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Treating the gravitational force on the same footing as the electroweak and strong forces, we present a
quantum field theory of gravity based on spin and scaling gauge symmetries. A biframe spacetime is
initiated to describe such a quantum gravity theory. The gravifield sided on both locally flat noncoordinate
spacetime and globally flat Minkowski spacetime is an essential ingredient for gauging global spin and
scaling symmetries. The locally flat gravifield spacetime spanned by the gravifield is associated with a
noncommutative geometry characterized by a gauge-type field strength of the gravifield. A coordinate-
independent and gauge-invariant action for the quantum gravity is built in the gravifield basis. In the
coordinate basis, we derive equations of motion for all quantum fields including the gravitational effect
and obtain basic conservation laws for all symmetries. The equation of motion for the gravifield tensor is
deduced in connection directly with the total energy-momentum tensor. When the spin and scaling gauge
symmetries are broken down to a background structure that possesses the global Lorentz and scaling
symmetries, we obtain exact solutions by solving equations of motion for the background fields in a unitary
basis. The massless graviton and massive spinon result as physical quantum degrees of freedom. The
resulting Lorentz-invariant and conformally flat background gravifield spacetime is characterized by a
cosmic vector with a nonzero cosmological mass scale. The evolving Universe is, in general, not isotropic
in terms of conformal proper time. The conformal size of the Universe becomes singular at the
cosmological horizon and turns out to be inflationary in light of cosmic proper time. A mechanism
for quantum scalinon inflation is demonstrated such that it is the quantum effect that causes the breaking
of global scaling symmetry and generates the inflation of the early Universe, which is ended when the
evolving vacuum expectation value of the scalar potential gets a minimal. Regarding the gravifield as a
Goldstone-like field that transmutes the local spin gauge symmetry into the global Lorentz symmetry with a
hidden general coordinate invariance, a spacetime gauge field is constructed from the spin gauge field that
becomes a hidden gauge field. The bosonic gravitational interactions are described by the Goldstone-like
gravimetric field and spacetime gauge field. Two types of gravity equation result; one is as the extension to
Einstein’s equation of general relativity, and the other is a new one that characterizes spinon dynamics.
The Einstein theory of general relativity is considered to be an effective low-energy theory.
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I. INTRODUCTION

The gravitational force as a basic force of nature has well
been characterized in the macroscopic world by the theory of
general relativity formulated by Einstein [1] as the dynamics
of a metric in Riemannian spacetime. It remains unsatisfac-
tory that the other three basic forces, i.e., electromagnetic,
weak, and strong interactions, have successfully been
described by the so-called standard model (SM) of gauge
interactions within the framework of relativistic quantum
field theory (QFT) [2–11] in the flat Minkowski spacetime,
which is in contrast to the gravitational force that is
formulated by a dynamic curved spacetime. Such an odd
dichotomy causes an obstacle for a unified description of

gravity with three basic forces and a difficulty for the
quantization of gravitational force. On the other hand, it
becomes more and more clear that a QFT description for the
gravitational force will play a significant role in under-
standing and exploring the origin of Universe, such as the
singularity and inflation of the early Universe [12–15].
The relativistic QFT as a successful theory that unifies

quantum mechanics and special relativity provides a
remarkable theoretical framework to describe the micro-
scopic world. The three basic forces have well been
characterized by the SM based on the gauge symmetries
of quarks and leptons, which have been tested by more and
more precise experiments. The advent of the SM-like Higgs
boson at the LHC [16,17] motivates us to study a more
fundamental theory including quantum gravity. A consis-
tent description for the gravitational force has not yet been*ylwu@itp.ac.cn, ylwu@ucas.ac.cn
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established successfully within the framework of QFT.
The foundation of Einstein’s general relativity is based on
the postulate: The laws of physics must be of such a nature
that they apply to a system of reference in any kind of
motion. Such a postulate appears to be a natural extension
of the one of special relativity. The principle of special
relativity concerns two postulates. One is the postulate of
relativity, namely, if a system of coordinates K is chosen so
that, in relation to it, physical laws hold good in their
simplest form, the same laws also hold good in relation to
any other system of coordinates K0 moving in uniform
translation relatively to K. The other is the postulate that
the velocity of light in vacuum is a constant. The first
postulate of relativity is actually satisfied by the classical
mechanics of Galileo and Newton. It is the second postulate
of the constancy of the velocity of light in a vacuum
that leads to the relativity of simultaneity and the related
laws for the behavior of moving bodies and clocks.
Consequently, it leads space and time to be a four-
dimensional flat Minkowski spacetime and the physical
laws to be invariant under the global Lorentz transforma-
tions of SO(1,3) symmetry. In Einstein’s general relativity,
the postulate of relativity is extended to be the physical
laws of nature are to be expressed by equations which
hold good for all systems of coordinates, which leads the
gravitational force to be characterized by a Riemann
geometry in a curved spacetime. Namely, the gravitational
force lies in the dynamic Riemannian geometry of curved
spacetime. Thus, the physical laws, in the theory of general
relativity, are invariant under the general linear transforma-
tions of local GLð4; RÞ symmetry, which indicates that space
and time cannot be well defined in such a way that the
differences of the spatial coordinates or time coordinates
can be directly measured by the standard ways proposed in
special relativity.
As gauge theories have been shown to be consistently

described by QFT, it motivates one to make efforts for
finding out a gauge theory description on the gravitational
force. In analogue to the Yang-Mills gauge theory [18], early
works on gravity gauge theories were proposed by many
pioneers [19–23]. As gauge theories have successfully been
achieved in describing electromagnetic, weak, and strong
interactions of quarks and leptons, numerous efforts on
gravity gauge theories have been made over the past half
century, and more literature may be found in some review
articles [24–26]. It is noticed that most gravity gauge theories
were built based on Riemannian or non-Riemannian geom-
etry on curved spacetime manifolds. Thus, the main issues
on the definition of space and time and the quantization of
gravity gauge theories remain open questions. Also, the
basic structure of Lagrangian and dynamic properties of
gravity gauge theories is still not well understood.
In this paper, we shall present an alternative gauge theory

of gravity within the framework of QFT in the flat
Minkowski spacetime and treat the gravitational force on

the same footing as the electroweak and strong forces.
Namely, all basic interactions of elementary particles will
be governed by gauge symmetries and characterized by
quantum fields defined in the flat Minkowski spacetime of
coordinates. As all known symmetry groups are related to
the intrinsic quantum numbers of the basic building blocks
of nature, i.e., quarks and leptons, the key point for the
gauge theory of gravity in our present consideration is that
we will distinguish the spin symmetry group SOð1; 3Þ≡
SPð1; 3Þ of fermion fields from the Lorentz symmetry
group SO(1,3) of coordinates in the Minkowski spacetime
and treat the spin symmetry SP(1,3) as an internal sym-
metry. The notations SP(1,3) and SO(1,3) are used to mark
explicitly such two different kinds of symmetries. Since
special relativity and quantum mechanics have a strong
foundation based on well-established principles, we shall
make postulates for the QFT description of gravity based
on the principles of relativistic QFT. The main postulates
are (i) a biframe spacetime is proposed to describe the
quantum field theory of gravity. One frame spacetime is the
globally flat coordinate Minkowski spacetime that acts as
an inertial reference frame for the motions of fields, and the
other is the locally flat noncoordinate gravifield spacetime
that functions as an interaction representation frame for the
degrees of freedom of fields. (ii) The kinematics of all
quantum fields obeys the principles of special relativity and
quantum mechanics. (iii) The dynamics of all quantum
fields is characterized by basic interactions governed by the
gauge symmetries. (iv) The action of quantum gravity is to
be expressed in the so-called gravifield spacetime to be
coordinate independent and gauge invariant. (v) The
theory is invariant not only under the local spin and scaling
gauge transformations of quantum fields defined in the
gravifield spacetime, but also under the global Lorentz and
scaling as well as translational transformations of coor-
dinates in the flat Minkowski spacetime. We shall show that
a theory of quantum gravity based on the spin and scaling
gauge symmetries can, in general, be constructed in a
coordinate-independent formalism and naturally trans-
muted into the coordinate basis through a basic gravita-
tional field.
The success of a relativistic QFT description on the SM

is based on a global symmetry of the inhomogeneous
Lorentz group or Poincaré group that contains both the
Lorentz group SO(1,3) and translational group T1;3 in a
globally flat Minkowski spacetime of coordinates. Namely,
a fundamental theory built within the framework of
relativistic QFT is invariant under a global symmetry of
Poincaré group Pð1; 3Þ ¼ SOð1; 3Þ × T1;3. To build a
gauge theory of gravity within the framework of relativistic
QFT, we suppose that it remains essential to keep a global
symmetry of Poincaré group P(1,3) in a flat Minkowski
spacetime and in the meantime introduce a locally flat
noncoordinate spacetime through gauging an internal
Poincaré group PG(1,3) to characterize fermionic degrees
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of freedom, such as quarks and leptons that are regarded as
the basic building blocks of matter in the SM. Such a
conceptual idea on establishing a gauge theory of gravity is
distinguished from the original thought of Einstein, who
extended the special theory of relativity to a general theory
of relativity with a straightforward speculation that the
physical laws that are invariant under a global symmetry of
Poincaré group P(1,3) in a flat Minkowski spacetime are to
be expressed by more general formalisms that are invariant
under a local symmetry of general linear group GLð4; RÞ in
a curved Riemannian spacetime of coordinates. It is known
that the GLð4; RÞ group contains no symmetry of transla-
tional group T1;3, though it includes a symmetry of Lorentz
group SO(1,3). We will show that a gauge theory of gravity
constructed based on the postulate of gauge invariance and
coordinate independence possesses a gauge symmetry of
the spin group or gauged Lorentz group SP(1,3) that is a
subgroup of the internal Poincaré gauge group PG(1,3) in a
locally flat noncoordinate spacetime. Here the notation
PG(1,3) is used to distinguish from the global symmetry
of Poincaré group P(1,3) in the Minkowski spacetime of
coordinates. In general, the resulting gauge theory of
gravity will be demonstrated to have a basic local and
global symmetry SPð1; 3Þ × Pð1; 3Þ in either the gravita-
tional fermionic interactions or bosonic interactions. A new
gravifield defined on both a globally flat coordinate
Minkowski spacetime and a locally flat noncoordinate
spacetime is necessarily introduced as a gauge-type field
that transforms homogeneously under the spin gauge group
SP(1,3) and forms a basis for a locally flat noncoordinate
spacetime. Such a locally flat noncoordinate spacetime
spanned by the gravifield basis forms a coordinate-
independent gravifield spacetime. Thus, the gravifield is
thought to be associated with a gauge field in the coset
T1;3
G ¼ PGð1; 3Þ=SPð1; 3Þ of Poincaré gauge group PG(1,3)

in the spinor representation of the locally flat noncoordinate
gravifield spacetime. We shall show that the gauge-type
gravifield is a basic field characterizing the gravitational
interactions and the spin gauge field of spin group SP(1,3)
reflects a torsional interaction. When transmuting the spin
gauge symmetry into a hidden gauge symmetry via the
gravifield, we arrive at a new formalism of the gauge theory
of gravity with a global Poincaré symmetry in the flat
Minkowski spacetime of coordinates. As a consequence,
the general theory of relativity will be found to result as an
effective theory of the gauge theory of gravity in the low-
energy limit, and a general coordinate invariance of general
linear group GLð4; RÞ appears as a hidden symmetry
embedded in the global Poincaré group P(1,3) via a
gauge-fixing coordinate transformation of the general linear
group.
Our paper is organized as follows: After a brief intro-

duction in this section, we are going to extend in Sec. II the
global spin and scaling symmetries of basic fermion fields to
be local spin and scaling gauge symmetries within the

framework of QFT in the flat Minkowski spacetime, which
enables us to treat the gravitational force on the same footing
as the other three basic forces. As a consequence, it is
inevitable to introduce simultaneously a bicovariant vector
field χμ

aðxÞ defined on the globally flat Minkowski space-
time and valued in the locally flat noncoordinate spacetime.
In Sec. III, it is shown that the bicovariant vector field χμaðxÞ
is essential in characterizing the gravitational interactions
and will be referred as gravifield for short. The so-called
gravifield χμ

aðxÞ can form a gravifield basis fχag. Such a
gravifield basis describes the locally flat noncoordinate
spacetime that is named as a gravifield spacetime. Based
on the locally flat gravifield spacetime, we are able to
construct a coordinate-independent and gauge-invariant
action for a gravitational gauge theory, where the fermion
fields and gauge fields belong to the spinor representations
and vector representations of the spin symmetry group
SP(1,3), respectively. In Sec. IV, we naturally express the
action of the gravity gauge theory in the globally flat
Minkowski spacetime by simply converting the gravifield
basis into the coordinate basis. Taking the globally flat
Minkowski spacetime as an inertial frame for a reference to
describe the motions of all quantum fields, we obtain
explicitly their equations of motion in the existence of
gravitational interactions, which enables us to study in
principle the dynamics of all quantum fields including the
gravitational effects. As the action provides a unified
description for all basic forces based on the gauge sym-
metries within the framework of QFT, it makes a meaningful
definition for momentum and energy and allows us to
discuss the basic conservation laws of the theory under
the local gauge invariance and global transformation invari-
ance in Sec. V. We demonstrate that, alternative to Einstein’s
equation for the theory of general relativity, the equation of
motion for the gravifield tensor is obtained in connection
directly to the energy-momentum tensor, which leads to a
basic conservation law for a gravifield tensor current in light
of the energy-momentum conservation. In Sec. VI, we
discuss the gravitational gauge symmetry breaking based
on the fact that the spin and scaling gauge fields are not
observed experimentally. It is postulated that the spin and
scaling gauge symmetries are broken down to the global
Lorentz and scaling symmetries, which results in a back-
ground structure described by the background fields. From
the equations of motion for the background fields, we obtain
a set of exact Lorentz-invariant solutions characterized by a
cosmic vector with a nonzero cosmological mass scale. In
Sec. VII, a gauge-invariant line element in the locally flat
gravifield spacetime is defined with the gravifield basis; the
scaling scalar field ensures the line element to be invariant
under both the local and global scaling transformations. It is
demonstrated that the background structure after gravita-
tional gauge symmetry breaking generates a background
gravifield spacetime which coincides with a conformally flat
Minkowski spacetime governed by a background conformal
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scale field. Such a conformal scale field becomes singular at
the cosmological horizon in terms of the conformal proper
time. We then show that, in light of the cosmic proper time,
the evolving Universe based on the background gravifield
spacetime becomes conformally inflationary or deflationary.
Such a resulting Universe is in general not isotropic; only in
a comoving reference frame where the cosmic proper time is
directly correlated to the comoving Lorentz time does the
Universe look homogeneous and isotropic. In Sec. VIII, we
describe the quantization of the gravitational gauge theory
based on the background structure of the gravifield space-
time. The physical quantum degrees of freedom are analyzed
by applying for the usual counting rule of the gauge theory.
In the path integral approach, we present the gauge-fixing
contributions to the quantization of gravity theory and the
Faddeev-Popov ghost term. The leading effective action is
explicitly yielded for writing down the Feynman rules of the
quantum gravity theory. The renormalizability of the theory
is discussed. Then we demonstrate how the quantum effect
causes the inflation of the early Universe and leads the
inflationary Universe to end via spontaneous scaling sym-
metry breaking in the effective background scalar potential.
In Sec. IX, an alternative spacetime gauge field defined in the
flat Minkowski spacetime is constructed through the spin
gauge field and the gravifield, where it is shown that the spin
gauge symmetry becomes a hidden symmetry and the
gravifield appears as a Goldstone-like field that transmutes
the local spin gauge symmetry into the global Lorentz
symmetry. Then we present an alternative formalism for
the action of quantum gravity and show that the bosonic
gravitational interactions can be described by the Goldstone-
like gravimetric field and spacetime gauge field. In Sec. X,
we explicitly show that the gravity equation can lead to two
types of equation; one type of equation is the extension to
Einstein’s equation of general relativity, and the other is a
new type of equation that characterizes the twisting and
torsional effects. It indicates that the action of gravity gauge
theory has a hidden symmetry for a local linear coordinate
transformation GLð4; RÞ. The Einstein theory of general
relativity is thought to be an effective low-energy theory. Our
conclusions and remarks are presented in the last section.

II. GAUGE SYMMETRIES AND
GRAVITATIONAL FIELDS

IN QFT

In the SM, the basic building blocks of matter are quarks
and leptons, which are all fermionic quantum fields with a
half integer spin. Three basic forces—electromagnetic,
weak, and strong interactions—among quarks and leptons
are all governed by the gauge symmetries Uð1ÞY×
SUð2ÞL × SUð3Þc, respectively. The symmetry groups
are related to the intrinsic quantum numbers of quarks
and leptons. For a general consideration, let us begin with
an action of Dirac fermion with gauge interactions,

S ¼
Z

d4x

�
Ψ̄ðxÞ 1

2
γaδa

μiDμΨðxÞ þ H:c:

�

þ 1

2g2A
ημμ

0
ηνν

0
TrF μνðxÞF μ0ν0 ðxÞ; ð1Þ

where we have used the definitions

iDμ ≡ i∂μ þAμðxÞ;
AμðxÞ ¼ gAAI

μðxÞTI;

ημν ¼ δa
μδb

νηab;

F μνðxÞ≡ i½Dμ; Dν� ¼ ∂μAνðxÞ − ∂νAμðxÞ − i½AμðxÞ;
AνðxÞ� ¼ gAF μνðxÞITI; ð2Þ
with δaμ the Kronecker symbol and γa the Dirac γ matrices.
The quantum fields ΨnðxÞ (n ¼ 1; 2;…) denote Dirac
fermions which can be quarks and leptons in the SM,
and AμðxÞ ¼ gAAI

μðxÞTI (I ¼ 1; 2;…) represent gauge
fields with TI the generators of symmetry group G and
gA the coupling constant of gauge interactions. The gen-
erators satisfy the group algebra ½TI; TJ� ¼ ifIJKTK with
the trace normalization trTITJ ¼ 1

2
δIJ. AI

μ can be taken as
the quantum gauge fields in the adjoint representations of
gauge group G ¼ Uð1ÞY × SUð2ÞL × SUð3Þc in the SM.
The Greek alphabet (μ, ν ¼ 0, 1, 2, 3) and Latin alphabet
(a, b, ¼ 0, 1, 2, 3) are used to distinguish four-vector
indices in coordinate spacetime and noncoordinate space-
time, respectively. As the theory discussed in this paper is
based on the globally flat and locally flat spacetime, both
the Greek and Latin indices are raised and lowered by the
constant metric matrices, i.e., ημν and ηab with the signature
−2, ημν or ημν ¼ diagð1;−1;−1;−1Þ and ηab or ηab ¼
diagð1;−1;−1;−1Þ. Thus the scalar product of vectors and
tensors is obtained via the contraction with the constant
metric matrices ημν and ηab, i.e., AμAμ ¼ ημνAμAν and
γaγa ¼ ηabγ

aγb. The system of units is chosen such
that c ¼ ℏ ¼ 1.
The action is invariant under the gauge transformation

gðxÞ ∈ G:

AμðxÞ → A0
μðxÞ ¼ gðxÞAμðxÞg†ðxÞ þ gðxÞi∂μg†ðxÞ;

ΨðxÞ → Ψ0ðxÞ ¼ gðxÞΨðxÞ: ð3Þ
Without gravitational interaction, the action is invariant
under the global Lorentz transformations, where the gauge
fields and Dirac fermions transform in the vector and spinor
representations of Lorentz group, respectively, in the flat
Minkowski spacetime:

xμ → x0μ ¼ Lμ
νxν; AμðxÞ → A0

μðx0Þ ¼ Lμ
νAνðxÞ;

ΨðxÞ → Ψ0ðx0Þ ¼ SðLÞΨðxÞ; SðLÞγaS−1ðLÞ ¼ La
bγ

b;

ð4Þ
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with

SðLÞ ¼ eiαabΣ
ab=2 ∈ SPð1; 3Þ; Σab ¼ i

4
½γa; γb�; ð5Þ

where Σab are the generators of spin group SPð1; 3Þ ∼
SOð1; 3Þ in the spinor representation

½Σab;Σcd� ¼ iðΣadηbc − Σbdηac − Σacηbd þ ΣbcηadÞ;
½Σab; γc� ¼ iðγaηbc − γbηacÞ: ð6Þ

The action is invariant under the parallel translation for
coordinates

xμ → x0μ ¼ xμ þ aμ; ð7Þ

with aμ the constant vector, and also under the global
scaling transformation for coordinates and quantum fields,

xμ → x0μ ¼ λ−1xμ;

AμðxÞ → A0
μðx0Þ ¼ λAμðxÞ;

ΨðxÞ → Ψ0ðx0Þ ¼ λ3=2ΨðxÞ; ð8Þ

with λ the constant scaling factor.
Before discussing gravitational force, let us briefly ana-

lyze how the SM introduces the basic forces of electromag-
netic, weak, and strong interactions which are governed by
the corresponding internal gauge symmetries Uð1ÞY×
SUð2ÞL × SUð3Þc. Such gauge symmetries actually reflect
the correlations of quantum numbers which characterize the
intrinsic properties of quarks and leptons. The Uð1ÞY gauge
group reflects the charge quantum number of the particle
and antiparticle, the SUð2ÞL gauge group characterizes the
symmetry between two isospin quantum numbers of quarks
and leptons, and the SUð3Þc gauge group is introduced to
describe the symmetry among three color quantum numbers
for each flavor quark. Quarks and leptons as Dirac fermions
all carry spin and chirality quantum numbers, which is
known to be characterized by the spin symmetry group
SPð1; 3Þ ∼ SOð1; 3Þ. In the SM, such a symmetry of quarks
and leptons must be a global symmetry, so that it coincides
with the global Lorentz symmetry SO(1,3) of coordinates in
the flat Minkowski spacetime to ensure the Lorentz invari-
ance and the covariance of action in special relativity.
Analogous to the introduction of internal gauge sym-

metries Uð1ÞY × SUð2ÞL × SUð3Þc for the basic forces of
electromagnetic, weak, and strong interactions among
quarks and leptons, it is natural to take the spin symmetry
group SP(1,3) of quarks and leptons as an internal gauge
symmetry which governs a basic force of spin gauge
interaction. The corresponding spin gauge field and field
strength are defined as follows:

