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Double-null coordinates are highly useful in numerical simulations of dynamical spherically
symmetric black holes (BHs). However, they become problematic in long-time simulations: Along
the event horizon, the truncation error grows exponentially in the outgoing Eddington null coordinate—
which we denote ve—and runs out of control for a sufficiently long interval of ve. This problem, if not
properly addressed, would destroy the numerics both inside and outside the black hole at late times (i.e.
large ve). In this paper we explore the origin of this problem, and propose a resolution based on
adaptive gauge for the ingoing null coordinate u. This resolves the problem outside the BH—and also
inside the BH, if the latter is uncharged. However, in the case of a charged BH, an analogous large-ve
numerical problem occurs at the inner horizon. We thus generalize our adaptive gauge method in order
to overcome the inner-horizon problem as well. This improved adaptive gauge, to which we refer as the
maximal-σ gauge, allows long-v double-null numerical simulation across both the event horizon and the
(outgoing) inner horizon, and up to the vicinity of the spacelike r ¼ 0 singularity. We conclude by
presenting a few numerical results deep inside a perturbed charged BH, in the vicinity of the contracting
Cauchy horizon.
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I. INTRODUCTION

The study of perturbations of the Reissner-Nordström
(RN) background has been an area of continuing interest
in black-hole (BH) physics during the last few decades
[1–14]. While the perturbed Kerr geometry is con-
sidered to be a more suitable spacetime model to
describe astrophysical black holes, the former model
of a spherical charged BH offers a simpler analysis due
to spherical symmetry. The RN and Kerr spacetimes
admit a similar structure of outer and inner horizons
(IH), which implies common behavior in various phe-
nomena; thus, perturbations on RN background were
often used as a “prototype” model for BH structure
both in analytical [1,3,5,6,14] and numerical [2,7–13]
analyses.
Double-null coordinates are widely used in numerical

analyses of spherically symmetric spacetimes [15–20].
The choice of double-null coordinates has some advan-
tages: It leads to relatively simple field equations, it
allows convenient coverage of globally hyperbolic
charts, and it simplifies the determination of the causal
structure. However, when it comes to long-time numeri-
cal simulations of (nonextremal) dynamical black holes,
it also has a serious drawback: unless preventive
measures are taken, the numerical error runs out of
control if the integration along the event horizon (EH)
proceeds for a sufficiently long time. The time scale
for the onset of this catastrophic problem, when
expressed in terms of the outgoing null Eddington

coordinate ve,
1 is typically of order 20–50 times the

BH mass M (depending on the numerical parameters,
and also on the surface gravity). The origin of this
problem may be traced to dynamics in the horizon’s
neighborhood, yet it destroys the numerics in the
entire domain of influence of that neighborhood. This
includes the BH interior (at sufficiently large ve), and
also the entire strong-field and weak-field regions at
sufficiently large values of the ingoing null Eddington
coordinate ue.
To demonstrate this problem, consider two adjacent

outgoing null grid rays, one just before the EH and the
next one immediately after the EH. When simulation time
(in ve) is long enough, the outer ray obviously heads
towards future null infinity while the inner ray heads
towards either r ¼ 0 (e.g., in the Schwarzschild metric
case) or the Cauchy horizon (in the RN metric case, as
illustrated in Fig. 1). This means that δr—the difference in
the area coordinate r between the two adjacent grid rays at a

1Here we use ve and ue to denote the Eddington outgoing and
ingoing null coordinates outside the BH. In particular, ue diverges
at the EH, whereas ve diverges at future null infinity. (If the
background is dynamical rather than the static Schwarzschild or
RN metric, then the definition of ve and ue becomes somewhat
vague, but nevertheless they are chosen so as to satisfy the
appropriate asymptotic properties of the Eddington coordinates at
large r and on approaching the EH.) Besides these specific
Eddington coordinates, we also define the generic double-null
coordinates u and v, with no specific choice of gauge (see Fig. 1,
and also Sec. II C).
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given ve—grows out of control, and the numerics breaks
down due to the blowing-up truncation error. In fact, as
long as δr is ≪ M, it grows exponentially with ve—and
thus is the truncation error. This exponential growth of δr
and truncation error occurs not only in that specific pair of
null grid rays at the two sides of the EH, but in fact in the
entire region near the horizon (both inside and outside),
where r is close to its value at the horizon.
We have encountered this problem of uncontrolled

growth of error when we attempted to numerically inves-
tigate the recently discovered phenomenon of outgoing
shock wave [21] that forms at the outgoing inner horizon of
a perturbed charged (or spinning) BH. We investigated the
case of a spherical charged BH perturbed by a self-
gravitating, uncharged, massless scalar field. Our algorithm
for overcoming this problem was developed especially for
the purpose of numerically exploring this shock wave; yet
we believe that this numerical algorithm may be useful for a
variety of problems associated with spherical dynamical
BHs. Hence the present paper will be devoted to presenting
this algorithm; the results of our numerical investigation of
the shock wave will be presented elsewhere.
This numerical problem has been previously addressed

by Burko and Ori [9] using the so-called “point splitting”
algorithm, which is based on steady addition of new grid
points at the vicinity of the horizon while propagating in the
v direction. This algorithm is very effective, yet it is fairly

cumbersome. Here we propose a different solution to that
problem, based on adaptive gauge choice for the ingoing
null coordinate u. The effect of this adaptive gauge is
similar to crowding the null grid rays in the vicinity of the
horizon. This solution is simpler and more versatile. It is
also generalizable to similar problems that occur near the
inner horizon of a charged black hole.
The paper is organized as follows: We formulate the

physical problem in terms of the field equations, initial
conditions, and coordinate choice in Sec. II; we present the
basic “four-point” numerical scheme (for double-null
integration of PDEs in effectively 1þ 1 spacetime) in
Sec. III. Note that Secs. II and III contain fairly standard
material, which we nevertheless present here for the sake of
completeness and for establishing our notation. The EH
problem is then described in some detail in Sec. IV; our
solution for this problem, based on the adaptive gauge
method, is described in Sec. V. This section also contains a
description of another variant of the algorithm (the
“Eddington-like gauge” variant), as well as a few examples
of relevant numerical results. The analogous inner-horizon
problem is then discussed in Sec. VI, and our solution to
this problem—an appropriate extension of the adaptive
gauge method of Sec. V—is presented in Sec. VII.
Section VIII contains a few examples of numerical results
describing the behavior of the various fields deep inside the
perturbed charged BH at late times (namely, at large ve,
close to the contracting Cauchy horizon). We summarize
our results and conclusions in Sec. IX.

II. PHYSICAL SYSTEM AND FIELD EQUATIONS

Let us consider a spherically symmetric pulse of the self-
gravitating scalar field Φ, which propagates inward on the
background of a preexisting Reissner-Nordström black
hole and perturbs its metric. The scalar field is neutral,
massless, and minimally coupled, and the initial RN
background has mass M0 and charge Q. We use a
double-null coordinate system ðu; v; θ;φÞ, and the line
element is given by

ds2 ¼ −eσðu;vÞdudvþ rðu; vÞ2dΩ2 ð1Þ

where dΩ2 ¼ dθ2 þ sin2 θdφ2. The unknown functions in
our problem are thus the scalar field Φðu; vÞ and the metric
functions rðu; vÞ and σðu; vÞ.
The pulse starts at a certain ingoing null ray v ¼ v1;

hence, at v < v1 the scalar field vanishes and the metric is
just RN with mass M0 and charge Q. However, at v ¼ v1
the metric functions are deformed by the energy-momen-
tum contribution of the scalar field (unless the scalar-field
perturbation is a test field).

FIG. 1. Spacetime diagram illustrating the resolution loss
problem in a double-null numerical simulation. The diagram
locates the double-null numerical grid in the RN spacetime
diagram; the grid boundaries are marked by double solid lines.
Solid (single) lines denote null infinity (NI); dashed lines
represent the EH and IH. Dotted lines denote two adjacent grid
lines, the “outer ray” and “inner ray,” at the two sides of the EH.
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A. Field equations

The field equations and also the energy-momentum
contributions of the scalar and electromagnetic fields are
described in some detail in Appendix A. In our double-null
coordinates the massless Klein-Gordon equation Φ;α

;α ¼ 0

reads

Φ;uv ¼ −
1

r
ðr;u Φ;v þr;v Φ;u Þ: ð2Þ

The metric evolution is governed by the Einstein equation
Gμν ¼ 8πðTΦ

μν þ TQ
μνÞ, where TΦ

μν and TQ
μν, respectively,

denote the energy-momentum tensors of the scalar and
electromagnetic fields. Substituting the explicit expressions
(A3) and (A8) for TΦ

μν and TQ
μν in the Einstein equations,

one obtains two evolution equations,

r;uv ¼ −
r;u r;v
r

−
eσ

4r

�
1 −

Q2

r2

�
; ð3Þ

σ;uv ¼
2r;u r;v

r2
þ eσ

2r2

�
1 −

2Q2

r2

�
− 2Φ;uΦ;v; ð4Þ

as well as two constraint equations,

r;uu −r;u σ;u þrðΦ;u Þ2 ¼ 0; ð5Þ

r;vv −r;v σ;v þrðΦ;v Þ2 ¼ 0: ð6Þ

Overall we have a hyperbolic system of three evolution
equations (2)–(4) for our three unknowns Φðu; vÞ, rðu; vÞ,
and σðu; vÞ. The two constraint equations need only be
satisfied at the initial hypersurface (see footnote 5 below).2

B. Mass function

In addition to our three unknown functions, one may also
be interested in the mass function mðu; vÞ. The mass
function is determined from the metric functions according
to [5]

gαβr;α r;β ¼ 1 − 2m=rþQ2=r2; ð7Þ

which in our coordinates translates to

m ¼ ð1þ 4e−σr;u r;v Þr=2þQ2=2r: ð8Þ

The actual numerical calculation of mðu; vÞ is based on
the numerical results of rðu; vÞ and σðu; vÞ and a finite-
difference approximation for the derivatives r;u ; r;v.

In particular, we later refer to the black-hole “final mass”
(mfinal) which we define as the value of the mass function at
the intersection of the event horizon with the final ray of the
numerical grid, v ¼ vmax.

