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Treating the gravitational force on the same footing as the electroweak and strong forces, we present a
quantum field theory of gravity based on spin and scaling gauge symmetries. A biframe spacetime is
initiated to describe such a quantum gravity theory. The gravifield sided on both locally flat noncoordinate
spacetime and globally flat Minkowski spacetime is an essential ingredient for gauging global spin and
scaling symmetries. The locally flat gravifield spacetime spanned by the gravifield is associated with a
noncommutative geometry characterized by a gauge-type field strength of the gravifield. A coordinate-
independent and gauge-invariant action for the quantum gravity is built in the gravifield basis. In the
coordinate basis, we derive equations of motion for all quantum fields including the gravitational effect
and obtain basic conservation laws for all symmetries. The equation of motion for the gravifield tensor is
deduced in connection directly with the total energy-momentum tensor. When the spin and scaling gauge
symmetries are broken down to a background structure that possesses the global Lorentz and scaling
symmetries, we obtain exact solutions by solving equations of motion for the background fields in a unitary
basis. The massless graviton and massive spinon result as physical quantum degrees of freedom. The
resulting Lorentz-invariant and conformally flat background gravifield spacetime is characterized by a
cosmic vector with a nonzero cosmological mass scale. The evolving Universe is, in general, not isotropic
in terms of conformal proper time. The conformal size of the Universe becomes singular at the
cosmological horizon and turns out to be inflationary in light of cosmic proper time. A mechanism
for quantum scalinon inflation is demonstrated such that it is the quantum effect that causes the breaking
of global scaling symmetry and generates the inflation of the early Universe, which is ended when the
evolving vacuum expectation value of the scalar potential gets a minimal. Regarding the gravifield as a
Goldstone-like field that transmutes the local spin gauge symmetry into the global Lorentz symmetry with a
hidden general coordinate invariance, a spacetime gauge field is constructed from the spin gauge field that
becomes a hidden gauge field. The bosonic gravitational interactions are described by the Goldstone-like
gravimetric field and spacetime gauge field. Two types of gravity equation result; one is as the extension to
Einstein’s equation of general relativity, and the other is a new one that characterizes spinon dynamics.
The Einstein theory of general relativity is considered to be an effective low-energy theory.
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I. INTRODUCTION

The gravitational force as a basic force of nature has well
been characterized in the macroscopic world by the theory of
general relativity formulated by Einstein [1] as the dynamics
of a metric in Riemannian spacetime. It remains unsatisfac-
tory that the other three basic forces, i.e., electromagnetic,
weak, and strong interactions, have successfully been
described by the so-called standard model (SM) of gauge
interactions within the framework of relativistic quantum
field theory (QFT) [2-11] in the flat Minkowski spacetime,
which is in contrast to the gravitational force that is
formulated by a dynamic curved spacetime. Such an odd
dichotomy causes an obstacle for a unified description of
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gravity with three basic forces and a difficulty for the
quantization of gravitational force. On the other hand, it
becomes more and more clear that a QFT description for the
gravitational force will play a significant role in under-
standing and exploring the origin of Universe, such as the
singularity and inflation of the early Universe [12-15].
The relativistic QFT as a successful theory that unifies
quantum mechanics and special relativity provides a
remarkable theoretical framework to describe the micro-
scopic world. The three basic forces have well been
characterized by the SM based on the gauge symmetries
of quarks and leptons, which have been tested by more and
more precise experiments. The advent of the SM-like Higgs
boson at the LHC [16,17] motivates us to study a more
fundamental theory including quantum gravity. A consis-
tent description for the gravitational force has not yet been
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established successfully within the framework of QFT.
The foundation of Einstein’s general relativity is based on
the postulate: The laws of physics must be of such a nature
that they apply to a system of reference in any kind of
motion. Such a postulate appears to be a natural extension
of the one of special relativity. The principle of special
relativity concerns two postulates. One is the postulate of
relativity, namely, if a system of coordinates K is chosen so
that, in relation to it, physical laws hold good in their
simplest form, the same laws also hold good in relation to
any other system of coordinates K' moving in uniform
translation relatively to K. The other is the postulate that
the velocity of light in vacuum is a constant. The first
postulate of relativity is actually satisfied by the classical
mechanics of Galileo and Newton. It is the second postulate
of the constancy of the velocity of light in a vacuum
that leads to the relativity of simultaneity and the related
laws for the behavior of moving bodies and clocks.
Consequently, it leads space and time to be a four-
dimensional flat Minkowski spacetime and the physical
laws to be invariant under the global Lorentz transforma-
tions of SO(1,3) symmetry. In Einstein’s general relativity,
the postulate of relativity is extended to be the physical
laws of nature are to be expressed by equations which
hold good for all systems of coordinates, which leads the
gravitational force to be characterized by a Riemann
geometry in a curved spacetime. Namely, the gravitational
force lies in the dynamic Riemannian geometry of curved
spacetime. Thus, the physical laws, in the theory of general
relativity, are invariant under the general linear transforma-
tions of local GL(4, R) symmetry, which indicates that space
and time cannot be well defined in such a way that the
differences of the spatial coordinates or time coordinates
can be directly measured by the standard ways proposed in
special relativity.

As gauge theories have been shown to be consistently
described by QFT, it motivates one to make efforts for
finding out a gauge theory description on the gravitational
force. In analogue to the Yang-Mills gauge theory [18], early
works on gravity gauge theories were proposed by many
pioneers [19-23]. As gauge theories have successfully been
achieved in describing electromagnetic, weak, and strong
interactions of quarks and leptons, numerous efforts on
gravity gauge theories have been made over the past half
century, and more literature may be found in some review
articles [24-26]. It is noticed that most gravity gauge theories
were built based on Riemannian or non-Riemannian geom-
etry on curved spacetime manifolds. Thus, the main issues
on the definition of space and time and the quantization of
gravity gauge theories remain open questions. Also, the
basic structure of Lagrangian and dynamic properties of
gravity gauge theories is still not well understood.