ΩμðxÞ ¼ gsΩab
μ ðxÞ 1

2
Σab;

RμνðxÞ ¼ ∂μΩνðxÞ − ∂νΩμðxÞ − i½ΩμðxÞ;ΩνðxÞ�

¼ gsRab
μνðxÞ

1

2
Σab; ð9Þ

with gs the coupling constant. It is required that the action is
SP(1,3) gauge invariance under the spin gauge transforma-
tion SðxÞ ¼ eiαabðxÞΣab=2 ∈ SPð1; 3Þ for gauge fields and
Dirac fermions,

ΩμðxÞ → Ω0
μðxÞ ¼ SðxÞΩμðxÞS−1ðxÞ þ SðxÞi∂μS−1ðxÞ;

ΨðxÞ → Ψ0ðxÞ ¼ SðxÞΨðxÞ;
S−1ðxÞγaSðxÞ ¼ Λa

bðxÞγb: ð10Þ

With the same consideration, we shall take the global
scaling symmetry of Dirac fermions to be a local scaling
gauge symmetry. Namely, the Dirac fermions transform
under the local scaling gauge transformation as follows:

ΨðxÞ → Ψ0ðxÞ ¼ ξ3=2ðxÞΨðxÞ; ð11Þ

while the internal gauge fields AμðxÞ and spin gauge
field ΩμðxÞ are unchanged in the local scaling gauge
transformation.
Analogously, when extending the global scaling sym-

metry of quantum fields to be a local scaling gauge
symmetry, but keeping a global scaling symmetry of
coordinates, we shall introduce the Weyl gauge field
[27] WμðxÞ, which governs a basic force of scaling gauge
interaction and transforms under the local scaling gauge
transformation as follows:

WμðxÞ → W0
μðxÞ ¼ WμðxÞ þ g−1w ∂μ ln ξðxÞ: ð12Þ

As the local scaling transformation is an Abelian gauge
symmetry, the field strength is simply given by

Wμν ¼ ∂μWν − ∂νWμ: ð13Þ

In demanding the action to be invariant under both the
spin gauge transformation for the quantum fields and the
global Lorentz transformation for the coordinates, namely,
keeping the action to have a covariant form of special
relativity in the flat Minkowski spacetime, it is necessary to
introduce a bicovariant vector field defined on a locally flat
noncoordinate spacetime and valued in a vector represen-
tation of Lorentz group SO(1,3) in the flat Minkowski
spacetime, i.e.,

χ̂a ¼ χ̂a
μðxÞ∂μ ¼ ημνχ̂a

μðxÞ∂ν; ð14Þ

which transforms
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χ̂a
μðxÞ → χ̂0μa ðxÞ ¼ Λa

bðxÞχ̂bμðxÞ;
χ̂a

μðxÞ → χ̂0μa ðxÞ ¼ ξðxÞχ̂aμðxÞ; ð15Þ

under the local spin and scaling gauge transformations,
respectively, and

χ̂a
μðxÞ → χ̂0μa ðx0Þ ¼ Lμ

νχ̂a
νðxÞ; xμ → x0μ ¼ Lμ

νxν;

χ̂a
μðxÞ → χ̂0μa ðx0Þ ¼ χ̂a

μðxÞ; xμ → x0μ ¼ λ−1xμ; ð16Þ

under the global Lorentz and scaling transformations,
respectively, where the transformations satisfy the follow-
ing properties:

Λa
bðxÞΛc

dðxÞηac ¼ ηbd; Λa
bðxÞ ∈ SPð1; 3Þ;

Lμ
νLρ

σημρ ¼ ηνσ; Lμ
ν ∈ SOð1; 3Þ: ð17Þ

Regarding the bicovariant vector field χ̂aμðxÞ as a kind of
matrix field and defining an inverse of χ̂aμðxÞ, we obtain a
dual bicovariant vector field χμ

aðxÞ which satisfies the
following orthonormal conditions:

χμ
aðxÞχ̂aνðxÞ ¼ χμaðxÞχ̂bνðxÞηab ¼ ημ

ν;

χ̂a
μðxÞχμbðxÞ ¼ χ̂aμðxÞχνbðxÞημν ¼ ηa

b: ð18Þ

Such a bicovariant vector field χμ
aðxÞ exists once the

determinant of χ̂aμðxÞ is nonzero, namely,

det χμaðxÞ≡ χðxÞ ¼ 1

det χ̂aμðxÞ
≡ 1

χ̂ðxÞ ;

χ̂ðxÞ≡ det χ̂aμðxÞ ≠ 0: ð19Þ

Obviously, the bicovariant vector field χμaðxÞ transforms as

χμ
aðxÞ → χ0aμ ðxÞ ¼ χμ

bðxÞΛb
aðxÞ;

χμ
aðxÞ → χ0aμ ðxÞ ¼ ξ−1ðxÞχμaðxÞ ð20Þ

under the local spin and scaling gauge transformations,
respectively, and

χμ
aðxÞ → χ0aμ ðx0Þ ¼ Lμ

νχν
aðxÞ; xμ → x0μ ¼ Lμ

νxν;

χμ
aðxÞ → χ0aμ ðx0Þ ¼ χμ

aðxÞ; xμ → x0μ ¼ λ−1xμ; ð21Þ

under the global Lorentz and scaling transformations,
respectively. χμ

aðxÞ can be thought of as a bicovariant
vector field defined on the globally flat Minkowski space-
time and valued in the vector representation of SP(1,3) in
the locally flat noncoordinate spacetime,

χμ ¼ χμ
aðxÞ 1

2
γa: ð22Þ

It is seen that the bicovariant vector field χμ
aðxÞ or dual

bicovariant vector field χ̂a
μðxÞ transforms in a covariant

form on both the globally flat Minkowski spacetime of
coordinates and the locally flat noncoordinate spacetime.
Here we would like to address that the bicovariant vector
field χμ

aðxÞ is introduced to distinguish from the so-called
tetrad denoted usually by eaμðxÞ, which is required to be a
general covariant vector field under the general coordinate
transformations in the Einstein theory of general relativity.
The bicovariant vector field χμ

aðxÞ will be shown to
constitute a basis for the locally flat noncoordinate space-
time and a basic gravitational field in the globally flat
Minkowski spacetime of coordinates.
With the above analyses, we shall be able to construct the

action which is invariant under the local spin and scaling
gauge transformations for the quantum fields and also
under the global Lorentz and scaling transformations for
the coordinates. Let us first examine an action for Dirac
fermions, as the currently known building blocks of nature
are quarks and leptons. The action can simply be written as
follows:

SF ¼
Z

d4xχðxÞ 1
2
fΨ̄ðxÞχ̂μðxÞiDμΨðxÞ þ H:c:g ð23Þ

with the definitions

χ̂μðxÞiDμ ¼
1

2
γaχ̂a

μðxÞDμ

¼ 1

2
γaη

abχ̂bνðxÞημν½i∂μ þAμðxÞ þΩμðxÞ� ð24Þ

and

iDμ ¼ i∂μ þAμðxÞ þ ΩμðxÞ ¼ iDμ þΩμðxÞ;
iDμ ¼ i∂μ þAμðxÞ; ð25Þ

where Dμ is the covariant derivative for the usual internal
gauge and spin gauge symmetries, while Dμ is the
derivative only for the usual internal gauge symmetries.
It is easy to show that the above action is invariant under the
usual internal and spin gauge transformations as well as
under the global Lorentz and scaling transformations in the
flat Minkowski spacetime. It is interesting to note that the
Hermiticity of the action automatically ensures invariance
under the scaling gauge transformation, which means that
the scaling gauge field has actually no interaction with the
fermion fields due to Hermiticity.

III. GRAVIFIELD SPACETIME AND GAUGE
THEORY OF GRAVITY

It is unlike gauging the usual internal symmetries of
fermion fields, such as the isospin and color symmetries of
the quarks, when gauging the spin and scaling symmetries
of fermion fields in the flat Minkowski spacetime of
coordinates, the bicovariant vector field χμ

aðxÞ, or its
inverse χ̂a

μðxÞ is an essential ingredient in order to
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distinguish the local spin and scaling gauge transformations
of fermion fields from the global Lorentz and scaling
transformations of coordinates. We will show that the
bicovariant vector field χμ

aðxÞ is a basic field in character-
izing the gravitational interactions.

A. Gravifield spacetime

Geometrically, the bicovariant vector field χ̂a
μðxÞ is

defined on both the locally flat noncoordinate spacetime
and globally flat Minkowski spacetime of coordinates and
transforms as a bicovariant vector field under both the local
spin gauge transformation and global Lorentz transforma-
tion. Explicitly, χ̂aμðxÞ can be expressed in terms of the
basis of coordinate spacetime valued in the Dirac γ-matrix
basis fγa=2g:

1

2
γaχ̂a

μðxÞ∂μ ¼
1

2
γaχ̂a ¼ χ̂μ∂μ; ð26Þ

with

χ̂a ¼ χ̂a
μðxÞ∂μ; χ̂μ ¼ 1

2
γaχ̂a

μðxÞ; ð27Þ

where the derivative operator ∂μ ≡ ∂=∂xμ defines a basis
f∂μg≡ f∂=∂xμg in the globally flat Minkowski spacetime
of coordinates. Accordingly, the vector field χ̂a forms a
basis fχ̂ag for the locally flat noncoordinate spacetime. We
shall call f∂μg the coordinate basis and fχ̂ag the corre-
sponding noncoordinate basis. In the coordinate basis, there
is a dual basis fdxμg that satisfies the conditions

hdxν; ∂=∂xμi ¼ ∂xν
∂xμ ¼ ηνμ: ð28Þ

The bicovariant vector field χμ
aðxÞ as the inverse of

χ̂a
μðxÞ can be expressed in terms of the dual coordinate

basis fdxμg valued in the Dirac γ-matrix basis fγa=2g:
1

2
γaχμ

aðxÞdxμ ¼ 1

2
γaχ

aðxÞ ¼ χμðxÞdxμ;
χa ¼ χμ

aðxÞdxμ;

χμ ¼ χμ
aðxÞ 1

2
γa; ð29Þ

where the vector field χa defines a dual basis fχag for the
locally flat noncoordinate spacetime, since

hχb; χ̂ai ¼ χν
bðxÞχ̂aμðxÞhdxν;∂μi ¼ χν

bðxÞχ̂aμðxÞημν ¼ ηa
b:

ð30Þ

For the Dirac γ-matrix basis fγa=2g, we have�
1

2
γa;

1

2
γb
�

¼ 1

4
Trγaγb ¼ ηab; ð31Þ

which leads to the orthogonal property

hχμ; χ̂νi ¼ χμ
aðxÞχ̂bνðxÞ

�
1

2
γa;

1

2
γb
�

¼ TrχμðxÞχ̂νðxÞ ¼ ημ
ν: ð32Þ

The vector field χaðxÞ may be regarded as a one-form
gauge potential in the flat Minkowski spacetime. It is
natural to speculate that the bicovariant vector field χμaðxÞ,
which characterizes the locally flat noncoordinate space-
time with the basis fχag, should describe the gravitational
interactions as a gauge-type potential field of gravity. We
shall adopt an alternative notation when emphasizing the
bicovariant vector field to be a gauge-type potential field of
gravity

GμðxÞ≡ χμ
a 1

2
γa; G ¼ −iGμdxμ: ð33Þ

In this sense, χμaðxÞ or χ̂a
μðxÞ is identified to be the

gravitational bicovariant vector field and referred as gravi-
field for short in the following discussions. The non-
coordinate bases fχag and fχ̂ag characterized by the
dual gravifield χμ

aðxÞ and χ̂a
μðxÞ are correspondingly

called gravifield bases. Accordingly, the locally flat non-
coordinate spacetime spanned by the vector gravifield
χaðxÞ is mentioned as the locally flat gravifield spacetime.
In the locally flat gravifield spacetime, it can be checked

that the gravifield basis χ̂a does not commute; it satisfies the
following commutation relation:

½χ̂a; χ̂b� ¼ χcabχ̂c;

χcab ≡ −χ̂aμχ̂bνχcμν;

χcμν ¼ ∂μχν
c − ∂νχμ

c; ð34Þ

which indicates that the locally flat gravifield spacetime is
in general associated with a noncommutative geometry,
where the gauge-type field tensor χcμν will be shown to
reflect the gravitational field strength.

B. Gauge theory of gravity

In terms of the gravifield bases χa and χ̂a, we can define a
coordinate-independent exterior differential operator in the
locally flat gravifield spacetime

dχ ¼ χa ∧ χ̂a: ð35Þ

Thus, instead of the usual exterior differential forms in the
flat Minkowski spacetime of coordinates, we can define
coordinate-independent exterior differential forms in the
locally flat gravifield spacetime. For instance, the spin
gauge potential and field strength can be expressed as the
following one-form and two-form:

QUANTUM FIELD THEORY OF GRAVITY WITH SPIN AND … PHYSICAL REVIEW D 93, 024012 (2016)

024012-7



Ω ¼ −iΩaχ
a; R ¼ dχΩþ Ω ∧ Ω ¼ 1

2i
Rabχ

a ∧ χb;

ð36Þ

where Ωa and Rab are the spin gauge potential and field
strength sided on the locally flat gravifield spacetime,
respectively. From the above definitions, it can be checked
that Ωa and Rab are correlated to the spin gauge potential
Ωμ and field strength Rμν defined on the flat Minkowski
spacetime as follows:

Ωa ¼ χ̂a
μΩμ; Rab ¼ χ̂a

μχ̂b
νRμν: ð37Þ

The Hodge star is defined as

�R ¼ 1

4i
ϵabcdRabχ

c ∧ χd: ð38Þ

Similarly, we can express other gauge potential and field
strength as well as vector and tensor fields in terms of
exterior differential forms in the locally flat gravifield
spacetime. For the internal gauge field and Weyl gauge
field, we have

A ¼ −iAaχ
a; F ¼ dχAþA ∧ A ¼ 1

2i
F abχ

a ∧ χb;

W ¼ −iWaχ
a; W ¼ dχW ¼ 1

2i
Wabχ

a ∧ χb: ð39Þ

For the gravifield, the corresponding gauge potential and
field strength in the locally flat gravifield spacetime are
defined as

G ¼ −iGaχ
a;

G ¼ dχGþΩ ∧ Gþ gwW ∧ G ¼ 1

2i
Gabχ

a ∧ χb: ð40Þ

Their relations to the gauge potential Gμ and field strength
Gμν in the flat Minkowski spacetime are given by

Ga ¼ χ̂a
μGμ; Gab ¼ χ̂a

μχ̂b
νGμν; ð41Þ

with the field strength

Gμν ¼ ∇μχν −∇νχμ

¼ ½∇μχν
aðxÞ −∇νχμ

aðxÞ� 1
2
γa ≡ Ga

μνðxÞ
1

2
γa;

Ga
μνðxÞ ¼ ð∂μ þ gwWμÞχνa þ gsΩμ

a
bχν

b

− ð∂ν þ gwWνÞχμa − gsΩν
a
bχμ

b; ð42Þ

where the covariant derivative is defined as

∇μ ¼ ∂μ þ Ωμ þ gwWμ ¼ ▽μ þ gwWμ;

▽μ ¼ ∂μ þ Ωμ: ð43Þ

The gauge-type field strength of the gravifield, GμνðxÞ≡∇μχν −∇νχμ, is defined as the two-form through the
one-form gauge potential. In general, one can define the
covariant derivative in the locally flat gravifield spacetime
as

Da ¼ χ̂a − iAa − iΩa ¼ χ̂a
μDμ ¼ χ̂a

μð∂μ − iAμ − iΩμÞ:
ð44Þ

With the exterior differential forms in the locally flat
gravifield spacetime and the requirement of renormaliz-
ability of QFT in four-dimensional spacetime, the gauge-
invariant action for the gravitational gauge theory is
constructed as follows:

Sχ ¼
Z �

1

2
½iΨ̄ � χ ∧ DΨþ iψ̄ � χ ∧ ▽ψ þ H:c:�

þ ysTrðχ ∧ χÞ ∧ �ðχ ∧ χÞψ̄ϕψ

−
1

g2A
TrF ∧ �F −

1

g2s
TrR ∧ �R −

1

2
W ∧ �W

þ 1

2
αWϕ

2TrG ∧ �G −
1

2
dϕ ∧ �dϕ − αETrR ∧

� ðχ ∧ χÞϕ2 þ λsTrðχ ∧ χÞ ∧ �ðχ ∧ χÞϕ4 þ L0
�
;

ð45Þ

The couplings ys, gs, αW , αE, and λs are the constant
parameters. L0 denotes the Lagrangian density for possible
other interactions. We have used the definitions and
relations

D ¼ χaDa;

�χa ¼ 1

3!
ϵabcdχ

b ∧ χd ∧ χc;

ðχ ∧ χÞ≡ χa ∧ χb
1

2i
Σab;

�ðχ ∧ χÞ ¼ 1

2
ϵabcdχ

c ∧ χd
1

2i
Σab;

dϕ ¼ ðdχ − igwWÞϕ;

�dϕ ¼ 1

3!
ϵabcdχ

b ∧ χd ∧ χcðχ̂a − gwWaÞϕ; ð46Þ

and the totally antisymmetric Levi-Civita tensor ϵabcd

(ϵ0123 ¼ 1, ϵabcd ¼ −ϵabcd) satisfies the identities
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ϵabcdϵab
c0d0 ¼ −2ðηcc0ηdd0 − ηcd

0
ηdc

0 Þ;
ϵabcdϵabc

d0 ¼ − 6ηdd
0
; ϵabcdϵ

abcd ¼ −24: ð47Þ

We have introduced a scalar field ϕðxÞ to ensure both the
global scaling and local scaling symmetries for the gauge-
type gravifield interaction characterized by the coupling
constant αW and the scalar-type spin gauge interaction
characterized by the coupling constant αE. A singlet fermion
field ψðxÞ is introduced to couple with the scalar field, which
will be shown to play a significant role for the quantum
inflation of the Universe. Here the scalar fieldϕðxÞ character-
izes the conformal scaling property and transforms as

ϕðxÞ → ϕ0ðxÞ ¼ ξðxÞϕðxÞ;
ϕðxÞ → ϕ0ðx0Þ ¼ λϕðxÞ;

xμ → x0μ ¼ λ−1xν; ð48Þ
under the local scaling gauge transformation and the global
scaling transformation, respectively.
The above general action for the gravitational gauge

theory is given in the locally flat gravifield spacetime; the
fermion fields and gauge fields all belong to the spinor
representations and vector representations of the spin group
SP(1,3), respectively.