C. Gauge freedom

The field equations in their double-null form (2)–(6) are
invariant under coordinate transformations of the form
v → v0ðvÞ, u → u0ðuÞ. In such a transformation, obviously
r and Φ are unchanged, but σ changes according to

σ → σ0 ¼ σ − ln
�
du0

du

�
− ln

�
dv0

dv

�
: ð9Þ

The choice of optimal gauge may depend on the nature
and properties of the spacetime chart being investigated.
For example, if the domain of integration is restricted to the
BH exterior, an Eddington-like u coordinate may be very
convenient.3 But on the other hand, if this domain contains
the horizon, then one has to choose another gauge for u,
because the Eddington-like u diverges at the horizon. In
that case, a compelling u coordinate is the one that
coincides with the affine parameter along the ingoing
initial ray, to which we shall refer as an affine u coordinate.
(Recall, however, that in a numerical application, if the
domain of integration has too large of an extent in v, then
one would still run into the aforementioned “horizon
problem.”) In all these cases, an Eddington-like v coor-
dinate may be a reasonable choice, and the same for an
affine v coordinate—regardless of the choice of u.

D. Characteristic initial conditions

The characteristic initial hypersurface consists of two
null rays, u ¼ u0 and v ¼ v0 (see Fig. 2).

4 In principle, the
initial conditions for the hyperbolic system (2)–(4) should
consist of the six initial functions Φðu0; vÞ, rðu0; vÞ,
σðu0; vÞ and Φðu; v0Þ, rðu; v0Þ, σðu; v0Þ; however, on each
null ray, only two of the three functions may be freely
chosen. The third function should then be dictated by the
relevant constraint equation—Eq. (5) at v ¼ v0 and Eq. (6)
at u ¼ u0.

5

2To avoid confusion we emphasize that Q is a fixed parameter
in our model, which is, in principle, determined by the initial
value of the electromagnetic field, through Eq. (A7). This is in
contrast to the mass function mðu; vÞ, which evolves due to the
energy-momentum of the scalar field.

3We use here the notion of “Eddington-like coordinates” for
null coordinates (u or v) which asymptotically behave like the
strict Eddington coordinates ue, ve in RN/Schwarzschild. For
example, an Eddington-like u coordinate is one that diverges on
approaching the EH, similar to ue in RN/Schwarzschild. We
resort here to Eddington-like coordinates (rather than Eddington)
because the spacetime in consideration may be time dependent;
hence, the strictly Eddington coordinates are not uniquely defined
(see also footnote 1).

4As can be seen, for instance, in Figs. 6 and 7, in our numerical
simulations we actually use the values u0 ¼ v0 ¼ 0.

5Once the constraint equations are satisfied by the initial data,
these equations are guaranteed to hold in the future evolution as
well (owing to the consistency of the evolution and constraint
equations).
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In our setup, we freely choose the two variables Φ and σ
along each initial ray, and then determine r along that ray
from the constraint equation.6 Recall, however, that there is
1 gauge degree of freedom associated with each initial ray.
Consider, for example, the ray u ¼ u0: The initial function
σðu0; vÞ may be modified in a fairly arbitrary manner by a

gauge transformation v → v0ðvÞ (for example, it can always
be set to zero by such a transformation). Restated in other
words, the choice of gauge for v can be expressed by the
choice of the initial function σðu0; vÞ. The same applies to
the other initial ray v ¼ v0 and the function σðu; v0Þ
defined along it.
We conclude that of the three initial functions that need

be defined along each initial ray, one (σ) expresses the
choice of gauge, one (r) is determined by the constraint
equation, and only one (Φ) expresses a true gauge-invariant
physical degree of freedom.

1. Standard gauge condition

A compelling gauge choice is the one defined by the
initial conditions

σðu; v0Þ ¼ 0; σðu0; vÞ ¼ 0: ð10Þ

We refer to it as the “standard gauge condition.” Note that
this gauge condition implies an affine gauge for both u
and v.

III. BASIC NUMERICAL ALGORITHM

We solve the field equations on a discrete numerical
ðu; vÞ grid, with fixed spacings Δu and Δv in these two
directions. The borders of the grid are defined by four null
rays: The two initial rays u ¼ u0, v ¼ v0 where initial data
are specified, and the two final rays u ¼ umax, v ¼ vmax.
The numerical solution proceeds along u ¼ const lines in
ascending order, from u ¼ u0 up to u ¼ umax. Along each
line the solution is numerically advanced from v ¼ v0 up
to v ¼ vmax.
The basic building block of our algorithm, the grid cell,

is portrayed in Fig. 3. It consists of three grid points (1,2,3)
in which the functions Φ, r, and σ are already known (from
initial conditions or from previous numerical calculations),
and one point (“4”) in which these functions are not known
yet. The most elementary numerical task is to calculate the
values of these three unknowns—which we denote by Φ4,
r4, σ4—at point 4. To this end we evaluate the evolution
equations (2)–(4) at the central point “0” (a fiducial point
not included in the numerical grid), using central finite
differences at second-order accuracy.
To demonstrate the basic numerical algorithm let us use

the generic symbol x to represent the three unknowns Φ, r,
σ. The evolution equation for x takes the schematic form

x;uv ¼ Fðx; x;u; x;vÞ ð11Þ

(with some given function F). We evaluate this equation at
point 0:

x;uv0¼ Fðx0; x;u0; x;v0Þ≡ F0; ð12Þ

FIG. 2. Spacetime diagram illustrating a typical initial-value
setup for the simulation in perturbed RN spacetime. Grid
boundaries are again marked by double lines. Solid lines denote
null infinity; dashed lines represent the event horizon (r ¼ rþ)
and inner horizon (r ¼ r−). Wavy lines denote the timelike r ¼ 0
singularity of RN. The ingoing scalar-field pulse, defined on
the initial ray u ¼ u0, is marked by the red curve. It is initially
limited to the range v1 ≤ v ≤ v2. In the case of a self-gravitating
scalar field, the original RN metric is deformed at
v > v1.

6This determination of r is up to a few free parameters, whose
counting is somewhat tricky: Since the constraint equation is a
second-order ODE for r, the latter is only determined (at each
initial ray) up to two arbitrary constants, resulting in four such
arbitrary constants overall. One of these constants is determined
by the initial mass at the vertex ðu0; v0Þ, since the mass function
(8) involves r;u and r;v. Two other integration constants (one at
each ray) are dictated by the value of r at that vertex. (The initial
mass and initial value of r at the vertex are both freely
specifiable.) This determines three out of the four arbitrary
constants. The remaining constant merely expresses a residual
gauge freedom, since σ is unaffected by a gauge transformation of
the form v → vb, u → u=b for any constant b > 0. Note that the
parameter Q is also determined by the initial conditions (through
the electromagnetic field).
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where x0 stands for x evaluated at point 0 (and similarly for
x;u0, x;v0, x;uv0). For x;uv0 we have, at second-order
accuracy,

x;uv0 ≅
x4 − x3 − x2 þ x1

ΔuΔv
; ð13Þ

where xi denotes the value of x at point i. Next we evaluate
F0. For x0 we can simply write x0 ¼ ðx2 þ x3Þ=2. For x;u0
and x;v0, the correct expressions (at second-order accuracy)
would be

x;u0 ≅
x3 − x1 þ x4 − x2

2Δu
; x;v0 ≅

x2 − x1 þ x4 − x3
2Δv

:

ð14Þ

Substituting these expressions for x0, x;u0, x;v0 and x;uv0 in
Eq. (12) would yield an algebraic equation (assuming
an algebraic function F) for the unknown x4. In order to
avoid nonlinear algebraic equations, we apply a predictor
corrector scheme:

(i) In the first stage (“predictor”), the first-order deriv-
atives at the right-hand side (RHS) of Eq. (12) are
evaluated at first-order accuracy only, through the
expressions x;u0 ≈

x3−x1
Δu and x;v0 ≈

x2−x1
Δv ; hence, F0 is

independent of x4. Therefore, at the predictor stage
Eq. (12) yields a linear equation for x4. We mark the
solution of this linear equation by ~x4. This inter-
mediate value ~x4 is only first-order accurate.

(ii) In the second stage (“corrector”), we elevate the
expression for x4 from first-order to second-order
accuracy. To this end we use the above expressions
(14) for x;u0 and x;v0 but with x4 replaced by ~x4
(a known quantity). Again, F0 is independent of the
unknown x4, and we obtain a linear equation for this
unknown—which is now second-order accurate.

When applying this procedure to our actual variables, we
find it convenient to solve the three evolution equations in a
specific order: We first solve Eq. (3) to obtain r4, then
Eq. (2) for Φ4, and finally Eq. (4) for σ4. This way, the
predictor-corrector is not needed in the integration of the
last equation (4) (as can be easily verified from its RHS).
We also find it convenient to choose equal grid spacings,
Δu ¼ Δv≡ M0

N , whereM0 is the initial black-hole mass and
N takes several values: 40, 80, 160, 320, 640 (several
values are used on each run to provide numerical con-
vergence indicators).
This basic numerical scheme usually performs very

well—second-order convergence of r, σ and Φ—as long
as the domain of integration is not too large (say, a span in
ve smaller than 20 times M). Even if the domain of
integration is much larger, the scheme should still function
well if this domain is entirely outside the BH. But if the
domain of integration contains a sufficiently long portion of
the EH, the numerical scheme encounters the aforemen-
tioned “horizon problem,” which we now explore.

