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The curved spacetime around current loops and solenoids carrying arbitrarily large steady electric
currents is obtained from the numerical resolution of the coupled Einstein-Maxwell equations in cylindrical
symmetry. The artificial gravitational field associated to the generation of a magnetic field produces
gravitational redshift of photons and deviation of light. Null geodesics in the curved spacetime of current
loops and solenoids are also presented. We finally propose an experimental setup achievable with current
technology of superconducting coils, that produces a phase shift of light of the same order of magnitude as
astrophysical signals in ground-based gravitational wave observatories.
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I. INTRODUCTION

Somehow, studying gravity is a contemplative activity:
physicists restrict themselves to the study of natural,
preexisting, sources of gravitation. Generating artificial
gravitational fields, that could be switched on or off at will,
is a question captured or left to science fiction.
However, the equivalence principle, at the very heart of

Einstein’s general relativity, states that all types of energy
produce and undergo gravitation in the same way. The most
widespread source of gravitation is the inertial mass, which
produces permanent gravitational fields. At the opposite,
electromagnetic fields could be used to generate artificial,
or human-made, gravitational fields, that could be switched
on or off at will, depending whether their electromagnetic
progenitors are present or not.
The equivalence principle actually implies that one also

generates gravitational fields when generating electromag-
netic fields. However, since the gravitational strength is
extremely small compared to the one of the electromagnetic
force [1], large electromagnetic fields will only produce
tiny spacetime deformations. Yet, electromagnetic fields do
curve spacetime. Therefore, general relativity predicts that
light and more generally electrically neutral massive
particles are deflected by electromagnetic fields, although
they do not feel the classical Lorentz force. This effect does
not require new exotic physics and it might serve in the
future to build new tests of the equivalence principle in the
laboratory. In experimental gravity, the permanent gravi-
tational fields involved cannot be withdrawn completely. At
the opposite, the gravitational fields generated by electro-
magnetic fields can be switched off: their experimental
search can therefore be done by comparing measurements
made in the presence and in the absence of electromagnetic
fields. However, due to the weakness of the gravitational
interaction, even the strongest magnetic fields humans can

currently generate will only produce tiny spacetime defor-
mations. Detecting them would constitute a true exper-
imental challenge which we glimpse at in this paper. Such a
detection would nevertheless open the way to new labo-
ratory tests of the equivalence principle.
The so-called Einstein-Maxwell (EM) equations regroup

the classical field theories of general relativity and electro-
magnetism in a covariant way, although without truly
unifying them. In some sense, the idea of gravitational
field generation from a magnetic field can be attributed to
Levi-Cività [2] whose early analytical work describes the
curvature of spacetime completely filled by a uniform
magnetic field. Subsequent works have established ana-
lytical solutions for spacetime around an infinitely long
straight wire carrying steady current [3–5]. The main
problem of these analytical solutions is that the associated
metric is not asymptotically flat, due to the infinitely large
current distribution, which makes these analytical solutions
of poor interest for practical applications. Overcoming this
problem requires considering current distributions of finite
extent such as current loops and solenoids. Asymptotic
spacetime around current loops carrying steady current has
been studied in [5]. An attempt to derive the full solution of
EM equations around the current loop was realized a bit
later [6]; however this attempt led to an unphysical solution
due to an oversimplifying assumption. The case of an
infinitely long solenoid was considered in [7] but only for
weak perturbations of the metric in linearized general
relativity. Therefore, the solutions of the full nonlinear EM
equations sourced by the steady currents carried by loops and
finite solenoids remained so far unexplored until now.
In this paper, we present two important results: (1) how

spacetime is curved around current loops and solenoids
carrying arbitrarily large electric currents and (2) how the
consequent deviation of light could be detected. The
structure of this paper is as follows. In Secs. II and III,
we develop the numerical resolution of coupled EM
equations in cylindrical symmetry. We then present the*andre.fuzfa@unamur.be
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trajectories of light in curved spacetimes around current
loops and solenoids in Sec. IV. In Sec. V, we finally propose
an experimental setup based on a modification of interfer-
ometers used for the search for gravitational waves and
current technology of superconducting electromagnets
that produces a detectable artificial spacetime curvature.
We conclude by emphasizing the importance of the effect
presented here: the deflexion of light in the curved
spacetime of an electromagnet opens the way to new
experimental tests of Einstein’s equivalence principle.