IV. FIELD EQUATIONS AND DYNAMICS
IN THE QFT OF GRAVITY

To obtain the field equations of motion and study the
dynamics of fields, it is useful to transform the action of
gauge theory of gravity constructed in the locally flat
gravifield spacetime into the action expressed in the globally
flat Minkowski spacetime. This can simply be realized by
converting the gravifield basis into the coordinate basis
through the gravifield. Taking the globally flat Minkowski
spacetime as an inertial frame for a reference, we are able to
describe the motions of quantum fields and make a mean-
ingful definition for the momentum and energy. In particular,
it enables us to provide a unified description for all basic
forces based on the framework of QFT for gauge symmetries.
It is not difficult to check that the general action of gauge

theory of gravity gets the following expression in the
globally flat Minkowski spacetime:

Sχ ¼
Z

d4xχ

�
1

2
½χ̂μνðΨ̄χμiDνΨþ ψ̄χμi▽νψÞ þ H:c:�

− ysψ̄ϕψ −
1

4
χ̂μμ

0
χ̂νν

0 ½F I
μνF I

μ0ν0 þRab
μνRμ0ν0ab

þWμνWμ0ν0 − αWϕ
2Ga

μνGμ0ν0a� þ
1

2
χ̂μνdμϕdνϕ

− αEgsϕ2χ̂μμ
0
χ̂νν

0
χμ

aχν
bRμ0ν0ab − λsϕ

4 þ L0ðxÞ
�
;

ð49Þ

with the definitions

χ̂μνðxÞ ¼ χ̂a
μðxÞχ̂bνðxÞηab; χμ ≡ χμ

aγa; ð50Þ

where the tensor field χ̂μνðxÞ couples to all fields.
The above action of gauge theory of gravity is now

described within the framework of relativistic QFT in the
globally flat Minkowski spacetime. Where the gravifield
χμ

aðxÞ appears as a gauge-type field, its dynamics is
governed by the gauge-type interaction of the field strength
Ga
μνðxÞ. The antisymmetric field strength tensor Ga

μνðxÞ is
valued in the homogeneous vector representation of the
spin gauge group SP(1,3). Unlike the usual internal gauge
fields, the gravifield χμ

aðxÞ couples inversely to all kin-
ematic terms and also interaction terms of quantum fields.
It becomes manifest that the gravifield χμ

aðxÞ is a basic
gauge-type field and its corresponding field strength Ga

μνðxÞ
characterizes the gravitational force.
Based on the above gauge-invariant action and in light

of the least action principle, we are able to obtain equations
of motion for all fields under an infinitesimal variation of
the fields. To write down the explicit forms of equations of
motion, we shall not consider the Lagrangian density L0.
The equation of motion for the fermion fields Ψ is easily
obtained as follows:

χχ̂a
μγaiDμΨþ 1

2
i▽μðχχ̂aμÞγaΨ ¼ 0: ð51Þ

Let us define a spin gauge-invariant vector field

VμðxÞ≡ 1

2
χ̂χμ

c▽ρðχχ̂cρÞ; ð52Þ

so that the equation of motion for the fermion fields can
simply be written as

γaχ̂a
μiðDμ þ VμÞΨ ¼ 0: ð53Þ

In a similar way, we arrive at the equation of motion for
the singlet fermion field ψ :

γaχ̂a
μið▽μ þ VμÞψ ¼ 0: ð54Þ

It is not difficult to yield the equation of motion for the
gauge fields AI

μ:

Dνðχχ̂μμ0 χ̂νν0F I
μ0ν0 Þ ¼ JIμ; ð55Þ

with the fermionic vector currents

JIμ ¼ gAχΨ̄γaχ̂a
μTIΨ: ð56Þ

The internal gauge covariant derivative is given by
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Dνðχχ̂μμ0 χ̂νν0F I
μ0ν0 Þ ¼ χχ̂μμ

0
χ̂νν

0
DνF I

μ0ν0 þ ∂νðχχ̂μμ0 χ̂νν0 ÞF I
μ0ν0 ;

ð57Þ

where the second term is caused by the gravitational
interactions.
For the spin gauge field Ωab

μ , we arrive at the following
equation of motion:

▽νðχχ̂μμ0 χ̂νν0R ab
μ0ν0 Þ ¼ Jμ ab ð58Þ

with the vector-tensor currents

Jμ ab ¼ 1

2
gsχΨ̄χ̂c

μ

�
γc

1

2
Σab

�
Ψþ 1

2
gsχψ̄ χ̂cμ

�
γc

1

2
Σab

�
ψ

− αEgs▽νðχχ̂μμ0 χ̂νν0ϕ2χ½ab�μ0ν0 Þ

þ 1

2
χϕ2αW χ̂

μμ0 χ̂νν
0
χν

½aGb�
μ0ν0 ; ð59Þ

where we have used the notations

χ½ab�μ0ν0 ¼ χμ0
aχν0

b − χμ0
bχν0

a;

χν
½aG b�

μ0ν0 ¼ χν
aG b

μ0ν0 − χν
bG a

μ0ν0 : ð60Þ

The tensor currents as the sources for the dynamics of
the spin gauge field Ωab

μ consist of two parts; one is the
fermionic tensor current, and the other is made of the
gravifield χμ

a. The spin gauge covariant derivative is
given by

▽νðχχ̂μμ0 χ̂νν0R ab
μ0ν0 Þ ¼ χχ̂μμ

0
χ̂νν

0
▽νR ab

μ0ν0 þ ∂νðχχ̂μμ0 χ̂νν0 ÞR ab
μ0ν0

ð61Þ

with the second term from the gravitational effects.
The equation of motion for the gravifield χμ

a is found
to be

αWð▽ν − gwWνÞðϕ2χχ̂μμ
0
χ̂νν

0
Gμ0ν0aÞ ¼ Jaμ; ð62Þ

with the bicovariant vector currents

Jaμ ¼ −χχ̂aμLþ 1

2
χχ̂a

ρχ̂c
μ½Ψ̄γciDρΨþ ψ̄γci▽ρψ þ H:c:�

− χχ̂a
ρχ̂μμ

0
χ̂νν

0 ½F I
ρνF I

μ0ν0 þRcd
ρνRμ0ν0 cd þWρνWμ0ν0

− αWϕ
2Gb

ρνGμ0ν0b� þ χχ̂a
ν0 χ̂μμ

0
dμ0ϕdν0ϕ

− 2αEgsχϕ2χ̂c
μχ̂a

μ0Rcd
μ0ν0 χ̂d

ν0 : ð63Þ

The spin and scaling gauge covariant derivative can be
written as

ð▽ν − gwWνÞðϕ2χχ̂μμ
0
χ̂νν

0
Gμ0ν0aÞ

¼ χχ̂μμ
0
χ̂νν

0 ð▽ν − gwWνÞðϕ2Gμ0ν0aÞ
þ ∂νðχχ̂μμ0 χ̂νν0 Þϕ2Gμ0ν0a: ð64Þ

In obtaining the above equation of motion, we have used
the identities δχ ¼ χχ̂a

μδχμ
a and δχ̂b

ν ¼ −χ̂bμχ̂aνδχμa.
Alternatively, the equation of motion for the dual gravifield
χ̂a

μ can easily be read off:

χμ
cχρ

aαW ~∇σðϕ2χχ̂ρμ
0
χ̂σν

0
Gμ0ν0cÞ ¼ Ĵμ

a;

with the gravifield currents Ĵμ
a ¼ χμ

cχρ
aJcρ

Ĵμ
a ¼ −χχμaLþ 1

2
χ½Ψ̄γaiDμΨþ ψ̄γai▽μψ þ H:c:�

− χχ̂aμ
0
χ̂νν

0 ½F I
μνF I

μ0ν0 þRcd
μνRμ0ν0 cd

þWμνWμ0ν0 − αWϕ
2Gb

μνGμ0ν0b�
þ χχ̂aμ

0
dμϕdμ0ϕ − 2αEgsχϕ2Rab

μν χ̂b
ν:

For the scaling gauge field Wμ, we obtain the following
equation of motion:

∂νðχχ̂μμ0 χ̂νν0Wμ0ν0 Þ ¼ Jμ; ð65Þ

with the bosonic vector current

Jμ ¼ −gwχχ̂μνϕdνϕ − gwχϕ2αW χ̂
μμ0 χ̂νν

0
χν

aGμ0ν0a: ð66Þ

The derivative can be written as

∂νðχχ̂μμ0 χ̂νν0Wμ0ν0 Þ ¼ χχ̂μμ
0
χ̂νν

0∂νWμ0ν0 þ ∂νðχχ̂μμ0 χ̂νν0 ÞWμ0ν0 ;

ð67Þ

where the second term arises from the gravitational effects.
For the scalar field ϕ, the equation of motion is simply

yielded as follows:

ð∂μ þ gwWμÞðχχ̂μνdνϕÞ ¼ J; ð68Þ

with the scalar current

J ¼ −χysψ̄ψ þ χϕ½αW χ̂μμ0 χ̂νν0Ga
μνGμ0ν0a

− 2αEgsχ̂aμχ̂bνRab
μν − 4λsϕ

2�: ð69Þ

The scaling gauge covariant derivative reads off

ð∂μ þ gwWμÞðχχ̂μνdνϕÞ
¼ χχ̂μνdμdνϕþ ð∂μ þ 2gwWμÞðχχ̂μνÞdνϕ; ð70Þ

where the second term reflects the gravitational effects.
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V. CONSERVATION LAWS AND EQUATION OF
MOTION FOR GRAVIFIELD

The gauge theory of gravity is built within the framework
of relativistic QFT in the flat Minkowski spacetime, which
enables us to discuss in general the basic conservation laws
of the theory.

A. Conservation law for internal gauge invariance

For the gauge invariance of internal gauge symmetry, the
resulting well-known conservation law is the vector current
conservation in the absence of gravitational interactions. In
the QFT of gravity, it can be shown from the equation of
motion for the internal gauge field AI

μ in Eq. (55) that the
conservation law still holds:

DμJIμ ¼DμDνðχχ̂μμ0 χ̂νν0F I
μ0ν0 Þ

¼ χχ̂μμ
0
χ̂νν

0
DμDνðF I

μ0ν0 Þ þ ∂μ∂νðχχ̂μμ0 χ̂νν0 ÞF I
μ0ν0

þ ∂νðχχ̂μμ0 χ̂νν0 ÞDμðF I
μ0ν0 Þ þ ∂μðχχ̂μμ0 χ̂νν0 ÞDνðF I

μ0ν0 Þ

¼ 1

2
χχ̂μμ

0
χ̂νν

0
fIJKF J

μνFK
μ0ν0 ≡ 0;

where the symmetric and antisymmetric properties have
been used and the gravitational effects are eliminated.
From the definitions of the fermion vector currents and

the covariant derivative, we have

DμJIμ ≡ ðδIK∂μ þ fIJKAμÞðgAχΨ̄γaχ̂a
μTKΨÞ

¼ gAχχ̂aμDμðΨ̄γaTIΨÞ þ gA∂μðχχ̂aμÞΨ̄γaTIΨ ¼ 0;

ð71Þ

where the second term reflects the gravitational effects. By
requiring the derivatives in the second equality to be gauge
covariant for the spin gauge symmetry, the conservation
law for the fermion vector currents can be rewritten as

DμJIμ ≡ gAχχ̂aμDμðΨ̄γaTIΨÞ þ gA▽μðχχ̂aμÞΨ̄γaTIΨ ¼ 0;

ð72Þ

which can be proved to be held directly by applying for the
equation of motion of the fermion field in Eq. (51).
We then come to the conclusion that in the presence of

gravity the conservation law for the fermion vector currents
due to internal gauge symmetry holds when the gravita-
tional effects are included.

B. Conservation laws for spin and scaling
gauge invariances

Similarly, for the spin gauge symmetry, we can show the
following identity from the equation of motion for the spin
gauge field:

▽μJμab ¼ ▽μ▽νðχχ̂μμ0 χ̂νν0R ab
μ0ν0 Þ

¼ χχ̂μμ
0
χ̂νν

0
▽μ▽νR ab

μ0ν0 þ ∂μ∂νðχχ̂μμ0 χ̂νν0 ÞR ab
μ0ν0

þ ∂μðχχ̂μμ0 χ̂νν0 Þ▽νR ab
μ0ν0 þ ∂νðχχ̂μμ0 χ̂νν0 Þ▽μR ab

μ0ν0

¼ χχ̂μμ
0
χ̂νν

0 ðR a
μνcR cb

μ0ν0 þR b
μνcR ac

μ0ν0 Þ ¼ 0;

where the symmetric and antisymmetric properties lead to a
cancellation for all terms.
As the spin gauge field Ωab

μ and gravifield χμ
a are

introduced simultaneously to ensure the spin gauge invari-
ance for the gauge theory of gravity, the tensor current Jμ ab

and the gravifield current Jaμ are generally correlated. It is
not difficult to show that, from the definition of the tensor
current Jμ ab, the conservation law for the spin gauge
invariance can be expressed as follows:

▽μJμab ¼
1

2
▽μSμ

ab þ
1

2
J½ab�

− αEgsϕ2χðχ̂aμRμνb
c − χ̂b

μRμνa
cÞχ̂cν ¼ 0;

ð73Þ

with the definitions

Sμ
ab ¼ gsχ

�
Ψ̄χ̂c

μ

�
γc

1

2
Σab

�
Ψþ ψ̄ χ̂c

μ

�
γc
1

2
Σab

�
ψ

�
;

J½ab� ¼ Jμaχμb − Jμbχμa: ð74Þ
It will be shown that the tensor Sμ

ab corresponds to the
spin angular momentum tensor, and J½ab� is related to the
energy-momentum tensor.
For the local scaling gauge symmetry, from the equation

of motion for theWeyl gauge fieldWμ, it is easy to show that

∂μJμ ¼ ∂μ∂νðχχ̂μμ0 χ̂νν0Wμ0ν0 Þ≡ 0;

which leads to the conservation law for the bosonic current

∂μJμ ¼ ∂μðχχ̂μνϕdνϕþ αWχϕ
2χ̂μμ

0
χ̂νν

0
χν

aGμ0ν0aÞ ¼ 0:

ð75Þ
We now come to discuss the bicovariant vector current,

as the gravifield χμ
a behaves not like the usual gauge field.

From the equation of motion, the gauge and Lorentz
covariant derivative to the current is given by

ð▽μ − gwWμÞJaμ ¼ αWð▽μ − gwWμÞð▽ν − gwWνÞ
× ðϕ2χχ̂μμ

0
χ̂νν

0
Gμ0ν0aÞ

¼ 1

2
αWϕ

2χðgsRμνa
b − gwWμνηa

bÞ
× χ̂μμ

0
χ̂νν

0
Gμ0ν0b; ð76Þ

which shows that such a defined bicovariant vector current is
not conserved homogeneously. It may not be difficult to
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understand with the fact that the gravifield is actually intro-
ducedas anaccompanimentof spin and scalinggauge fields to
ensure the spin and scaling gauge symmetries of the action. It
will be demonstrated below that the bicovariant vector current
is related to the energy-momentum tensor and an alternative
conservation law for the gravifield current results from the
conservation of the energy-momentum tensor.

C. Energy-momentum conservation in
the QFT of gravity

So far, we have discussed the conservation laws con-
cerning gauge symmetries in the gauge theory of gravity.
As such a theory is built based on the framework of
relativistic QFT in the flat Minkowski spacetime, which
implies that the differences of the spatial coordinates or
time coordinates can, in principle, be measured by the
standard ways proposed in special relativity. This allows us
to make a meaningful definition for momentum and energy
as well as angular momentum.
Let us first investigate the conservation law under the

translational transformation of coordinates xμ → x0μ ¼
xμ þ aμ. The variation of action is given by

δSχ ¼
Z

d4x∂μðT ν
μÞaν ¼ 0;

where the surface term has been ignored as all the fields are
assumed to be vanishing at infinity. For arbitrary displace-
ment aν, it leads to the well-known energy-momentum
conservation

∂μT ν
μ ¼ 0 ð77Þ

with the energy-momentum tensor

T ν
μ ∼ −ημνχLþ 1

2
χχ̂a

μ½iΨ̄γa∂νΨþ iψ̄γa∂νψ þ H:c:�
− χχ̂μμ

0
χ̂ρσ½F I

μ0ρ∂νAI
σ þRab

μ0ρ∂νΩσ ab þWμ0ρ∂νWσ�
þ αWχχ̂

μμ0 χ̂ρσϕ2Gμ0ρa∂νχσ
a þ χχ̂μμ

0
dμ0ϕ∂νϕ

− 2αEgsχϕ2χ̂a
μχ̂b

ρ∂νΩab
ρ :

Note that such a form of energy-momentum tensor is not
explicitly gauge invariant under gauge transformations.
To obtain a manifest gauge-invariant energy-momentum
tensor, it is useful to take the equations of motion for the
gauge fields. By adding total derivative terms and adopt-
ing the equations of motion for the gauge fields Aμ, Ωμ,
Wμ, and χμ, the energy-momentum tensor is found to be

T ν
μ ∼ 2

�
−ημνχLþ 1

2
χχ̂a

μ½iΨ̄γaDνΨþ iψ̄γa▽νψ þ H:c:� − χχ̂μμ
0
χ̂ρσ½F I

μ0ρF
I
νσ þRab

μ0ρRνσ ab þWμ0ρWνσ − αWϕ
2Ga

μ0ρGνσa�

þ χχ̂μμ
0
dμ0ϕdνϕ − 2αEχϕ

2χ̂a
μχ̂b

ρRab
νρ

�
þ ∂σfχχ̂μμ0 χ̂σρðF I

μ0ρA
I
ν þRab

μ0ρΩν ab þWμ0ρWνÞg

þ ∂σfαWϕ2χχ̂μμ
0
χ̂ρσGμ0ρaχν

a − 2αEgsϕ2χχ̂aμχ̂bσΩνabg;

where the total derivative terms become vanishing in the
derivative form ∂μðT ν

μÞ due to the antisymmetric property.
Thus, the gauge-invariant energy-momentum tensor reads

T ν
μ ¼ −ημνχLþ 1

2
χχ̂a

μ½iΨ̄γaDνΨþ iψ̄γa▽νψ þ H:c:�
− χχ̂μμ

0
χ̂ρσ½F I

μ0ρF
I
νσ þRab

μ0ρRνσ ab þWμ0ρWνσ

− αWϕ
2Ga

μ0ρGνσa�
þ χχ̂μμ

0
dμ0ϕdνϕ − 2αEgsχϕ2χ̂a

μRab
νρ χ̂b

ρ: ð78Þ

Note that the gauge-invariant energy-momentum tensor
T μν is, in general, not symmetric:

T μν ≠ T νμ: ð79Þ

Even if freezing out the gravitational interactions, the
energy-momentum tensor for the fermionic fields remains

asymmetric, though the energy-momentum tensor for
gauge and scalar fields becomes symmetric.

D. Conservation laws under the global Lorentz
and scaling transformations

Let us now discuss the conservation law under the global
Lorentz transformation of coordinates. For an infinitesimal
transformation x0μ ¼ xμ þ δLμ

νxν, similar to the energy-
momentum conservation of translational invariance, we
arrive at the following conservation law for the Lorentz
transformation invariance:

∂μLμρσ − T½ρσ� ¼ 0; ð80Þ

with the definitions

Lμρσ ≡ T ρ
μxσ − T σ

μxρ; T½ρσ� ≡ T ρ
σ0ησ0σ − T σ

ρ0ηρ0ρ;

ð81Þ
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where Lμρσ corresponds to the orbital angular momentum
tensor of spacetime rotation. As the energy-momentum
tensor Tρσ is not symmetric, the orbital angular momen-
tum tensor is, in general, not conserved homogeneously,
i.e., ∂μLμρσ ≠ 0.
On the other hand, by formulating the conservation law of

the spin gauge invariance in terms of the covariant form in
the Minkowski spacetime, we obtain the following expres-
sion for the conservation law of spin gauge invariance:

∂μSμ
ρσ þ T ½ρσ� − Sμ

abð∇μχρ
aχσ

b þ χρ
a∇μχσ

bÞ
− 2αEgsϕ2χðχ̂aμRμνb

c − χ̂b
μRμνa

cÞχ̂cνχρaχσb ¼ 0;

ð82Þ

with the definitions

Sμ
ρσ ¼ Sμ

abχρ
aχσ

b

¼ gsχχ̂cμ
�
Ψ̄

�
γc

1

2
Σab

�
Ψþ ψ̄

�
γc

1

2
Σab

�
ψ

�
χρ

aχσ
b;

T ½ρσ� ¼ J½ab�χρaχσb ¼ T ρ
μχμσ − T σ

μχμρ: ð83Þ

In defining the antisymmetric tensor field T ½ρσ�, we have
introduced the symmetric tensor field

χμν ¼ χμ
aχν

bηab; ð84Þ

which is dual to the symmetric tensor field χ̂μν given
in Eq. (50).
Let us introduce a total angular momentum tensor

J μ
ρσ ≡ Lμρσ þ Sμ

ρσ; ð85Þ

with Lμρσ and Sμ
ρσ being the rotational and spinning

angular momentum tensors, respectively. By combining
the conservation law of Lorentz invariance Eq. (81) with
the conservation law of the spin gauge invariance Eq. (82),
we obtain a new form of conservation law:

∂μJ μ
ρσ − ðT½ρσ� − T ½ρσ�Þ − Sμ

abð∇μχρ
aχσ

b þ χρ
a∇μχσ

bÞ
− 2αEgsϕ2χðχ̂aμRμνb

c − χ̂b
μRμνa

cÞχ̂cνχρaχσb ¼ 0;

ð86Þ

which shows that in the presence of gravitational inter-
actions the total angular momentum tensor defined above is
not conserved homogeneously, i.e., ∂μJ μ

ρσ ≠ 0.
When turning the spin and scaling gauge symmetries

into global Lorentz and scaling symmetries, i.e., all the
quantum fields relevant to the gauge theory of gravity will
be absent,

Ωab
μ → 0; χ̂a

μ → ηa
μ; Wμ → 0; ð87Þ

we get the following relations:

∂μSμ
ρσ ¼ −T½ρσ� ð∂μLμρσ ¼ T½ρσ�Þ; ð88Þ

where the conservation law of the spinning momentum
tensor is governed by the asymmetric part of the energy-
momentum tensor (which is seen to have an opposite sign
in comparison with the conservation law of the angular
momentum tensor). As a consequence, we arrive at the
conservation law for the total angular momentum tensor:

∂μJ μ
ρσ ¼ ∂μðLμρσ þ Sμ

ρσÞ ¼ 0; ð89Þ
which reproduces the result for the gravity-free theory in
the Minkowski spacetime.
We then come to the conclusion that, in the presence of

fermion field, the energy-momentum tensor is, in general,
asymmetric; neither the angular momentum tensor nor the
spinning momentum tensor is conserved homogeneously
due to the asymmetric part of the energy-momentum tensor,
and only the total angular momentum becomes homo-
geneously conserved due to the cancellation in their
asymmetric part of the energy-momentum tensor.
For the global scaling invariance, we obtain the follow-

ing conservation law:�
xμ

∂
∂xμ þ 4

	
ðχLÞ þ ∂μT μ − T ¼ 0; ð90Þ

with the definitions

T μ ≡ T ν
μxν; T ≡ T ν

μημ
ν ¼ T μ

μ; ð91Þ

where T μ represents a scaling current and T ¼ T μ
μ is the

trace of the energy-momentum tensor. As the integralR
d4xλ4χðλxÞLðλxÞ is independent of λ, the differentiation

with respect to λ at λ ¼ 1 leads to the following identity:

Z
d4x

�
xμ

∂
∂xμ þ 4

	
ðχLÞ ¼ 0;

which results in the conservation law

∂μT μ − T ¼ 0: ð92Þ
When the energy-momentum tensor becomes traceless,
T ¼ 0, for the case that the scalar field is freezed out in
the gravity-free theory, one then yields the homogeneous
conservation law for the scaling invariance:

∂μT μ ¼ 0: ð93Þ

E. Equation of motion and conservation
law for gravifield tensor

From the definition of the bicovariant vector current
shown in the equation of motion for the gravifield χμa given
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in Eq. (58), we observe the following relation between
the energy-momentum tensor and the bicovariant vector
current for the gravifield:

T ν
μ ¼ χν

aJaμ; ð94Þ

which enables us to obtain the equation of motion for
the gravifield in connection directly with the energy-
momentum tensor

∂ρGν
μρ − Gν

μ ¼ T ν
μ; ð95Þ

which is a general gravity equation alternative to Einstein’s
equation of general relativity. Here we have introduced the
following definitions:

Gν
μρ ≡ αWϕ

2χχ̂μμ
0
χ̂ρν

0
χν

aGμ0ν0a ¼ −Gν
ρμ;

Gν
μ ≡ αWϕ

2χχ̂μμ
0
χ̂ρν

0 ð∇ρχν
aÞGμ0ν0a

¼ ðχ̂aσ∇ρχν
aÞGσ

μρ: ð96Þ
Here Gν

μρ may be referred as the gauge-invariant gravifield
tensor and Gν

μ as the gauge-invariant gravifield tensor
current.
In light of the energy-momentum conservation

∂μT ρ
μ ¼ ∂μðJaμχρaÞ ¼ 0, we come to the following con-

served current:

∂μGν
μ ¼ ∂μðχ̂aσ∇ρχν

aGσ
μρÞ ¼ ∂μðϕ2χχ̂μμ

0
χ̂ρν

0∇ρχν
aGμ0ν0aÞ

¼ 0; ð97Þ

which is considered to be an alternative conservation law
for the gravifield tensor current.