IV. EVENT-HORIZON PROBLEM

A. Simplest example: Test scalar field

To illustrate the EH problem in its simplest form,
suppose for example that we want to numerically analyze
the evolution of a test scalar field Φ on a prescribed RN (or
possibly Schwarzschild) background. Let Uk, Vk be the
Kruskal coordinates, and, recall, ue, ve denote the
Eddington coordinates (e.g. of the BH exterior). Suppose
that our numerical chart contains (parts of) the BH exterior
as well as interior, so it also contains a portion of the EH.
Then certainly we cannot use the coordinate ue to cover this
chart, because it diverges at the horizon. Instead, we can, in
principle, use Uk, or any other u-coordinate regular at
the horizon (e.g. the “affine u coordinate” introduced in
Sec. II C). For the v coordinate the issue of regularity at the
EH does not arise at all, and we can choose Vk or ve (or
essentially any other v coordinate); it does not really matter.
Nevertheless it turns out that the EH problem is easiest to
describe and quantify in terms of the ve coordinate, so we
use this coordinate here.
Once we choose a horizon-regular u coordinate (and

essentially any v coordinate), both the metric and the scalar
field Φ are perfectly regular across the horizon. This is
indeed the situation from the pure mathematical viewpoint.
However, in a numerical implementation the situation

FIG. 3. The basic grid cell. Points 1–4 are grid points; point 0 is
an auxiliary point in which the field equations are evaluated using
finite differences. The distances between adjacent grid points in
the u and v directions are Δu and Δv, respectively.
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becomes more problematic. It turns out that along the
horizon’s neighborhood the truncation error grows expo-
nentially in ve. In the Schwarzschild case it grows as
∝ eve=4M, and in the more general case as ∝ eκþve , where κþ
is the surface gravity of the EH. There is a prefactor which
is proportional to the basic spacing Δu, but if the ve-extent
of the numerical chart is sufficiently large, the exponen-
tially growing error eventually gets values that are too large
and the numerics actually breaks down.
To understand and quantify this exponential growth of

error, consider two adjacent outgoing null grid lines,
denoted u ¼ u1 and u ¼ u2 (with u2 ¼ u1 þ Δu): u1 is
the last u ¼ const grid line before the EH and u2 is the next
one, as illustrated in Fig. 4. At any v ¼ const line, we
denote by δrðvÞ the r-difference between these two u
values:

δrðvÞ≡ rðu1; vÞ − rðu2; vÞ:

To evaluate δrðvÞ we employ the tortoise coordinate r�ðrÞ
which is defined, both inside and outside the EH, as

r� ¼ rþ r2þ
rþ − r−

ln jr − rþj −
r2−

rþ − r−
ln jr − r−j: ð15Þ

This function is noninvertible, but we can use the near-
horizon approximation for rðr�Þ:

r ≅ rþ � C�e2κþr� ;

where the “�” refers to points outside or inside the EH, and
C� > 0 are certain constants whose specific values are
unimportant here. Thus, denoting by r1, r2 the values of r

along the lines u ¼ u1, u ¼ u2, respectively (at a given v),
we write

r1 ≅ rþ þ Cþ · e2κþr� ; r2 ≅ rþ − C− · e2κþr� :

Let us now reexpress r1;2 using Eddington coordinates ve,
ue, defined (at the two sides of the EH) by ve ¼ tþ r� and
ue ¼ �ðt − r�Þ, implying r� ¼ ðve∓ueÞ=2. (Note that
regardless of the specific gauge that we actually use for
u in the numerics, we are allowed to reexpress u in terms of
ue, which simplifies the analysis here, and the same for ve.)
We find that

δrðvÞ≡ r1ðvÞ − r2ðvÞ ≅ eκþve ½Cþe−κþue1 þ C−eþκþue2 �;
ð16Þ

where ue1, ue2 are the Eddington values of u1, u2. Notice
that the term in squared brackets is a constant. Let us denote
by δr0 the initial value of δr (at v ¼ v0). We find that

δrðvÞ ≅ δr0eκþðve−ve0Þ; ð17Þ

where ve0 is the Eddington value corresponding to v ¼ v0.
Since the field equation explicitly depends on r (and its

derivatives), the exponential growth of the difference in r
between two adjacent grid points will inevitably lead to an
exponentially growing truncation error. If the span in ve is
large enough, at some point δrðvÞ will become so large
(e.g. comparable to r itself) that the finite-difference
numerics will inevitably break down.
To demonstrate how severe this problem is, suppose for

example that wewant to explore the formation of power-law
tails of the scalar field along the horizon of a Schwarzschild
(or possibly RN) BH.A reliable description of tail formation
typically requires a ve range of order a few hundredsM (see
e.g. Burko and Ori [9]). Let us denote this desired ve extent
by δve, and pick for example δve ¼ 200M. Assuming that
the exponential law (17) applies, and recalling that in
Schwarzschild κþ ¼ 1=ð4MÞ, we find that δrfinal ≡
δrðvmaxÞ is e50δr0 ∼ 5 × 1021δr0. For any reasonable choice
of initial Δu, in any “conventional” (horizon-crossing)
gauge for u, such δrfinal will be ≫ M, rendering the
numerical finite-difference scheme useless. An equivalent
assessment can be made in the RN case. However, this
phenomenon does not occur in the extremal case, because κþ
vanishes.
Note, however, that the simple exponential growth of

δrðvÞ only holds as long as the two outgoing rays are still in
the EH neighborhood. In particular, it is not valid when
δrðvÞ is no longer ≪ rþ. Nevertheless, one can show that
whenever Eq. (17) predicts (upon extrapolation) values of
δrðvmaxÞ that are comparable to or larger than rþ, the actual
δrðvÞ between two adjacent rays bordering the EH will
always achieve values of order rþ at least (regardless of

FIG. 4. A zoom in on the numerical grid of Fig. 1 illustrating
the resolution loss problem. Double solid lines denote the grid
past (u ¼ u0, v ¼ v0) and future (u ¼ umax, v ¼ vmax) bounda-
ries. The dashed line is the EH. The dotted lines denote two
adjacent null grid lines close to the event horizon, u ¼ u1 and
u ¼ u2. The arrow represents the initial radial difference δr0.
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how small δr0 was initially). Figure 5 displays δrðveÞ for a
RN background with Q=M ≅ 0.65, and a pair of grid lines
(located in both sides of the EH) with initial separation
δr0 ¼ 10−3M. The figure was generated using the analyti-
cal relation between r� and r in RN, Eq. (15).
So far we restricted the discussion to a pair of adjacent

grid lines u ¼ u1;2 at the two sides of the EH. It is
straightforward to show, however, that basically the same
phenomenon occurs when the pair u1, u2 in consideration is
located either outside or inside the EH (but near the horizon).
In all three cases δr admits the same exponential growth
(17). Note that in the case of two inner grid lines in RN the
final separation δrfinal may be fine for large δve because both
inner rays run to r ¼ r−. Yet the numerics still breaks down
because in intermediate v values δrðvÞ becomes ∼M.
So far we considered the numerical solution of the scalar

wave equation on a prescribed RN metric. Let us now
address a slightly different problem: the simulations of the
Einstein equations themselves, for the unknowns rðu; vÞ
and σðu; vÞ, with no self-gravitating scalar field (and with
or without a test scalar field). This numerical simulation
should of course yield the RN geometry, and hence the
aforementioned “horizon problem,” and the consequent
numerics breakdown, should occur in this case too.
This problem is demonstrated in panel (a) in Fig. 6,

which displays the results of the numerical simulation of
the Einstein equations for RN (with no scalar field), using
the standard gauge condition (10). The BH parameters are
M ¼ 1 and Q ¼ 0.95. The figure displays levels of r as a
function of v and u. The diagonally dashed rectangular
region represents the domain where no numerical results
were produced at all, due to numerics breakdown. The
“bottom” boundary of this dashed region is an outgoing
u ¼ const ray, which starts at r ≈ rþ and runs far into the

weak-field region (approaching r ∼ 60 at vmax ¼ 200).7

Notice that this domain of faulty numerics also contains
the entire large-v (say v > 60) portion of the BH interior.
For comparison, and in order to demonstrate that this

“missing rectangle” is a mere numerical problem, panel (b)
of Fig. 6 displays rðu; vÞ for exactly the same initial data,
presented using the same gauge for u, v as in panel (a). The
only difference is that this time, for the numerical integra-
tion a more sophisticated u gauge was used (the “maximal-
σ gauge” described in Sec. VII below, which solves the
horizon problem). After numerical integration, the data
were converted back to affine u for presentation, to allow
comparison with panel (a). Thus, as long as the numerics
works properly, the numerical results for rðu; vÞ in the
two panels are identical. The obvious difference is of
course the missing diagonally dashed region in panel (a),
which demonstrates the catastrophic numerical horizon
problem.

B. Self-gravitating scalar field

Of course, the problem described above will also occur
with self-gravitating scalar fields, if double-null coordi-
nates are used (with a “conventional” gauge for u). Due to
the mechanism described above, δrðvÞ will grow exponen-
tially in ve along the EH. Since all three evolution
equations (2)–(4) explicitly depend on r, the uncontrolled
growth of δrðvÞ will ruin the numerical evolution of all

FIG. 5. The event horizon problem as demonstrated from analytical results for the RN spacetime. We consider here the specific
example of mass parameter M ¼ 1.4587 and charge parameter Q ¼ 0.95 in which Q=M ≃ 0.65, rþ ≃ 2.565, r− ≃ 0.352 and
κþ ≃ 0.168. The red line represents the actual δrðveÞ for two adjacent grid lines in different sides of the horizon, characterized by
rðu1; v0Þ ¼ rþ þ 5 × 10−4M and rðu2; v0Þ ¼ rþ − 5 × 10−4M. Panel (a) displays δr in linear scale, and panel (b) in a logarithmic one.
One can see that δrðveÞ has a long phase of exponential growth, and eventually it reaches a final value which is larger than rþ. The
breaking point at ve ∼ 44 represents the point in which the inner line approaches the vicinity of r ¼ r−.

7One can evaluate the equivalent grid side in terms of ve. In the
present case, a difference of δv ¼ 200 in the “standard” v is
equivalent to a difference of δve ≈ 172. In the case described in
the next section (self-gravitating scalar field), a difference of
δv ¼ 200 in the standard v is equivalent to a difference of
δve ≈ 148.
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three unknowns.8 This catastrophic numerical problem is
demonstrated in Fig. 7. The initial conditions are the same
as in Fig. 6 above; the only difference is that this time there
is a self-gravitating scalar field. We use here (like in Fig. 6)
initial mass M0 ¼ 1 and charge Q ¼ 0.95, and employ the
standard gauge condition (10). We send in an ingoing pulse
of scalar field, prescribed along the initial ray u ¼ u0 by

Φðu0; vÞ ¼
8<
:

A 64ðv−v1Þ3ðv2−vÞ3
ðv2−v1Þ6 jv1 ≤ v ≤ v2j
0 j otherwise

ð18Þ

with A ¼ 0.115. This function increases smoothly and
monotonically from zero (at v ¼ v1) to a maximum of
height A (at v ¼ v1þv2

2
), and then decreases smoothly and

monotonically back to zero (at v ¼ v2).
9 Throughout this

paper, the scalar field vanishes on the initial ray
u ¼ u0�Φðu; v0Þ ¼ 0. In this case, too, one can see in
panel (a) that the entire large-v portion of the BH interior is
missing (and also a piece of the strong- and weak-field
regions outside the BH). Panel (b) presents the numerical
solution with exactly the same initial data, and displayed
using the same gauge for u, v as in the left panel—a
numerical solution produced using the maximal-σ gauge
for u (developed later in Sec. VII). It again demonstrates
that the missing diagonally dashed region in panel (a) is a
mere numerical artifact.
One can notice a missing region in panel (b) as well—the

criss-crossed region atu > 10. However, thismissing region
is not a numerical artifact: It results from the fact that the
evolution with a self-gravitating scalar field terminates at a
spacelike r ¼ 0 singularity (unlike in the test-field case).
We point out that if the BH is extremal (or asymptotically

extremal, or even almost extremal) this problem does not
arise, because κþ vanishes in the extremal case (for a
numerical example, see [13]). We are concerned here with
nonextremal BHs. Note also that if one’s only goal was to
numerically analyze a test field outside the event horizon of a
prescribed BH spacetime, then this problem could be easily
circumvented, by just choosing the Eddington coordinate
ue. In our case, however, wewish to explore exterior as well

