÞD
Xn−1
k¼1

�
1

k − zn
þ 1

kþ zn

�
: ð71Þ
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This sum can be evaluated in terms of the digamma
function ψ ð0ÞðwÞ, which is defined in terms of the
Gamma function ΓðwÞ:

ψ ð0ÞðwÞ≡ Γ0ðwÞ
ΓðwÞ ¼ −γ þ

X∞
k¼0

�
1

kþ 1
−

1

kþ w

�
: ð72Þ

By manipulating the sum, one can show

Xn−1
k¼1

1

k − w
¼ ψ ð0Þðn − wÞ − ψ ð0Þð1 − wÞ: ð73Þ

Thus the second set of parentheses in Eq. (61) is equal to

PðzÞD½ψ ð0Þðn − znÞ − ψ ð0Þð1 − znÞ
þ ψ ð0Þðnþ znÞ − ψ ð0Þð1þ znÞ�: ð74Þ

We cannot naively apply D yet. We first have to select
the correct analytic continuation to real positive n from the
many possible analytic continuations of integer n data. This
is known to be a challenging problem in general.8

Nevertheless, in our context the correct analytic continu-
ation prescription is clear.
The digamma function has poles in the complex plane at

zero and all negative real integers. Recall that we are
ultimately interested in plugging in zm ≡ −m − iαij. Thus
if we are not careful, for certain values of m, the digamma
functions in Eq. (74) will blow up when αij → 0 near
n ¼ 1. On the other hand, on physical grounds we expect
our result to be perfectly well behaved when αij → 0,
which simply corresponds to a degeneracy in the auxiliary
system. The way we avoid the poles of the digamma
function near n ¼ 1 when αij → 0 is by using the reflection
formula

ψ ð0Þð1 − wÞ ¼ ψ ð0ÞðwÞ þ π cot πw; ð75Þ
which produces different analytic continuations given the
same integer data. These observations lead to the following

prescription: for each value ofm, use the reflection formula
(75) to avoid the poles of the digamma function near n ¼ 1
as αij → 0.
As an example, consider the term ψ ð0Þð1 − zmnÞ ¼

ψ ð0Þð1þmnþ αijnÞ in Eq. (74). When αij ¼ 0, this has
a pole when nm ≤ 1. Thus for a given m ≤ 1, we cannot
expect to have a smooth n derivative at n ¼ 1. The
resolution is to use Eq. (75) to get

ψ ð0Þð1þmnþ αijnÞ
¼ ψ ð0Þð−mn − αijÞ − π cot πðmnþ αijÞ ð76Þ

¼ ψ ð0Þð−mn − αijÞ − π cot παij; ð77Þ

where the last equality is only true for integer n. The
remaining digamma term is now free of poles for mn ≤ 1,
which is precisely when there was a problem before the
application of the reflection formula, and D can now be
easily applied. This example illustrates how the correct
analytic continuation depends on the value of m. We must
apply this reasoning separately to each term in Eq. (74).
After applying this procedure to each digamma function as
needed to avoid the poles, it will turn out that all of the extra
cotangent terms cancel against each other.
There is another way to motivate this prescription. Even

for small but finite αij, the analytic continuations picked out
by our prescription can be seen to be qualitatively better
than the one obtained by using Eq. (74) directly, as
illustrated in Fig. 3. Notice that while both curves match
for integer n, the curve obtained by applying the prescrip-
tion outlined above is the only one which smoothly
interpolates between the integers. The oscillations of the
“wrong” curves get larger and larger as αij is reduced or m
is increased.
Applying our prescription to Eq. (74), there are three

expressions depending on the value of m. We are focusing
on the quantity in brackets in Eq. (74):

8>><
>>:

ψ ð0Þð1 − n − nzmÞ − ψ ð0Þð−nzmÞ þ ψ ð0Þðn − nzmÞ − ψ ð0Þð1 − nzmÞ m > 0;

ψ ð0Þðnþ nzmÞ − ψ ð0Þð1þ nzmÞ þ ψ ð0Þðn − nzmÞ − ψ ð0Þð1 − nzmÞ m ¼ 0;

ψ ð0Þðnþ nzmÞ − ψ ð0Þð1þ nzmÞ þ ψ ð0Þð1 − nþ nzmÞ − ψ ð0ÞðnzmÞ m < 0:

ð78Þ

Now we are ready to apply D. The digammas ψ ð0ÞðwÞ will turn into polygammas ψ ð1ÞðwÞ≡ d
dwψ