In this paper, we shall present an alternative gauge theory
of gravity within the framework of QFT in the flat
Minkowski spacetime and treat the gravitational force on
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the same footing as the electroweak and strong forces.
Namely, all basic interactions of elementary particles will
be governed by gauge symmetries and characterized by
quantum fields defined in the flat Minkowski spacetime of
coordinates. As all known symmetry groups are related to
the intrinsic quantum numbers of the basic building blocks
of nature, i.e., quarks and leptons, the key point for the
gauge theory of gravity in our present consideration is that
we will distinguish the spin symmetry group SO(1,3) =
SP(1,3) of fermion fields from the Lorentz symmetry
group SO(1,3) of coordinates in the Minkowski spacetime
and treat the spin symmetry SP(1,3) as an internal sym-
metry. The notations SP(1,3) and SO(1,3) are used to mark
explicitly such two different kinds of symmetries. Since
special relativity and quantum mechanics have a strong
foundation based on well-established principles, we shall
make postulates for the QFT description of gravity based
on the principles of relativistic QFT. The main postulates
are (i) a biframe spacetime is proposed to describe the
quantum field theory of gravity. One frame spacetime is the
globally flat coordinate Minkowski spacetime that acts as
an inertial reference frame for the motions of fields, and the
other is the locally flat noncoordinate gravifield spacetime
that functions as an interaction representation frame for the
degrees of freedom of fields. (ii) The kinematics of all
quantum fields obeys the principles of special relativity and
quantum mechanics. (iii) The dynamics of all quantum
fields is characterized by basic interactions governed by the
gauge symmetries. (iv) The action of quantum gravity is to
be expressed in the so-called gravifield spacetime to be
coordinate independent and gauge invariant. (v) The
theory is invariant not only under the local spin and scaling
gauge transformations of quantum fields defined in the
gravifield spacetime, but also under the global Lorentz and
scaling as well as translational transformations of coor-
dinates in the flat Minkowski spacetime. We shall show that
a theory of quantum gravity based on the spin and scaling
gauge symmetries can, in general, be constructed in a
coordinate-independent formalism and naturally trans-
muted into the coordinate basis through a basic gravita-
tional field.

The success of a relativistic QFT description on the SM
is based on a global symmetry of the inhomogeneous
Lorentz group or Poincaré group that contains both the
Lorentz group SO(1,3) and translational group 7' in a
globally flat Minkowski spacetime of coordinates. Namely,
a fundamental theory built within the framework of
relativistic QFT is invariant under a global symmetry of
Poincaré group P(1,3)=SO(1,3) xT'3. To build a
gauge theory of gravity within the framework of relativistic
QFT, we suppose that it remains essential to keep a global
symmetry of Poincaré group P(1,3) in a flat Minkowski
spacetime and in the meantime introduce a locally flat
noncoordinate spacetime through gauging an internal
Poincaré group PG(1,3) to characterize fermionic degrees
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of freedom, such as quarks and leptons that are regarded as
the basic building blocks of matter in the SM. Such a
conceptual idea on establishing a gauge theory of gravity is
distinguished from the original thought of Einstein, who
extended the special theory of relativity to a general theory
of relativity with a straightforward speculation that the
physical laws that are invariant under a global symmetry of
Poincaré group P(1,3) in a flat Minkowski spacetime are to
be expressed by more general formalisms that are invariant
under a local symmetry of general linear group GL(4, R) in
a curved Riemannian spacetime of coordinates. It is known
that the GL(4, R) group contains no symmetry of transla-
tional group T3, though it includes a symmetry of Lorentz
group SO(1,3). We will show that a gauge theory of gravity
constructed based on the postulate of gauge invariance and
coordinate independence possesses a gauge symmetry of
the spin group or gauged Lorentz group SP(1,3) that is a
subgroup of the internal Poincaré gauge group PG(1,3) in a
locally flat noncoordinate spacetime. Here the notation
PG(1,3) is used to distinguish from the global symmetry
of Poincaré group P(1,3) in the Minkowski spacetime of
coordinates. In general, the resulting gauge theory of
gravity will be demonstrated to have a basic local and
global symmetry SP(1,3) x P(1,3) in either the gravita-
tional fermionic interactions or bosonic interactions. A new
gravifield defined on both a globally flat coordinate
Minkowski spacetime and a locally flat noncoordinate
spacetime is necessarily introduced as a gauge-type field
that transforms homogeneously under the spin gauge group
SP(1,3) and forms a basis for a locally flat noncoordinate
spacetime. Such a locally flat noncoordinate spacetime
spanned by the gravifield basis forms a coordinate-
independent gravifield spacetime. Thus, the gravifield is
thought to be associated with a gauge field in the coset
Tg3 = PG(1,3)/SP(1, 3) of Poincaré gauge group PG(1,3)
in the spinor representation of the locally flat noncoordinate
gravifield spacetime. We shall show that the gauge-type
gravifield is a basic field characterizing the gravitational
interactions and the spin gauge field of spin group SP(1,3)
reflects a torsional interaction. When transmuting the spin
gauge symmetry into a hidden gauge symmetry via the
gravifield, we arrive at a new formalism of the gauge theory
of gravity with a global Poincaré symmetry in the flat
Minkowski spacetime of coordinates. As a consequence,
the general theory of relativity will be found to result as an
effective theory of the gauge theory of gravity in the low-
energy limit, and a general coordinate invariance of general
linear group GL(4,R) appears as a hidden symmetry
embedded in the global Poincaré group P(1,3) via a
gauge-fixing coordinate transformation of the general linear
group.