FIG. 6. Demonstration of the event-horizon problem in the case of RN spacetime (with no scalar field). The figure displays rðu; vÞ as
obtained from the numerical simulation. In this example the BHmass parameters areM0 ¼ 1 andQ ¼ 0.95, which yield horizon radii of
rþ ≃ 1.312 and r− ≃ 0.688. [The initial value of r is rð0; 0Þ ¼ 5]. Panel (a) displays the numerical results obtained using the standard
gauge condition (10). The event-horizon problem expresses itself by the diagonally striped patch, the rectangular region at the upper
right, where no numerical data were produced at all. Notice that this region extends also outside the BH, up to r ∼ 60 in this domain. For
comparison, panel (b) displays rðu; vÞ for exactly the same initial data, which were numerically produced using a method designed to
resolve the event-horizon problem (the maximal-σ gauge described in Sec. VII). The results in panel (b) were converted to the same
gauge (10) as in panel (a) for presentation, in order to allow the comparison. Both panels are based on numerics with the same resolution
N ¼ 640. The missing rectangle in panel (a) [unlike panel (b)] demonstrates the event-horizon problem.

8In the self-gravitating case the relation δrðvÞ ∝ eκþve still
applies along the EH, although it should now be interpreted as
referring to the asymptotic RN metric that evolves at late time.

9We chose this form due to the function properties: It is simple,
smooth and has smooth derivatives up to (and including) second
order. It describes a distinct pulse with a well-defined beginning,
peak and end. The power 3 is the minimal power (for this form) in
which the function and the first and second derivatives are
smooth.
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as interior regions of the BH; and more crucially, we have a
self-gravitating rather than test field; hence the metric
evolves dynamically. In particular, the location of the EH
is not known in advance, which would hamper attempts to
tailor an effectively Eddington u coordinate to the EH.
This EH problem restricted the domain of integration in

previous double-null numerical simulations of dynamical
BHs, in spherically symmetric four-dimensional models
[7–9,11] as well as in two-dimensional models [22–24].
For example, δve was restricted to ∼20M in [8]; in two-
dimensional simulations, κþδve was restricted to ∼20 in
[23] and to ∼32 in [24].
In some spherically symmetric simulations of a self-

gravitating scalar field, coordinates other than double-null
ones were used for specifying the components of the
metric, but still, the numerical coordinates—which deter-
mine the numerical grid points—were double null. That
was the situation, for example, in Refs. [8] and [11], which
used a kind of ingoing-Eddington coordinate but with a
double-null numerical grid. The problem of exponentially
growing numerical error along the horizon is encountered
in this situation too, for exactly the same reason: The
r-difference between two adjacent outgoing grid lines
grows exponentially in ve.
Burko and Ori [9] developed an algorithm to address this

EH problem, using a variant of adaptive mesh. More

specifically, at certain lines of constant v (separated from
each other by some fixed interval of ve), some of the grid
points “split” into two: Namely, new grid points are born in
the neighborhood of the EH. This procedure was used in
Ref. [10] for investigating the internal structure of a charged
BH perturbed by a self-gravitating scalar field; similar
procedures of adaptivemeshwere applied to theEHproblem
by other authors [25–27]. This procedure works very
efficiently. However, it is not obvious if this algorithm
would successfully deal with the outgoing shock wave [21]
that develops at the inner horizon of a perturbed chargedBH.
(To the best of our knowledge, this issue was not tested yet.)
Besides, the numerical code implementing this “point-
splitting” algorithm is fairly complicated, due to the appear-
ance of new grid points at certain v values. In particular, it
requires interpolations at these newborn points to determine
the values of the unknown functions there. These interpo-
lations not only complicate the algorithm but also introduce
some random numerical noise at each such event of “point
splitting.”10 Our goal in this paper is to propose a simpler
method for handling this EHproblem,whichwill not require
point splitting—and which will successfully resolve the

FIG. 7. Demonstration of the event-horizon problem in the case of a spherical charged BH perturbed by a self-gravitating scalar field.
Apart from the difference in the physical case, this figure is similar to Fig. 6. The BH in this example has final mass mfinal ≈ 1.4587
(whileM0 ¼ 1) and charge parameterQ ¼ 0.95, which yield horizon radii of rþ ≃ 2.565 and r− ≃ 0.352. The event horizon problem is
evident in panel (a) as a “hole” in the grid (the diagonally striped patch). Again, the problematic domain extends outside the BH to
r ≫ M. Panel (b) displays results obtained with the maximal-σ gauge and then converted back to the affine gauge for presentation, to
allow comparison with panel (a). The numerically covered area in panel (b) ends around an affine u value of u ∼ 10 due to the encounter
of the ray v ¼ vmax ¼ 200 with the close neighborhood of the spacelike r ¼ 0 singularity; the area in which numerical results are
unavailable due to closeness to the singularity is marked as a criss-cross patch.

10The noisy character of this interpolation-induced error results
from the fact that at a given v value, only some of the points are
split.
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shock at the inner horizon as well. To this end, in the next
sections we develop a kind of “adaptive gauge” for the u
coordinate, instead of adaptive mesh.

V. HORIZON-RESOLVING GAUGE

In a conventional gauge setup, one usually picks the
function σuðuÞ≡ σðu; v0Þ along the initial ray v ¼ v0. A
particularly simple and convenient choice is σuðuÞ ¼ 0 (the
affine u gauge), but any other choice of this function is
allowed. The choice of σuðuÞ completely fixes the gauge of
u.11 However, this conventional strategy of gauge choice
leads to the EH problem described above.
To overcome this problem, we use a different strategy for

gauge fixing: We prescribe the function σðuÞ along the final
ingoing ray, v ¼ vmax. Namely, we define σfinalðuÞ≡
σðu; vmaxÞ. Choosing different functions σfinalðuÞ leads to
different variants of the method. Unless specified otherwise,
we use here the simple gauge condition

σfinalðuÞ ¼ 0; ð19Þ

towhichwe refer as the “Kruskal-like” final gauge. (Another
variant of the method, the “Eddington-like” final gauge, is
described below.)
The gauge of v is selected in the more conventional form,

via the initial function σvðvÞ≡ σðu0; vÞ, as described in
more detail below.
The gauge condition (19) resolves the aforementioned

horizon problem. This is demonstrated in Fig. 8 for the
RN case, and in Fig. 9 for the self-gravitating scalar-field
case. In both figures, panel (a) displays rðu; vÞ obtained
using the horizon-resolving gauge (19). For comparison,
panel (b) displays the numerical solution (with exactly
the same initial conditions) produced by the original
affine gauge and subsequently converted to the horizon-
resolving gauge for presentation. As long as the two
numerical simulations function properly, they should
yield the same level curves for rðu; vÞ. Again, the
diagonally dashed region marks a domain of faulty
numerics, where no numerical data were produced.
Panel (b) exhibits the EH problem, the termination of
the numerical solution at the EH, at u ∼ 45. Panel

FIG. 8. Resolution of the event-horizon problem in the RN case (no scalar field). Both panels display the numerically produced
function rðu; vÞ for pure RN initial data. The BH parameters in this figure are identical to those specified in Fig. 6. In panel (a) the
numerics use the horizon-resolving gauge (19). In panel (b) the numerics is based on the affine u gauge, although the results are
displayed in the horizon-resolving gauge to allow the comparison with (a). The diagonally striped patches in both panels represent
domains in which numerical results are unavailable due to the breakdown of the numerics. The figure makes it clear that the horizon-
resolving gauge indeed allows large-v numerical resolution of the EH (unlike the affine u gauge). In particular, the entire domain of
dependence outside the BH is resolved, as well as a portion of the BH interior. [The narrow diagonally striped band at the top of panel
(a) indicates the inner-horizon problem, discussed below. The horizontally striped patch in panel (b) represents a region in which the
affine u gauge functions well but the representation of results in the EH-resolving gauge is problematic due to the “freeze” of
rðu; v ¼ 0Þ.]

11An analogous procedure may be applied at u ¼ u0 to fix the
gauge of v.
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(a) clearly demonstrates that the horizon-resolving gauge
overcomes this problem. This is the situation in both the
RN and scalar-field cases. [Notice, however, that in both
these figures there is a narrow diagonally dashed strip at
the upper part of panel (a) as well. This strip indicates a
failure of the horizon-resolving gauge (19) somewhere
inside the charged BH. We return to this issue at the end
of this section.]
To understand how the EH problem is resolved by

the gauge condition (19), consider again δrðvÞ, the
(v-dependent) difference in r between two adjacent grid
lines u ¼ u1 and u ¼ u2 in the horizon’s neighborhood. We
already saw in the previous section that near the EH
δrðvÞ ∝ eκþve . This now implies that δrðvÞ is everywhere
smaller than δrðvmaxÞ [because veðvÞ is monotonically
increasing]. Thus, as long as δrðvmaxÞ is reasonably small,
the horizon problem is solved. Restated in simple words, in
our new gauge setup δrðvÞ becomes “exponentially small”
rather than “exponentially large” at a typical near-horizon
point (e.g. at the middle of the horizon’s section included in
the numerical domain).
To estimate δrðvmaxÞwe express it asΔu times rh;u, where

rh;u denotes the value of r;u at the intersection point of v ¼
vmax and the horizon. The parameter Δu (the numerical
spacing parameter) is presumably taken to be ≪ M, so it is
sufficient to show that rh;u is of order unity. To this end we
consider the constraint equation (5) imposed along the ray
v ¼ vmax,which now reads r;uu ¼ −rðΦ;u Þ2. To simplify the

discussion let us assume that at v ¼ vmax the scalar field is so
diluted that it has a negligible contribution in that constraint
equation.12 We thus get r;uu ≈ 0, meaning that r;u is approx-
imately conserved along the ray v ¼ vmax. Let r0;u denote the
value of r;u at point (u ¼ u0, v ¼ vmax), namely at the far
edge of the outgoing initial ray. All we need is to make sure
that r0;u is of order unity (or smaller). It turns out that this
parameter depends on the v gauge as well,13 and in the way
we choose our v gauge [by imposing σðvÞ ¼ 0 along u ¼ 0]
r0;u indeed turns out to be of order unity. Hence from the
constraint equation, rh;u is of order unity too, which in turn
ensures that δrðvmaxÞ ≪ M, and the same for δrðv < vmaxÞ.