II. EINSTEIN-MAXWELL EQUATIONS FOR THE
CURRENT LOOP AND THE SOLENOID

A. Field equations

The EM system models the interaction of gravitation and
electromagnetism by their juxtaposition in the following
coupled tensorial field equations (in SI units [8]):

Rμν ¼ −
8πG
c4

TðemÞ
μν ; ð1Þ

∇μFμν ¼ μ0Jν ð2Þ

where TðemÞ
μν ¼ − 1

μ0
ðgαβFμαFνβ − 1

4
gμνFαβFαβÞ is the

Maxwell stress-energy tensor, Fμν ¼ ∂μAν − ∂νAμ is the
Faraday tensor of the electromagnetic field, gμν and Aμ are
the metric and the four-vector potential, i.e. the funda-
mental fields describing gravitation and electromagnetism
respectively, Rμν is the Ricci tensor and Jν the four-current
density.
Spacetime is therefore curved by the energy of the

electromagnetic field as ruled by Einstein equations of
general relativity (1). At the same time, the electromagnetic
field propagates in the nontrivial background it generated
through Einstein’s equations (1), and this propagation is
described by the covariant Maxwell equations in curved
spacetime (2). Because we are interested in the additionnal
gravitational field that is produced by the magnetic field,
we neglect the mass of the current carriers and the electric
wires [9].
Since current loops and solenoids possess one axis of

symmetry, we choose the so-called Weyl gauge [5,6,10] for
the metric field:

ds2 ¼ c2eρðr;zÞdt2 − eλðr;zÞðdr2 þ dz2Þ − e−ρðr;zÞr2dφ2·

ð3Þ

In this symmetry, the vector potential Aμ trivially reduces
to one nonvanishing magnetic component Aφ ¼ aðr; zÞ=r.
The advantage of theWeyl gauge (3) is that the equations of
motion directly exhibit usual Laplacian operators on flat
background with cylindrical coordinates. Indeed, Eqs. (1)
and (2) using Eq. (3) now read (see also [6])

∇2
ðr;zÞρ ¼ 8πG

c4μ0

eρ

r2
ðð∂raÞ2 þ ð∂zaÞ2Þ; ð4Þ

∇2
ðr;zÞλþ ð∂zρÞ2 ¼

8πG
c4μ0

eρ

r2
ðð∂raÞ2 − ð∂zaÞ2Þ; ð5Þ

∂zλþ ∂zρ ¼ r∂rρ∂zρþ
16πG
c4μ0

eρ

r
∂ra∂za; ð6Þ

∇2
ðr;zÞa −

2

r
∂ra ¼ −ð∂ra∂rρþ ∂za∂zρÞ − rμ0J ð7Þ

where ∇2
ðr;zÞ ¼ ∂2

r þ 1
r ∂r þ ∂2

z is the usual Laplacian on

flat space in cylindrical coordinates and where J is the
angular component of the current density. In [6], the term
ð∂ra∂rρþ ∂za∂zρÞ in Eq. (7) was arbitrarily set to zero to
provide an analytical solution. We do not restrict ourselves
here to this arbitrary reducing condition and provide the full
solution numerically.
Equation (7) is the Maxwell equation on a curved

spacetime described by cylindrical coordinates. For a
flat Minkowski background ρ ¼ λ ¼ 0, we have that the
nonrelativistic field anr satisfies

∇2
ðr;zÞanr −

2

r
∂ranr ¼ −rμ0J· ð8Þ

We can therefore decompose the total field aðr; zÞ into
the sum of a nonrelativistic part anr [solution of Eq. (8)] and
a relativistic contribution arel by setting a ¼ anr þ arel.
The relativistic contribution arel will therefore be a
solution of

∇2
ðr;zÞarel −

2

r
∂rarel ¼ −fð∂ranr þ ∂rarelÞ∂rρþ � � �

× ð∂zanr þ ∂zarelÞ∂zρg: ð9Þ

This avoids dealing with pointlike sources representing the
current loop and the solenoid in cylindrical coordinates.
The source of the field equations now lies in the non-
relativistic contribution anrðr; zÞ.
A current loop of radius l corresponds to a current

density located on an infinitely thin ring: J ∼ δðzÞ · δðr − lÞ
while a solenoid of finite length L and of radius l
corresponds to a current density located on an infinitely
thin sheet located at r ¼ l and z ∈ ½− L

2
; L
2
� [11]. Analytical

expressions of the vector potential Aφ in both cases can be
derived from the Biot-Savart law, expressions that of course
verify Eq. (8). The nonrelativistic solution aloopnr for the
current loop is given by [11,12]

aloopnr ðr; zÞ ¼ μ0I
2π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðlþ rÞ2 þ z2

q

×

�
l2 þ r2 þ z2

ðlþ rÞ2 þ z2
Kðk2Þ − Eðk2Þ

�
ð10Þ
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where I is the steady current carried by the wire,

k2 ¼ 4rlððlþ rÞ2 þ z2Þ−1

and

Kðk2Þ ¼
Z

π=2

0

ð1 − k2sin2ðφÞÞ−1=2dφ;