VI. GRAVITATIONAL GAUGE SYMMETRY
BREAKING AND DYNAMICS OF

BACKGROUND FIELDS

In establishing the gauge theory of gravity, we have
postulated the spin and scaling gauge symmetries and
introduced correspondingly the spin gauge field Ωab

μ ðxÞ
associated with the essential gravifield χμ

aðxÞ and the
scaling gauge field WμðxÞ as well as the scalar field
ϕðxÞ. These fields are, in general, massless without con-
sidering gauge symmetry breaking. Based on the fact that
these particles are not yet observed experimentally, it
happens that either they are very heavy or their interactions
are very weak. To generate massive spin and scaling gauge
fields and study how weak the gravitational interactions
are, we shall take into account the gravitational gauge
symmetry breaking and the evolution of the Universe.

A. Gravitational gauge symmetry breaking

As the scaling gauge symmetry is directly related to the
mass scale, its gauge symmetry breaking can be analyzed
by making a special scaling gauge transformation to fix the

local scaling gauge symmetry, for instance, by choosing a
gauge-fixing condition, so that the scalar field ϕðxÞ is
rescaled to be a constant mass scale. Let us consider a
special scaling gauge transformation ξaðxÞ ¼ 1=aχðxÞ,
which leads to

ϕðxÞ → ϕ0ðxÞ ¼ ξaðxÞϕðxÞ ¼ ϕðxÞ=aχðxÞ ¼ MS; ð98Þ

with MS being regarded as the basic scaling energy scale
for fixing the scaling gauge transformation.
On the other hand, one can always choose an alternative

gauge condition to fix the scaling gauge symmetry, so that
the determinant of the gravifield χ ¼ det χμa is rescaled into
unity:

χðxÞ → χ0ðxÞ ¼ ξ−4χ ðxÞχðxÞ ¼ 1;

aχðxÞ → aðxÞ ¼ ξχðxÞaχðxÞ ¼ χ1=4ðxÞaχðxÞ: ð99Þ

In such a fixing gauge condition χ ¼ det χμa ¼ 1, the scalar
field can be written as the following general form:

ϕðxÞ≡MSaðxÞ; ð100Þ

which will be shown to be a useful choice for discussing
the gravitational gauge theory within the framework
of QFT.
Let us now discuss the gravitational gauge symmetry

breaking under the scaling gauge-fixing condition
χðxÞ ¼ 1. We shall make a reliable postulate that the
gravitational gauge symmetry is broken down in such a
way that the theory still possesses a global Lorentz
symmetry. With this postulate, we are led to the following
simple background structure:

hχμaðxÞi ¼ χ̄μ
aðxÞ ¼ ημ

a; hϕðxÞi ¼ φ̄ðxÞ≡ āðxÞMS;

hWμi ¼ w̄μðxÞ; hΩab
μ ðxÞi ¼ η½ab�μρ ω̄ρðxÞ;

η½ab�μρ ≡ ημ
aηρ

b − ημ
bηρ

a; hΨðxÞi ¼ 0;

hψðxÞi ¼ 0; hAI
μðxÞi ¼ 0; ð101Þ

where φ̄ðxÞðāðxÞÞ, ω̄μðxÞ, and w̄μðxÞ are the gravitational
background fields.

B. Equations of motion and dynamics for the
background fields

To analyze the properties of the background fields, we
shall find solutions of the background fields φ̄ðxÞ, ω̄ðxÞ,
and w̄ðxÞ by solving their field equations of motion.
Let us first check the field strength for the background

fields. The field strength for the background spin gauge
field is found to be

R̄ab
μν ¼ dμω̄ρη½ab�νρ − dνω̄ρη½ab�μρ − gsω̄2

ρη
½ab�
μν : ð102Þ
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It is then not difficult to yield the following results:

R̄ ¼ ημaηνbR̄
ab
μν ¼ −6ð∂μω̄

μ þ gsω̄μω̄
μÞ;

R̄ab
μν R̄

μν
ab ¼ 4ðdμω̄μÞ2 þ 8dμω̄νdμω̄ν

þ 24gsðdμω̄μ þ gsω̄μω̄
μÞω̄νω̄

ν: ð103Þ

The field strength for the background gravifield is simply
given by

Ḡa
μν ¼ ∇μη

a
ν −∇νη

a
μ ¼ ηaμΩ̄ν − ηaνΩ̄μ;

Ω̄μ ≡ gsω̄μ − gww̄μ; ð104Þ

and the field strength for the background scaling gauge
field has the usual form

W̄μν ¼ ∂μw̄ν − ∂νw̄μ: ð105Þ

The corresponding Lagrangian for the background fields
reads

L̄ ¼ −ðdρω̄ρÞ2 − 2dρω̄σdρω̄σ − 6gs∂ρω̄
ρω̄σω̄

σ

þ 3

2
αWΩ̄ρΩ̄ρφ̄2 −

1

4
W̄ρσW̄ρσ þ 1

2
dρφ̄dρφ̄

þ 6αEgsð∂ρω̄
ρ þ gsω̄ρω̄

ρÞφ̄2 − λsφ̄
4; ð106Þ

where we have used the definitions

dμω̄ρ ≡ ð∂μ − gsω̄μÞω̄ρ;

dμφ̄≡ ð∂μ − gww̄μÞφ̄: ð107Þ

From Eqs. (58)–(69), the equations of motion can be
written as follows:

½−∂σ∂σω̄ρ þ gsω̄σ∂σω̄
ρ þ 2gsω̄ρ∂σω̄

σ − 3gsω̄σ∂ρω̄σ

þ 2g2sω̄σω̄
σω̄ρ

þ 1

2
αWgsΩ̄ρφ̄2 þ αEgs∂ρφ̄2 − 2αEg2sω̄ρφ̄2�η½ab�μρ

þ ½∂μ∂σω̄ρ − 2gsω̄μ∂σω̄ρ − gsω̄ρ∂σω̄μ

− gsω̄σ∂μω̄
ρ�η½ab�σρ ¼ 0; ð108Þ

for the background spin gauge field hΩab
μ ðxÞi, and

ηaμαWdρðφ̄2Ω̄ρÞ − ηaραW ½dρðφ̄2Ω̄μÞ þ gsðω̄μΩ̄ρ þ 2Ω̄μω̄
ρÞφ̄2�

¼ −ηaμ2½dρω̄σdρω̄σ þ 2gsdρω̄ρω̄σω̄
σ þ 3g2sðω̄σω̄

σÞ2 − αWΩ̄σΩ̄σφ̄2�
− ηaμ2αEgsðdρω̄ρ þ 3gsω̄ρω̄

ρÞφ̄2 − ηaρ½W̄ρσW̄μσ − dρφ̄dμφ̄ − 2αWΩ̄ρΩ̄μφ̄
2�

− ηaρ2½dρω̄σdμω̄σ þ ðdρω̄μ þ dμω̄ρÞdσω̄σ − dσω̄μdσω̄ρ þ 2gsðdρω̄μ þ dμω̄ρÞω̄σω̄
σ�

þ ηaρ4αEgsφ̄2dρω̄μ − ηaμL̄; ð109Þ

for the background gravifield hχμaðxÞi. Here we have
adopted the definition

dρðφ̄2Ω̄ρÞ≡ ð∂ρ − gww̄ρÞðφ̄2Ω̄ρÞ:
The equations of motion for the background scaling

gauge field and scalar field are given correspondingly by

∂νW̄μν ¼ −gwφ̄dμφ̄ − 3αWΩ̄μφ̄2 ð110Þ

and

ð∂μ þ gww̄μÞdμφ̄
¼ 6αWΩ̄μΩ̄μφ̄2 þ 12αEgsð∂μω̄

μ þ gsω̄μω̄
μÞφ̄ − 4λsφ̄

3:

ð111Þ

It appears difficult to solve exactly the equations of
motion. Especially, the equations of motion for the

background gravifield and spin gauge field look more
complicated. To simplify the equations, let us make a
rational ansatz that the conformally covariant derivative
defined in Eq. (107) for the background scalar field
vanishes:

dμφ̄ ¼ 0; i:e:; gww̄μðxÞ ¼ ∂μ ln φ̄ðxÞ; W̄μν ¼ 0;

ð112Þ

which indicates that the background scaling gauge field
w̄ðxÞ is a pure gauge field and solely determined by the
background scalar field φ̄ðxÞ. In other words, such an
ansatz is equivalent to the postulate that the background
scalar field has a vanishing conformally covariant kinetic
energy. From the equation of motion Eq. (110) for the
background scaling gauge field, such an ansatz leads to the
following relation:
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Ḡμν ¼ 0; i:e:; gsω̄μðxÞ ¼ gww̄μðxÞ ¼ ∂μ ln φ̄ðxÞ; ð113Þ

which shows that the background spin gauge field is also
governed by the background scalar field.
Applying the above ansatz and relation, i.e., gsω̄μðxÞ ¼

gww̄μðxÞ ¼ ∂μ ln φ̄ðxÞ, to the equations of motion
Eqs. (108) and (109) as well as Eq. (111) for the spin
gauge field and gravifield as well as background scalar
field, we arrive at the following simplified equations of
motion, respectively:

3ð∂μφ̄ðxÞÞ∂2
νφ̄ðxÞ ¼ φ̄ðxÞ∂μð∂2

νφ̄ðxÞÞ ð114Þ

and �
1

φ̄3
∂2
ρφ̄ − αE

	
½2∂μφ̄∂μφ̄ − φ̄∂μ∂μφ̄�

þ 3αEφ̄∂2
μφ̄ − λsφ̄

4 ¼ 0; ð115Þ
�
1

φ̄3
∂2
ρφ̄ − αE

	
½2∂μφ̄∂νφ̄ − φ̄∂μ∂νφ̄� ¼ 0; ð116Þ

as well as

3αE∂2
νφ̄ðxÞ ¼ λsφ̄

3ðxÞ: ð117Þ

The above four equations are actually not independent.
Equation (114) can be obtained from Eq. (117), while
Eq. (115) can be derived from Eqs. (116) and (117).
Equation (116) is equivalent to

2∂μφ̄∂νφ̄ ¼ φ̄∂μ∂νφ̄; i:e:; dμω̄ν ¼ 0; λs ≠ 3α2E;

ð118Þ

which shows that the covariant derivative for the back-
ground field ω̄μðxÞ also vanishes. Thus, taking Eqs. (118)
and (117) as independent equations of motion, we arrive at
the following exact solution for the background scalar field:

φ̄ðxÞ ¼ mκ

αSð1 − xμκμÞ
; mκ ¼

ffiffiffiffiffiffiffiffiffi
κμκ

μ
p

: ð119Þ

Here κμ is regarded as a constant cosmic vector with the
cosmological mass scale mκ. αS is a constant parameter.
For nonzero constants αE and λs, we obtain the following
relation:

λs ¼ 6αEα
2
S: ð120Þ

It is noticed that the equations of motion possess a mirror
symmetry of Z2: φ̄ → −φ̄, and also the reflection symmetry
of spacetime: xμ → −xμ, φ̄ðxÞ → φ̄ð−xÞ. The solution is
actually invariant under the transformation: xμ → −xμ,
κμ → −κμ. Thus, there are, in general, four solutions for
the background fields:

φ̄ðxÞ → φ̄ð�Þ
κ� ðxÞ ¼ �φ̄κ�ðxÞ ¼ � mκ

αSð1∓xμκμÞ
; ð121Þ

which all satisfy the equations of motion.

VII. GEOMETRY OF GRAVIFIELD SPACETIME
AND EVOLUTION OF EARLY UNIVERSE WITH
CONFORMAL INFLATION AND DEFLATION

To understand the evolution of the Universe, we shall
study the geometry of gravifield spacetime. Obviously, the
background structure after gravitational gauge symmetry
breaking forms a background gravifield spacetime. With
the solution obtained above for the background scalar field,
it enables us to explore the properties of the background
gravifield spacetime and the evolution of the early
Universe.

A. Line element of gravifield spacetime
and scalinon field

Before discussing the background gravifield spacetime,
let us first define a spin and scaling gauge-invariant line
element in the locally flat gravifield spacetime with the
gravifield basis χa:

l2χ ¼ a2χηabχaχb; ð122Þ

where the multiplying factor aχ is given by the scalar field,
aχ ≡ ϕ2=M2

S, which ensures an invariant line element under
both the local and global scaling transformations.
In light of the coordinate basis in the flat Minkowski

spacetime, the above invariant line element can be
rewritten as

l2χ ¼ a2χðxÞηabχμaðxÞχνbðxÞdxμdxν ≡ a2χðxÞχμνðxÞdxμdxν;
ð123Þ

which sets a conformal basis with a2χðxÞ as a conformal
scale field, where we have introduced a tensor field in the
flat Minkowski spacetime

χμνðxÞ ¼ χμ
aðxÞχνbðxÞηab; ð124Þ

which defines a Lorentz covariant metric tensor field and is
referred as a gravimetric field for short and convenience.
Such a gravimetric field characterizes the geometric prop-
erty of the gravifield spacetime.
One can always make a scaling gauge transformation to

choose a special scaling gauge condition, for instance,
by taking the scaling gauge transformation, aχðxÞ→
aEχ ðxÞ¼ξaðxÞaχðxÞ¼1, χμ

aðxÞ→χEaμ ðxÞ¼ξ−1a ðxÞχμaðxÞ¼
aχðxÞχμaðxÞ, so that the line element can be expressed
as follows:
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l2χ ¼ a2χðxÞχμνðxÞdxμdxν ≡ χEμνðxÞdxμdxν;
χEμνðxÞ ¼ χEaμ ðxÞχEbν ðxÞηab: ð125Þ

Such a choice of the gauge-fixing condition yields an
Einstein-type basis in the flat Minkowski spacetime of
coordinates.
On the other hand, by making an alternative special

scaling gauge transformation, i.e., aχðxÞ → aUðxÞ ¼
χ1=4ðxÞaχðxÞ, χμaðxÞ→ χUa

μ ðxÞ¼ χ−1=4ðxÞχμaðxÞ, we arrive
at a specific line element

l2χ ¼ a2χðxÞχμνðxÞdxμdxν ≡ a2UðxÞχUμνðxÞdxμdxν;
χUμνðxÞ ¼ χUa

μ ðxÞχUb
ν ðxÞηab; χU ¼ det χUa

μ ¼ 1; ð126Þ

which sets another basis for the gravifield spacetime.
We may call such a basis a unitary basis.
For a convenience of expression, we will omit in the

following discussions the label “U” for all the quantities in
the unitary basis and express the line element as

l2χ ¼ a2ðxÞχμνðxÞdxμdxν; χ ¼ det χμa ¼ 1: ð127Þ

It will be shown that the unitary basis is a convenient
and physically meaningful basis for considering a quantum
effect within the framework of QFT. The resulting con-
formal scale field aðxÞ or the corresponding conformal
scalar field ϕðxÞ≡MSaðxÞ reflects directly the physics
degree of freedom in the unitary basis; we may call such a
scalar particle ϕðxÞ a scalinon particle that characterizes the
conformal scaling evolution of the early Universe.

B. Background gravifield spacetime
and cosmological horizon

The background structure after gravitational gauge
symmetry breaking has been found to have the following
form in the unitary basis (χ ¼ det χμa ¼ 1):

hχμaðxÞi ¼ χ̄μ
aðxÞ ¼ ημ

a; hϕðxÞi ¼ φ̄ðxÞ ¼ āðxÞMS;

hΩab
μ ðxÞi ¼ g−1s η½ab�μρ ∂ρ ln φ̄ðxÞ; hWμi ¼ g−1w ∂μ ln φ̄ðxÞ:

ð128Þ

Such a background structure forms a background gravi-
field spacetime with the line element

hl2χi ¼ M−2
S hϕ2ðxÞηabχaðxÞχbðxÞi ¼ ā2ðxÞημνdxμdxν;

ð129Þ

which coincides with a conformally flat Minkowski space-
time governed by the background conformal scale field
āðxÞ. Such a background gravifield spacetime is distin-
guished from the globally flat Minkowski spacetime that is
introduced as the inertial reference frame of coordinates.

Let us now demonstrate the property of the background
gravifield spacetime from the solutions of background
fields. āðxÞ is determined by the solutions of the back-
ground scalinon field φ̄ðxÞ in the unitary basis divided by
the basic scaling energy scale MS:

āðxÞ → �āκ�ðxÞ ¼ �φ̄κ�ðxÞ=MS ¼ � mκ

αSMS

1

1∓xμκμ
:

ð130Þ

The line element is invariant under the global Lorentz and
scaling transformations

xμ → x0μ ¼ Lμ
νxν; κμ → κ0μ ¼ Lμ

νκν;

xμ → x0μ ¼ λ−1xμ; κμ → κ0μ ¼ λκμ;

āðxÞ → ā0ðx0Þ ¼ λāðxÞ:

As the scalar product xμκμ is a Lorentz- and scaling-
invariant quantity, we are able to define a conformal proper
time η as follows:

xμκμ ≡ κ̂cη; ð131Þ

where κ̂ is regarded as a conformal proper energy scale
and c is the speed of light in vacuum. In general, η and κ̂ are
allowed to obey a different conformal scaling transformation

η → η0 ¼ λ−αη; κ̂ → κ̂0 ¼ λακ̂; ð132Þ

with α a constant parameter. Thus, the usual Lorentz time
component x0 ¼ ct can be expressed in terms of the
conformal proper time η

x0 ¼ ct ¼ κ̂

κ0
cη −

κi
κ0

xi ≡ 1

u0
ðcη − uixiÞ;

u0 ≡ κ0
κ̂
; ui ≡ κi

κ̂
; ð133Þ

and the infinitesimal displacement dx0 of the Lorentz time
component is replaced by

dx0 ¼ c dt ¼ 1

u0
ðcdη − uidxiÞ: ð134Þ

The conformal scale field is rewritten to be

āðxÞ → āðηÞ → �āκ�ðηÞ ¼ � mκ

αSMS

1

1∓κ̂cη
; ð135Þ

and the line element can be expressed as follows:

hl2χi ¼ ā2ðηÞχ̄μνdx̂μdx̂ν; x̂μ ¼ ðcη; xiÞ; ð136Þ
where x̂μ denotes the coordinates with the conformal proper
time η and χ̄μν is the corresponding background metric for
the background gravifield spacetime
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χ̄μν ¼
1

u20

�
1 −uj
−ui u20χ̄ij

	
; χ̄ij ¼ ηij þ

uiuj
u20

; ð137Þ

which is, in general, nondiagonal.
One can, in principle, choose a special reference frame

and conformal scaling factor so that ui ¼ 0 (κi ¼ 0) and
κ̂ ¼ mκ ¼ κ0 and u0 ¼ 1, which is known as the comoving
reference frame that can be made by a Lorentz and
conformal scaling transformation. Namely, only by fixing
the Lorentz transformation and conformal scaling condition
to be the comoving reference frame can one yield an
isotropic and homogeneous background gravifield space-
time:

hl2χi ¼ ā2ðηÞημνdx̂μdx̂ν ¼ ā2ðtÞημνdxμdxν; ð138Þ

where η coincides with the comoving Lorentz time,
i.e., η ¼ t.
We now turn to the background conformal scale field

which has a singularity when the conformal proper time or
the comoving Lorentz time approaches to the epoch given
by the inverse of the conformal proper energy scale

η → ηκ ≡� 1

cκ̂
; āðηÞ → ā�ðηκÞ ¼ ∞; ð139Þ

which leads the conformal size of the background gravi-
field spacetime to be infinitely large. The light-traveled
distance from η ¼ 0 to η ¼ jηκj is given by

Lκ ¼ cjηκj ¼ 1=κ̂; ð140Þ

which defines the cosmological horizon in the background
gravifield spacetime.
In conclusion, the background gravifield spacetime is a

conformally flat Minkowski spacetime, which is described
by the cosmic vector κμ with the cosmological mass scale
mκ ¼

ffiffiffiffiffiffiffiffiffi
κμκ

μ
p

. Such a background gravifield spacetime is
shown to be characterized by the conformal proper time
η ¼ xμκμ=cκ̂ with the cosmological horizon Lκ ¼ 1=κ̂ at
which the conformal scale factor āðηÞ becomes singular.