A. Numerical implementation: Initial-value setup

1. Initial data at v ¼ v0
From the basic mathematical viewpoint, the character-

istic initial data required for the hyperbolic system of
evolution equations consist of the values of the three
unknowns (Φ, r, σ) along the two initial null rays. We
focus here on the data specification along the ingoing ray
v ¼ v0 (the initial-data setup at the other ray u ¼ u0 is more

FIG. 9. Resolution of the event-horizon problem in the case of a spherical charged BH perturbed by a self-gravitating scalar field. It is
fully analogous to Fig. 8, except for the presence of a self-gravitating scalar field. The BH parameters in this figure are identical to those
specified in Fig. 7. In this case too, panel (a) demonstrates the efficient resolution of the EH problem (but also the occurrence of the IH
problem deeper inside the BH, as indicated by the narrow diagonally striped band at the top).

12This is a good approximation, recalling the large value of
vmax, primarily because of the exponential redshift along the EH,
which implies an exponential decrease of Φ;u.13This is so because, since σ ¼ 0 is imposed at that point, a
“stretching” of v would imply a shrinking of u.
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conventional, and we briefly address it below). We denote
the three initial-value functions at v ¼ v0 by ΦuðuÞ, ruðuÞ,
and σuðuÞ. The first two functions ΦuðuÞ, ruðuÞ can be
chosen as usual: Namely, ΦuðuÞ can be chosen at will, and
ruðuÞ should be determined by the constraint equation (5).
But the remaining function σuðuÞ must be chosen in a
special manner in order to achieve the desired gauge
condition σfinalðuÞ ¼ 0. We now explain how we choose
the appropriate initial function σuðuÞ.
We numerically integrate the PDE system along lines of

constant u, as described in Sec. III above. Suppose that we
already integrated the PDE system up to (and including) a
certain grid line u ¼ const ¼ ua, and we solve the next line,
u ¼ ua þ Δu≡ ub. To this end we need to specify the three
initial values for this line, namely ΦuðubÞ, ruðubÞ, and
σuðubÞ. We set ΦuðubÞ by just substituting u ¼ ub in the
prescribed initial function ΦuðuÞ. Then ruðubÞ is to be
obtained from the constraint equation (upon integration
from ua to ub). The more tricky task is the determination of
σuðubÞ. In principle, one can do this by trial and error: For
each choice of σuðubÞ, one can integrate the PDE system
along u ¼ ub up to vmax and obtain σfinalðubÞ. Then one can
correct σuðubÞ in an attempt to get a value of σfinalðubÞ closer
to the desired value σfinalðubÞ ¼ 0, and so on. This may be
implemented by a simple iterative process, e.g. using the
Newton-Raphson method, which converges very rapidly.
However, there is another method which turns out to be
much more efficient in terms of computation time: One
can find the desired value of σuðubÞ by extrapolation, based
on the values of σuðuÞ at u ¼ ua and a few additional
preceding u ¼ const lines (namely u ¼ ua − Δu, u ¼ ua−
2Δu;…; u ¼ ua − nΔu). The number of such preceding
σuðuÞ values to be used in the process would depend on the
desired order of extrapolation.14 With this procedure, we
only need to solve the evolution equations once along any
u ¼ const grid line—just like in the case of the conventional
gauge choice, in which σuðuÞ is prescribed.
This procedure works very efficiently. By including a

sufficient number of u-grid points in the extrapolation (that
is, a sufficiently large n), the mismatch in σfinal—namely
the deviation of the latter from zero—can easily be made
third order or even higher order in Δu. In our numerical
code we actually use interpolation order n ¼ 2. Then, σfinal
is third order in Δu, and it is typically of order 10−8 or even
smaller. One should also bear in mind that even this tiny
deviation of σfinal from zero does not necessarily represent
an error in the numerical solution: It merely represents a
deviation from the intended gauge condition σfinal ¼ 0 (a
deviation which has no effect whatsoever on the capability
of this gauge to achieve its goal of horizon resolution).

As alreadymentioned above, the initial parameter ruðubÞ is
to be determined by integrating the constraint equation (5)
fromua toub. Thediscretizationof thisODEmayalso involve
σuðubÞ. But this does not pose any difficulty, because one can
proceed as follows: First obtain σuðubÞ by extrapolation, and
then determine ruðubÞ from the constraint equation.

2. Initial data at u ¼ u0
The initial data along the outgoing ray u ¼ u0 are

imposed in a rather conventional manner. We denote the
three initial functions that need be specified along that ray
by ΦvðvÞ, rvðvÞ, and σvðvÞ. These three functions must
satisfy the constraint equation (6). Our viewpoint concern-
ing the role of these three initial functions is as described in
Sec. II C: ΦvðvÞ is selected at will, representing the ingoing
scalar pulse; σvðvÞ may also be selected at will, but it
merely represents one’s choice of v gauge. The last
function rvðvÞ is, in turn, determined by the constraint
equation (6)—apart from its initial data, namely the values
of r and r;v at the vertex (u0; v0).
The choice of σvðvÞ is subject to one obvious constraint:

It must coincide with the aforementioned final u-gauge
condition; that is, σvðvmaxÞ ¼ σfinalðu0Þ. In our numerical
code we implemented the simplest choice σvðvÞ ¼ 0.
Consistency at the vertex is guaranteed, by virtue of our
u-gauge condition σfinalðuÞ ¼ 0.
To summarize, our gauge condition—throughout the

external world as well as for horizon crossing,—is

σfinalðuÞ ¼ 0; σvðvÞ ¼ 0: ð20Þ

B. Eddington-like variant

In some applications one may be interested in time-
dependent, dynamically evolving BHs, but only in their
external part, up to the EH—and not beyond. This is the
situation, for example, when exploring the influence of the
BH dynamics on the scattering of various fields or modes. A
particular example is the issue of how BH dynamics affects
the late-time tails of various modes, e.g. at r ¼ const, at
future null infinity, or along the horizon [28,29].
In such applications, there still is the need to numerically

resolve the very neighborhood of the EH, but there is no
reason to cross it. If the metric was prescribed—e.g.
Schwarzschild or RN—the Eddington coordinate ue would
be optimal for this task. However, we are concerned here
with an a priori unknown dynamical metric. In particular,
we do not know in advance where the EH is. It would thus
be helpful to have at our disposal a gauge-selection method
which automatically yields a u coordinate appropriate for
such situations—namely an Eddington-like u adapted to
the dynamically forming EH.
This goal is easily achieved within the framework of a

final-gauge condition for u, described above. All that one
has to do is replace the condition (19) by one appropriate to
Eddington-like u. One such example is

14In this extrapolation process one should of course take into
account the “mismatches” of σfinal at the previous u-grid points. It
therefore follows that the quantity to be extrapolated (from the
previous u ¼ const lines to u ¼ ub) is actually σuðuÞ − σfinalðuÞ.
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σfinalðuÞ ¼ ln

�
1 −

2mfinalðuÞ
rfinalðuÞ

þ Q2

½rfinalðuÞ�2
�

where mfinalðuÞ denotes the mass function evaluated at
v ¼ vmax, and similarly for rfinalðuÞ.15 Here, however, we
shall use a more convenient and pragmatic gauge condition
which may yield a slightly different Eddington-like gauge
but nevertheless achieves the same goal, without resorting
to the mass function:

σfinalðuÞ ¼ ln½2ðr;vÞfinal� ð21Þ

where ðr;vÞfinal ≡ r;vðu; vmaxÞ.
In principle, we could apply a similar gauge condition to

the initial ray u ¼ u0. Nevertheless, we found it useful (due
to certain technical reasons) to apply the gauge condition

σvðvÞ ¼ ln

�
1 −

2mvðvÞ
rvðvÞ

þ Q2

½rvðvÞ�2
�

ð22Þ

which also fits Eddington gauge in RN. However, it is not
trivial that the different gauge conditions (21) and (22)
would yield continuity of σ at the corner (u ¼ u0,
v ¼ vmax). Gauge condition (21) fixes the u gauge com-
pletely and is unaffected by any change in the v gauge,
while gauge condition (22) keeps a residual gauge freedom
(see footnote 6): It is unaffected by a gauge transformation
of the form v → vb, u → u=b (and does not fix either
gauge independently). Therefore, we can achieve continu-
ity at the corner by applying this gauge transformation on
the initial data at u ¼ u0 with the appropriate choice of b.
To summarize, our gauge condition for the Eddington-

like variant of the horizon-resolving gauge is

σfinalðuÞ ¼ ln½2ðr;vÞfinal�;

σvðvÞ ¼ ln

�
1 −

2mvðvÞ
rvðvÞ

þ Q2

½rvðvÞ�2
�
: ð23Þ

C. Some numerical results for external tails

We refer to the gauge conditions (20) and (23), respec-
tively, as the Kruskal-like and Eddington-like variants of
the final u gauge. Since our main interest is the interior of a
charged BH, in the next sections we use (and further
develop) the Kruskal-like variant, the gauge condition (20).

FIG. 10. Numerical results obtained using the Kruskal-like gauge. The figure describes the late-time behavior of Φ and r along the
event horizon. Panel (a) displays the decay of Φ as a function of v. Panel (b) shows the local power of this decay, defined as −vΦ;v =Φ
[9]. In both panels the four resolutions overlap. The asymptotic local power is approximately 3, in agreement with Price law [28] (see
also [29]). Panel (c) displays r as a function of v. As expected, r is approximately constant along the curve, with a maximal drift of order
∼10−5 along a range Δv ¼ 800 (for the best resolution N ¼ 640). This drift is caused by truncation error.

15Notice that this expression for σfinalðuÞ, and similarly
Eq. (23), is exactly satisfied by ue in Schwarzschild or RN.
Hence in the case of a dynamically forming spherical BH,
imposing any of these conditions yields an asymptotically
Eddington-like u coordinate.
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Nevertheless, here we bring some numerical results for
both the Kruskal-like (Fig. 10) and the Eddington-like
(Fig. 11) gauges, concerning late-time tails outside a
dynamically evolving BH. The initial conditions in these
examples are essentially the same as the ones described in
Sec. IV B, namely initial mass M0 ¼ 1 and charge
Q ¼ 0.95, with an ingoing scalar-field pulse of the form
(18) with v1 ¼ 1, v2 ¼ 7, and with u0 ¼ v0 ¼ 0. The
scalar-field amplitude is again A ¼ 0.115.16 However, in
order to reach deep into the late-time regime, a larger vmax
was used here (vmax ¼ 1000 instead of 200).