Eðk2Þ ¼
Z

π=2

0

ð1 − k2sin2ðφÞÞ1=2dφ

are the complete elliptic integrals of the first and second
kind respectively. For the solenoid of finite length L, the
nonrelativistic solution asolnr ðr; zÞ is given by [13]

asolnr ðr; zÞ ¼
μ0nI
4π

ffiffiffiffi
lr

p
×

�
ξk

�
k2 þ g2 − g2k2

k2g2
Kðk2Þ

−
Eðk2Þ
k2

þ g2 − 1

g2
Πðg2; k2Þ

��
ξþ

ξ−

ð11Þ

where n is the number of wire loops per unit length,

k2 ¼ 4rl
ððlþ rÞ2 þ ξ2Þ ; g2 ¼ 4rl

ðlþ rÞ2 ; ξ� ¼ z�L
2

and

Πðg2; k2Þ ¼
Z

π=2

0

ð1 − g2sin2ðφÞÞ−1ð1 − k2sin2ðφÞÞ−1=2dφ

is the complete elliptic integral of the third kind.
In order to be used as source terms in Eq. (9), the

gradients of anrðr; zÞ can be obtained analytically from the
formulas Eqs. (10) and (11) and the properties of complete
elliptic functions.
If we set r ¼ ul, z ¼ vL and anr;rel → anr;rel=ðμ0IlÞ

[anr;rel → anr;rel=ðμ0nIlLÞ for the solenoid], Eqs. (4), (5),
and (9) now reduce to the following set of dimensionless
equations

∇2ρ¼ CI
L2

l2
eρ

u2

�
ð∂uðanr þ arelÞÞ2 þ

l2

L2
ð∂vðanr þ arelÞÞ2

�
;

ð12Þ

∇2λþ l2

L2
ð∂vρÞ2 ¼ CI

L2

l2
eρ

u2

�
ð∂uðanr þ arelÞÞ2

−
l2

L2
ð∂vðanr þ arelÞÞ2

�
; ð13Þ

∇2arel −
2

u
∂uarel ¼ −

�
∂uðanr þ arelÞ∂uρ

þ l2

L2
∂vðanr þ arelÞ∂vρ

�
; ð14Þ

0 ¼ −∂vλþ u∂uρ∂vρ − ∂vρ

þ 2CI
eρ

u
∂uðanr þ arelÞ∂vðanr þ arelÞ ð15Þ

where ∇2 ¼ ∂2
u þ 1

u ∂u þ l2

L2 ∂2
v. In the following, we will

solve Eqs. (12)–(14) numerically and use the last of the
Einstein equations Eq. (15) for a validation check.
The dimensionless magnetogravitational coupling for

the current loop and the solenoid are given by

CloopI ¼ 8πG
c4

μ0I2; CsolI ¼ 8πG
c4

μ0I2n2l2· ð16Þ

Hence it is the square of the total current (I for the loop
and InL for the solenoid) that sources the gravitational
field [14].

B. Boundary conditions

Solving the system (12)–(14) requires the specification
of boundary conditions. On the axis of symmetry, r ¼ 0,
spacetime must be smooth such that we have ∂rρjr¼0 ¼∂rλjr¼0 ¼ ∂rajr¼0 ¼ 0. Far away from the current loop or
the solenoid [ðu; vÞ → ðþ∞;�∞Þ], these devices behave
as magnetic dipoles and the spacetime is asymptotically flat
(see also [5]). The magnetic component a is then ruled by
Eq. (7) with ∂ua∂uρþ ∂va∂vρ ≈ 0 (i.e., the nonrelativistic
Maxwell equation). This condition is achieved if arel
vanishes and ∂vanr ¼ u∂uψ and ∂uanr ¼ −u∂vψ with ψ
a harmonic function called the scalar magnetic potential
[5,6]. For magnetic dipoles, the (dimensionless) scalar
magnetic potential is given by

ψ ¼ v
4

�
u2 þ L2

l2
v2
�−3=2

· ð17Þ

The metric functions ρ and λ are therefore ruled by the
following equations at large distances [ðu; vÞ →
ðþ∞;�∞Þ, ρ ≪ 1 so that eρ ≈ 1]:

∇2ρ ¼ CI
L4

l4

�
ð∂uψÞ2 þ

l2

L2
ð∂vψÞ2

�
;

∇2λ ¼ CI
L4

l4

�
l2

L2
ð∂vψÞ2 − ð∂uψÞ2

�
·

The asymptotic behaviors for the metric fields around the
current loop and the solenoid are therefore given by

ρ ∼
CI
32

L4

l4
v2
�
u2 þ L2

l2
v2
�−3

; ð18Þ
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λ ∼
CI
16

L2

l2

�
2u2

�
u2 þ L2

l2
v2
�−3

−
L2

l2
v2

2

�
u2 þ L2

l2
v2
�−3

−
9u4

4

�
u2 þ L2

l2
v2
�−4�

· ð19Þ

III. NUMERICAL RESOLUTION OF
FIELD EQUATIONS

A. Numerical method

We solve Eqs. (12)–(14) numerically by using a combi-
nation of relaxation and spectral methods. We first
introduce a sequence of functions ρðnÞðu; vÞ, λðnÞðu; vÞ
and aðnÞrel ðu; vÞ for the relaxation algorithm such that
Eqs. (12)–(14) can be approximated by a set of linear
inhomogeneous elliptic equations:

∇2ρðnþ1Þ ¼ S1½ρðnÞ; aðnÞrel �; ð20Þ

∇2λðnþ1Þ ¼ S2½ρðnÞ; aðnÞrel �; ð21Þ

∇2aðnþ1Þ
rel −

2

u
∂ua

ðnþ1Þ
rel ¼ S3½ρðnÞ; aðnÞrel � ð22Þ

where the source terms Si gather all nonlinear terms of
Eqs. (12)–(14) but evaluated with the previous state n of
the relaxation algorithm. The algorithm starts with a state
n ¼ 0 that corresponds to the nonrelativistic solution:

ρð0Þðu; vÞ ¼ λð0Þðu; vÞ ¼ að0Þrel ðu; vÞ ¼ 0. At each relaxation
step, we solve Eqs. (20)–(22) with a spectral method to

compute ρðnþ1Þðu; vÞ, λðnþ1Þðu; vÞ and aðnþ1Þ
rel ðu; vÞ before

iterating. The algorithm is stopped when the relative update
of the three fields averaged over the spatial domain reach
some tolerance threshold.
To solve Eqs. (20)–(22) at each relaxation step, we

develop each field fðu; vÞ and each source term Siðu; vÞ as
a truncated Fourier series in the v direction:

fðu; vÞ ¼
XN
k¼0

f̂kðuÞ cos
�
kπ
V

v

�
;

ðu; vÞ ∈ ½0; U� × ½−V;þV�

since all the fields are even functions of v due to cylindrical
symmetry and where

f̂kðuÞ ¼
1

V

Z
V

−V
fðu; vÞ cos

�
kπ
V

v

�
dv·

In Fourier space, Eqs. (20)–(22) now become a system of
linear inhomogeneous ordinary differential equations
(ODEs)

d2ρ̂k
du2

þ 1

u
dρ̂k
du

−
l2

L2

�
kπ
V

�
2

ρ̂k ¼ Ŝk;1ðuÞ; ð23Þ

d2λ̂k
du2

þ 1

u
dλ̂k
du

−
l2

L2

�
kπ
V

�
2

λ̂k ¼ Ŝk;2ðuÞ; ð24Þ

d2 ˆarelk
du2

−
1

u
d ˆarelk
du

−
l2

L2

�
kπ
V

�
2

ˆarelk ¼ Ŝk;3ðuÞ ð25Þ

for k ¼ 1;…; N and where we have omitted the relaxation
index nþ 1. Equations (23)–(25) can be solved as a
boundary value problem whose boundary conditions at
u ¼ 0 and u ¼ U ≫ 1 are the Fourier transforms of the
conditions derived in Sec. II B. In the present paper, we
have used the algorithm described in [15] for the numerical
resolution of Eqs. (23)–(25) for each Fourier mode k at
each relaxation step n.
Figure 1 represents the relative update on the fields

1

3

�				 ρ
ðnþ1Þ

ρðnÞ
− 1

				þ
				 λ

ðnþ1Þ

λðnÞ
− 1

				þ
				 a

ðnþ1Þ
rel

aðnÞrel

− 1

				
�

ð26Þ

averaged over the spatial domain ½0; U� × ½−V;þV�, as a
function of the relaxation step n. In the relaxation algo-
rithm, the relative updates on the fields decrease exponen-
tially with the number of iterations before settling to some
plateau. The algorithm described above therefore converges
toward the solution of Eqs. (12)–(14).
We can also have a glimpse of the numerical accuracy

of the solution by evaluating the right-hand side of the
off-diagonal Einstein equation, Eq. (15), with the fields
obtained at the end of the relaxation algorithm. This is
illustrated in Fig. 2 in logarithmic scale; the rms of the
residual is about 3 × 10−5 for field values of order unity
(CI ¼ 1). The numerical error is more important around the
sources of current and are mostly dominated by rounding

Relaxation iteration
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FIG. 1. Relative update on the fields Eq. (26) averaged over the
spatial domain, as a function of the relaxation iteration n.
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errors in the evaluation of the elliptic functions that
compose the magnetic potential anr of the current loop
and the solenoid [16].
We can now present the spacetimes curved by the

magnetic fields of the current loop and the solenoid.