C. Evolution of early Universe with conformal
inflation and deflation

To describe the evolution of the Universe in the back-
ground gravifield spacetime, it is useful to introduce a
cosmic proper time τ via the following definition:

dτ≡ āðηÞdη; āðηÞ → �āκ�ðηÞ

¼ � mκ

αSMS

1

1∓κ̂cη
¼ � mκ

αSMS

1

1∓cη=Lκ
: ð141Þ

Performing the integration, we arrive at the relation
between the conformal proper time η and the cosmic
proper time τ:

� 1

1− κ̂cη
¼�eHκcτ; −∞ ≤ cη ≤ Lκ; −∞ ≤ τ ≤∞;

� 1

1− κ̂cη
¼∓e−Hκcτ; Lκ ≤ cη ≤∞; −∞ ≤ τ ≤∞;

� 1

1þ κ̂cη
¼∓eHκcτ; −∞ ≤ cη ≤ −Lκ; −∞ ≤ τ ≤∞;

� 1

1þ κ̂cη
¼�e−Hκcτ; −Lκ ≤ cη ≤∞; −∞ ≤ τ ≤∞:

ð142Þ

The conformal scale factor in light of the cosmic proper
time is given by

āðτÞ → �āκ�ðτÞ ¼ �ā0e�Hκcτðor∓ā0e∓HκcτÞ;
ā0 ¼ κ̂=Hκ ¼ lκ=Lκ; ð143Þ

with the definition

Hκ ≡ αSMS
κ̂

mκ
; lκ ¼

1

Hκ
: ð144Þ

HereHκ is regarded as the primary cosmic energy scale and
lκ as the primary cosmic horizon. In obtaining the above
relation, we have used the conventional integration con-
dition for the conformal scale factor āðη ¼ 0Þ ¼ āðτ ¼ 0Þ.
It is interesting to notice that it needs to take an infinitely

large cosmic proper time τ → ∞ for the light-traveled
distance closing to the cosmological horizon cη → Lκ. The
line element in terms of the cosmic proper time reads

hl2χi ¼ ḡμνðτÞdx̂μdx̂ν; x̂μ ¼ ðcτ; xiÞ; ð145Þ

with the metric tensor

ḡμνðτÞ ¼
1

u20

�
1 −āðτÞuj

−āðτÞui ā2ðτÞu20ḡij

	
;

ḡij ¼ ηij þ
uiuj
u20

: ð146Þ

The metric of the background gravifield spacetime is, in
general, not isotropic in terms of the cosmic proper time τ.
Only in the comoving reference frame with ui ¼ 0 and
u0 ¼ 1, i.e., the cosmic proper time τ is correlated to the
comoving Lorentz time t, does the background gravifield
spacetime become isotropic and homogeneous with the line
element

hl2χi ¼ c2dτ2 þ ā2ðτÞηijdxidxj; ð147Þ

which produces the well-known form of Friedman-
Lemaître-Robertson-Walker metric for characterizing the
inflationary [āðτÞ ¼ ā0eHκcτ] or deflationary [āðτÞ ¼
ā0e−Hκcτ] expansion of the Universe as the time arrow
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from past to future. In other words, only in light of the
cosmic proper time τ does the background gravifield
spacetime appear to be a conformally inflationary or
deflationary Universe.

VIII. QUANTIZATION OF GRAVITATIONAL
INTERACTIONS IN UNITARY BASIS AND

QUANTUM INFLATION OF
EARLY UNIVERSE

Let us now discuss the quantization of gravitational
gauge theory based on the background structure of gravi-
field spacetime after the gravitational gauge symmetry
breaking. As a direct consequence, we demonstrate how
the quantum effect causes the inflation of the early Universe
and leads the inflationary Universe to end at the epoch
when the scaling symmetry is broken down spontaneously
in a quantum induced effective background scalar potential.

A. Quantization of gravitational interactions
in unitary basis

Based on the background gravifield spacetime charac-
terized by the conformally flat Minkowski spacetime, the
quantized fields are expressed as the following forms in the
unitary basis:

χμ
a ¼ χ̄μ

a þ hμaðxÞ=MW;

χ̄μ
a ¼ ημ

a;

ϕðxÞ ¼ φ̄ðxÞ þ φðxÞ;
φ̄ðxÞ ¼ MSāðxÞ;

Ωab
μ ðxÞ ¼ ~χ½ab�μρ ω̄ρðxÞ þ Ωab

μ ðxÞ
¼ η½ab�μρ ω̄ρðxÞ þ ~H½ab�

μρ ω̄ρðxÞ=MW þΩab
μ ðxÞ;

WμðxÞ ¼ w̄μðxÞ þ wμðxÞ;
gww̄μðxÞ ¼ gsω̄μðxÞ ¼ ∂μ ln φ̄ðxÞ; ð148Þ
with the definitions

~χ½ab�μρ ðxÞ ¼ χμ
aχ̂bρ − χμ

bχ̂aρ ¼ h~χ½ab�μρ ðxÞi þ ~H½ab�
μρ ðxÞ;

h~χ½ab�μρ ðxÞi ¼ η½ab�μρ ;

~H½ab�
μρ ðxÞ ¼ hμaηbρ − hμbηaρ − ημ

aĥbρ þ ημ
bĥaρ

− ðhμaĥbρ − hμbĥ
a
ρÞ=MW;

χ̂a
μðxÞ ¼ ηa

μ − ĥa
μðxÞ=MW

¼ ηa
μ − haμðxÞ=MW þ N̂a

μ=M2
W;

ĥa
μ ≡ haμ − N̂a

μ=MW;

N̂a
μ ¼

X∞
n¼1

ð−1Þn−1
Mn−1

W
ðhnþ1Þaμ; ð149Þ

where we have introduced a weighting energy scale MW
to make the quantized gravifield hμaðxÞ dimensionful.
MW may be fixed via the normalization of the kinetic
term for the gravifield and given by the basic scaling energy
scale

M2
W ¼ αWM2

S: ð150Þ

The gravifield must satisfy an additional condition in the
unitary basis (χ ¼ det χμa ¼ 1)

ln det χμa ¼ Tr lnðημa þ hμa=MWÞ ¼ 0;

or
X∞
n¼1

ð−1Þn−1
nMn−1

W
ðhnÞμaηaμ ¼ 0: ð151Þ

Before proceeding, we would like to point out that a
similar unitary basis was actually adopted in Einstein’s
original paper to make a significant simplification for the
equations of motion. It was emphasized by Einstein that
“if − det gμν (in curved coordinate spacetime) is always
finite and positive, it is natural to settle the choice of
coordinates a posteriori in such a way that this quantity
is always equal to unity.” “Thus, with this choice of
coordinates, only substitutions for which the determinant
is unity are permissible.” “But it would be erroneous to
believe that this step indicates a partial abandonment of
the general postulate of relativity. We do not ask: what are
the laws of nature which are covariant in face of all
substitutions for which the determinant is unity? But our
question is: what are the general covariant laws of
nature?” Obviously, the QFT of gravity described in
our present consideration based on the spin and scaling
gauge symmetries in the flat Minkowski spacetime pro-
vides an answer to the question that Einstein did not ask.
The answer is manifest that it is the scaling gauge
invariance that allows us to settle the choice of gauge-
fixing condition, so that the determinant of the metric
tensor field can always be made to be unity, i.e., χ ¼
det χμa ¼ 1 or − det χμν ¼ 1. Meanwhile, such a gravita-
tional gauge theory is invariant, or laws of nature are
covariant, in the face of all “substitutions” resulting from
both the local spin gauge transformations of SP(1,3) and
the global Lorentz transformations of SO(1,3) for which
the determinant is unity.
In terms of the above quantized fields hμaðxÞ,

φðxÞ, wμðxÞ, and Ωab
μ ðxÞ in the unitary basis, the action

for the quantum gravity gauge theory gets the following
form:
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Sχ ¼
Z

d4x
1

2
½χ̂μνðΨ̄χμiDνΨþ ψ̄χμi▽νψÞ þ H:c:� − ysψ̄ðφ̄þ φÞψ −

1

4
χ̂μμ

0
χ̂νν

0 ½F I
μνF I

μ0ν0 þ Rab
μνRμ0ν0ab þWμνWμ0ν0 �

þ αWðφ̄þ φÞ2 1
4
χ̂μμ

0
χ̂νν

0
Ga

μνGμ0ν0a þ
1

2
χ̂μνdμφdνφ − λsðφ̄þ φÞ4 − ½αEðφ̄þ φÞ2 − χ̂ρσω̄ρω̄σ�gsχ̂aμχ̂bνRab

μν

þ 6αEgsðφ̄þ φÞ2½χ̂aμ▽μðχ̂aνω̄νÞ þ gsχ̂μνω̄μω̄ν� − 2αEgsðφ̄þ φÞ2χ̂νρω̄ρχ̂a
μGa

μν − 3g2sðχ̂μνω̄μω̄νÞ2

þ 1

2
χ̂μν½g2wðwμφ̄þ w̄μφÞðwνφ̄þ w̄νφÞ − 2gwðφ̄wμ þ w̄μφÞdνφ�

− χ̂b
ρω̄ρχ̂

μμ0 χ̂νν
0
Gμ0ν0aRab

μν − 2χ̂a
μχ̂νν

0 ½▽ν0 ðχ̂bρω̄ρÞ − gsω̄ν0 χ̂b
ρω̄ρ�Rab

μν

−
1

4
χ̂μμ

0
χ̂νν

0 ½χ̂ρσω̄ρω̄σηab − χ̂a
ρχ̂b

σω̄ρω̄σ�Ga
μνGb

μ0ν0 − 2χ̂μν▽μðχ̂aρω̄ρÞ▽νðχ̂aσω̄σÞ − ½χ̂aμ▽μðχ̂aρω̄ρÞ�2

− χ̂μμ
0
χ̂νν

0
Ga

μνω̄μ0▽ν0 ðχ̂aρω̄ρÞ þ
1

2
χ̂a

μχ̂νν
0
Ga

μν∂ν0 ðχ̂ρσω̄ρω̄σÞ
þ 2gsχ̂μν∂μðχ̂ρσω̄ρω̄σÞω̄ν − 4gsχ̂aμ▽μðχ̂aνω̄νÞχ̂ρσω̄ρω̄σ þ L0ðxÞ; ð152Þ

with

iDμ ¼ i∂μ þ Ωμ þAμ;

χμ ≡ χμ
aγa;

Rab
μν ¼ ∂μΩab

ν − ∂νΩab
μ þgsðΩa

μcΩcb
ν −Ωa

νcΩcb
μ Þ;

Wμν ¼ ∂μwν − ∂νwμ;

dμφ ¼ ð∂μ − gwwμÞφ;
Ga

μν ¼ ▽μχν
a −▽νχμ

a

¼ χaμν þ gsðΩa
μbχν

b − Ωa
νbχμ

bÞ;
χaμν ¼ ∂μχν

a − ∂νχμ
a;

Ga
μν ¼ ∇μχν

a −∇νχμ
a

¼ Ga
μν þ gwðwμχν

a − wνχμ
aÞ;

χ̂μμ
0
χ̂νν

0
Ga

μνGμ0ν0a ¼ χ̂μμ
0
χ̂νν

0
Ga

μνGμ0ν0a þ 4gwχ̂μρχ̂aνGa
μνwρ

þ 6g2wχ̂μνwμwν: ð153Þ
It will be useful to introduce the following notations for the
tensors of the gravifield:

χμν ¼ ημν þHμν=MW;

Hμν ¼ Hμν þ Nμν=MW;

Hμν ¼ hμν þ hνμ;

Nμν ¼ hμahνbηab;

hμν ¼ hμaηνa;

χ̂μν ¼ ημν − Ĥμν=MW;

Ĥμν ≡Hμν − N̂μν=MW ¼
X∞
n¼1

ð−1Þn−1
Mn−1

W
ðHnÞμν;

Ĥμν
ab ¼ ĥa

μηνb þ ημaĥb
ν − ĥa

μĥb
ν=MW;

N̂μν
ab ¼ N̂a

μηνb þ ημaN̂b
ν þ ĥa

μĥb
ν ð154Þ

and express the field strength into the following form:

Ga
μν ¼ ð▽μhνa −▽νhμaÞ=MW þ gsðΩa

μbην
b − Ωa

νbημ
bÞ;

Ga
μν ¼ ð∇μhνa −∇νhμaÞ=MW þ gwðwμην

a − wνημ
aÞ

þ gsðΩa
μbην

b −Ωa
νbημ

bÞ: ð155Þ

It is seen from the above quantized action Eq. (152) that
there exist rich gravitational interactions with respect to
the background fields. Note that, without specifying the
background fields φ̄ðxÞ, ω̄μðxÞ, and w̄μðxÞ, the resulting
action formally remains gauge invariant. Once applying the
background field solutions obtained from the equations of
motion to the above action, all the linear terms of quantized
fields become vanishing and the gravitational gauge sym-
metries are broken down to the corresponding global
symmetries.

B. Physical degrees of freedom with massless
graviton and massive spinon

To discuss the quantum effects, it is necessary to know
the physical quantum degrees of freedom for all the
quantum fields. For the Dirac fermion fields and internal
gauge fields, the counting rule on the physical quantum
degrees of freedom is well known. Concerning the quantum
fields χμ

aðxÞ, Ωab
μ ðxÞ, WμðxÞ, and ϕðxÞ appearing in the

QFT of gauge gravity interactions, the same counting rule
should be applicable to figure out the independent physical
quantum degrees of freedom. In general, it should be
convenient to work in Euclidean spacetime by making a
Wick rotation.
Classically, the gravifield χμ

aðxÞ as a bicovariant vector
field has 16 field components, Ωab

μ ðxÞ possesses 24 field
components due to the antisymmetric feature Ωab

μ ðxÞ ¼
−Ωba

μ ðxÞ, WμðxÞ is a gauge vector field with four field
components, and ϕðxÞ is a single real field. There are totally
45 components. Before gauge symmetry breaking, they are
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all massless. For the massless gauge fields, only the
transverse components are physical quantum degrees of
freedom. Thus, there are 12 independent physical quantum
degrees of freedom for the massless spin gauge field
Ωab

μ ðxÞ, two independent physical quantum degrees of
freedom for the massless scaling gauge field WμðxÞ, and
eight independent physical quantum degrees of freedom
for the massless gauge-type gravifield χμ

aðxÞ. When fixing
the scaling gauge condition to the unitary basis, i.e.,

χ ¼ det χμaðxÞ ¼ 1, the eight physical quantum degrees
of freedom for the gravifield χμ

aðxÞ will be reduced to
seven. Thus, there are only 22 independent physical
quantum degrees of freedom including the single
scalar field.
After considering the gravitational gauge symmetry

breaking with hχμaðxÞi ¼ χ̄μ
a ¼ ημ

a, hϕðxÞi ¼ φ̄ðxÞ ¼
āMS, the leading gravifield dynamical interaction term
generates masses for the spin and scaling gauge fields:

1

4
ā2M2

Wη
μμ0ηνν

0
Ga

μνGμ0ν0a

¼1

4
ā2ημμ

0
ηνν

0 ð∇μhνa−∇νhμaÞð∇μ0hν0a−∇ν0hμ0aÞþ ā2MWη
μμ0ηνν

0 ½gwwμην
aþgsΩa

μbην
b�ð∇μ0hν0a−∇ν0hμ0aÞ

−
1

2
ā2gsgwM2

WΩab
μ wνη

μ
aηνbþ

3

2
ā2g2wM2

Wwμwνη
μνþ1

4
ā2g2sM2

WΩ½μab�Ω½μ0a0b0�ημμ
0
ηaa

0
ηbb

0
; ð156Þ

with Ω½μab� ≡Ωμab −Ωbaμ. It indicates that the fully
antisymmetric part of the spin gauge field Ω½μab� obtains
masses. Namely, four components of the spin gauge
field become massive. The spin gauge field gets additional
four physical quantum degrees of freedom and possesses
totally 16 physical quantum degrees of freedom. The
massive scaling gauge field has three physical quantum
degrees of freedom. As the gauge-type gravifield plays the
role as a Higgs-type boson for causing the spin and scaling
gauge symmetry breaking and generates masses for spin
and scaling gauge fields, its five physical quantum degrees
of freedom will be eaten by the spin and scaling gauge
fields. Eventually, the gauge-type gravifield possesses
only two independent physical quantum degrees of free-
dom. To be specific, it is natural to choose the following
two transverse components of the quantized gravifield
χμ

aðxÞ ¼ ηaμ þ hμaðxÞ=MW :

h12ðxÞ ¼ h21ðxÞ; h11ðxÞ ¼ −h22ðxÞ ð157Þ

to be independent physical quantum degrees of freedom.
Let us now carry out an alternative analysis. It is well

known that, for a gauge symmetry, one can always make a
particular gauge transformation to fix the gauge. For the
spin gauge symmetry, it concerns six free gauge group
parameters αabðxÞ ¼ −αbaðxÞ (a, b ¼ 0, 1, 2, 3) in the
spin gauge transformation SðxÞ ¼ eiαabðxÞΣab=2 ∈ SPð1; 3Þ,
which allows us to rotate away six components of the
gauge-type gravifield χμ

aðxÞ and reduce its 16 components
into ten components. By appropriately choosing a gauge-
fixing condition, such ten components of the gauge-type
gravifield χμ

aðxÞ may be made to be ten symmetric
components for the gauge-type gravifield χμ

aðxÞ, i.e.,
χμaðxÞ ¼ χaμðxÞ. Such a fixing gauge is referred as a
unitary gauge. When further making a scaling gauge
transformation to fix the scaling gauge in such a way that

the determinant of gravifield χμ
aðxÞ becomes unity, i.e.,

χ ¼ det χμaðxÞ ¼ 1, which is shown to define a unitary
basis for the gravifield spacetime. Thus the symmetric
gravifield χμ

aðxÞ is constrained to be nine components. As
a consequence, in the unitary basis with a unitary gauge-
fixing condition, the independent physical quantum
degrees of freedom for the gauge-type gravifield χμaðxÞ ¼
ημa þ hμaðxÞ=MW are counted by the symmetric transverse
components with a traceless condition

hij ¼ hji;
X
i

hii ¼ 0; i; j ¼ 1; 2; ð158Þ

which comes to the same result as Eq. (157). Such a
massless quantized transverse gravifield hij should be the
graviton.
Before ending this subsection, let us illustrate the

gravitational gauge interactions with fermions. The
gauge-invariant Lagrangian for fermions is given by

LF ¼ 1

2
½ημνðΨ̄γμiDνΨþ ψ̄γμi∂νψÞ þ H:c:�

þ 1

4
Ω½μab�

�
Ψ̄

�
γμ

1

2
Σab

�
Ψþ ψ̄

�
γμ

1

2
Σab

�
ψ

�

−
1

2MW
½ðhaμ − N̂a

μ=MWÞðΨ̄γaiDμΨ

þ ψ̄γai▽μψÞ þ H:c:�; ð159Þ

with the relation

fγμΣabg ¼ ϵμabνγνγ5: ð160Þ

It can be seen that the leading spin gauge interaction with
fermions is governed by the totally antisymmetric compo-
nents of the spin gauge field Ω½μab�, which leads to an axial-
vector current interaction. We may call such a totally
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antisymmetric spin gauge field Ω½μab� a spinon. As dem-
onstrated above, the spinon is massive and its interaction
is suppressed by a heavy mass. The interactions of the
massless graviton haμ are suppressed by the weighting
mass scale MW .
In conclusion, the gauge-type gravifield χμ

aðxÞ has two
independent physical quantum degrees of freedom that act
as the massless graviton with two transverse polarizations
hij. The totally antisymmetric spin gauge fieldΩ½μab� acts as
the massive spinon, which leads to a torsional interaction.