D. How well does the horizon-resolving gauge
penetrate in?

The numerical results presented in the previous sub-
section made it clear that the horizon-resolving gauge (like

its Eddington-like counterpart) functions very well outside
the BH, all the way up to the EH. But how deeply can it
penetrate into the BH? The narrow diagonally dashed strips
at the top of the left panels in Figs. 8 and 9 indicate
numerical problems somewhere inside the BH. Figure 12
provides a more clear mapping of the regions of good and
bad numerics, using a spacetime diagram with coordinates
r and v. Panel (a) describes the case of precisely-RN initial
data (i.e. no scalar field), numerically evolved using either
the affine or horizon-resolving gauges for u. The diagonally
dashed region marks the domain of successful numerics
using the horizon-resolving gauge. Similarly, the vertically
dashed region marks the domain of numerical success of
the original affine gauge. The orange thick dashed frame is
the boundary of the maximal possible domain of
integration—namely the entire domain of dependence of
the characteristic initial data. We primarily focus here on
the large-v portion of the diagram (say v > 60). One can
again see that the original affine gauge does not even get
close to the EH (the horizontal dashed purple line r ¼ rþ).
The horizon-resolving gauge, on the other hand, covers the
entire external region up to the EH. Furthermore, at very
large v, close to vmax (say v > 180 in this case) the
numerically covered region penetrates inside the BH and

FIG. 11. Numerical results obtained using the Eddington-like gauge. The figure describes the late-time behavior of Φ and r along the
timelike curve r� ¼ 0, as functions of t, where ue, ve are the numerical Eddington-like coordinates introduced in
Sec. V B. Panel (a) presents the decay of Φ at large t. Panel (b) shows the local power characterizing this decay. Here again, in
both panels the four resolutions overlap, and the asymptotic local power is approximately 3, in agreement with Price law. Panel
(c) displays r as a function of t along the same curve r� ¼ 0. As expected, r is approximately constant along the curve. However, there is
a drift of order ≲10−3 for the best resolution (N ¼ 320) along Δt ¼ 800. The evident drift in the three best resolutions is caused by the
fact that the constructed Eddington-like coordinates, as well as r�, fit Eddington coordinates in pure RN spacetime only asymptotically.

16Due to the small differences between the Kruskal-like and
Eddington-like gauges for v (see Sec. V B above)—which
implies a difference in the physical content of the pulse
Φðu0; vÞ—the final masses in the two runs are slightly different
(mfinal ≈ 1.4587 in the Kruskal-like case and mfinal ≈ 1.4595 in
the Eddington-like case); but this tiny difference in mfinal is
unimportant.
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reaches r ∼ r− at vmax. However, at smaller v values the
domain of numerical coverage hardly penetrates into
r < rþ. The situation in the case of a self-gravitating scalar
field is basically similar, as seen in panel (b).
We refer to this numerical problem—this failure of the

horizon-resolving gauge to traverse the IH (or even
approach it effectively)—as the “inner-horizon problem.”
We analyze it in the next section, and resolve it in Sec. VII
by further improving the gauge.

VI. INNER-HORIZON PROBLEM

If the black hole has no inner horizon (e.g. an uncharged
spherical BH), the horizon-crossing gauge described above
allows efficient numerical integration of the field equations
all the way up to the neighborhood of the spacelike r ¼ 0
singularity. However, as was just demonstrated, in the case
of a charged BH new difficulties arise while approaching
the inner horizon (IH). This will require us to further
generalize our gauge condition for u.

To understand these IH-related difficulties, it would be
simplest to consider again a test scalar field on a fixed RN
background. Suppose that the outgoing initial ray is located
outside the BH, and the ingoing initial ray crosses both the
event and inner horizons, as in Fig. 2. We also assume that
the outgoing initial ray is long, namely δve ≫ M.
Therefore, the domain of integration contains long sections
of both the event and inner horizons. Now consider two
adjacent outgoing null grid lines, u ¼ u1 and u ¼ u2, this
time in the immediate neighborhood of the IH. Again we
consider the quantity δrðvÞ≡ rðu1; vÞ − rðu2; vÞ. The
analysis is analogous to the event-horizon case discussed
above, and we again obtain

δrðvÞ ¼ δr0 · e−κ−ðve−ve0Þ ð24Þ

where κ− > 0 is the inner-horizon surface gravity. Note the
sign difference (in the exponent) between Eqs. (24) and
(17): It actually reflects the difference between redshift
(along the EH) and blueshift (along the IH).

FIG. 12. Numerical coverage of the horizon-resolving gauge in the spacetime of a spherical charged BH. The coverage of the affine u
gauge is also shown for comparison. Panel (a) presents the case of pure RN initial data, and panel (b) the case of a self-gravitating scalar
field. BH parameters of both cases are the same as in Figs. 6 and 7, respectively. Both panels present the last reliable r value on each
v ¼ const grid ray as a function of a numerical v coordinate (which is common for both gauges). Numerical reliability is determined by
the relative difference between the two best resolutions (N ¼ 320 and N ¼ 640), and the limit of reliability is chosen as the point at
which the relative difference crosses a threshold T, where T is either 1% (dashed red and cyan curves) or 3% (solid red and cyan curves).
The red curves refer to the affine gauge, and the cyan curves to the horizon-resolving gauge. The thick dashed orange frame represents
the maximal possible r coverage on each case—namely the boundary of the domain of dependence of the data. In panel (a), the pure RN
case, the bottom orange curve is computed analytically; it corresponds to the u ¼ umax ray which starts close to r ¼ 0 and runs toward
r ¼ r− (dashed magenta line). In panel (b), the case of a self-gravitating scalar field, the bottom orange curve is absent (noncalculable)
due to the lack of analytical solution. The region covered by the affine u gauge is marked by a vertically striped patch; the region covered
by the EH-resolving gauge is marked by a diagonally striped patch. The thin black trapezoid frame in both panels marks a region in
which the affine u gauge has nonrobust error behavior. These graphs demonstrate clearly that the EH-resolving gauge has superior
numerical coverage at late times in which it enters the BH (while the affine u gauge does not even get close to the EH).
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In the “final u gauge” described in the previous section, at
v ¼ vmax the difference δrðvÞ naturally gets a reasonable
value of orderΔu.17 The problem is that this reasonable value
of δr at v ¼ vmax grows exponentially with decreasing ve. At
v ¼ v0 one gets δr0 ≈ Δueκ−δve . Such an exponentially large
δrðvÞ naturally leads to a corresponding huge truncation
error, and hence to a breakdown of the numerics.18

In essence, the inner-horizon problem arises from the
different signs of the exponents in Eqs. (17) and (24): The
positive sign in the former motivated us to use the σðvmaxÞ
final u gauge at the EH, whereas the negative sign in the
latter calls for using the initial u-gauge at the IH.
Naively one might hope that a possible resolution would

be to do the integration in two steps: First, integrate the
initial data using the u gauge σðvmaxÞ ¼ 0 up to a certain
outgoing line u ¼ const≡ umiddle located somewhere
between the event and inner horizons, and then integrate
the remaining domain u > umiddle using the more conven-
tional gauge σðv0Þ ¼ 0. This procedure does not work,
however: One can show that there is a range of u values, in
between the EH and IH, in which neither of the two u
gauges σðv0Þ ¼ 0 or σðvmaxÞ ¼ 0 properly works (because
in both gauges r;u, and hence also δrðvÞ, gets exponentially
large values somewhere between v0 and vmax).
To overcome this inner-horizon problem, in the next

section we introduce a new u gauge which solves this
problem and allows numerical resolution of both the event
and inner horizons.

VII. SOLUTION: MAXIMAL-σ GAUGE

Consider the function σðvÞ along a line of constant u. We
denote by σmaxðuÞ the maximal value of this function in the
range v0 ≤ v ≤ vmax.

19 The value of v at that point of
maximal σ is denoted vσmaxðuÞ.
We now impose the gauge condition

σmaxðuÞ ¼ 0 ð25Þ

and refer to it as the maximal-σ gauge. The gauge for v
remains as it was before,

σvðvÞ ¼ 0: ð26Þ

Recall that the variable σ depends on the gauge choice
for both v and u, through Eq. (9). The gauge of v has

already been fixed once and forever by the initial data at
u ¼ u0. Along a given u ¼ const line, the effect of
changing the gauge of u would merely be to add
lnðdu=du0Þ ¼ const to the original function σðvÞ. Hence,
such a change of u-gauge would not affect the location of
the maximum point vσmax—but it would shift σmaxðuÞ by
that const. The specification of σmaxðuÞ thus fixes the
u-gauge freedom.
With this gauge condition, the inequality

σðu; vÞ ≤ 0 ð27Þ

is satisfied in the entire domain of integration. This
boundedness of σ directly reflects on the magnitude of
r;u, and hence also on δr and the truncation error, as we
briefly explain. This solves the aforementioned numerical
difficulties and allows efficient long-v numerical integra-
tion across both the event and inner horizons (as well as in
the domain beyond the IH).
To understand how the bound on σ affects the magnitude

of r;u (and hence δr and the truncation error), let us again
consider the simple case of exact RN background. Assume

FIG. 13. Numerical coverage of the maximal-σ gauge in the RN
case. The coverage of the affine u gauge and the horizon-
resolving gauge is also shown for comparison. The graph presents
the last reliable r value on each v ¼ const grid ray as a function of
a numerical v coordinate and is similar to panel (a) in Fig. 12,
except that (i) here it shows coverage differences between three
gauges (the affine u gauge in red, the EH-resolving gauge in cyan,
and the maximal-σ gauge in blue), and (ii) it represents each
gauge with three sets of lines, each one for a different relative-
error threshold T (dotted lines—1%; dashed lines—3%; and solid
lines—10%). Again, the thick dashed orange frame represents the
maximal possible r coverage in this case. The graph demonstrates
clearly that the maximal-σ gauge has superior numerical cover-
age: Note that all three blue curves (representing the three error
levels in the maximal-σ gauge) overlap in this diagram—and they
also overlap with the bottom orange curve. This indicates that
the maximal-σ gauge essentially covers the entire domain of
dependence.