ð0ÞðwÞ, which obey the
recurrence relation

ψ ð1Þðwþ 1Þ ¼ ψ ð1ÞðwÞ − 1

w2
: ð79Þ

8See Ref. [51] for a recent discussion of the difficulties of the analytic continuation. Reference [51] also contains another method for
computing the entropy perturbatively that does not rely on the replica trick. Such a method avoids the need to analytically continue, and
applying it to the present calculation would serve as a check of our analytic continuation prescription. We leave that check to future work.
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This recurrence relation simplifies the result for m > 0
and m < 0 while the recurrence relation along with the
reflection formula simplifies the result for m ¼ 0. The
result for the second set of parentheses in Eq. (61) with
z ¼ zm is

PðzmÞ
z2m

þ δðmÞPðzmÞ
π2

sinh2παij
: ð80Þ

We are now ready to give the final expression for
Eq. (60). Adding Eq. (70) with z ¼ zm and Eq. (80) we
find

D
Xn−1
k¼1

�
PðknÞ
k
n − zm

þ Pð− k
nÞ

k
n þ zm

�

¼ a1
zm

þ a0
z2m

þ δðmÞPð−iαijÞ
π2

sinh2παij
ð81Þ

for arbitrary analytic PðzmÞ.

E. Completing the proof

Now we specialize to the form of PðzÞ needed
for our calculation which came from the particular
h∂Φ∂Φi00 two-point function we were computing
[Eqs. (52) and (53)]:

PðzÞ ¼ zðz2 − 1Þez log ðr0=rÞ: ð82Þ

Thus a0 ¼ 0, and a1 ¼ −1. Using Eq. (81) gives

D
Xn−1
k¼1

�
PðknÞ
k
n− zm

þPð− k
nÞ

k
nþ zm

�

¼ i
im−αij

þδðmÞ iπ2

sinh2παij
αijðα2ijþ1Þ

�
r0

r

�
−iαij

: ð83Þ

Plugging this into Eq. (56) and plugging that into
Eq. (49) gives the term from Eq. (39) that we have
been focusing on in this section:

D
1

2

��Xn−1
k¼0

OðkÞ
�2�00

n

¼−1
2π

X
i;j;m

Z
drdr0

ðrr0Þ2f
ðm−2Þ
ij ðrÞfð−m−2Þ

ji ðr0Þsinhπαije−πðKiþKjÞ

×

�
1

im−αij
þδðmÞ αij

sinh2παij
π2ðα2ijþ1Þ

�
r0

r

�
−iαij

	
:

ð84Þ

Notice that the first term in this expression exactly
cancels the contribution to Sð2Þ00 coming from the first term
in Eq. (39), presented in Eq. (47). We now consider the
second term, and define the manifestly positive quantity
Mij ≡ e−πðKiþKjÞπ2ðα2ij þ 1Þ to clean up the notation. Then
we have

Sð2Þ00 ¼ −1
2π

X
i;j

Z
dr dr0

ðrr0Þ2 f
ð−2Þ
ij ðrÞ

× fð−2Þji ðr0Þ
�
r0

r

�
−iαij αij

sinh παij
Mij: ð85Þ

The integrals over r, r0 factorize, giving

Sð2Þ00 ¼ −1
2π

X
i;j

�Z
∞

0

dr riαij−1fð−2Þij ðrÞ
	

×

�Z
∞

0

dr r−iαij−1fð−2Þji ðrÞ
	

αij
sinh παij

Mij: ð86Þ

Recall the constraint on the test functions derived previ-
ously by requiring the density matrix be Hermitian
[Eq. (11)]: fijðr; θÞ ¼ fjiðr; 2π − θÞ�. In Fourier space,

this implies fðmÞ
ji ðrÞ ¼ fðmÞ

ij ðrÞ�. Inserting this into Eq. (86)
we see that the factors in brackets are complex conjugates
of each other. Furthermore, because sinh παij always has
the same sign as αij, the overall sign of the entire term is
negative and so we find

Sð2Þ00 ≤ 0: ð87Þ

As discussed after Eq. (24), this proves the QNEC.

1 2 3
n

ij 1

1 2 3
n

ij 0.5

1 2 3
n

ij 0.1 FIG. 3. Sample plots of the imaginary part
(the real part is qualitatively identical) of the
naive bracketed digamma expression in
Eq. (74) and the one in Eq. (78) obtained
from analytic continuation with z ¼ −m −
iαij form ¼ 3 and various values of αij. The
oscillating curves are Eq. (74), while the
smooth curves are the result of applying the
specified analytic continuation prescription
to that expression, resulting in Eq. (78).
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V. EXTENSION TO D ¼ 2, HIGHER SPIN,
AND INTERACTIONS