C. Gauge-fixing contributions to quantization
of gravity theory

We shall show explicitly how the gauge-fixing require-
ment contributes to the quantization of gravity theory. In
the path integral approach, as both the path integral
measure of the gauge fields and the action are gauge
invariant, the functionally integrating over the gauge fields
will overcount the degrees of freedom. To overcome this
problem, a gauge-fixing condition is needed. In general, we
have the freedom to choose the gauge-fixing condition in
the path integral method, as the gauge fixing is realized by
inserting the delta functions into the path integral. Such a
formalism was initially developed by Faddeev and Popov
[28]. The main step of gauge fixing is to find an explicit
expression for the Faddeev-Popov determinant. Suppose
that a gauge-fixing condition is set to be

F ðAμÞ ¼ 0; ð161Þ

then the path integral is expressed as

Z
DA

Y
x

δðF ðAÞÞΔFe
i
R

d4xL; ð162Þ

where ΔF is the Faddeev-Popov determinant given by

ΔF ¼ detM; Mjk ¼
δF jðAgÞðxÞ

δαkðyÞ
����
g¼e

ð163Þ

with αk the group parameters. Both the δ function and the
determinant can be expressed by the exponential form as
follows:

Z
DA

Y
x

δðF ðAÞÞΔFe
i
R

d4xLG

¼
Z

DA
Z Y

k

dϑkdϑ̄ke
i
R

d4xðLGþLGfþLGsÞ;

LGf ¼ −
1

2
λFF jðAÞF jðAÞ;

LGs ¼
Z

d4yϑ̄jðxÞMjkðx; yÞϑkðyÞ; ð164Þ

where LG, LGf, and LGs represent the Lagrangian for the
gauge-invariant theory of gravity, the gauge-fixing term,
and the Faddeev-Popov ghost term, respectively. λF is an
arbitrary parameter, and ϑk are the Grassman variables.
For the gauge theory of gravity described by the action

given in Eq. (49), the relevant gauge and tensor fields
concern the spin gauge field Ωab

μ , the scaling gauge field
Wμ, the gauge-type gravifield χμ

a, and the tensor field χ̂μν.
The action is, in general, invariant under the spin and
scaling gauge transformations. To fix the gauge, let us
take explicitly the following Lorentz-type gauge-fixing
conditions:

ffiffiffi
χ

p
χ̂μν∂μΩab

ν ¼ 0;ffiffiffi
χ

p
χ̂μν

ffiffiffiffiffiffi
αw

p
ϕ∂μχν

a ¼ 0;ffiffiffi
χ

p
χ̂μν∂μWν ¼ 0: ð165Þ

Note that the tensor gravifield χ̂μν ¼ χ̂a
μχ̂b

νηab that couples
to all interaction terms remains invariant under the spin
gauge transformation as the spin gauge appears to be a
hidden gauge for the tensor gravifield χ̂μν. For that, we shall
impose an additional gauge-fixing condition

ffiffiffi
χ

p ffiffiffiffiffiffi
αw

p
ϕ∂μχ̂a

μ ¼ 0: ð166Þ

Such a condition is equivalent, from the identity
∂μχ̂a

μ ¼ ð∂μχ̂
μνÞχνa þ χ̂μν∂μχνa, to the following gauge-

fixing condition:

ffiffiffi
χ

p ffiffiffiffiffiffi
αw

p
ϕ∂μχ̂

μν ¼ 0; ð167Þ

which is usually taken as the gauge-fixing condition for a
general coordinate invariance.
We now turn to calculate the Faddeev-Popov determi-

nant. Let us first consider the infinitesimal spin and
scaling gauge transformations SðxÞ ¼ eiαabðxÞΣab=2 ≃ 1þ
iαabðxÞΣab=2 ∈ SPð1; 3Þ and ξðxÞ ¼ eαðxÞ ≃ 1þ αðxÞ,
respectively. The corresponding infinitesimal changes of
gauge fields and gravifield are found to be

δΩab
μ ≃ −g−1s ∂μα

ab þ 1

2
αaa0Ωa0b

μ −
1

2
αba0Ωa0a

μ ;

δχμ
a ≃ χμ

bαb
a; δχμ

a ≃ −αχμa;

δχ̂a
μ ≃ αa

bχ̂b
μ; δχ̂a

μ ≃ αχ̂a
μ;

δWμ ¼ −∂μα; δχ̂μν ¼ 2αχ̂μν; ð168Þ

and the Faddeev-Popov matrix elements read off
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MðabÞðcdÞðx; yÞ ¼
ffiffiffi
χ

p
χ̂μν∂μ

�
−g−1s ∂νηacηbd þ

1

2
ηacΩνdb −

1

2
ηbcΩνda

�
δ4ðx − yÞ;

MðaÞðcdÞðx; yÞ ¼
ffiffiffi
χ

p
χ̂μν

ffiffiffiffiffiffi
αw

p
ϕηadð∂μχνc þ χνc∂μÞδ4ðx − yÞ;

MðabÞðcÞðx; yÞ ¼
ffiffiffi
χ

p
ηac

ffiffiffiffiffiffi
αw

p
ϕð∂μχ̂b

μ þ χ̂b
μ∂μÞδ4ðx − yÞ;

MðaÞð1Þðx; yÞ ¼ −
ffiffiffi
χ

p
χ̂μν

ffiffiffiffiffiffi
αw

p
ϕχνa∂μδ

4ðx − yÞ;
Mð1ÞðaÞðx; yÞ ¼

ffiffiffi
χ

p ffiffiffiffiffiffi
αw

p
ϕχ̂a

μ∂μδ
4ðx − yÞ;

Mð1Þð1Þðx; yÞ ¼ −
ffiffiffi
χ

p
χ̂μνg−1w ∂μ∂νδ

4ðx − yÞ: ð169Þ

From the above analyses, we arrive at the Lagrangian for the gauge-fixing and Faddeev-Popov ghost terms as follows:

LGf ¼ −χ
1

2
λωχ̂

μνχ̂μ
0ν0 ½∂μΩab

ν ∂μ0Ων0ab þ ∂μWν∂μ0Wν0 � þ χ
1

4
λχαwϕ

2½χ̂μνχ̂μ0ν0∂μχν
a∂μ0χν0a þ ∂μχ̂a

μ∂νχ̂
aν�;

LGs ¼ −
ffiffiffi
χ

p
χ̂μνϑ̄ab∂μðηacηbd∂ν þ gsηacΩνbdÞϑcd −

ffiffiffi
χ

p ffiffiffiffiffiffi
αw

p
ϕχ̂μν∂μχνcηabðϑ̄bϑac − ϑ̄acϑbÞ þ ffiffiffi

χ
p ffiffiffiffiffiffi

αw
p

ϕ∂μχ̂
μνηabϑ̄

acχνcϑ
b

−
ffiffiffi
χ

p ffiffiffiffiffiffi
αw

p
ϕηabχ̂c

μðϑ̄b∂μϑ
ac − ϑ̄ac∂μϑ

bÞ − ffiffiffi
χ

p ffiffiffiffiffiffi
αw

p
ϕχ̂a

μðϑ̄a∂μϑ − ϑ̄∂μϑ
aÞ − ffiffiffi

χ
p

χ̂μνϑ̄∂μ∂νϑ; ð170Þ

with ϑ̄ab ¼ −ϑ̄ba and ϑab ¼ −ϑba the antisymmetric ghost variables. By making a special gauge transformation, i.e.,
χμ

a → χ1=4χμ
a and ϕ → χ−1=4ϕ, we can rewrite the above Lagrangian in the unitary basis χ ¼ det χμa ¼ 1:

LGf ¼ −
1

2
λωχ̂

μνχ̂μ
0ν0 ½∂μΩab

ν ∂μ0Ων0ab þ ∂μWν∂μ0Wν0 � þ
1

4
λχαwϕ

2½χ̂μνχ̂μ0ν0dμχνadμ0χν0a þ d̂μχ̂aμd̂νχ̂aν�;
LGs ¼ −χ̂μνϑ̄ab∂μðηacηbd∂ν þ gsηacΩνbdÞϑcd −

ffiffiffiffiffiffi
αw

p
ϕχ̂μνdμχνcηabðϑ̄bϑac − ϑ̄acϑbÞ þ ffiffiffiffiffiffi

αw
p

ϕ ~dμχ̂μνηabϑ̄acχνcϑb

−
ffiffiffiffiffiffi
αw

p
ϕηabχ̂c

μðϑ̄b∂μϑ
ac − ϑ̄ac∂μϑ

bÞ − ffiffiffiffiffiffi
αw

p
ϕχ̂a

μðϑ̄a∂μϑ − ϑ̄∂μϑ
aÞ − χ̂μνϑ̄∂μ∂νϑ; ð171Þ

with the notations

dμ ≡ ∂μ þ
1

4
∂μ ln χ; d̂μ ≡ ∂μ −

1

4
∂μ ln χ; ~dμ ≡ ∂μ −

1

2
∂μ ln χ: ð172Þ

The gauge-invariant Lagrangian for the gauge theory of gravity in the unitary basis reads

LG ¼ 1

2
½χ̂μνðΨ̄χμiDνΨþ ψ̄χμi▽νψÞ þ H:c:� − ysψ̄ϕψ −

1

4
χ̂μμ

0
χ̂νν

0 ½F I
μνF I

μ0ν0 þRab
μνRμ0ν0ab þWμνWμ0ν0 − αWϕ

2Ga
μνGμ0ν0a�

þ 1

2
χ̂μνdμϕdνϕ − αEgsϕ2χ̂μμ

0
χ̂νν

0
χμ

aχν
bRμ0ν0ab − λsϕ

4 þ L0ðxÞ: ð173Þ

The total effective Lagrangian for the theory of quantum gravity is obtained by putting all the parts together:

Leff ¼ LG þ LGf þ LGs: ð174Þ

D. Perturbative expansion and renormalizability of quantized gravity theory

It is noticed that the tensor gravifield χ̂μν couples to all kinematic terms and gauge interaction terms. Namely, the gravity
does interact with all fields and the motion of all fields is surrounded by the gravitational interactions, as χ̂μν is determined
by the inverse of the gauge-type gravifield χμa, which causes the nonlinear nature of the theory. To study the quantum theory
of gravity, it is useful to work out a practically calculating framework. Based on the conformally flat background gravifield
spacetime hχμaðxÞi ¼ ηaμ in the unitary basis, it is not difficult to show that the leading Lagrangian with dimensionless
couplings has the following form:

LG ¼ 1

2
½ημaðΨ̄γaiDμΨþ ψ̄γai▽μψÞ þ H:c:� − ysψ̄ϕψ −

1

4
ημμ

0
ηνν

0 ½F I
μνF I

μ0ν0 þRab
μνRμ0ν0ab þWμνWμ0ν0 − a2Ga

μνGμ0ν0a�

þ 1

2
ημνdμϕdνϕ − αEgsϕ2ημaηνbR

ab
μν − λsϕ

4 þ L0ðxÞ; ð175Þ
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with the definition

Ga
μν ¼ ð∇μhνa −∇νhμaÞ þ gwMWðWμην

a −Wνημ
aÞ þ gsMWðΩa

μbην
b − Ωa

νbημ
bÞ: ð176Þ

For the gauge-fixing and Faddeev-Popov ghost terms, we have

LGf ¼ −
1

2
λω½∂μΩab

μ ∂νΩνab þ ∂μWμ∂νWν� þ
1

2
λχa2

�
∂μhμa∂νhνa þ

1

16
∂μh∂μh

	
;

LGs ¼ −ϑ̄ab∂μðηacηbd∂μ þ gsηacΩμbdÞϑcd − a

�
∂μhμc þ

1

4
ημc∂μh

	
ηabðϑ̄bϑac − ϑ̄acϑbÞ − a

�
∂μHμν −

1

4
∂νH

	
ηνcηabϑ̄

acϑb

−
ffiffiffiffiffiffi
αw

p
ϕηabηc

μðϑ̄b∂μϑ
ac − ϑ̄ac∂μϑ

bÞ − ffiffiffiffiffiffi
αw

p
ϕηa

μðϑ̄a∂μϑ − ϑ̄∂μϑ
aÞ − ϑ̄∂μ∂μϑ; ð177Þ

with

Hμν ¼ hμν þ hνμ; H ¼ Hμνημν ¼ 2h;

hμν ¼ haμηνa; h ¼ haμη
μ
a ¼ hμνημν:

Thus, the leading effective Lagrangian and effective action
are given by

Leff ¼ LG þ LGf þ LGs; Seff ¼
Z

d4xLeff ; ð178Þ

and the total effective Lagrangian and effective action are
written as

Leff ¼ Leff þ L̂eff : ð179Þ

It is shown that the identification of the physical
quantum degrees of freedom and the definition of a
quantum gravity theory are similar to the quantization of
Yang-Mills gauge theory. By decomposing the above

leading effective action into a free part and interacting
part after considering the gauge symmetry braking, one can
write down the Feynman rules in a standard way.
The question arises from the nonlinear nature of the

tensor gravifield χ̂μν for the quantized gauge-type gravifield
χμ

a ¼ ηaμ þ hμa=MW , i.e.,

χ̂a
μðxÞ ¼ ηa

μ − haμ=MW þ N̂a
μ=M2

W;

N̂a
μ ¼

X∞
n¼1

ð−1Þn−1
Mn−1

W
ðhnþ1Þaμ;

χ̂μν ¼ χ̂a
μχ̂aν ¼ ημν −Hμν=MW þ N̂μν=M2

W;

N̂μν ¼
X∞
n¼1

ð−1Þn−1
Mn−1

W
ðHnþ1Þμν; ð180Þ

which leads to the high dimensionful interaction terms

L̂G ¼ −
1

2MW
ðhaμ − N̂a

μ=MWÞ½ðΨ̄γaiDμΨþ ψ̄γai▽μψÞ þ H:c:�

þ 1

2MW
½ðHμμ0 − N̂μμ0=MWÞηνν0 −

1

2MW
ðHμμ0 − N̂μμ0=MWÞðHνν0 − N̂νν0=MWÞ�

· ½F I
μνF I

μ0ν0 þRab
μνRμ0ν0ab þWμνWμ0ν0 − a2Ga

μνGμ0ν0a� þ 2αEgsϕ2
1

MW
½ðhaμ − N̂a

μ=MWÞηνb

−
1

2
ðhaμ − N̂a

μ=MWÞðhbν − N̂b
ν=MWÞ�Rab

μν −
1

2MW
ðHμν − N̂μν=MWÞdμϕdνϕþ ~L0ðxÞ: ð181Þ

Similarly, one can write down the high dimensionful
Lagrangian for the gauge-fixing and Faddeev-Popov ghost
terms.
The high dimensionful interaction terms may cause the

theory to be nonrenormalizable in the usual sense that the
divergencies cannot be absorbed into the basic parameters
of the theory. On the other hand, it has been shown that the
gravifield spacetime is associated with a noncommutative

geometry due to the nonvanishing field strength of the
gravifield. It is conceivable that there exists a fundamental
energy scale that characterizes the ultraviolet behavior of
the theory. In such a case, there are in principle no
divergences appearing in the theory of quantum gravity,
so that the quantum contributions from the high dimen-
sionful interaction terms become finite and meaningful. It is
particularly interesting to make a detailed investigation for

YUE-LIANG WU PHYSICAL REVIEW D 93, 024012 (2016)

024012-24



such an expectation. In Refs. [29,30], it has been realized
that there exists a symmetry-preserving and infinite-free
regularization and renormalization method, which allows
us to introduce intrinsically two meaningful energy scales
to avoid infinities without spoiling gauge symmetries of the
original theory. One of the energy scales is the so-called
characterizing energy scale that plays the role as the
ultraviolet cutoff. The consistency and applicability of
the method have been demonstrated in a series of works
[31–37]. In particular, it has been applied to calculate
the gravitational contributions to gauge Green’s functions
and show the asymptotic free power-law running of gauge
coupling [38]. More recently, it has been initiated to
explore the quantum electroweak symmetry breaking
mechanism for understanding the hierarchy problem [39].

E. Quantum inflation of early Universe

As has been shown, the background gravifield spacetime
describes either an inflationary or a deflationary Universe.

In any case, the Universe will undergo an extremely rapid
exponential evolution in light of the cosmic proper time,
while it remains unclear how the inflation of the Universe
occurs and which epoch the inflationary Universe gets end.
It is hard to make a reliable issue on such a question without
considering the quantum effect.
Let us first check the Lagrangian density and energy-

momentum tensor for the background gravifield spacetime
after gravitational gauge symmetry breaking. The
Lagrangian for the background fields can be shown to
have the following form:

L̄ ¼ −6∂μω̄ν∂μω̄ν þ 12αEg2sω̄2
μφ̄

2 − λsφ̄
4

¼ −6g2sω̄2
μω̄

2
μ þ 12αEg2sω̄2

μφ̄
2 − λsφ̄

4: ð182Þ

The energy-momentum tensor for the background gravi-
field spacetime is found to be

T̄ μν ¼ −ημν2½dρω̄σdρω̄σ þ 2gsdρω̄ρω̄σω̄
σ þ 3g2sðω̄σω̄

σÞ2 − αWΩ̄σΩ̄σφ̄2� − ημν2αEgsðdρω̄ρ þ 3gsω̄ρω̄
ρÞφ̄2

− ½W̄μσW̄σ
ν − dμφ̄dνφ̄ − 2αWΩ̄μΩ̄νφ̄

2� − 2½dμω̄σdνω̄σ þ ðdμω̄ν þ dνω̄μÞdσω̄σ − dσω̄μdσω̄ν

þ 2gsðdμω̄ν þ dνω̄μÞω̄σω̄
σ� þ 4αEgsφ̄2dνω̄μ − ημνL̄: ð183Þ

Under the ansatz that the conformally covariant derivative
of the background scalinon field vanishes, dμφ̄ ¼ 0, which
means that the background scalinon field has vanishing
conformally covariant kinetic energy, we then arrive at the
relation gsω̄μðxÞ ¼ gww̄μðxÞ and the vanishing covariant
kinetic energy for the background gauge fields, i.e.,
dμω̄ν ¼ ð∂μ − gsω̄μÞω̄ν ¼ ð∂μ − gww̄μÞω̄ν ¼ 0. It is then
not difficult to check that the above energy-momentum
tensor is conserved. In fact, we yield

T̄ μν ¼ 0; ð184Þ

which shows that the total energy-momentum of the
background gravifield spacetime vanishes. Namely, the
background gravifield spacetime represents the whole
Universe, as it has no energy-momentum exchanging with
its exterior.
Let us examine the solution of the background scalinon

field under the coordinate translation in the flat Minkowski
spacetime,

xμ → x0μ ¼ xμ þ αμ;

φ̄ðxÞ → φ̄κ�ðx0Þ ¼
mκ

αSð1∓x0μκμÞ
¼ mκ0�

αSð1∓xμκ0μ�Þ
≡ φ̄κ0�ðxÞ; ð185Þ

with

κ0μ� ¼ κμ=ð1∓αμκμÞ; mκ0� ¼
ffiffiffiffiffiffiffiffiffiffi
κ0μκ0μ

q
¼mκ=ð1∓αμκμÞ;

ð186Þ

which corresponds to the rescaled cosmic vector and
cosmological mass scale, respectively. It indicates that
the solutions of the background fields in difference refer-
ence frames of coordinates under the coordinate translation
can equivalently be characterized by the rescaled cosmic
vector. In other words, the background gravifield spacetime
can well be described by the cosmic vector κμ.
From the above Lagrangian, it is easy to find the minimal

condition for the background scalinon field φ̄ðxÞ, which
leads to the following relation and a simplified Lagrangian:

g2sω̄2
μ ¼

λs
6αE

φ̄2 ¼ α2Sφ̄
2;

L̄ ¼ −ð6α4S=g2s − λsÞφ̄4 ¼ −λs
�

α2S
αEg2s

− 1

	
φ̄4; ð187Þ

where the relation between the background vector field and
scalinon field is consistent with the solutions obtained from
the equations of motion given in Eqs. (113) and (119).
Thus, the minimal of the background scalar potential leads
the background scalinon field to approach
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φ̄ → 0; for 6α4S=g
2
s > λs ¼ 6αEα

2
S > 6α2Eg

2
s ;

φ̄ → �∞; for 6α4S=g
2
s < λs ¼ 6αEα

2
S < 6α2Eg

2
s ; ð188Þ

which implies that the Universe characterized by the
background gravifield spacetime evolves spontaneously,
without considering quantum effect, to be stabilized at an
infinitely small conformal size φ̄ → 0 for α2S > αEg2s
(α4S > λsg2s=6) or to be stabilized at an infinitely large
conformal size φ̄ → �∞ for α2S < αEg2s (α4S < λsg2s=6).
Let us now discuss the quantum effect on the background

gravifield spacetime. For our present purpose, we are going
to demonstrate only a one-loop quantum effect. It can be
shown that the leading terms of the effective Lagrangian for
the background scalinon field get the following form:

LS ≃ μ2Uðφ̄ðxÞ þ φðxÞÞ2 − λUðφ̄ðxÞ þ φðxÞÞ4
þ 2λsðφ̄ðxÞ þ φðxÞÞ2φ̄2ðxÞ þ μ̄2Uφ̄

2ðxÞ − λ̄Uφ̄
4ðxÞ;
ð189Þ

with

μ2UðMU=μÞ≃ 2

ð4πÞ2 y
2
SðM2

U − μ2Þ;

λUðMU=μÞ≃ λs þ
4

ð4πÞ2 λ
2
S ln

M2
U

μ2
;

μ̄2UðMU=μÞ≃ 2

ð4πÞ2 ȳ
2
SðM2

U − μ2Þ;

λ̄UðMU=μÞ≃ α2S
g2sαE

λs þ
4

ð4πÞ2 λ̄
2
S ln

M2
U

μ2
; ð190Þ

with

y2S ≡ y2s − 6λs − cwg2w − csg2s ;

λ2S ≡ −12λ2s þ ð2y2s − λsÞy2s þ c0wg4w þ c0sg4s ;

ȳ2S ≡ λs þ c̄sα2S; λ̄2S ≡ −λ2s þ c̄0sα4S; ð191Þ

where MU defines a basic energy scale of QFT in the
ultraviolet (UV) region and μ is the sliding energy scale
reflecting the infrared (IR) property of QFT. The effective
parameters μ2U and λU receive contributions from loops of
the singlet fermion field and scalinon field characterized
by the terms proportional to the parameters ys and λs,
respectively. The contributions from the scaling and spin
gauge fields as well as the scalinon field are given by the
terms proportional to the parameters gw and gs as well as
αS. The coefficients cw, c0w, cs, c0s, c̄s, and c̄0s represent the
magnitudes of the contributions, which will be discussed in
detail elsewhere, as their values do not affect our present
general considerations.
It is seen that the purely quantum induced effective mass

parameters μ2U and μ̄2U arise from the loop quadratic

contributions characterized by the UV basic energy scale
MU and the sliding energy scale μ as well as the coupling
constants at a given energy scale μ. Note that it is such a
loop quadratic contribution that causes the breaking of the
global scaling symmetry. It has recently been shown that
the quantum loop quadratic contributions can play an
important role for understanding the electroweak symmetry
breaking and hierarchy problem within the SM of particle
physics [39]. Similarly, for a quantum-induced positive
mass parameter μ2U, μ̄

2
U > 0 with y2S, ȳ

2
S > 0 and μ < MU, it

causes an unstable potential and generates the inflation of
the early Universe; namely, the Universe begins from an
infinitely small conformal size φ̄ ∼ 0 and approaches to an
infinitely large conformal size φ̄ → ∞. Once the effective
coupling parameters λU and λ̄U including the quantum loop
contributions gain positive values λU, λ̄U > 0, the effective
potential for the background scalinon field is broken down
spontaneously to an evolving minimal vacuum, which leads
the inflationary Universe to end at a global minimal. Since
the couplings ys, λs, gs, gw, and αS are all free parameters,
one can always yield a solution to satisfy the requirements.
In general, the background scalinon field will get an
evolving vacuum expectation value (eVEV)

V2
SðMU=μÞ ¼ hðφ̄þ φÞ2i ¼ μ2U þ λsμ̄

2
U=λ̄U

2ðλU − λ2s=λ̄UÞ
;

V̄2
SðMU=μÞ ¼ hφ̄2i ¼ μ̄2U

2λ̄U
þ λs
λ̄U

V2
SðMU=μÞ; ð192Þ

which makes the inflationary Universe evolve via the
minimalizing vacuum state when the sliding energy scale
runs down.
The scalinon field not only acts as a quantum field but

also characterizes the conformal size of the Universe. At the
beginning of the Universe with an extreme small conformal
size, all quantum fields must have a high energy momen-
tum around the UV basic energy scale MU. On the other
hand, the smallness of the scalinon field characterized by
the cosmological mass scale mκ indicates that a small
quantum fluctuation can cause a significant change to the
magnitude of the scalinon field. Consider the quantum
fluctuation to be at the order of cosmological mass scale
mκ; namely, the sliding energy scale is taken to be
μκ ∼MU −mκ, and the quadratic contribution is given
by M2

U − ðMU −mκÞ2 ¼ 2MUmκ þm2
κ ≃ 2MUmκ. Thus,

the eVEV will be stabilized around

VS ≡ VSðMU=μκÞ≃ 1

ð4πÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y2S þ ȳ2Sλs=λ̄U
λU − λ2s=λ̄U

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2MUmκ

p
;

V̄S ≡ V̄SðMU=μκÞ≃ 1

ð4πÞ
�
ȳ2S
λ̄U

þ
�
λs
λ̄U

	
y2S þ ȳ2Sλs=λ̄U
λU − λ2s=λ̄U

�
1=2

×
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2MUmκ

p
; ð193Þ
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which determines the epoch when the inflationary Universe
ends. The corresponding scale factor of the Universe is
given by

āe ¼ hāðxÞi ¼ V̄S

MS
¼ mκ

αSMS

1

1 − κ̂cηe
¼ ā0eHκcτe : ð194Þ

With the above considerations, we come to the con-
clusion that it is the quantum effect with the loop quadratic
contribution that causes the breaking of global scaling
symmetry and generates the inflation of the Universe; its
conformal size is characterized by the eVEV. The infla-
tionary Universe eventually ends when the eVEV of the
background scalar potential reaches a stabilized minimal
value. Such an inflation of the Universe may be referred
as the quantum scalinon inflation. We shall discuss its
phenomena in detail elsewhere.