Our paper is organized as follows: After a brief intro-
duction in this section, we are going to extend in Sec. II the
global spin and scaling symmetries of basic fermion fields to
be local spin and scaling gauge symmetries within the
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framework of QFT in the flat Minkowski spacetime, which
enables us to treat the gravitational force on the same footing
as the other three basic forces. As a consequence, it is
inevitable to introduce simultaneously a bicovariant vector
field y,%(x) defined on the globally flat Minkowski space-
time and valued in the locally flat noncoordinate spacetime.
In Sec. II, it is shown that the bicovariant vector field y,*(x)
is essential in characterizing the gravitational interactions
and will be referred as gravifield for short. The so-called
gravifield y,“(x) can form a gravifield basis {y“}. Such a
gravifield basis describes the locally flat noncoordinate
spacetime that is named as a gravifield spacetime. Based
on the locally flat gravifield spacetime, we are able to
construct a coordinate-independent and gauge-invariant
action for a gravitational gauge theory, where the fermion
fields and gauge fields belong to the spinor representations
and vector representations of the spin symmetry group
SP(1,3), respectively. In Sec. IV, we naturally express the
action of the gravity gauge theory in the globally flat
Minkowski spacetime by simply converting the gravifield
basis into the coordinate basis. Taking the globally flat
Minkowski spacetime as an inertial frame for a reference to
describe the motions of all quantum fields, we obtain
explicitly their equations of motion in the existence of
gravitational interactions, which enables us to study in
principle the dynamics of all quantum fields including the
gravitational effects. As the action provides a unified
description for all basic forces based on the gauge sym-
metries within the framework of QFT, it makes a meaningful
definition for momentum and energy and allows us to
discuss the basic conservation laws of the theory under
the local gauge invariance and global transformation invari-
ance in Sec. V. We demonstrate that, alternative to Einstein’s
equation for the theory of general relativity, the equation of
motion for the gravifield tensor is obtained in connection
directly to the energy-momentum tensor, which leads to a
basic conservation law for a gravifield tensor current in light
of the energy-momentum conservation. In Sec. VI, we
discuss the gravitational gauge symmetry breaking based
on the fact that the spin and scaling gauge fields are not
observed experimentally. It is postulated that the spin and
scaling gauge symmetries are broken down to the global
Lorentz and scaling symmetries, which results in a back-
ground structure described by the background fields. From
the equations of motion for the background fields, we obtain
a set of exact Lorentz-invariant solutions characterized by a
cosmic vector with a nonzero cosmological mass scale. In
Sec. VII, a gauge-invariant line element in the locally flat
gravifield spacetime is defined with the gravifield basis; the
scaling scalar field ensures the line element to be invariant
under both the local and global scaling transformations. It is
demonstrated that the background structure after gravita-
tional gauge symmetry breaking generates a background
gravifield spacetime which coincides with a conformally flat
Minkowski spacetime governed by a background conformal
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scale field. Such a conformal scale field becomes singular at
the cosmological horizon in terms of the conformal proper
time. We then show that, in light of the cosmic proper time,
the evolving Universe based on the background gravifield
spacetime becomes conformally inflationary or deflationary.
Such a resulting Universe is in general not isotropic; only in
a comoving reference frame where the cosmic proper time is
directly correlated to the comoving Lorentz time does the
Universe look homogeneous and isotropic. In Sec. VIII, we
describe the quantization of the gravitational gauge theory
based on the background structure of the gravifield space-
time. The physical quantum degrees of freedom are analyzed
by applying for the usual counting rule of the gauge theory.
In the path integral approach, we present the gauge-fixing
contributions to the quantization of gravity theory and the
Faddeev-Popov ghost term. The leading effective action is
explicitly yielded for writing down the Feynman rules of the
quantum gravity theory. The renormalizability of the theory
is discussed. Then we demonstrate how the quantum effect
causes the inflation of the early Universe and leads the
inflationary Universe to end via spontaneous scaling sym-
metry breaking in the effective background scalar potential.
In Sec. IX, an alternative spacetime gauge field defined in the
flat Minkowski spacetime is constructed through the spin
gauge field and the gravifield, where it is shown that the spin
gauge symmetry becomes a hidden symmetry and the
gravifield appears as a Goldstone-like field that transmutes
the local spin gauge symmetry into the global Lorentz
symmetry. Then we present an alternative formalism for
the action of quantum gravity and show that the bosonic
gravitational interactions can be described by the Goldstone-
like gravimetric field and spacetime gauge field. In Sec. X,
we explicitly show that the gravity equation can lead to two
types of equation; one type of equation is the extension to
Einstein’s equation of general relativity, and the other is a
new type of equation that characterizes the twisting and
torsional effects. It indicates that the action of gravity gauge
theory has a hidden symmetry for a local linear coordinate
transformation GL(4,R). The Einstein theory of general
relativity is thought to be an effective low-energy theory. Our
conclusions and remarks are presented in the last section.

II. GAUGE SYMMETRIES AND
GRAVITATIONAL FIELDS
IN QFT

In the SM, the basic building blocks of matter are quarks
and leptons, which are all fermionic quantum fields with a
half integer spin. Three basic forces—electromagnetic,
weak, and strong interactions—among quarks and leptons
are all governed by the gauge symmetries U(1),x
SU(2), x SU(3),, respectively. The symmetry groups
are related to the intrinsic quantum numbers of quarks
and leptons. For a general consideration, let us begin with
an action of Dirac fermion with gauge interactions,
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1 ,
S = /d4x{\11(x)§y“5a”lDﬂ\Il(x) —l—H.c.}
1 ! /
+ _2”[”” n Tr]:;w(x)]:ﬂ’t/ (x)’ (1)
293

where we have used the definitions

iD, =i0, + A,(x),
Au(x) = ga AL (0T,
= 88,0,
f/w(x) = i[Dw Dv] = aﬂAD(‘x) - aIJAﬂ(‘x) - i[Au(x)7
A, (%)] = gaF ()T, (2)

with ,# the Kronecker symbol and y¢ the Dirac y matrices.
The quantum fields ¥, (x) (n=1,2,...) denote Dirac
fermions which can be quarks and leptons in the SM,
and A, (x) = g4 AL(x)T" (I =1,2,...) represent gauge
fields with 7! the generators of symmetry group G and
g4 the coupling constant of gauge interactions. The gen-
erators satisfy the group algebra [T7,T’] = ifVKTK with
the trace normalization trT'T’ = 18", Al can be taken as
the quantum gauge fields in the adjoint representations of
gauge group G = U(1), x SU(2), x SU(3), in the SM.
The Greek alphabet (4, v = 0, 1, 2, 3) and Latin alphabet
(a, b, =0, 1, 2, 3) are used to distinguish four-vector
indices in coordinate spacetime and noncoordinate space-
time, respectively. As the theory discussed in this paper is
based on the globally flat and locally flat spacetime, both
the Greek and Latin indices are raised and lowered by the
constant metric matrices, i.e., #* and n“* with the signature
=2, " or n,, = diag(l,-1,—1,-1) and 7** or n,, =
diag(1,—1,—1,—1). Thus the scalar product of vectors and
tensors is obtained via the contraction with the constant
metric matrices 7, and 7., ie., A*A, = A,A, and
Y74 = Napy®y?. The system of units is chosen such
that c =h = 1.

The action is invariant under the gauge transformation
g9(x) € G:

A (x) = A (x) = g(x) A, (x)g" (x) + 9(x)i,9" (x).