In D ¼ 2, there are no transverse directions, and so it is
not possible to use the fact that the state is very close to the
vacuum. Nevertheless, once one has proven the QNEC for a
free scalar field in D > 2, one can use dimensional
reduction to prove it for free scalar fields in D ¼ 2. Let
Φðz; yÞ be the chiral scalar on N in D > 2, where y labels
the D − 2 transverse coordinates. One can isolate a single
transverse mode by integrating Φðz; yÞ against a real
transverse wave function, and this defines an effective
two-dimensional field:

Φ2DðzÞ≡
Z

dyψðyÞΦðz; yÞ; ð88Þ

where ψ is normalized such that
R
ψ2 ¼ 1. Correlation

functions of Φ2D and its derivatives exactly match those of
a two-dimensional chiral scalar, and so our dimensional
reduction is defined by the subspace of the D-dimensional
theory obtained by acting on the vacuum with Φ2D. In any
such state, one can integrate the D-dimensional QNEC
along the transverse direction to find

Z
dyhTkkðyÞi ≥

1

2π

Z
dy

δ2Sout
δλðyÞ2 : ð89Þ

Here we have suppressed the value of the affine parameter
as a function of the transverse direction. The effective two-
dimensional change in the entropy is defined by consid-
ering a total variation in all of the generators which is
uniform in the transverse direction. For such a variation we
have

S002D ¼
Z

dy dy0
δ2Sout

δλðyÞδλðy0Þ ≤
Z

dy
δ2Sout
δλðyÞ2 ; ð90Þ

where the inequality comes from applying strong subaddi-
tivity to the off-diagonal second derivatives [23]. The two-
dimensional energy-momentum tensor is defined in terms
of the normal-ordered product of the two-dimensional
fields, T2D ≕ ∂Φ2D∂Φ2D:. However, using Wick’s theorem
one can easily check that T2D acts on the dimensionally
reduced theory in the same way as the integrated D-
dimensional Tkk:

hT2DðwÞΦ2Dðz1Þ � � �Φ2DðznÞi

¼
Z

dyhTkkðw; yÞΦ2Dðz1Þ � � �Φ2DðznÞi: ð91Þ

Therefore the QNEC holds for a free scalar field in two
dimensions:

hT2Di ¼
Z

dyhTkkðyÞi ≥
1

2π

Z
dy

δ2Sout
δλðyÞ2 ≥

1

2π
S002D:

ð92Þ

The extension to bosonic fields with spin is trivial, as
these simply reduce on N to multiple copies of the 1þ 1
chiral scalar CFT, one for each polarization. These facts are
reviewed in Ref. [44]. Similarly, fermionic fields reduce to
the chiral 1þ 1 fermion CFT; we expect that there is a
similar proof in this case.
Astute readers may have noticed that the mass term of

the higher-dimensional field theory did not enter. Since it
does not contribute to the commutation relations on N or to
Tkk, it plays no role in our analysis. Regardless of whether
the D-dimensional theory has a mass, the 1þ 1 chiral
theory is massless. In a sense, null surface quantization is a
UV limit of the field theory. One might therefore expect
that the addition of interactions with positive mass dimen-
sion (super-renormalizable couplings) will also not change
the algebra of observables on N. So long as this is the case,
the extension to theories with super-renormalizable inter-
actions is trivial.
One argument that super-renormalizable interactions are

innocuous proceeds in two stages [44]. First, one considers
the direct effects of adding interaction terms to the
Lagrangian; for example a scalar field potential VðϕÞ. So
long as these interaction terms contain no derivatives (or are
Yang-Mills couplings), they do not contribute to the com-
mutation relations of fields restricted to the null surface,
or to Tkk. (So far, the interaction could be of any scaling
dimension, so long as one avoids derivative couplings.)
Next, one considers loop corrections due to renormal-

ization. In the case of a marginally renormalizable, or
nonrenormalizable theory, these loop corrections normally
require the addition of counterterms containing derivatives
(for example, field strength renormalization), spoiling the
null surface formulation. On the other hand, in a super-
renormalizable theory, only couplings with positive mass
dimension require counterterms. For a standard quantum
field theory (QFT) consisting of scalars, spinors, and/or
gauge fields, none of these super-renormalizable inter-
actions include the possibility of derivative couplings. Thus
one expects that loop corrections do not spoil the algebra
of observables on the null surface. However, super-
renormalizable theories are difficult to construct except
when D < 4. (For example, the ϕ3 theory is super-
renormalizable in D < 6, but is unstable.)
It is an open question whether the QNEC is valid for

non-Gaussian D ¼ 2 CFTs in states besides conformal
vacua, or more generally for QFTs in any dimension which
flow to a nontrivial UV fixed point.9 Nor have we carefully