IX. SPACETIME GAUGE FIELD AND QUANTUM
DYNAMICS WITH GOLDSTONE-LIKE

GRAVIFIELD AND GRAVIMETRIC FIELD

It has been shown that, when taking the gravifield basis
fχa ¼ χμ

adxμg as a one-form with the gauge potential
GμðxÞ≡ χμ

aðxÞ 1
2
γa in the flat Minkowski spacetime, we

have the corresponding gauge covariant field strength
Ga
μνðxÞ ¼ ∇μχν

aðxÞ −∇νχμ
aðxÞ which describes the gravi-

tational force in the inertial reference frame of coordinates.
Therefore, the locally flat gravifield spacetime character-
ized by the gravifield basis fχag is regarded as a dynamical
spacetime. The quantization of gravitational fields and
matter fields leads to the quantum dynamics of the gravi-
field spacetime. To correlate the quantum dynamics of the
gravifield spacetime with the quantum dynamics of coor-
dinate spacetime, we are going to settle a special gauge
condition by utilizing the gravifield in such a way that the
spin gauge symmetry is transmuted into a hidden gauge
symmetry in the bosonic gravitational interactions. Thus, it
enables us to compare with the Einstein theory of general
relativity.

A. Spacetime gauge field with Goldstone-like
gravifield and gravimetric field

Let us express the quantum fields in the Einstein-
type basis, which is realized by making a scaling gauge
transformation

χμ
aðxÞ → aχðxÞχμaðxÞ;
ϕðxÞ → ϕðxÞ=aχðxÞ;

gwWμðxÞ → gwWμðxÞ − ∂μ ln aχðxÞ:

As a consequence, the quantum fields get the following
forms in the Einstein-type basis:

χμ
aðxÞ ¼ aχðxÞ½ημa þ hμaðxÞ=MW �

¼ ðāðxÞ þ φðxÞ=MSÞ½ημa þ hμaðxÞ=MW �;
χ̂a

μðxÞ≡ a−1χ ðxÞ½ηaμ − ĥa
μðxÞ=MW �

¼ ðāðxÞ þ φðxÞ=MSÞ−1½ημa þ hμaðxÞ=MW �−1;
χðxÞ ¼ det χμaðxÞ ¼ a4χðxÞ ¼ ðāðxÞ þ φðxÞ=MSÞ4;
ϕðxÞ ¼ MS;

Ωab
μ ðxÞ ¼ ~χ½ab�μρ ω̄ρðxÞ þ Ωab

μ ðxÞ;
gsω̄μðxÞ ¼ ∂μ ln āðxÞ;
WμðxÞ ¼ w̄μðxÞ þ wμðxÞ;
w̄μðxÞ ¼ 0; ð195Þ

where we have omitted the label “E” in all quantities for
convenience.
It is meaningful to construct an alternative gauge

field through the gravifield and spin gauge field as
follows:

Γσ
μνðxÞ ¼ χ̂a

σ▽μχν
a ¼ χ̂a

σð∂μχν
a þ gsΩa

μbχν
bÞ; ð196Þ

where the spin gauge symmetry becomes a hidden sym-
metry and the gravifield appears as a Goldstone-like field
that transmutes the local spin gauge symmetry into the
global Lorentz symmetry. The gauge field Γσ

μνðxÞ is a
Lorentz tensor field defined in the flat Minkowski space-
time; we may refer it as a spacetime gauge field so as to
distinguish from the affine connection defined in the curved
spacetime.
Analogous to the background field approach, let us

decompose the spin gauge field into two parts, so that they
have the following properties under the spin gauge trans-
formation SðxÞ ¼ eiαabðxÞΣab=2 ∈ SPð1; 3Þ:

Ωab
μ ðxÞ ¼ ωab

μ ðxÞ þ ~ωab
μ ðxÞ;

ωμðxÞ → ω0
μðxÞ ¼ SωμðxÞS−1 þ S∂μS−1;

ωμðxÞ ¼ ωab
μ ðxÞ 1

2
Σab;

~ωμðxÞ → ~ω0
μðxÞ ¼ S ~ωμðxÞS−1;

~ωμðxÞ ¼ gs ~ωab
μ ðxÞ 1

2
Σab: ð197Þ

Correspondingly, the spacetime gauge field Γσ
μνðxÞ consists

of two gauge-invariant parts under the spin gauge trans-
formation

Γσ
μνðxÞ≡ Γσ

μνðxÞ þ ~Γσ
μνðxÞ;

Γσ
μνðxÞ≡ χ̂a

σð∂μχν
a þ gsωa

μbχν
bÞ;

~Γσ
μνðxÞ≡ gsχ̂aσ ~ωa

μbχν
b; ð198Þ
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where the gauge fields ωab
μ ðxÞ and ~ωab

μ ðxÞ should not be all
independent; half of their degrees of freedom must be
reduced so that the independent degrees of the freedom are
compatible with the initial ones in Ωab

μ ðxÞ. From the above
definition, it can be checked that ~Γσ

μνðxÞ reflects an
antisymmetric part of the spacetime gauge field Γσ

μνðxÞ
with the following relation:

~Γσ0
μνðxÞχσ0σ ¼ − ~Γν0

μσðxÞχν0ν: ð199Þ

Thus, let us impose a reasonable condition that Γσ
μνðxÞ is

symmetric, i.e., Γσ
μνðxÞ ¼ Γσ

νμðxÞ. As a result, the spin
gauge field ωab

μ ðxÞ is characterized purely by the
Goldstone-like gravifield χμ

a. Its explicit form is found
to be

gsωab
μ ðxÞ ¼ χ̂aνχbμν − χ̂bνχaμν − χ̂aρχ̂bσχcρσχμc;

χaμν ¼ ∂μχν
a − ∂νχμ

a: ð200Þ

Here ωab
μ ðxÞ appears as a pure gaugelike field. With such a

form of ωab
μ ðxÞ, it is not difficult to check that Γσ

μνðxÞ gets
the following explicit form:

Γσ
μν ¼ Γσ

νμ ¼
1

2
χ̂σλ½∂μχνλ þ ∂νχμλ − ∂λχμν�;

χμνðxÞ ¼ χμ
aðxÞχνbðxÞηab;

χ̂μνðxÞ ¼ χ̂a
μðxÞχ̂bνðxÞηab: ð201Þ

Γσ
μνðxÞ is characterized by the tensor field χμνðxÞ [or its

inverse χ̂μνðxÞ] and appears as a pure gaugelike spacetime
gauge field. χμνðxÞ behaves as a Goldstone-like gravimetric
field of spacetime and concerns only ten degrees of
freedom. This reflects the fact that the spin gauge symmetry
is fixed by the Goldstone-like gravifield χμ

a to be as a
hidden symmetry.
From the decomposition of the spin gauge field, the

corresponding field strength of the spin gauge field is also
decomposed into two parts:

Rab
μν ¼ Rab

μν þ ~Rab
μν ;

Rab
μν ¼ ∂μω

ab
ν − ∂νω

ab
μ þ gsðωa

μcω
cb
ν − ωa

νcω
cb
μ Þ;

~Rab
μν ¼ ▽μ ~ω

ab
ν −▽ν ~ω

ab
μ þ gsð ~ωa

μc ~ω
cb
ν − ~ωa

νc ~ω
cb
μ Þ;

▽μ ~ω
ab
ν ¼ ∂μ ~ω

ab
ν þ gsωa

μc ~ω
cb
ν þ gsωb

μc ~ω
ac
ν : ð202Þ

By using the relations and identities between the gauge
covariant spin field and the spacetime gauge field

gs ~ωab
μ ðxÞ ¼ χσ

a ~Γσ
μνðxÞχ̂νb ¼

1

2
~Γσ
μνðxÞ~χ½ab�σρ ηρν;

∂μχν
a þ gsωa

μbχν
b − Γσ

μνðxÞχσa ¼ 0;

∂μχ̂
aρ þ gsωa

μbχ̂
bρ þ Γρ

μνðxÞχ̂aν ¼ 0; ð203Þ

it is not difficult to demonstrate that the field strength Rab
μν

for the spin gauge potential ωab
μ is related to the field

strength Rρσ
μν which is characterized solely by the spacetime

gauge potential Γσ
μρ. Explicitly, we have

gsRab
μν ¼ 1

2
Rσ
μνρ ~χ

½ab�
σρ0 η

ρ0ρ;

R σ
μνρ ¼ ∂μΓσ

νρ − ∂νΓσ
μρ − Γλ

μρΓσ
νλ þ Γλ

νρΓσ
μλ;

~χ½ab�σρ ðxÞ ¼ χσ
aχ̂bρ − χσ

bχ̂aρ: ð204Þ

Similarly, we yield the following relation between ~Rab
μν

and ~Rρσ
μν:

gs ~R
ab
μν ¼ 1

2
~Rσ
μνρ ~χ

½ab�
σρ0 η

ρ0ρ;

~R σ
μνρ ¼ ∇μ

~Γσ
νρ −∇ν

~Γσ
μρ − ~Γλ

μρ
~Γσ
νλ þ ~Γλ

νρ
~Γσ
μλ;

∇μ
~Γσ
νρ ¼ ∂μ

~Γσ
νρ − Γλ

μρ
~Γσ
νλ þ Γσ

μλ
~Γλ
νρ: ð205Þ

In terms of the spacetime gauge field, the field strength
of the gravifield is found to be

Ga
μν ¼ ▽μχν

a −▽νχμ
a

¼ ∂μχν
a − ∂νχμ

a þ gsðΩa
μbχν

b −Ωa
νbχμ

bÞ
¼ ðΓσ

μν − Γσ
νμÞχσa

¼ ð ~Γσ
μν − ~Γσ

νμÞχσa ≡ ~Γσ
½μν�χσ

a; ð206Þ

where ~Γσ
½μν� defines a totally antisymmetric spacetime

gauge field.
In general, the field strength for the spin gauge field can

be represented by the field strength of the spacetime gauge
field as follows:

gsRab
μν ¼ 1

2
Rσ

μνρ ~χ
½ab�
σρ0 η

ρ0ρ ¼ 1

2
ðRσ

μνρ þ ~Rσ
μνρÞ~χ½ab�σρ0 η

ρ0ρ; ð207Þ

which shows a hidden gauge formalism.

B. Quantum dynamics of spacetime in the hidden
gauge formalism

In the hidden gauge formalism with the spacetime gauge
field and corresponding field strength, we are able to
reformulate the action for the gravitational interactions
with spin and scaling gauge symmetry breaking into the
following general form in the Einstein-type basis:
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Sχ¼
Z

d4xχ

�
1

2
½χ̂μνðΨ̄χμiDνΨþψ̄χμi▽νψÞþH:c:�−ysMSψ̄ψþL0ðxÞ−1

4
χ̂μμ

0
χ̂νν

0 ½F I
μνF I

μ0ν0 þWμνWμ0ν0 þg−2s Rρσ
μνRμ0ν0ρσ�

þαWM2
Sχ̂

μμ0
�
1

4
χ̂νν

0
χσσ0 ~Γ

σ
½μν� ~Γ

σ0
½μ0ν0�þ

1

2

�
3þ 1

αW

	
g2wwμwμ0

�
−
1

4
χ̂μμ

0
χ̂νν

0 ðχσσ0 χ̂ρρ0−ηρσηρ
0

σ0 Þω̄ρω̄ρ0 ~Γ
σ
½μν� ~Γ

σ0
½μ0ν0�

þαEM2
Sð1− χ̂ρσω̄ρω̄σ=αEM2

SÞR−λsM4
Sþg−1s ð▽σ0ω̄σ−gsω̄σ0ω̄σÞχ̂μσ0 ðχ̂νρRσ

μνρþχ̂νσRμνÞ

þg−1s
1

2
ðχσσ0 χ̂ρρ0−ηρσηρ

0
σ0 Þχ̂μμ

0
χ̂νν

0
Rσ

μνρ
~Γσ0
½μ0ν0�ω̄ρ0−χ̂μμ

0
χ̂νν

0 ~Γσ
½μν�ω̄μ0▽ν0ω̄σþ6αEgsM2

Sðχ̂μν▽μω̄νþgsχ̂μνω̄μω̄νÞ−3g2sðχ̂μνω̄μω̄νÞ2

−2χ̂μμ0 χ̂νν0 ð▽μω̄νÞð▽μ0ω̄ν0 Þ−ðχ̂μν▽μω̄νÞ2þ2gsχ̂μν∂μðχ̂ρσω̄ρω̄σÞω̄ν−4gsχ̂μνð▽μω̄νÞχ̂ρσω̄ρω̄σ

�
ð208Þ

with

▽μω̄ν ≡ ∂μω̄ν − Γσ
μνω̄σ; ð209Þ

where the spacetime gauge field Γσ
μνðxÞ and its field

strength Rσ
μνρ consist of two parts:

Γσ
μνðxÞ≡Γσ

μνðxÞþ ~Γσ
μνðxÞ; Rσ

μνρ≡Rσ
μνρþ ~Rσ

μνρ; ð210Þ

with the rank-2 tensor field strength Rμν and the scalar
tensor field strength R defined as follows:

Rμν ≡ −R σ
ρμνη

ρ
σ ¼ R σ

μσν ¼ Rμν þ ~Rμν;

R ¼ χ̂μνRμν ¼ Rþ ~R;

Rμν ¼ ∂μΓσ
σν − ∂σΓσ

μν − Γλ
μνΓσ

σλ þ Γσ
μλΓλ

νσ ¼ Rνμ;

Γσ
σν ¼ ∂ν ln χ;

~Rμν ¼ ∇μ
~Γσ
σν −∇σ

~Γσ
μν − ~Γρ

μν
~Γσ
σρ þ ~Γρ

σν
~Γσ
μρ;

~Γσ
σν ≡ ~Γν ¼

1

2
χνaχ̂b

σgs ~ωab
σ ; ð211Þ

where Rμν is a symmetric rank-2 tensor field strength
characterized purely by the symmetric Goldstone-like
gravimetric field χμν. The above action possesses a global
Lorentz and scaling invariance except for the fermionic
interactions. It is manifest that, after the gauge symmetry
breaking hχμνi ¼ ημν, the totally antisymmetric spacetime

gauge field ~Γσ0
½μν� and the scaling gauge field wμðxÞ as well

as the singlet fermion ψðxÞ become massive in the Einstein-
type basis.
The gravitational interactions can be described by the

antisymmetric spacetime gauge field Γσ
μνðxÞ with

~Γσ0
μνðxÞχσ0σ ¼ − ~Γν0

μσðxÞχν0ν and the symmetric Goldstone-
like gravimetric field χμν except for the fermionic inter-
actions that always couple with the gravifield (where we
have used the notation χμ ≡ χμ

aγa). Though the gravita-
tional gauge symmetries become hidden ones in the
bosonic gravitational interactions, the independent physical

quantum degrees of freedom in terms of the quantized
fields should be the same as the gauge theory of quantum
gravity analyzed in the previous section.
Therefore, in terms of the hidden gauge formalism, we

come to the conclusion that all the bosonic gravitational
interactions can be characterized by the symmetric gravi-
metric field χμν with ten independent field components and
the antisymmetric spacetime gauge field that has the same
independent field components as the spin gauge field. It is
manifest that the six independent field components of the
gauge-type gravifield χμ

a are reduced in the hidden gauge
formalism for the bosonic gravitational interactions, which
enables us to compare the bosonic part of the above action
with the Einstein theory of general relativity. It is noticed
from the above action that there is an interaction term given
by the scalar tensor field strength R ¼ χ̂μνRμν ¼ Rþ ~R.
Here the first part of the scalar tensor field strength R does
characterize the Einstein theory of general relativity, as it is
governed purely by the gravimetric field χμν. Nevertheless,
the fermionic interactions always involve the gravifield χμa

or χ̂aμ, so that the basic gravitational field should be the
gravifield χμ

a rather than the gravimetric field χμν when
considering the basic fermionic interactions. It indicates
that the Einstein theory of general relativity must result as
an effective low-energy theory by integrating out the
fermion fields and also integrating the high-energy con-
tributions into the renormalized coupling constants and
quantum fields.