U(x) » W (x) = glx) T (). 3)
Without gravitational interaction, the action is invariant
under the global Lorentz transformations, where the gauge
fields and Dirac fermions transform in the vector and spinor
representations of Lorentz group, respectively, in the flat
Minkowski spacetime:

ot =Lrx, A(x) - AL(Y) = LA (x),
U(x) - ') = S(L)P(x),  SL)y*S~(L) = Ly",
(4)
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with

i
NG

S(L) = e ™"/ g SP(1,3),
where X% are the generators of spin group SP(1,3) ~
SO(1,3) in the spinor representation

[Zab’ ch] — i(zad;,]bc _ zbdnac _ zacnbd 4 Zbcnad)’
=,y = i(y“n” = y"n). (6)

The action is invariant under the parallel translation for
coordinates

XM = Xt = xt + at, (7)

with @* the constant vector, and also under the global
scaling transformation for coordinates and quantum fields,

X — xt = A7,
A (x) = A (X)) = AA,(x),
U(x) - W'(x) = 22U (x), (8)

with A the constant scaling factor.

Before discussing gravitational force, let us briefly ana-
lyze how the SM introduces the basic forces of electromag-
netic, weak, and strong interactions which are governed by
the corresponding internal gauge symmetries U(1),x
SU(2), x SU(3),. Such gauge symmetries actually reflect
the correlations of quantum numbers which characterize the
intrinsic properties of quarks and leptons. The U(1), gauge
group reflects the charge quantum number of the particle
and antiparticle, the SU(2), gauge group characterizes the
symmetry between two isospin quantum numbers of quarks
and leptons, and the SU(3), gauge group is introduced to
describe the symmetry among three color quantum numbers
for each flavor quark. Quarks and leptons as Dirac fermions
all carry spin and chirality quantum numbers, which is
known to be characterized by the spin symmetry group
SP(1,3) ~ SO(1, 3). In the SM, such a symmetry of quarks
and leptons must be a global symmetry, so that it coincides
with the global Lorentz symmetry SO(1,3) of coordinates in
the flat Minkowski spacetime to ensure the Lorentz invari-
ance and the covariance of action in special relativity.

Analogous to the introduction of internal gauge sym-
metries U(1), x SU(2), x SU(3),. for the basic forces of
electromagnetic, weak, and strong interactions among
quarks and leptons, it is natural to take the spin symmetry
group SP(1,3) of quarks and leptons as an internal gauge
symmetry which governs a basic force of spin gauge
interaction. The corresponding spin gauge field and field
strength are defined as follows:

PHYSICAL REVIEW D 93, 024012 (2016)

1
Qﬂ ()C) = g‘vgzb(x) E z’ah’

Rﬂv(x) = 8ﬂQu(x) - 80Qﬂ('x) - i[QM(x)’ Qu(x)]

1
- gis’/% ()C) 5 Zab (9)

with g, the coupling constant. It is required that the action is
SP(1,3) gauge invariance under the spin gauge transforma-
tion S(x) = e(="/2 2 SP(1,3) for gauge fields and
Dirac fermions,

Q,(x) » Q) (x) = S(x)Q,(x)S7! (x) + S(x)id, S~ (x),
U(x) = ¥'(x) = S(x)¥(x),
STHx)rS(x) = A% (x)r". (10)

With the same consideration, we shall take the global
scaling symmetry of Dirac fermions to be a local scaling
gauge symmetry. Namely, the Dirac fermions transform
under the local scaling gauge transformation as follows:

T(x) > W'(x) = &) T (), (11)

while the internal gauge fields .A,(x) and spin gauge
field Q,(x) are unchanged in the local scaling gauge
transformation.

Analogously, when extending the global scaling sym-
metry of quantum fields to be a local scaling gauge
symmetry, but keeping a global scaling symmetry of
coordinates, we shall introduce the Weyl gauge field
[27] W, (x), which governs a basic force of scaling gauge
interaction and transforms under the local scaling gauge
transformation as follows:

W, (x) = W (x) = W,(x) + g3'9,In&(x).  (12)

As the local scaling transformation is an Abelian gauge
symmetry, the field strength is simply given by

W, = 0,W, —0,W,. (13)

In demanding the action to be invariant under both the
spin gauge transformation for the quantum fields and the
global Lorentz transformation for the coordinates, namely,
keeping the action to have a covariant form of special
relativity in the flat Minkowski spacetime, it is necessary to
introduce a bicovariant vector field defined on a locally flat
noncoordinate spacetime and valued in a vector represen-
tation of Lorentz group SO(1,3) in the flat Minkowski
spacetime, i.e.,

)?u :)?a”(x)aﬂ = ”My)?aﬂ(x)ayv (14)

which transforms
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R (x) = 2 (x) = AL ()24 (%),
2d'(x) = Fi'(x) = ()2 (x), (15)

under the local spin and scaling gauge transformations,
respectively, and

X = X =LK XY,

X = =21 (16)

2a(x) = 7d () = L0 (%),
2d'(x) = 2o () = 2 (x).
under the global Lorentz and scaling transformations,

respectively, where the transformations satisty the follow-
ing properties:

AL (x)A A (x)ne = n,
LA, Lr

Al (x) € SP(1,3),

Mlup = Nvo» L”u € SO(L 3) (17)

Regarding the bicovariant vector field 7,/ (x) as a kind of
matrix field and defining an inverse of §,#(x), we obtain a
dual bicovariant vector field y,“(x) which satisfies the
following orthonormal conditions:

)(,ua(x))?ay(x) :)(ua(x))?hy(x)nab = ﬂﬂbv

2 ()2, (%) = Za (O () = n,°. (18)

Such a bicovariant vector field y,“(x) exists once the
determinant of 7,#(x) is nonzero, namely,

|

T detz (x) 2(x)
2(x) = detp,(x) # 0. (19)

detyy,(x) = x(x)

Obviously, the bicovariant vector field y,“(x) transforms as

X (x) = 2 (x) = 1, () Ay (x),
X4 (x) = i (x) = & (), (x) (20)

under the local spin and scaling gauge transformations,
respectively, and

X = Xt = LF X",

X - =" (21)

X (%) = 0t (X) = L, (x),
X (%) = 2 () = x4 (%),

under the global Lorentz and scaling transformations,
respectively. y,“(x) can be thought of as a bicovariant
vector field defined on the globally flat Minkowski space-

time and valued in the vector representation of SP(1,3) in
the locally flat noncoordinate spacetime,

1
Xu :)(ﬂa(x)iya- (22)

It is seen that the bicovariant vector field y,“(x) or dual
bicovariant vector field #,#(x) transforms in a covariant
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form on both the globally flat Minkowski spacetime of
coordinates and the locally flat noncoordinate spacetime.
Here we would like to address that the bicovariant vector
field y,*(x) is introduced to distinguish from the so-called
tetrad denoted usually by e (x), which is required to be a
general covariant vector field under the general coordinate
transformations in the Einstein theory of general relativity.
The bicovariant vector field y,“(x) will be shown to
constitute a basis for the locally flat noncoordinate space-
time and a basic gravitational field in the globally flat
Minkowski spacetime of coordinates.