B. Numerical results

Figures 3 and 4 present the metric functions ρ and λ as
well as the relativistic part of the magnetic potential arel for
the current loop (Fig. 3) and solenoids of different lengths
(Fig. 4). These plots have been obtained from the numerical
resolution of Eqs. (12)–(14) with the boundary conditions
Eqs. (18) using the numerical method presented in the
previous section.
Metric functions exhibit a peak at the loop location

(u ¼ 1, v ¼ 0) in Fig. 3 and we can notice the similarity
between the solutions of the current loops and the solenoid
of smaller length (Fig. 4, first row: L ¼ 0.1). Spacetime is
mostly curved along the radial direction (v ¼ 0) inside the
loop (u < 1) and becomes quickly flat outside of the loop.
When the solenoid length is increased (Fig. 4 from top to

bottom), we can see how the metric potential wells deepen

and widen along the central z axis. With longer solenoids,
the total electric current involved is increased and so is the
spacetime deformation at the origin of coordinates. The
peak in λ near the solenoid location is also smoothed when
the solenoid length is increasing (Fig. 4, central panels from
top to bottom). We also have that spacetime deformation
occurs mostly inside the solenoid and spacetime becomes
quickly flat outside the solenoid.
The total magnetic potential a ¼ anr þ arel is smaller

than in the classical case since we have arel < 0 on average
(Figs. 3 and 4, right panels). In general relativity, the
electric current produces both magnetic and gravitational
fields, leaving less energy to the former than it does in
electromagnetism on flat spacetimes. These metric poten-
tial wells will produce light deflexion as well as gravita-
tional redshift which will be maximal for a light source
located at the origin of coordinates. For an observer located
at spatial infinity (where gtt → 1) and a source located at
the origin of coordinates, the gravitational redshift is simply
z ¼ 1 − expð−ρð0; 0Þ=2Þ, and is of the order of magnitude
of the magnetogravitational coupling CI (see also Fig. 5).
The precision achieved by optical lattice clocks in the
measurement of a transition frequency is of the order 10−15

[17]. Achieving such a gravitational redshift with single-
layered solenoids would require CI ≈ 10−15; i.e. for an
electric current of 103 A, n ¼ 100 it would require a
solenoid length of about 1011 m. Gravitational redshift
therefore does not seem to be appropriate to detect
gravitational fields artificially generated by coils with
current superconducting technology. As we shall see
further, Michelson interferometers with Fabry-Pérot
cavities will be more appropriate to attempt such detection
of artificially generated gravitational fields.
Figure 5 illustrates how the gravitational redshift z

evolves with the magnetogravitational coupling CI
Eq. (16). For CI ≪ 1, the redshift z varies linearly with
CI while a spacetime singularity appears at the center of
coordinates, ρð0; 0Þ → −∞ (z → 1) when CI → ∞.
We can now focus on the relativistic effect of the

deviation of light by an electric current, through the

FIG. 3. Metric components and relativistic part of the magnetic potential for the current loop for CI ¼ 1. Left panel:
gtt ¼ −r2gφφ ¼ expðρÞ. Central panel: grr ¼ gzz ¼ expðλÞ. Right panel: arel.
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FIG. 2. Right-hand side of Eq. (15) (in logarithmic scale) at the
end of the relaxation algorithm (case of a solenoid with L ¼ 0.1
and CI ¼ 1).
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induced deformation of spacetime by magnetic fields. This
will be treated in the next section.

IV. THE BENDING OF LIGHT BY MAGNETIC
FIELDS IN GENERAL RELATIVITY

In this section, we establish the general pattern of light
geodesics in strongly curved spacetimes through numerical
integration techniques. The geodesic curves xμðsÞ of
neutral particles are solutions of

d2xα

ds2
þ Γα

βγ

dxβ

ds
dxγ

ds
¼ 0

where s is some affine parameter. Introducing the metric
ansatz Eq. (3), this gives the following set of ordinary
differential equations:

d2t
ds2

þ ∂ρ
∂r

dt
ds

dr
ds

þ ∂ρ
∂z

dt
ds

dz
ds

¼ 0; ð27Þ
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FIG. 4. Metric components and relativistic part of the magnetic potential for solenoids of different lengths for CI ¼ 1. Left panel:
gtt ¼ −r2gφφ ¼ expðρÞ. Central panel: grr ¼ gzz ¼ expðλÞ. Right panel: arel. First row: L ¼ 0.1. Second row: L ¼ 1. Third row:
L ¼ 10.
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d2z
ds2

þ c2

2
eρ−λ

∂ρ
∂z

�
dt
ds

�
2

þ 1

2

∂λ
∂z

�
dz
ds

�
2

þ r2

2
e−ρ−λ

∂ρ
∂z

�
dφ
ds

�
2

þ ∂λ
∂r

dz
ds

dr
ds

−
1

2

∂λ
∂z

�
dr
ds

�
2

¼ 0; ð28Þ

d2r
ds2

þ c2

2
eρ−λ

∂ρ
∂r

�
dt
ds

�
2

−
1

2

∂λ
∂r

�
dz
ds

�
2

þ r
2
e−ρ−λ

�
r
∂ρ
∂r − 2

��
dφ
ds

�
2

þ ∂λ
∂z

dz
ds

dr
ds

þ 1

2

∂λ
∂r

�
dr
ds

�
2

¼ 0; ð29Þ

d2φ
ds2

þ
�
2

r
−
∂ρ
∂r

�
dr
ds

dφ
ds

−
∂ρ
∂z

dφ
ds

dz
ds

¼ 0: ð30Þ

Equations (27) and (30) can be directly integrated to give

dt
ds

¼ 1

c
e−ρ; ð31Þ

dφ
ds

¼ C
r2

eρ ð32Þ

where we chose one integration constant such that the
affine parameter s can be identified with the coordinate