X. GRAVITY EQUATION BEYOND AND
EXTENSION TO EINSTEIN’S EQUATION AND

HIDDEN GENERAL COORDINATE INVARIANCE

To be more explicit in comparison with the Einstein
theory of general relativity, we shall reformulate, in terms
of the hidden gauge formalism, the equation of motion for
the gravifield given in Eqs. (95) and (96) in the Einstein-
type basis. For that, let us first rewrite the gauge-invariant
action of Eq. (49) into the following expression in the
hidden gauge formalism:
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Sχ ¼
Z

d4xχL;

L ¼ 1

2
½χ̂μνðΨ̄χμiDνΨþ ψ̄χμi▽νψÞ þ H:c:� − ysMSψ̄ψ þ L0ðxÞ − 1

4
χ̂μμ

0
χ̂νν

0 ½F I
μνF I

μ0ν0 þWμνWμ0ν0 þ g−2s R ρσ
μνRμ0ν0ρσ�

þ αWM2
S
1

4
χ̂μμ

0
χ̂νν

0
χσσ0 ð ~Γσ

½μν� þ gwWσ
½μν�Þð ~Γσ0

½μ0ν0� þ gwWσ0
½μ0ν0�Þ þ αEM2

SRþM2
Sg

2
wχ̂

μμ0WμWμ0 − λsM4
S; ð212Þ

with the spacetime gauge field

Γσ
μνðxÞ ¼ χ̂a

σ▽μχν
a ¼ χ̂a

σð∂μχν
a þ gsΩa

μbχν
bÞ;

Ωa
μb ¼ ωa

μb þ ~Ωa
μb;

Γσ
ρν ¼ Γσ

ρν þ ~Γσ
ρν;

Γσ
μνðxÞ≡ χ̂a

σð∂μχν
a þ gsωa

μbχν
bÞ;

~Γσ
μνðxÞ≡ gsχ̂aσ ~Ωa

μbχν
b;

~Γσ
½μν� ¼ Γσ

μν − Γσ
νμ ¼ ~Γσ

μν − ~Γσ
νμ;

Wσ
½μν� ¼ Wμη

σ
ν −Wνη

σ
μ; ð213Þ

and the field strength tensors

R ρσ
μν ¼ Rσ

μνρ0 χ̂
ρρ0 ; Rμνρσ ¼ Rσ0

μνρχσ0σ;

R ¼ Rμνχ̂
μν ¼ Rν

μηνμ; Rμν ≡ −R σ
ρμνη

ρ
σ ¼ R σ

μσν;

Rμ
ν ≡R ν

ρμσχ̂
ρσ; Rμν ¼ Rμ

ρχρν; ð214Þ
where the symmetric spacetime gauge field Γσ

μν is governed
purely by the gravimetric field χμν as shown in Eq. (201)
and ~Γσ

μνðxÞ is an antisymmetric part of the spacetime gauge
field with the antisymmetric relation ~Γσ

μνðxÞχσρ ¼
− ~Γσ

μρðxÞχσν. Note that here we have used different notations
for the gauge fields so as to distinguish two cases: with and
without the spin and scaling gauge symmetry breaking.
Once the spacetime gauge field is decomposed into

symmetric and antisymmetric parts Γσ
μνðxÞ≡ Γσ

μνðxÞþ
~Γσ
μνðxÞ, its field strength Rσ

μνρ can be written into two
parts, respectively,

Rσ
μνρ ≡ Rσ

μνρ þ ~Rσ
μνρ; ð215Þ

where Rσ
μνρ is determined solely by the symmetric space-

time gauge field Γσ
μν. The rank-2 tensor field strength Rμν

(Rν
μ) and the scalar tensor field strength R are also

decomposed into two parts:

Rμν ≡ Rμν þ ~Rμν; Rμ
ν ≡ Rν

μ þ ~Rν
μ;

R≡ Rþ ~R; R ¼ Rμνχ̂
μν ¼ Rν

μηνμ; ð216Þ

where the first part Rμν is the symmetric tensor field
strength that is governed solely by the symmetric gravi-
metric field. The corresponding scalar tensor field strength

R in the action describes the Einstein theory of general
relativity.
The gauge-invariant gravifield tensor Gν

μρ and gravifield
tensor current Gν

μ defined in Eqs. (95) and (96) get the
following expressions in the hidden gauge formalism:

Gν
μρ ≡ αWM2

Sχ½χ̂μμ
0
χ̂ρν

0 ~Γσ
½μ0ν0�χσν þ gwðχ̂μμ0ηρν − χ̂ρμ

0
ημνÞWμ0 �

¼ −Gν
ρμ;

Gν
μ ≡ Γσ

ρνGσ
μρ þ gwWρGν

μρ: ð217Þ

In terms of the hidden gauge formalism, the gravity
equation can simply be expressed as

▽ρGν
μρ ¼ T ν

μ; ð218Þ

with a definition for the gauge-invariant covariant
derivative

▽ρGν
μρ ≡ ∂ρGν

μρ − Γσ
ρνGσ

μρ − gwWρGν
μρ: ð219Þ

The energy-momentum tensor is rewritten as

T ν
μ ¼ −ημνχLþ 1

2
χ½iχ̂aμΨ̄γaDνΨþ iχ̂aμψ̄γa▽νψ þ H:c:�

− χχ̂μμ
0
χ̂ρσ½F I

μ0ρF
I
νσ þWμ0ρWνσ þ g−2s R αβ

μ0ρRνσαβ�
þ χαWM2

Sχ̂
μμ0 ½χ̂ρσχλλ0 ~Γλ

½μ0ρ� ~Γ
λ0
½νσ�

þ ð2þ 1=αWÞg2wWμ0Wν þ g2wχμ0νχ̂ρσWρWσ�
þ 2χαEM2

SRν
μ ð220Þ

with the Lagrangian density given in Eq. (212).
In general, the above gravity equation holds for 16

components, as the energy-momentum tensor is not
symmetric. Let us decompose the energy-momentum
tensor into symmetric and antisymmetric parts through a
redefinition

T μν ¼ T μ
σχσν ≡Gμν þ Tμν þ T ½μν�; ð221Þ

where Gμν and Tμν are the symmetric parts and T ½μν� is the
antisymmetric part. They are explicitly given by
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Gμν ¼ 2αEM2
Sχ

�
Rμν −

1

2
χμνR

�
;

Tμν ¼ χμνTS þ TF
μν − χμνTF þ TR

μν

−
1

2
χμνTR þ TG

μν −
1

4
χμνTG; ð222Þ

for the symmetric part with the definitions

TS ¼ χysMSψ̄ψ þ χλsM4
S;

TF
μν ¼

1

4
χ½iΨ̄ðχμDν þ χνDμÞΨ

þ iψ̄ðχμ▽ν þ χν▽μÞψ þ H:c:�;
TR
μν ¼ χαEM2

Sð ~Rμν þ ~RνμÞ þ χM2
Sg

2
wWμWν;

TG
μν ¼ −χχ̂ρσ½F I

μρF I
νσ þWμρWνσ þ g−2s R αβ

μρ Rνσαβ�
þ χαWM2

S½χ̂ρσ ~Γα
½μρ� ~Γ½νσα� þ 2g2wWμWν�;

TF ¼ TF
μνχ̂

μν; TR ¼ TR
μνχ̂

μν;

TG ¼ TG
μνχ̂

μν; ~Γ½νσα� ≡ ~Γβ
½νσ�χβα; ð223Þ

and

T ½μν� ¼ G½μν� þ T½μν�;

G½μν� ¼ χαEM2
Sð ~Rμν − ~RνμÞ;

T½μν� ¼
1

4
χ½iΨ̄ðχμDν − χνDμÞΨ

þ iψ̄ðχμ▽ν − χν▽μÞψ þ H:c:� ð224Þ
for the antisymmetric part.
Let us also decompose the gravifield tensor into sym-

metric and antisymmetric parts:

G ρ
μν ¼ Gμ

σρχσν ¼ G ρ
μν þ G ρ

½μν� ð225Þ

with

G ρ
μν ¼ αWM2

Sgwχ

�
1

2
ðηρμWν þ ηρνWμÞ − χμνχ̂

ρσWσ

�
;

G ρ
½μν� ¼ αWM2

Sχ

�
~Γ½νσμ�χ̂σρ þ gw

1

2
ðηρμWν − ηρνWμÞ

�
: ð226Þ

The covariant derivative of the gravifield tensor G ρ
μν can

also be expressed into the corresponding symmetric and
antisymmetric parts:

T G
μν ≡▽ρGμν

ρ ¼ TG
μν þ T G

½μν�;

▽ρG
ρ

μν ¼ ð∂ρ − gwWρÞG ρ
μν − Γσ

ρμG
ρ

σν − Γσ
ρνG

ρ
μσ − ~Γσ

ρμG
ρ

σν;

ð227Þ

with TG
μν the symmetric part and T G

½μν� the antisymmetric
part. Their explicit forms read

TG
μν ¼ ð∂ρ − gwWρÞG ρ

μν − Γσ
ρμG

ρ
σν − Γσ

ρνG
ρ

σμ

−
1

2
½ ~Γσ

ρμG
ρ

σν þ ~Γσ
ρνG

ρ
σμ�

¼ TW
μν − χμνTW þ αWM2

Sχ
1

2
½χ̂ρσð ~Γ α

ρμ
~Γ½σνα�

þ ~Γ α
ρν
~Γ½σμα�Þ − gwð ~Γ σ

σμWν þ ~Γ σ
σνWμÞ�;

T G
½μν� ¼ ð∂ρ − gwWρÞG ρ

½μν� − Γσ
ρμG

ρ
½σν� þ Γσ

ρνG
ρ

½σμ�

−
1

2
½ ~Γσ

ρμG
ρ

σν − ~Γσ
ρνG

ρ
σμ�

¼ αWM2
Sχ

1

2
½χ̂ρσð▽ρ

~Γ½νσμ� −▽ρ
~Γ½μσν�Þ

− gwWμν − gwð ~Γ σ
σμWν − ~Γ σ

σνWμÞ� ð228Þ

with definitions

TW
μν ¼ αWM2

Sgwχ
1

2
ð▽μWν þ▽νWμÞ;

TW ¼ χ̂μνTW
μν;

▽μWν ¼ ð∂μ − gwWμÞWν − Γρ
μνWρ;

Wμν ¼ ∂μWν − ∂νWμ;

▽ρ
~Γ½νσμ� ¼ ð∂ρ − gwWρÞ ~Γ½νσμ� − Γα

ρν
~Γ½ασμ�

− Γα
ρσ
~Γ½ναμ� − Γα

ρμ
~Γ½νσα� − ~Γ α

ρμ
~Γ½νσα�: ð229Þ

From the above analyses, we arrive at two types of gravity
equation by comparing the symmetric part and antisym-
metric part of equation ▽ρG

ρ
μν ¼ T μν, namely,

Gμν ¼ −Tμν þ TG
μν; ð230Þ

G½μν� ¼ −T½μν� þ TG
½μν�; ð231Þ

where the first equation is the extension to Einstein’s
equation of general relativity, i.e.,

2αEM2
Sχ

�
Rμν −

1

2
χμνR

�

¼ −
�
χμνTS þ TF

μν − χμνTF þ TR
μν −

1

2
χμνTR

þ TG
μν −

1

4
χμνTG

�
þ TW

μν − χμνTW

þ αWM2
Sχ

1

2
½χ̂ρσð ~Γ α

ρμ
~Γ½σνα� þ ~Γ α

ρν
~Γ½σμα�Þ

− gwð ~Γ σ
σμWν þ ~Γ σ

σνWμÞ�; ð232Þ

while the second equation is a new type of gravitational
equation
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2αEM2
Sχð ~Rμν − ~RνμÞ þ αWM2

Sχ½χ̂ρσð▽ρ
~Γ½μσν� −▽ρ

~Γ½νσμ�Þ
þ gwð ~Γ σ

σμWν − ~Γ σ
σνWμÞ�

¼ −
1

2
χ½iΨ̄ðχμDν − χνDμÞΨ

þ iψ̄ðχμ▽ν − χν▽μÞψ þ H:c:�
− χαWM2

SgwWμν; ð233Þ

which characterizes the twisting and torsional effects.
It is natural to ask how the first gravity equation in the

hidden gauge formalism becomes a natural extension to
Einstein’s equation of general relativity though we start
from the principles and postulates alternative to the ones of
general relativity. In the general relativity, the main postu-
late made by Einstein is that the physical laws of nature are
to be expressed by equations which hold good for all
systems of coordinates, which indicates that the physical
laws should be invariant under the general linear trans-
formations of local GLð4; RÞ symmetry. In fact, it is
interesting to note that via a linear group transformation
the action of Eq. (212) is indeed invariant under a general
coordinate transformation

dx0μ ¼ ∂x0μ
∂xν dx

ν; ∂ 0
μ ¼

∂xν
∂x0μ ∂ν;

V 0μ
k ¼ ∂x0μ

∂xν V
ν
k; A0k

μ ¼ ∂xμ
∂x0ν A

k
ν ð234Þ

with Vμ
k and A

k
μ representing vector fields, such as V

μ
k ¼ χ̂a

μ

and Ak
μ ¼ ðAI

μ;Ωab
μ ; χμa;WμÞ. Although the gauge theory

of gravity is built based on the global Lorentz symmetry
of coordinates in the flat Minkowski spacetime, either the
gauge- and Lorentz-invariant action of Eq. (49) or the
Lorentz-invariant action of Eq. (212) in the hidden gauge
formalism, they all possess a hidden local symmetry of
linear group GLð4; RÞ under the general coordinate trans-
formation. Such a hidden general coordinate invariance is a
natural consequence of the postulate that the action must be
expressed to be coordinate independent in the gravifield
spacetime as shown in Eq. (45). Therefore, the postulate
of the gauge invariance and coordinate independence is
thought to be a more general one.
Before ending this section, we would like to emphasize

again that the gravitational interactions with boson fields
can be characterized by the symmetric gravimetric fields
χμν in terms of the hidden gauge formalism, while the
gravitational interactions with fermion fields have to be
described by the gravifield field χμ

a. In the gravity
equations, it is explicitly seen that the fermionic energy-
momentum tensors TF

μν and T½μν� always couple to the
gravifield χμ ≡ χμ

aγa.
By comparing to the Einstein theory of general relativity,

we are able to fix the combination of the coupling
parameter and scaling mass scale as

2αEM2
S ¼

1

8πG
¼ 1

8π
M2

P ≃ 4αWM2
S; ð235Þ

with MP the Planck mass and αE and αW the effective
couplings at low energy. Such a relation results from the
requirement that the free part of the gravifield in quantizing
the gauge theory of gravity Eq. (49) is equivalent to the free
part of the gravimetric field in quantizing the general theory
of relativity as an effective field theory at low energy.
Namely, the high-order derivative terms of the gravimetric
field in Eq. (212) is considered to be negligible in a good
approximation when the energy scale is much below the
Planck scale MP.
Furthermore, we would like to point out that the hidden

gauge formalism Eq. (212) for the gauge theory of gravity
[or Eq. (208) with gravitational gauge symmetry breaking]
is presented in order to compare with the general theory
of relativity formulated by Einstein based on geometrical
considerations in curved spacetime. In general, for a
quantum theory of gravity, it is demonstrated in the present
paper that the gauge theory of gravity Eq. (49) based on
gauge invariance and coordinate independence should
provide a better approach than the usual straightforward
methods of perturbative quantum gravity based on the
general theory of gravity. In principle, only the gravifield is
essentially thought to be a basic gravitational field that
interacts with the basic building blocks of fermionic matter
fields, and also only the gravifield is really treated as a
gauge-type field that is associated with the gauge field in
the coset T1;3

G ¼ PGð1; 3Þ=SPð1; 3Þ of internal Poincaré
gauge group PG(1,3) in the spinor representation of gravi-
field spacetime. Thus, the quantization of the gravifield can
be carried out straightforwardly in a standard approach
within the framework of relativistic QFT in the perturbative
expansion. In contrast, as shown in the hidden gauge
formalism Eq. (212), the Goldstone-like gravimetric field
in the bosonic interactions concerns high derivative gravi-
tational interactions, i.e., g−2s χ̂μνχ̂ρσR αβ

μρ Rνσαβ, which makes
the quantization of gravity unusual. Only in the low-energy
limit with an energy scale much below the Planck scaleMP
does it enable us to take appropriately the general relativity
of gravity as an effective field theory to make a perturbative
quantization of gravity [40].
Moreover, it is interesting to notice that the relation αE ≃

2αW given in Eq. (235) indicates that the bosonic gravi-
tational interactions in the gauge theory of gravity Eq. (49)
possess only a local gauge symmetry of spin group SP(1,3)
rather than a local symmetry of internal Poincaré gauge
group PG(1,3). This is due to the fact that only in the case
with αE ¼ αW does the bosonic part of the action in
Eq. (49) get an enlarged symmetry of gauge group SP
(1,4) that can be regarded as a gauged internal Poincaré
group PG(1,3) in the spinor representation of gravifield
spacetime. In fact, for the gravitational interactions with
fermionic fields, there possesses in any case only a local
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gauge symmetry of spin group SP(1,3). Thus, the gravi-
tational interactions for both bosonic and fermionic parts
can only have a local gauge symmetry of spin group
SP(1,3) as a subgroup of internal Poincaré gauge group
PG(1,3). With such an observation, the hidden gauge
formalism of the gauge theory of gravity Eq. (212) is, in
general, not expected to be obtained as an extension of the
standing way of gauging the global Poincaré group P(1,3)
in flat Minkowski spacetime.
In conclusion, within the framework of relativistic QFT,

the postulate of gauge invariance and coordinate independ-
ence should be a key principle for establishing a gauge
theory of quantum gravity shown in Eqs. (45) and (49) with
the gravifield as a basic gauge-type gravitational field.

XI. CONCLUSIONS AND REMARKS

By treating the gravitational force on the same footing as
the electroweak and strong forces within the framework
of QFT in flat Minkowski spacetime, we have described
the QFT of gravity based on the spin and scaling gauge
symmetries. A biframe spacetime has been initiated to
describe such a QFT of gravity. One frame spacetime is the
globally flat coordinate Minkowski spacetime that acts as
an inertial reference frame for the motions of fields, and the
other is the locally flat noncoordinate gravifield spacetime
that functions as an interaction representation frame for the
degrees of freedom of fields. The gauge invariance and
coordinate independence in the gravifield spacetime have
been shown to be a more general postulate for establishing
the QFTof gravity. Such a quantum gravity theory has been
demonstrated to have the following properties: (i) The basic
gravitational interaction is characterized by a bicovariant
vector field χμ

aðxÞ sided on both a locally flat noncoordi-
nate spacetime and a globally flat Minkowski spacetime.
χμ

aðxÞ is an essential ingredient for gauging the spin
symmetry SP(1,3) and scaling symmetry of the basic
fermion fields; it couples to all kinetic terms and interaction
terms of the gauge field and is referred as gravifield for
short. (ii) The locally flat noncoordinate spacetime is
spanned by the gravifield to form a locally flat gravifield
spacetime characterized by the dual gravifield bases fχa ¼
χμ

aðxÞdxμg and fχ̂a ¼ χ̂a
μðxÞ∂μg; such a gravifield space-

time shows a property of noncommutative geometry. The
vector field χaðxÞ ¼ χμ

aðxÞdxμ has been regarded as the
one-form gauge-type potential in the Minkowski space-
time; its field strength describes the gravitational interac-
tion. It has enabled us to construct a gauge-invariant and
coordinate-independent action for the QFT of gravitational
interaction. (iii) The globally flat Minkowski spacetime in
QFT sets an inertial frame for a reference to describe
motions of quantum fields and to make a meaningful
definition for the momentum and energy; we are able to
derive equations of motion for all quantum fields. (iv) Such
a QFT of gravity has allowed us to obtain basic conserva-
tion laws with respect to all symmetries. An alternative

equation of motion for the gravifield tensor has been
deduced in connection with the energy-momentum tensor.
(v) The spin and scaling gauge symmetries have been
assumed to be broken down to a background structure that
has global Lorentz and scaling symmetries. A unitary basis
defined by fixing a special scaling gauge condition has
been adopted to yield an exact solution for equations of
motion for the background fields. (vi) The geometric
property of the gravifield spacetime is, in general, charac-
terized by the gravimetric field and the scalinon field. The
resulting background gravifield spacetime has been found
to coincide with a Lorentz-invariant and conformally flat
Minkowski spacetime of coordinates. The background
gravifield spacetime has been shown to be characterized
by the cosmic vector with a nonzero cosmological mass
scale. Such a background gravifield spacetime is, in
general, not isotropic in terms of the conformal proper
time except in a special comoving reference frame. The
conformal size of the Universe has been shown to be
singular when the light travels close to the cosmological
horizon in terms of the conformal proper time or in the
comoving frame. It has also been demonstrated that the
Universe appears inflationary or deflationary in light of
the cosmic proper time.
The action of the quantized gravitational interactions has

explicitly been constructed in the unitary basis. The gauge-
fixing contributions to the quantization of gravity gauge
theory have been presented by using the Faddeev-Popov
formalism in the path integral approach. It has been shown
that it is, in general, no more difficult to make the
identification of the physical quantum degrees of freedom
and the definition of a quantum gravity theory analogous to
the quantization of Yang-Mills gauge theory. Based on the
background gravifield spacetime, we have explicitly writ-
ten down the leading effective action which enables us to
read the Feynman rules and investigate the quantum effects.
The main issue is the universal coupling of the inverse
gauge-type gravifield, which causes the nonlinear nature of
the theory and may result in the nonrenormalizability of the
theory. On the other hand, the gravitational interaction with
the scaling gauge invariance indicates the existence of a
fundamental energy scale that characterizes the ultraviolet
behavior of the theory, so that the theory appears to be
infinite-free and meaningful by appropriately treating the
divergence integrals. When the spin and scaling gauge
symmetries are broken down to a background structure that
possesses the global Lorentz and scaling symmetries, there
exist rich gravitational interactions with the background
fields. The quantum effect on the inflation of the Universe
has been discussed based on the effective background
scalar potential of the scalinon field at the one-loop level.
We have concluded that it is the quantum loop quadratic
contribution that causes the breaking of global scaling
symmetry and generates the inflation of the early Universe,
and the end of the inflationary Universe occurs when the
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evolving vacuum expectation value of the background
scalar potential approaches a minimal condition.
When taking the gravifield as a Goldstone-like field that

transmutes the local spin gauge symmetry into the global
Lorentz symmetry, an alternative spacetime gauge field
has been constructed from the spin gauge field, i.e.,
Γσ
μνðxÞ ¼ χ̂a

σð∂μχν
a þ gsΩa

μbχν
bÞ, so that the spin gauge

symmetry becomes a hidden gauge symmetry. Such a
spacetime gauge field is a Lorentz tensor field defined and
valued in flat Minkowski spacetime. With this consider-
ation, we have presented an alternative action of quantum
gravity which shows that the bosonic gravitational inter-
actions can be described by the Goldstone-like gravimetric
field χμνðxÞ and the spacetime gauge field except for the
gravitational interactions with the fermion fields, which
enables us to compare the present gauge theory of gravity
with the Einstein theory of general relativity. It is manifest
that the Einstein theory of general relativity results as an
effective low-energy theory. Two types of gravity equation
have been obtained; one is as the extension to Einstein’s
equation of general relativity, and the other is a new type
of gravitational equation that reflects the twisting effect. It
is interesting to see that both the gauge-invariant action
and the Lorentz-invariant action in the hidden gauge
formalism possess a hidden symmetry of local linear
group GLð4; RÞ. Namely, the resulting gauge theory of

gravity possesses a hidden general coordinate invariance,
which indicates that the gauge invariance and coordinate
independence in the gravifield spacetime become a more
general postulate for establishing a gauge theory of
gravity.
Finally, we would like to remark that in this paper we

have described mainly a general framework for the quan-
tum field theory of gravity based on the spin and scaling
gauge symmetries and paid special attention to the mecha-
nism of quantum scalinon inflation of the Universe. We
shall leave other important issues elsewhere for further
investigations in detail.
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