With the above analyses, we shall be able to construct the
action which is invariant under the local spin and scaling
gauge transformations for the quantum fields and also
under the global Lorentz and scaling transformations for
the coordinates. Let us first examine an action for Dirac
fermions, as the currently known building blocks of nature
are quarks and leptons. The action can simply be written as
follows:

Sp = / d4x;((x)%{\ir(x);gﬂ(x)mﬂxlf(x)+H.c.} (23)

with the definitions

N
)(ﬂ(x)lp,u = 57 )(a#(x)D;t
1

= Eya’/lab)?bv(x>77w[iau + ‘A/t (x) + Qﬂ (X)] (24)

and

iD, =id, + A,(x) +Q,(x) =iD, + Q,(x),

iD, = id, + A,(x), (25)
where D, is the covariant derivative for the usual internal
gauge and spin gauge symmetries, while D, is the
derivative only for the usual internal gauge symmetries.
It is easy to show that the above action is invariant under the
usual internal and spin gauge transformations as well as
under the global Lorentz and scaling transformations in the
flat Minkowski spacetime. It is interesting to note that the
Hermiticity of the action automatically ensures invariance
under the scaling gauge transformation, which means that
the scaling gauge field has actually no interaction with the
fermion fields due to Hermiticity.

III. GRAVIFIELD SPACETIME AND GAUGE
THEORY OF GRAVITY

It is unlike gauging the usual internal symmetries of
fermion fields, such as the isospin and color symmetries of
the quarks, when gauging the spin and scaling symmetries
of fermion fields in the flat Minkowski spacetime of
coordinates, the bicovariant vector field y,“(x), or its
inverse 7,/(x) is an essential ingredient in order to
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distinguish the local spin and scaling gauge transformations
of fermion fields from the global Lorentz and scaling
transformations of coordinates. We will show that the
bicovariant vector field y,“(x) is a basic field in character-
izing the gravitational interactions.

A. Gravifield spacetime

Geometrically, the bicovariant vector field 7,*(x) is
defined on both the locally flat noncoordinate spacetime
and globally flat Minkowski spacetime of coordinates and
transforms as a bicovariant vector field under both the local
spin gauge transformation and global Lorentz transforma-
tion. Explicitly, 7,#(x) can be expressed in terms of the
basis of coordinate spacetime valued in the Dirac y-matrix
basis {y9/2}:

1 o
F7°Zd" (x)0, = 57 %a = 710, (26)

with

R S
=517 (x), (27)

Fa =1d"(x)0,.
where the derivative operator 9, = 0/0x* defines a basis
{0,} = {0/0x"} in the globally flat Minkowski spacetime
of coordinates. Accordingly, the vector field 7, forms a
basis {f,} for the locally flat noncoordinate spacetime. We
shall call {0,} the coordinate basis and {7,} the corre-
sponding noncoordinate basis. In the coordinate basis, there
is a dual basis {dx*} that satisfies the conditions

Ox?
(dx,0/0x") = ke -

(28)

The bicovariant vector field y,“(x) as the inverse of
7."(x) can be expressed in terms of the dual coordinate
basis {dx*} valued in the Dirac y-matrix basis {y*/2}:

1 1
Emﬂ“(x)dﬂ =5rar® (x) = yu(x)dx,

X =yt (x)dxt,
1
Xu :Z/Aa(x)iya’ (29)

where the vector field y* defines a dual basis {y“} for the
locally flat noncoordinate spacetime, since

W’ Fa) =20 (07 ()(dx".0,) = ., () (x)m» =na".

(30)
For the Dirac y-matrix basis {y?/2}, we have
11\ 1
_ya — ZTrytyb — pab 1
<27/,2y> 2Ty’ =n", (31)
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which leads to the orthogonal property

) =2 0570037 )

= Tr;(ﬂ(x))?”(x) = 7]/- (32)

The vector field y“(x) may be regarded as a one-form
gauge potential in the flat Minkowski spacetime. It is
natural to speculate that the bicovariant vector field y,(x),
which characterizes the locally flat noncoordinate space-
time with the basis {y“}, should describe the gravitational
interactions as a gauge-type potential field of gravity. We
shall adopt an alternative notation when emphasizing the
bicovariant vector field to be a gauge-type potential field of
gravity

1

G,(x) EXﬂaiy(l’ G = —iG,dx". (33)

In this sense, y,“(x) or 7,/(x) is identified to be the
gravitational bicovariant vector field and referred as gravi-
field for short in the following discussions. The non-
coordinate bases {y“} and {j,} characterized by the
dual gravifield y,“(x) and f,“(x) are correspondingly
called gravifield bases. Accordingly, the locally flat non-
coordinate spacetime spanned by the vector gravifield
x“(x) is mentioned as the locally flat gravifield spacetime.

In the locally flat gravifield spacetime, it can be checked

that the gravifield basis y, does not commute; it satisfies the
following commutation relation:

D?a’)?b] =XapXes
Z;b = _)?a”)?by)(fw;
)(;v = ay)(uc - ay)(ﬂc’ (34)
which indicates that the locally flat gravifield spacetime is
in general associated with a noncommutative geometry,
where the gauge-type field tensor yj, will be shown to
reflect the gravitational field strength.