17Considering, for example, the pure RN case, σðvmaxÞ ¼ 0
implies that r;u is constant along v ¼ vmax, and as was discussed
in the previous section, this constant is of order unity.

18The exponential behavior (24) only applies as long as δrðvÞ
is ≪ M. Nevertheless, this analysis still indicates that δrðvÞ will
fail to be ≪ M in some range of v.

19To avoid confusion we emphasize that σmax is not defined
to be σðvmaxÞ. (Although, these two different objects may
sometimes coincide; in particular, usually they do coincide
outside the BH.)
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in the first stage that our v coordinate is taken to be the
Eddington coordinate ve. Then, if u were taken to be
Eddington too, we would have eσ ¼ 2jr;uj, because in the
RN metric in double-null Eddington coordinates both
quantities are equal to j1 − 2M=rþQ2=r2j. In a general
transformation u → u0ðuÞ both eσ and jr;uj are multiplied
by the same factor du=du0; hence, eσ ¼ 2jr;uj is preserved
(as long as v ¼ ve). Transforming next from ve to a general
v coordinate, we find that

jr;uj ¼
1

2

∂v
∂ve e

σ ð28Þ

is satisfied in a general gauge for u and v. Recall, however,
that the (v-dependent) quantity ∂v=∂ve is determined once
and forever by the initial data at u ¼ u0, and in our setup,
this quantity turns out to be of order unity.20 We therefore
conclude that in our maximal-σ gauge, jr;uj is of order unity
at most. Consequently, δr is bounded by ∼Δu ≪ 1, and the
truncation error is well under control.

So far we considered the case of exact RN background. In
themore general case of a nonlinearly perturbed background
metric, Eq. (28) no longer holds. Nevertheless, in typical
simulations jr;uj and eσ are still of the same order of
magnitude; hence (since eσ ≤ 1), the uncontrolled growth
of δr and the related problem of catastrophic truncation error
are prevented.
It may be instructive to understand the location of the

maximal-σ curve v ¼ vσmaxðuÞ (where in our new gauge σ is
set to zero). A detailed analysis of this curve can be done in
the case of RN background. One finds that the integration
range u0 ≤ u ≤ umax is divided into three domains: (I)
Outside the BH—and also inside the BH up to a certain u
value which we denote ua—vσmaxðuÞ ¼ vmax. (II) Next, in a
certain transition domain ua < u < ub, v0 < vσmaxðuÞ <
vmax; it smoothlymoves in this domain from vσmax ¼ vmax at
u ¼ ua to vσmax ¼ v0 at u ¼ ub. (III) Then, at u ≥ ub, we
have vσmaxðuÞ ¼ v0. Stated in other words, in domain (I) the
maximal-σ gauge coincides with the horizon-resolving
gauge σðu; vmaxÞ ¼ 0, in domain (III) it coincides with the
more conventionalu gauge σðu; v0Þ ¼ 0, and domain (II) is a
smooth transition region.
In the exact RN case—and with Eddington v—one finds

that throughout the transition region (II), vσmaxðuÞ is

FIG. 14. Numerical coverage of the maximal-σ gauge in the presence of a self-gravitating scalar field. The coverage of the affine u
gauge and the horizon-resolving gauge is also shown for comparison. The meaning of the various curves and symbols in this figure is the
same as in Fig. 13; the only difference is the presence of the scalar field. This figure uses both a linear scale (a) and a logarithmic scale (b)
for the r axis. The blue curve in panel (a) approximately overlaps with the r ¼ 0 line, indicating that the maximal-σ gauge provides
efficient numerical coverage up to very close to the spacelike r ¼ 0 singularity. (The significant deviation of the blue curve from r ¼ 0 at
v≲ 10 does not represent a numerical problem: It is a true feature of the function rðumax; vÞ, which merely reflects the spacelike
character of the r ¼ 0 singularity.) From the logarithmic scale in panel (b) one can see that the numerical coverage extends up to r values
of order a few times 10−2 (depending on the required accuracy).

20The values in the examples described in Secs. IV B and IVA
are all in the range 0.7 ≤ ∂v=∂ve ≤ 1.5.

ADAPTIVE GAUGE METHOD FOR LONG-TIME DOUBLE- … PHYSICAL REVIEW D 93, 024016 (2016)

024016-17



precisely the curve where r ¼ Q2=M. Correspondingly, ua
is determined in that case by rðua; vmaxÞ ¼ Q2=M, and ub
by rðub; v0Þ ¼ Q2=M. In our actual v gauge (26), r is still
close to ∼Q2=M at v ¼ vσmaxðuÞ in region II. The same
applies in the self-gravitating case.
This new gauge [(25) and (26)] provides a robust

solution to the aforementioned EH and IH problems.
This is demonstrated in Figs. 13 and 14, which correspond
to the RN and self-gravitating field cases, respectively.
Both figures display the domain of numerical validity of the
maximal-σ gauge on a spacetime diagram in (r, v)
coordinates. For comparison, the figures also display the
domain of numerical validity of the two former gauges,
namely the affine gauge and the horizon-resolving gauge.
In Fig. 13 (pure RN initial data), one sees that the maximal-
σ gauge effectively resolves the entire domain of depend-
ence of the characteristic initial data (the dashed orange
frame). In the more interesting case of a self-gravitating
scalar field the situation is more subtle: In this case the
“bottom” boundary of the domain of dependence is very
close to the spacelike singularity at r ¼ 0. The singular
nature of this boundary makes it very hard for the numerics
to approach it. Nevertheless, the maximal-σ gauge
numerics allows reliable coverage up to r values of order
a few times 10−2, as can be seen in panel (b) of Fig. 14.

A. Numerical implementation: Initial-value setup

Our new gauge condition is given in Eqs. (25) and (26).
The procedure of initial-value setup along v ¼ v0 is almost
the same as the one described in Sec. VA. There is one
obvious difference in the setup of the initial value for σuðuÞ:
Instead of extrapolating the quantity σuðuÞ − σfinalðuÞ (see
footnote 14), we now extrapolate σuðuÞ − σmaxðuÞ. This
reflects the fact that we are now attempting to nullify
σmaxðuÞ rather than σfinalðuÞ. The initial-value setup along
the ray u ¼ u0 is identical to the one described in Sec. VA.
There remains the technical issue of evaluating σmaxðuÞ,

the maximal value of σ along each u ¼ const line [required
for the extrapolation process that determines σuðuÞ]. The
first obvious step is to find the grid point of maximal σ along
the u ¼ const line under consideration. However, this is not
always sufficient. As was mentioned above, the
u0 ≤ u ≤ umax range is divided into three domains, accord-
ing to the value of vσmaxðuÞ. In domain I we have
vσmaxðuÞ ¼ vmax; hence, σmaxðuÞ is simply the value of σ
at the last grid point (v ¼ vmax). Similarly in domain III
σmaxðuÞ is the value of σ at the first grid point (v ¼ v0).
However, in the transition domain II the situation is slightly
more complicated: In a generic u ¼ const line in this
domain, vσmaxðuÞ will be located in between two grid
points. If one approximates σmaxðuÞ by one of these two
points (e.g. the one with the largest σ), this leads to a
discretization noise (amplified by the extrapolation process)
which may seriously damage the accuracy of our second-
order extrapolation. Therefore, we need here a more precise

evaluation of σmaxðuÞ. To this end, we carry a second-order
interpolation of σðvÞ (along the u ¼ const line) in the
neighborhood of the grid point of maximal σ, and determine
σmaxðuÞ from this interpolation. This procedure eliminates
most of the numerical noise in the extrapolation.

VIII. SOME NUMERICAL RESULTS DEEP
INSIDE THE CHARGED BLACK HOLE

The maximal-σ gauge described above enables us to
efficiently probe the innermost zone 0 < r ≤ r− of the
perturbed charged BH, even at very late times (i.e. large
ve). As an example, we choose here to explore the behavior
of r and Φ along the contracting Cauchy horizon (CH) and
its neighborhood, in the case of a self-gravitating scalar
field. All results below correspond to the same numerical
simulation of a charged BH with a self-gravitating scalar
field, with the same set of parameters as described in

FIG. 15. r as a function of u along various late v ¼ const grid
rays, in the presence of a self-gravitating scalar field. Shown are
16 v ¼ const rays in the range 50 ≤ v ≤ 200 (with fixed incre-
ments of 10), in different colors, with v ¼ 50 in blue and v ¼ 200
in dark red. The graph actually includes two resolutions for each
grid ray, N ¼ 320 and N ¼ 640, but the two resolutions overlap.
The horizontal purple dashed line represents rþ ¼ 2.5655; the
horizontal magenta dashed line represents r− ¼ 0.3517. The
graph demonstrates some aspects of the anticipated asymptoti-
cally RN spacetime: (i) All curves cross at the event horizon (at
u ≈ 90.3), and (ii) as u increases, all curves join a “universal
curve,” which is approximately located at r ¼ r− (except at very
large u). The main feature which differs from RN is the sharp fall
of this universal curve toward r ¼ 0 at around u ∼ 230. This
sharp fall results from the focusing effect of the scalar field.
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FIG. 16. The contraction of the Cauchy horizon as reflected in the function rðuÞ along various late v ¼ const rays. This figure is
similar to Fig. 15, but zoomed in on the final drop of r toward the r ¼ 0 singularity. Panel (a) uses a linear scale for r, and panel (b) uses a
logarithmic scale. Notice that all the v ¼ const rays (in the range 50 ≤ v ≤ 200 shown here) overlap on this scale, as well as the two
resolutions N ¼ 320 and N ¼ 640 for each ray.