time ct at spatial infinity (where ρ → 0) and where the
constant C is related to the angular momentum of the
neutral particle.
For null geodecics, we have that the tangent vector is

lightlike all along the geodesic curves gμν dxμ
ds

dxν
ds ¼ 0 so that

e−ρ −
C2

r2
eρ − eλ

��
dz
ds

�
2

þ
�
dr
ds

�
2
�
¼ 0· ð33Þ

Putting this constraint into the remaining two geodesic
equations Eqs. (28) and (29) gives

d2z
ds2

þ C2

r2
eρ−λ

∂ρ
∂z þ

1

2

�∂ρ
∂z þ

∂λ
∂z

��
dz
ds

�
2

þ 1

2

�∂ρ
∂z −

∂λ
∂z

��
dr
ds

�
2

þ ∂λ
∂r

dz
ds

dr
ds

¼ 0; ð34Þ

d2r
ds2

þ C2

r2
eρ−λ

�∂ρ
∂r −

1

r

�
þ 1

2

�∂ρ
∂r −

∂λ
∂r

��
dz
ds

�
2

þ 1

2

�∂ρ
∂r þ

∂λ
∂r

��
dr
ds

�
2

þ ∂λ
∂z

dz
ds

dr
ds

¼ 0: ð35Þ

In the following, we restrict ourselves to planar trajec-
tories in the ðr; zÞ plane by setting φ ¼ cst and C ¼ 0 (such
that dφds ¼ 0). If we now set s ¼ Sl (and r ¼ ul, z ¼ vL) we
finally obtain the following set of dimensionless ODEs:

d2v
dS2

þ 1

2

�∂ρ
∂vþ

∂λ
∂v

��
dv
dS

�
2

þ l2

2L2

�∂ρ
∂v −

∂λ
∂v

��
du
dS

�
2

þ ∂λ
∂u

dv
dS

du
dS

¼ 0; ð36Þ

d2u
dS2

þ L2

2l2

�∂ρ
∂u −

∂λ
∂u

��
dv
dS

�
2

þ 1

2

�∂λ
∂uþ ∂ρ

∂u
��

du
dS

�
2

þ ∂λ
∂v

dv
dS

du
dS

¼ 0: ð37Þ

Since the metric fields and their derivatives are all functions
of ðu; vÞ coordinates, solving Eqs. (36) and (37) requires
integrating both ODEs while carefully interpolating the
numerical fields λ, ∂u;zλ, ρ, ∂u;zρ at the current location
point in each integration step. Equation (33) will be used as
a constraint to validate the numerical integration.
Figure 6 presents the deflected trajectories of a bundle of

light rays incoming parallel from spatial infinity v → þ∞.

These trajectories have been obtained from the numerical
resolution of geodesic equations in strongly curved space-
times around loop and solenoids with extremely large
magnetogravitational coupling CI ¼ 10 (or CI ¼ 1) so that
theway light is deflected can be easily shown. The constraint
Eq. (33) is below 10−8 along the trajectories shown in Fig. 6.

FIG. 5. Gravitational redshift of a light source located at the
center of coordinates and a receiver at spatial infinity, as a
function of the magnetogravitational coupling CI .
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Geodesics passing far away from the current loop of the
solenoid follow hyperbola as if photons were attracted by a
point mass. However, null geodesics with close encounters
can exhibit more sophisticated shape while passing through
the magnetic device. In this case of strong coupling (CI ¼ 10
or CI ¼ 1), the deviation of the light beam is so strong that
magnification appears at some locations while large regions
of the ðu; vÞ plane have been cleared of any light. These
results can be applied to the gravitational lensing of cosmic
string loops in the strong field regime.

V. APPLICATION: GENERATION AND
DETECTION OF ARTIFICIALLY

GENERATED GRAVITATIONAL FIELDS

We now investigate how far such deflexion of light could
be detected with the present technology of superconducting
electromagnets and high precision light-wave interferom-
eters. The basic idea is to make interfering two light beams
among which one has traveled in the spacetime curved by
powered superconducting solenoids and the other not.
The shorter distances traveled by the light beam inside
the powered solenoids will generate a path difference
between both light beams that will impact their interference
pattern as a result of a gravitationally generated phase shift.
However, since the large electric currents that can be
achieved with current superconducting cables, roughly of
order 104A, will generate extremely weak spacetime
curvature, it will be necessary to amplify the signal by

forcing light to perform numerous round-trips in the
artificially generated gravitational field.
We can first write down the gravitational field equations

in the weak field limit. If we assume arel ≪ anr and ρ,
λ ≪ 1, we get that Eqs. (12) and (13) now reduce to