B. Gauge theory of gravity

In terms of the gravifield bases y“ and 7 ,, we can define a
coordinate-independent exterior differential operator in the
locally flat gravifield spacetime

d,=x" N ¥, (35)
Thus, instead of the usual exterior differential forms in the
flat Minkowski spacetime of coordinates, we can define
coordinate-independent exterior differential forms in the
locally flat gravifield spacetime. For instance, the spin
gauge potential and field strength can be expressed as the
following one-form and two-form:
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1
Q = —iQ x*, R:dXQ+Q/\Q:2_

iRah)(a /\)(hv

(36)

where Q, and R, are the spin gauge potential and field
strength sided on the locally flat gravifield spacetime,
respectively. From the above definitions, it can be checked
that Q, and R, are correlated to the spin gauge potential
Q, and field strength R, defined on the flat Minkowski
spacetime as follows:

Qa :)?aﬂgw 7?'ab :)?a”)?byRﬂb' (37)

The Hodge star is defined as

1 .
*R = IieahcdRabZL A )(d' (38)

Similarly, we can express other gauge potential and field
strength as well as vector and tensor fields in terms of
exterior differential forms in the locally flat gravifield
spacetime. For the internal gauge field and Weyl gauge
field, we have

1
A= —iAx", deZAJrAAA:ZFM”/\xb,

1
—Waux* Axb. (39)

W = —iW .
WX 2i

W=d,Ww=

For the gravifield, the corresponding gauge potential and
field strength in the locally flat gravifield spacetime are
defined as

G=-iGy",

1
g:de+QAG+gWW/\G:?Qa,,)(“/\)(b. (40)
i

Their relations to the gauge potential G, and field strength
G, in the flat Minkowski spacetime are given by

Ga :)?uMG/u gah :)?u”)?hyg;wv (41)
with the field strength
g/w = vy)(u - vu){y

— V() = Vo ()] o e = G (1) L7

2 2
() = (0, + 9 W) + 9.2, 0"
- (81/ + waL/))(;ta - gsgvab)(yh’ (42)

where the covariant derivative is defined as

PHYSICAL REVIEW D 93, 024012 (2016)
V,=0,+Q,+g,W, =V, +g,W,
Vﬂ = aﬂ + Qﬂ. (43)

The gauge-type field strength of the gravifield, G, (x)=
Vi, =V, is defined as the two-form through the
one-form gauge potential. In general, one can define the
covariant derivative in the locally flat gravifield spacetime
as

Da :)?a - l-Aa - lQa :)?aﬂDﬂ :)?a”(a” - l'AM - IQ”)
(44)

With the exterior differential forms in the locally flat
gravifield spacetime and the requirement of renormaliz-
ability of QFT in four-dimensional spacetime, the gauge-
invariant action for the gravitational gauge theory is
constructed as follows:

1. -
SX:/{z[i{/*x/\D\P—l—iq‘/*x/\Vy/—i-H.c.]
Ty Tre A x) A< A x)wdw

1 1 1
——2Tr.7-'/\>k.7-"——2TrR/\*R—EW/\*W

9a 9y
1 1
+ anqﬁzTrg A %G — §d¢ A *xdp — agTrR A
AP+ AT A Z) Al A D+ L
(45)
The couplings y,, g, aw, ag, and A, are the constant
parameters. £ denotes the Lagrangian density for possible

other interactions. We have used the definitions and
relations

D = y“D,,
1
s’y = §€”bcdx” AXEA A

1
x~nx)=x" /\)(bzzab’

1 i 1
*(X /\)() :Eeubcd)(c /\)(dgzab’

d¢ = (d)( - lwa)Q'),

*d¢ = €abcd)(b /\)(d A )(C()?a - waa)¢’ (46)

1
3!

and the totally antisymmetric Levi-Civita tensor e*¢¢
(€13 =1, €,peq = —€°P°?) satisfies the identities
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bed 'd ! dd d' . dc’
€ ey, T = =2(n° N — i),

eabcdeabcd’ — _ 6}’]‘1‘]/, eabcdeabcd — 24, (47)

We have introduced a scalar field ¢(x) to ensure both the
global scaling and local scaling symmetries for the gauge-
type gravifield interaction characterized by the coupling
constant oy and the scalar-type spin gauge interaction
characterized by the coupling constant ag. A singlet fermion
field w(x) is introduced to couple with the scalar field, which
will be shown to play a significant role for the quantum
inflation of the Universe. Here the scalar field ¢(x) character-
izes the conformal scaling property and transforms as

P(x) = ¢'(x) = E(x)P(x),
P(x) = ¢'(xX') = ip(x),

X Xt = )y

(48)

under the local scaling gauge transformation and the global
scaling transformation, respectively.

The above general action for the gravitational gauge
theory is given in the locally flat gravifield spacetime; the
fermion fields and gauge fields all belong to the spinor
representations and vector representations of the spin group
SP(1,3), respectively.

IV. FIELD EQUATIONS AND DYNAMICS
IN THE QFT OF GRAVITY

To obtain the field equations of motion and study the
dynamics of fields, it is useful to transform the action of
gauge theory of gravity constructed in the locally flat
gravifield spacetime into the action expressed in the globally
flat Minkowski spacetime. This can simply be realized by
converting the gravifield basis into the coordinate basis
through the gravifield. Taking the globally flat Minkowski
spacetime as an inertial frame for a reference, we are able to
describe the motions of quantum fields and make a mean-
ingful definition for the momentum and energy. In particular,
it enables us to provide a unified description for all basic
forces based on the framework of QFT for gauge symmetries.

It is not difficult to check that the general action of gauge
theory of gravity gets the following expression in the
globally flat Minkowski spacetime:

Loz . .
S, = / d4x)({§ 0 (Uy, DY + iy, iV, w) + H.c]
- [N '/ [l Tl ab
- YSW@I/ - Z)(Im)( [‘7:#1/]://1/ + RﬂyRﬂ’z/ab
1,
+ WﬂvWﬂ’b’ - aW¢2glawgﬂ’z/a] + E)flwdﬂqsdu"b

- aEgsqszﬂ?ﬂﬂl)?W/)(ya)(uhRu’v'ah - j’s¢4 + L:’()C) } ’

(49)

PHYSICAL REVIEW D 93, 024012 (2016)

with the definitions

R (x) = R ()t (),

X =X"Var  (50)
where the tensor field 7#*(x) couples to all fields.

The above action of gauge theory of gravity is now
described within the framework of relativistic QFT in the
globally flat Minkowski spacetime. Where the gravifield
x.“(x) appears as a gauge-type field, its dynamics is
governed by the gauge-type interaction of the field strength

v (x). The antisymmetric field strength tensor Gy, (x) is
valued in the homogeneous vector representation of the
spin gauge group SP(1,3). Unlike the usual internal gauge
fields, the gravifield y,“(x) couples inversely to all kin-
ematic terms and also interaction terms of quantum fields.
It becomes manifest that the gravifield y,(x) is a basic
gauge-type field and its corresponding field strength G, (x)
characterizes the gravitational force.