FIG. 17. Φ as a function of u along various late v ¼ const grid rays, in the presence of a self-gravitating scalar field. Here, too, the
v ¼ const rays are in the range 50 ≤ v ≤ 200. Panel (b) is a zoom in of panel (a). Both panels include two resolutions for each grid ray,
N ¼ 320 (dashed curves) and N ¼ 640 (solid curves); the two resolutions overlap in panel (a), but a minor deviation between the solid
and dashed curves is barely seen in panel (b). The numbers in panel (b) indicate the v values of the various curves. Notice the
nonmonotonic ordering of these numbers, which indicates oscillations of Φ with v (at fixed u), in the range 50 ≤ v ≲ 100. However, at
larger v values (100≲ v ≤ 200) the oscillations are replaced by a monotonic convergence toward the CH.
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Sec. IV B. Note that in all figures throughout this section,
the numerical results were produced with two different
resolutions, N ¼ 320 (dashed curves) and N ¼ 640 (solid
curves), in order to control the numerical error. In almost all
cases the dashed curve is visually undistinguished from the
solid curve, indicating a negligible numerical error. [The

exceptions are panels (c) and (d) in Fig. 18, where the high
zoom level in r (≲10−5) allows us to see the small
differences between the resolutions.]
We argue that the behavior of various quantities along

the CH should be well represented by the lines v ¼ const
with a sufficiently large value of “const.” To theoretically

FIG. 18. The dependence of the scalar fieldΦ on r along various late v ¼ const grid rays deep inside the charged black hole. All panels
contain two resolutions for each curve (N ¼ 320 and N ¼ 640). Panel (a) displays the zone 0 ≤ r ≲ r−. Notice the spike (circled), at
around r ∼ 0.35. Panels (b), (c) and (d) zoom in on this spike, each of them revealing a new spike. The spikes in panels (c) and (d) are
located fairly close to the anticipated inner-horizon value r ≈ 0.3517. The spike in (c) is evident only in the late rays v ¼ 150 and
v ¼ 200. (The ɤ-like shape of the curves of lower resolutionN ¼ 320 is a numerical artifact.) The spike in panel (d) is only evident in the
last ray v ¼ 200, and only in the best resolution N ¼ 640. The overall picture emerging from these panels suggests the existence of
hierarchical structure, in which each feature is followed by another, even sharper one, of opposite sign and smaller amplitude.
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examine this issue let us consider the case of RN back-
ground with a test scalar field. Two separate issues are
involved here: (i) In the domain beyond the (outgoing
section of the) IH, all outgoing null rays run to r ¼ r− at the
limit ve → ∞. The “distance” from the IH (in terms of r
values) at finite ve scales as e−κ−ve . (ii) Wave-scattering
dynamics takes the asymptotic form Φðu; vÞ ≅ fuðuÞ þ
fvðvÞ near the IH, and at sufficiently large v (namely
ve ≫ m), we have fðvÞ ∝ ðve=mÞ−3. The scalar field thus
approaches the CH limiting function Φ≃ fuðuÞ at ve ≫ m.
With vmax ¼ 200 the first issue (i) is perfectly well
addressed since e−κ−δve is extremely small. Concerning
the other issue (ii), at v ¼ 200 wave dynamics is consid-
erably suppressed—namely fvðvÞ is negligible to a fairly
good approximation (although here the approximation is
not as good as it is in regards to the first issue, because the
decay here is inverse power rather than exponential).
In the presence of a self-gravitating scalar field the near-

CH dynamics becomes more complicated and we shall not
discuss it here. Nevertheless, the v ¼ const lines with
sufficiently large “const” should still mimic the CH. The
quality of this “CH-mimicking” approximation for large-v
rays will be verified by the numerical results that we display
shortly.
Figure 15 displays rðuÞ along rays of constant v. This

figure demonstrates two interesting (although well-known)
facts: First, while u increases the various constant-v curves
join a universal limiting curve (the red curve at the bottom),
which should be interpreted as rðuÞ along the CH. Second,
the CH undergoes a clear contraction at large u: The CH
function rðuÞ is initially “frozen” at r ≈ r−, but at large u it
starts shrinking toward r ¼ 0. This behavior is demon-
strated more clearly in Fig. 16 which zooms in on the large-
u region in Fig. 15. This contraction of the CH to r ¼ 0
results from the focusing effect due to the scalar-field
energy fluxes. Panel (b) provides a logarithmic graph of
this function rðuÞ, indicating that the numerics performs
pretty well up to r values as small as ∼2 × 10−3.
Figure 17 displaysΦðuÞ along various curves of constant

v. The sharp increase around u ≈ 234 seems to follow from
the very significant r-focusing, which occurs at that u value
as can be seen in panel (b) of Fig. 16. A zoom in on the
sharp (negative) peak at u ≈ 234.2 is shown in panel (b).
One can notice the convergence of the various v ¼ const
curves towards the red one (v ¼ 200) as v increases. This
represents the decay of the scattering dynamics at large v
[issue (ii) in the discussion above].
Figure 18 displays Φ as a function of r, again along

various constant-v rays. In some sense this function ΦðrÞ is
more robust than rðuÞ and ΦðuÞ, because it is invariant to
the u gauge. And furthermore, its large-v limit (namely the
CH limiting function), which we may denote ΦchðrÞ, is
entirely gauge invariant.
A strange spike shows up in panel (a) at r ∼ 0.35

(circled). A zoom in on this spike, shown in panel (b),

successfully resolves the steep increase in Φ. However, it
reveals a new spike (this time a negative one) at r ≈ 0.3518.
The further zoom in panel (c) reveals yet another spike.
This situation repeats itself once again in the next zoom
level shown in panel (d), indicating that this feature actually
hides a hierarchy of spikes, with alternating signs. The
spikes in panels (c) and (d) are located at r ≈ 0.351773,
which agrees fairly well with the r− value corresponding to
the final mass mfinal ¼ 1.459. The origin and properties of
this series of spikes remains an open question for further
investigation.

IX. DISCUSSION

As was shown in the previous sections, our algorithm
solves the difficulties associated with long-run double-null
simulations along the event horizon of a spherical BH. It
also solves the analogous problem that occurs deeper inside
a charged BH, at the outgoing inner horizon. It thus allows
a full and continuous simulation of the spacetime of a
spherical charged BH: from the weak-field region, through-
out the strong-field region and across the EH; and in the BH
interior, up to the neighborhoods of the CH and the r ¼ 0
singularity (as well as their intersection point).
There still remain the usual limitations of the finite-

difference approach, namely the accumulation of the
truncation and roundoff errors—which may eventually
limit the integration range δve. Also, it seems that it would
not be easy to parallelize this algorithm, due to the
nontrivial setup of the initial data for σ.
Our main motivation for developing this algorithm was

the attempt to numerically explore the outgoing shock wave
that was recently found [21] to occur at the outgoing inner
horizon of a generically perturbed spinning or charged BH.
This numerical investigation of the shock wave will be
presented elsewhere. However, we believe that the same
adaptive gauge algorithm may be used for a variety of other
investigations of spherically symmetric self-gravitating
perturbations which require a long-term simulation
(namely large span in Eddington v) along the event and/
or outgoing inner horizon. For example, it could be used to
investigate the evolution of ingoing power-law tails of
nonlinear perturbations inside the BH, and particularly near
the CH.
It has been argued by Hamilton and Avelino [30] that the

description of the CH as a null singularity [3,5,6,31] is not
relevant to astrophysical BHs since they are not isolated.
Instead, realistic BHs steadily accrete the microwave
background photons, and possibly also dust. Hamilton
and Avelino argued that these long-term fluxes should
drastically change the nature of the null weak singularity at
the (would-be) CH, replacing it by a stronger singularity.
Our algorithm can be used to clarify this issue, by numeri-
cally exploring the interior of a spherical charged BH
perturbed by null fluids and/or a self-gravitating scalar
field, which fall into the BH along a very long period of
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Eddington v—e.g. of order 103M. Although the code
presented in this paper only included a scalar field, the
addition of null fluids to the code is fairly straightforward;
it merely involves a minor modification in the constraint
equations.
Finally, it is worth mentioning that while our simulation

is fully classical, the double-null EH problem is not
restricted to classical perturbations and is also relevant to
semiclassical dynamics. In particular, in any attempt to
simulate the evolution of an evaporating BH due to weak
semiclassical fluxes, a significant decrease in the BH mass
will require a very long evolution time. The aforementioned
EH problem will then be encountered if double-null
coordinates are used. Our adaptive gauge algorithm may
be employed to overcome the EH problem in this case
as well.
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APPENDIX: MATTER FIELDS AND THEIR
ENERGY-MOMENTUM TENSOR

Our model contains two matter fields: a minimally
coupled massless scalar field Φ and a radial electromag-
netic field Fμν. We explicitly express here the field
equations and also the form of the energy-momentum
tensor for these two fields.

1. Scalar field

The field equation for a minimally coupled massless
scalar field is Φ;α

;α ¼ 0. In our double-null coordinates it
takes the explicit form

Φ;uv ¼ −
1

r
ðr;u Φ;v þr;v Φ;u Þ: ðA1Þ

The energy-momentum tensor of this field is

TΦ
;μν ¼

1

4π

�
Φ;μ Φ;ν −

1

2
gμνgαβΦ;αΦ;β

�
: ðA2Þ

With the line element (1) this reads

TΦ
μν¼

1

4π

0
BBB@
Φ;2u 0 0 0

0 Φ;2v 0 0

0 0 2r2Φ;uΦ;v e−σ 0

0 0 0 2r2sin2θΦ;uΦ;v e−σ

1
CCCA:

ðA3Þ

2. Electromagnetic field

The electromagnetic field Fμν satisfies the source-free
Maxwell equation. Restricting our attention to spherically
symmetric solutions which entail a radial electric field, it is
fairly straightforward to solve these equations for a generic
(time-dependent) spherically symmetric background metric
as in Eq. (1). The source-free Maxwell equation is given by

Fμν
;ν ≡ 1ffiffiffiffiffiffi−gp ð ffiffiffiffiffiffi

−g
p

FμνÞ;ν¼ 0; ðA4Þ

where g ¼ −ð1=4Þe2σr4 sin2 θ is the metric determinant. In
our case (radial electric field) the only nonvanishing
component of Fμν is Fuv ¼ −Fvu. Correspondingly Fuv

satisfies

�
1

2
eσr2Fuv

�
;v ¼ 0;

�
1

2
eσr2Fuv

�
;u ¼ 0 ðA5Þ

and integration yields

1

2
eσr2Fuv ¼ const≡Q: ðA6Þ

Here Q is a free parameter that should be interpreted
as the field’s electric charge. This equation yields
Fuv ¼ 2Qe−σ=r2; using guv ¼ −eσ=2 in order to lower
indices we obtain the final result for the covariant
components:

Fvu ¼ −Fuv ¼ Q
eσ

2r2
: ðA7Þ

The energy-momentum tensor of the electromagnetic
field is given by

TQ
μν ¼ 1

4π

�
gαβFμαFνβ −

1

4
gμνFαβFαβ

�
:

In our coordinates this reads

TQ
μν ¼ Q2

8πr4

0
BBBBB@

0 1
2
eσ 0 0

1
2
eσ 0 0 0

0 0 r2 0

0 0 0 r2sin2θ

1
CCCCCA
: ðA8Þ
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