∇2ρ ¼ CI
u2

L2

l2

�
ð∂uanrÞ2 þ

l2

L2
ð∂vanrÞ2

�
; ð38Þ

∇2λ ¼ CI
u2

L2

l2

�
ð∂uanrÞ2 −

l2

L2
ð∂vanrÞ2

�
ð39Þ

where ∇2 ¼ ∂2
u þ 1

u ∂u þ l2

L2 ∂2
v· For reasons to be explained

below, we will consider that the source of the magnetic
fields is given by a set of stacked anti-Helmholtz coils (or
multilayered coils). The ith anti-Helmholtz coil is con-
stituted by two solenoids of radius li (li < l), length L,
spaced by a distance D and carrying steady electric current
of opposite directions. It will be necessary to pile up these
(anti-)Helmholtz coils to produce a detectable spacetime
curvature by means of electric currents of order 104A. The
corresponding expression for the total magnetic potential
anr of n stacked anti-Helmholtz coils of radius li can be
obtained from Eq. (11) by

anr ¼
Xn
i¼1

ðasolnr ðr; zþD=2; liÞ − asolnr ðr; z −D=2; liÞÞ:

ð40Þ
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FIG. 6. Trajectories of parallel light rays
coming from infinity. Top left panel: current
loop (CI ¼ 10). Top right panel: solenoid with
L ¼ 0.5l (CI ¼ 10). Lower left panel: solenoid
with L ¼ l (CI ¼ 10). Lower right panel:
solenoid with L ¼ 10l (CI ¼ 1). Blue dots
indicate the location of the current loop and
the solenoids.
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Corresponding boundary conditions can be obtained from
those given in Sec. II by linearly superposing the boundary
conditions of single solenoids as allowed by the weak
gravitational field limit. The problem can be solved numeri-
cally with a standard spectral method (for instance based on
Fourier decomposition; see Sec. III).
Our proposed experimental setup shown in Fig. 7 recalls

those of ground-based interferometers used to detect
gravitational waves: it consists of a Michelson interferom-
eter whose arms are constituted by Fabry-Pérot cavities.
One of these arms goes through a multilayered anti-
Helmholtz coil consisting of two stacks of superconducting
solenoids. As long as the electric current is switched on in
the device, this one curves spacetime and deflects light.
Since spacetime is slightly shrunk inside the coil, light
trapped inside the powered coil accumulates phase shift as
the round-trips succeed each other.
Following [18], we can write down the phase shift due to

the weak gravitational field hμν on a Minkowski path γ of
light

ΔΦ ¼ 1

2

Z
γ
hμνKð0Þνdxμ ð41Þ

where Kð0Þν is the (unperturbed) constant 4-wave vector of
the wave front. We focus on light following the axis u ¼ 0

of the coil, with wave vector components Kð0Þt ¼ 2πν
c ¼

Kð0Þz with ν the frequency of light. Therefore, the phase
shift along the axis of the coil for one trip is given by

ΔΦ ¼ π

Λ

Z
L

0

ðρð0; zÞ − λð0; zÞÞdz ð42Þ

where Λ ¼ c
ν is the wavelength of the light beam of

frequency ν and L is the length of the interferometer
arm. An anti-Helmholtz coil configuration is better than a
solenoid for the production of gravitational phase shift.
Indeed, phase shift is directly related to the difference ρ − λ

which obeys the following partial differential equation
[Eqs. (38) and (39)]:

∇2ðρ − λÞ ¼ 2CI
u2

ð∂vanrÞ2 ∼ jBrj2; ð43Þ

where Br is the radial component of the magnetic field.
This quantity, although vanishing on the axis of symmetry,
increases more rapidly inside a Helmholtz coil than in the
interior of a long solenoid, justifying the above-mentioned
choice. As a matter of comparison, the phase shift induced
by a gravitational wave passing by a Michelson interfer-
ometer is given by [19]

ΔΦ ¼ 2πc
Λ

jhjτtrip ð44Þ

where jhj is the amplitude of the incoming gravitational
wave and τtrip ¼ 2L=c is the single round-trip travel time of
the light beam inside the arm (to be amplified through the
multiple reflections induced by the Fabry-Pérot cavities).
Currently the achievable threshold for detection is for
jhj≈ 10−21, L≈ 103 m and Λ≈ 10−6 m yielding ΔΦ≈
10−11 rad per trip.
Let us now give an estimation of this phase shift for

realistic experimental conditions of the setup presented
above. We particularize the setup as follows. We consider a
set of ten stacked anti-Helmholtz coils, each constituted by
two superconducting solenoids of same length L ¼ 2.5 m
carrying opposite steady electric current of 2 × 104 A
(which is similar to CMS-class magnets [20]) spaced by
a distance of D ¼ 2.5 m. The external solenoids have a
radius of l ¼ 5 m and the ten solenoid shells are chosen
equally spaced between r ¼ 1 m and r ¼ 5 m. The length
of the interferometer arm has been chosen to L ¼ 50 m.
Figure 8 shows the profiles of Bzð0; vÞ and ρð0; vÞ −