Based on the above gauge-invariant action and in light
of the least action principle, we are able to obtain equations
of motion for all fields under an infinitesimal variation of
the fields. To write down the explicit forms of equations of
motion, we shall not consider the Lagrangian density £’.
The equation of motion for the fermion fields U is easily
obtained as follows:

1
X2 7DV + 51V, (2 )r ¥ = 0. (51)
Let us define a spin gauge-invariant vector field
1, . . )
Vo) =522V, 02 )- (52)

so that the equation of motion for the fermion fields can
simply be written as
Y2d'i(D, +V,)¥ = 0. (53)

In a similar way, we arrive at the equation of motion for
the singlet fermion field y:
v 2V +Vy = 0. (54)

It is not difficult to yield the equation of motion for the
gauge fields AZ:

D, (e 3 Fl,) = I, (55)
with the fermionic vector currents
T = gy Oy g T (56)

The internal gauge covariant derivative is given by
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DL 3 Fly) = 28" 9 DFlyy + 0,62 7+ ) F,,

(57)
where the second term is caused by the gravitational
interactions.

For the spin gauge field Q2

. » we arrive at the following
equation of motion:

VG R ) = et (58)

with the vector-tensor currents

U O 11
Jrab = Egsx‘lfxc"{yciﬁab}\lf + —gsch"{yc—?b}w

2 2
— gV, " 7 B
1 A Avy b
+ Exqﬁzawx"”x Yo [ag,/w (59)
where we have used the notations
b
)(,[jb/] = 200" =20 00
1 ag v _Xyag " —Xv gﬂf;/ (60)

The tensor currents as the sources for the dynamics of
the spin gauge field ijb consist of two parts; one is the
fermionic tensor current, and the other is made of the
gravifield y,“. The spin gauge covariant derivative is
given by

\V4 ()O(/m SV Rab) Xﬂﬂ)(uv v R b +0 ()()(ﬂﬂ)(w )R ab

(61)
with the second term from the gravitational effects.

The equation of motion for the gravifield y,“ is found
to be

a (v wa )(¢2 ){MM g;/u’a) = Jaﬂ’ (62)

with the bicovariant vector currents

Tl = —yp 'L+ l){;?gp;?cf‘ [Uy¢iD, W + yy<iV,p + H.c]
— xR BT FQFl) + ReRouy ca + Wy
— awd*Gp.Guvs) + 27 dypdy d
= 2apg 0’20 R R (63)

The spin and scaling gauge covariant derivative can be
written as

PHYSICAL REVIEW D 93, 024012 (2016)
(vl/ )(¢ }?ﬂll W ’u’a)
:)()(M”XW (v - )(¢2gy’u’a)

+ 0, (e 7 )¢2 Wva: (64)

In obtaining the above equation of motion, we have used
the identities &y = y7,/ox," and &7, = —7p"7."0x, "
Alternatively, the equation of motion for the dual gravifield
¥ can easily be read off:

S

Xu )(/) an (¢ )?/)” “d gu’z/c) = Jua

with the gravifield currents J =000

A ) R

L= = L+ —)([‘I’}’”iDﬂ‘I’ + iV, y +Hel
—)()(uﬂ Uy[flf//+R R’y’cd
+ W;wW//u’ aW¢ g;w ;u/b]
+ 0 dypd,p = 209 PRy,

For the scaling gauge field W, we obtain the following
equation of motion:

A, (" YW yy) = J-, (65)
with the bosonic vector current
T = =g 27" bdyd — guxd*aw i 7 2, Guva-  (66)

The derivative can be written as

A, R 2 W) = 2 2 O W0y + 0,2 2 YW

(67)
where the second term arises from the gravitational effects.

For the scalar field ¢, the equation of motion is simply
yielded as follows:

(8/4 + wa/l)()O?ﬂudud’) =J (68)
with the scalar current
J = =xysy + xplawi™ 7 GG
- zangﬂ?uM)?hDRzl[? - 4/1s¢2} . (69)
The scaling gauge covariant derivative reads off
(aﬂ + waﬂ)()ﬁ?’wdv(p)
=" d,d, ¢+ (0, + 29, W,) (" )d,¢.  (70)

where the second term reflects the gravitational effects.
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V. CONSERVATION LAWS AND EQUATION OF
MOTION FOR GRAVIFIELD

The gauge theory of gravity is built within the framework
of relativistic QFT in the flat Minkowski spacetime, which
enables us to discuss in general the basic conservation laws
of the theory.

A. Conservation law for internal gauge invariance

For the gauge invariance of internal gauge symmetry, the
resulting well-known conservation law is the vector current
conservation in the absence of gravitational interactions. In
the QFT of gravity, it can be shown from the equation of
motion for the internal gauge field A,’, in Eq. (55) that the
conservation law still holds:

D,J" = D,D,(xi" ' Fl, )
=207 DuD(F 1)) + 0,0, G0 7 ) F
+ 0,0 2 )Du(F L) + 0,0 2 )D, (F L)

1 an A/
— EXZM”ZW fUK]:;Jw}—f/D' = 0’

where the symmetric and antisymmetric properties have
been used and the gravitational effects are eliminated.

From the definitions of the fermion vector currents and
the covariant derivative, we have

D, J" = (60, + f*A) (9ax Uy 2 THD)
= gAZ)?a”D”(\TIy“TI\II) + gAaﬂ (Z)?a”)‘TJYaTI‘I’ =0,
(71)

where the second term reflects the gravitational effects. By
requiring the derivatives in the second equality to be gauge
covariant for the spin gauge symmetry, the conservation
law for the fermion vector currents can be rewritten as

D, J" = gy D, (Vy T') + gu ¥V, (02" ) Uy T'U = 0,
(72)

which can be proved to be held directly by applying for the
equation of motion of the fermion field in Eq. (51).

We then come to the conclusion that in the presence of
gravity the conservation law for the fermion vector currents
due to internal gauge symmetry holds when the gravita-
tional effects are included.

B. Conservation laws for spin and scaling
gauge invariances

Similarly, for the spin gauge symmetry, we can show the
following identity from the equation of motion for the spin
gauge field:

PHYSICAL REVIEW D 93, 024012 (2016)
Vbt =N, gt 7 R 85)
=" BV VR + 0,0,0 B R,

+ 0, 7 IVUR I + 0,08 7 )V R 5
= 1" (RUeR D + R R 1) =0,

Uy
where the symmetric and antisymmetric properties lead to a
cancellation for all terms.