9In more than two dimensions, interacting CFTs appear to have
no nontrivial observables on the horizon [40,44], so the current
proof cannot be extended to this situation.
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considered the effects of making the scalar field compact.
QCD in D ¼ 4 is a borderline case; the coupling flows to
zero, but slowly enough that there is an infinite field
strength renormalization. Strictly speaking this makes null
surface quantization invalid, yet it is still a useful numerical
technique for studying hadron physics [49]. However, we
conjecture that the QNEC will be true in every QFT
satisfying reasonable axioms.
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APPENDIX A: CORRELATION FUNCTIONS

1. Scalar field

The chiral scalar operator ∂ΦðzÞ is a conformal primary
of dimension ðh; h̄Þ ¼ ð1; 0Þ. Its two-point function on the
Euclidean plane is fixed by conformal symmetry up to an
overall constant. We will take the following normalization:

h∂ΦðzÞ∂ΦðwÞi ¼ −1
ðz − wÞ2 : ðA1Þ

The two-point function on the n-sheeted replicated mani-
fold is obtained by application of the conformal trans-
formation z → zn:

h∂ΦðzÞ∂ΦðwÞin ¼ −1
n2zw

ðzwÞ1=n
ðz1=n − w1=nÞ2 : ðA2Þ

The second derivative of this two-point function under
translations of the holomorphic coordinate, evaluated at
λ ¼ 0, is defined by

h∂Φðz − λÞ∂Φðw − λÞi00n
¼ h∂3ΦðzÞ∂ΦðwÞin þ h∂ΦðzÞ∂3ΦðwÞin
þ 2h∂2ΦðzÞ∂2ΦðwÞin: ðA3Þ

One can show that this combination of correlation functions
can be written as

1

nðzwÞ2
X
jqj<1

signðqÞqðq2 − 1Þ
�
w
z

�
q
; ðA4Þ

where q is an integer divided by n. Notice that this implies
that the sum vanishes for n ¼ 1, as required by translation
invariance.
Our convention for the only nonzero component of the

stress tensor for the holomorphic sector of the theory is

TðzÞ ¼ −2πTzzðzÞ ¼ −
1

2
∶∂ΦðzÞ∂ΦðzÞ∶; ðA5Þ

where ∶AB∶ denotes the normal-ordered product. Thus
using Wick’s theorem we have

h∂ΦðzÞ∂ΦðwÞTð0Þi ¼ −1
ðzwÞ2 : ðA6Þ

2. Auxiliary system

In this appendix we will evaluate the θ-ordered corre-
lation functions of the auxiliary system,

hEijðθÞEi0j0 ðθ0Þin ¼
Tr½e−2πnKauxT ½EijðθÞEi0j0 ðθ0Þ��

Tr½e−2πnKaux � : ðA7Þ

First, consider the case θ > θ0:

Tr½e−2πnKauxEijðθÞEi0j0 ðθ0Þ� ¼ e−2πnKieðθ−θ0Þαijδij0δji0 ;

ðA8Þ

where αij ≡ Ki − Kj is the difference in two of the
eigenvalues of Kaux. For θ < θ0, we have the opposite
ordering inside the expectation value, which gives

Tr½e−2πnKauxEi0j0 ðθ0ÞEijðθÞ�
¼ e−2πnKieðθ−θ0þ2πnÞαijδij0δji0 : ðA9Þ

We will find it convenient to use the following
complex exponential representation of eðθ−θ0Þαij , valid for
θ − θ0 ∈ ð0; 2πnÞ:

eðθ−θ0Þαij ¼ 1

πn

X
p

e−ipðθ−θ0Þ
sinh nπαij
ipþ αij

enπαij : ðA10Þ

Here p is being summed over all rational numbers which
are integers divided by n. This can be substituted directly
into Eq. (A8). For the expectation value when θ < θ0 given
by Eq. (A9), we can take θ − θ0 þ 2πn as our Fourier series
variable instead of θ − θ0, which also lies in ð0; 2πnÞ in this
case. This means we can substitute this into Eq. (A10),
giving the same complex exponential representation:

eðθ−θ0þ2πnÞαij ¼ 1

πn

X
p

e−ipðθ−θ0Þ
sinh nπαij
ipþ αij

enπαij : ðA11Þ

Collecting these results, the θ-ordered correlation function
in the auxiliary system is simply
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hEijðθÞEi0j0 ðθ0Þin
¼ δij0δji0e−2πnKi

1

πn ~Zaux
n

X
p

e−ipðθ−θ0Þ
sinh nπαij
ipþ αij

enπαij ;

ðA12Þ

where

~Zaux
n ≡ Tr½e−2πnKaux �: ðA13Þ

Note that ~Zaux
1 ¼ 1.
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