λð0; vÞ along the axis of symmetry u ¼ 0 of the solenoids.
The anti-Helmholtz coils generate a curvature of spacetime
that reaches its maximum at mid-distance from each of the
solenoids (u ¼ 0, v ¼ 0) where the magnetic field vanishes.
The magnetic field is maximal at the center of the solenoids
(at z ¼ �D=2), and its magnitude reaches about 20T for the
parameters chosen above. The phase shift Eq. (42) can be
integrated numerically for the results of Fig. 8 and we find
Δϕ ≈ −1.56 × 10−25 (for Λ514 nm) per round-trip inside
the interferometer. If the experiment can be conducted long
enough, for a time Texp, this phase shift will be accumulated.
For 200 days of duration, the accumulated phase shift
reaches Δϕ ≈ −1.08 × 10−11. This value is the same order
of magnitude as that of a gravitational wave signal [21], and
could be detected by current technologies developed for
ground-based gravitational wave observatories [22].
The example given above is purely indicative and aims to

show that a detectable phase shift could be produced by
present-day technology. We can give a simple order of
magnitude and lower bound of the accumulated phase shift

FIG. 7. Schematic view of the proposed experimental setup.

HOW CURRENT LOOPS AND SOLENOIDS CURVE SPACETIME PHYSICAL REVIEW D 93, 024014 (2016)

024014-9



produced by posing ρ − λ ≈ CI on the axis of symmetry so
that the phase shift Eq. (42) gives

ΔΦ ≈ π
L
Λ
CI ×

Texp

tbounce
≈ π

CI
Λ
cTexp ð45Þ

where Texp is the duration of the experiment and tbounce is
the time taken by light to produce a bounce inside the
interferometer so that Texp=tbounce ¼ Nbounce is the number
of bounces inside the Fabry-Pérot cavity.
To conclude this section, we emphasize that the gen-

eration and detection of artificial gravitational fields
by strong magnetic fields is within experimental reach
but requires large multilayered superconducting magnets
powered during dozens of days as well as 100-m-long
Michelson interferometers with Fabry-Pérot cavities that
could achieve the same sensitivity as ground-based gravi-
tational wave observatories but in the presence of intense
magnetic fields. As in gravitational wave observatories, a
long optical path is crucial for the detection of the very
weak gravitational perturbations. However, the wave front
of an astrophysical gravitational wave is much longer than
the perturbations of spacetime generated by electromagnets
a decameter large. Therefore, a kilometer-wide interferom-
eter can fit into the gravitational wave front coming from
astrophysical sources and is necessary to capture the wave
during the time it passes through Earth. Using a kilometer-
large interferometer for the detection of the spacetime
curvature induced by superconducting coils would require
kilometer-large magnets. This is not necessary since, unlike
the detection of gravitational waves, spacetime deformation
by electromagnets is maintained as long as the magnetic
field is present. The amplitude of this spacetime deforma-
tion is extremely tiny, of order of CI, which requires us to
trap the light long enough inside the spacetime deformation

to accumulate enough phase shift for detection. Although
experimentally challenging, such a detection would open
the path to a new class of laboratory tests of general
relativity and the equivalence principle.

VI. CONCLUSIONS

The generation of artificial gravitational fields with electric
currents could be in principle detected through the induced
change in spacetime geometry that results in a purely classical
deflexion of light by magnetic fields. This effect does not
invoke any new physics, as it is a consequence of the
equivalence principle. Although very weak, we have shown
that this effect could be detectable by a twofold experimental
setup.On one hand, it includes stacked large superconducting
Helmholtz coils for the generation of the artificial gravita-
tional field. On the other hand, the detection would be
achieved by highly sensitive Michelson interferometers
whose arms contain Fabry-Pérot cavities to store light into
the generated gravitational field. In an appropriate experi-
mental setup, the amplitude of the phase shift accumulated
during the bouncingof light in thecurved spacetimegenerated
by themagnetic field would reach in a fewmonths the level of
an astrophysical source of gravitational wave passing through
ground-based gravitational wave observatories.
We claim that such detection would open new eras in

experimental gravity and laboratory tests of general rela-
tivity and the equivalence principle. These tests, although
concerning the weak field regime, will have the particu-
larity of focusing exclusively on the coupling between
gravitation and electromagnetism. Future theoretical works
should focus on extending the present study to alternative
theories of gravity to explore how far they would depart
from general relativity.
Such a detection of the spacetime curvature generated by

a magnetic field in the laboratory would constitute a major
step in physics: the ability to produce, detect, and ulti-
mately control artificial gravitational fields. And would this
technology be developed, it could lead to amazing appli-
cations like the controlled emission of gravitational waves
with large alternative electric currents. Gravity would then
cease to be the last of the four fundamental forces not under
control by human beings.
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