As the spin gauge field Q,‘j’” and gravifield y,* are
introduced simultaneously to ensure the spin gauge invari-
ance for the gauge theory of gravity, the tensor current J*
and the gravifield current J,# are generally correlated. It is
not difficult to show that, from the definition of the tensor
current J# the conservation law for the spin gauge
invariance can be expressed as follows:

1 1
Vﬂﬂ‘ab - EV,,S"Q;, + Ej[ab]
- aEgs¢2)(()?a”Rﬂyhc _)?b”,R’uzxac))?cy =0,
(73)

with the definitions

iz Uy #Q y¢ ! g R yC !
Sap = g |VZH 7 5 Zan (U HWZS Y S T (W]
‘][ab] = ngyb - J/;;)(/m' (74)
It will be shown that the tensor S¥,, corresponds to the
spin angular momentum tensor, and J,; is related to the
energy-momentum tensor.

For the local scaling gauge symmetry, from the equation
of motion for the Weyl gauge field W ,, it is easy to show that

H
9t =0,0, (Ziﬂﬂ' ;?"”’W,/,/) =0,

which leads to the conservation law for the bosonic current

aﬂ‘]ﬂ = aﬂ ()()?My¢dy¢ + aW)“bz)?ﬂﬂ/)?W,Zvagy’u’a) =0.

(75)

We now come to discuss the bicovariant vector current,
as the gravifield y,“ behaves not like the usual gauge field.
From the equation of motion, the gauge and Lorentz
covariant derivative to the current is given by

(vﬂ - way)Jaﬂ = aW(vy - wa;t)(le - wav)
X (¢2)()?MM/)?WI gﬂ't/u)
1
= an¢2)((gs7?’;wab - wa;erab)
X)?””/)?W/gﬂ’y’bv (76)

which shows that such a defined bicovariant vector current is
not conserved homogeneously. It may not be difficult to
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understand with the fact that the gravifield is actually intro-
duced as an accompaniment of spin and scaling gauge fields to
ensure the spin and scaling gauge symmetries of the action. It
will be demonstrated below that the bicovariant vector current
is related to the energy-momentum tensor and an alternative
conservation law for the gravifield current results from the
conservation of the energy-momentum tensor.

C. Energy-momentum conservation in
the QFT of gravity

So far, we have discussed the conservation laws con-
cerning gauge symmetries in the gauge theory of gravity.
As such a theory is built based on the framework of
relativistic QFT in the flat Minkowski spacetime, which
implies that the differences of the spatial coordinates or
time coordinates can, in principle, be measured by the
standard ways proposed in special relativity. This allows us
to make a meaningful definition for momentum and energy
as well as angular momentum.

Let us first investigate the conservation law under the
translational transformation of coordinates x* — x* =
x* + a*. The variation of action is given by

5S, = /d4x3ﬂ(7y")a” =0,

PHYSICAL REVIEW D 93, 024012 (2016)

where the surface term has been ignored as all the fields are
assumed to be vanishing at infinity. For arbitrary displace-
ment a”, it leads to the well-known energy-momentum
conservation

0,T,) =0 (77)

with the energy-momentum tensor

1 -
T~ =g £+ 2 18y 0,0 + iy O, + Hee ]
_X)?ﬂﬂ/)?pa[ff/pau/ltlf + ,R’Z’};)augoab + Wﬂ’pauwa]
+ aW)O?””,)?paqﬁzgy’paauZaa + Z)?Wl/ dﬂ’¢au¢
- 2aEgsx¢2)?aM)?bpaqub'

Note that such a form of energy-momentum tensor is not
explicitly gauge invariant under gauge transformations.
To obtain a manifest gauge-invariant energy-momentum
tensor, it is useful to take the equations of motion for the
gauge fields. By adding total derivative terms and adopt-
ing the equations of motion for the gauge fields A,, €,,
W,, and y,, the energy-momentum tensor is found to be

1 . .
Tl/ﬂ ~ 2{_77”u)(£ + EXI“”[}\P]/“DD\II + ll//}’avu‘// + HC] —)()(W)(p [fllt’pfllm + RZ/I;)RDO'Q’) + Wﬂ//JWl/o' - aW¢2gZ/pgwm}

+ " dypd,p = 200 R%} + 0,0 7 (),

=+ aﬂ{aW¢2){)?””I)?/mgu’paxua - 2aEgs¢2)0?a”)?h”anh } ’

where the total derivative terms become vanishing in the
derivative form 9, (7 ,*) due to the antisymmetric property.
Thus, the gauge-invariant energy-momentum tensor reads

1 -
T = =g L+ Sadd 0y DY + iy Vo + Hee
—){)?ﬂﬂl)?ﬂo— [F/I//)fll/” + RZ/};,Ryo'ab + W}l’pWUU
- aW¢2gZ/pguaa}
R dypd,d = 20590 P72 RET - (78)

Note that the gauge-invariant energy-momentum tensor
7 ,, is, in general, not symmetric:

Tw# T, (79)

Even if freezing out the gravitational interactions, the
energy-momentum tensor for the fermionic fields remains

Azlz + RZ/I;,anb + W,u’va)}

Wp

asymmetric, though the energy-momentum tensor for
gauge and scalar fields becomes symmetric.

D. Conservation laws under the global Lorentz
and scaling transformations

Let us now discuss the conservation law under the global
Lorentz transformation of coordinates. For an infinitesimal
transformation x* = x# 4+ SL* x*, similar to the energy-
momentum conservation of translational invariance, we
arrive at the following conservation law for the Lorentz
transformation invariance:

@L"W - TLM] =0, (80)
with the definitions

Lﬂ/m- = T/)Mxo- - T{rﬂxpv T[/)o’] = Tpa Ne'e — Torp Ny ps

(81)
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where L*,; corresponds to the orbital angular momentum
tensor of spacetime rotation. As the energy-momentum
tensor T,, is not symmetric, the orbital angular momen-
tum tensor is, in general, not conserved homogeneously,
ie., G#L”p,, #0.

On the other hand, by formulating the conservation law of
the spin gauge invariance in terms of the covariant form in
the Minkowski spacetime, we obtain the following expres-
sion for the conservation law of spin gauge invariance:

a/tsypv + T[po] - Syab(vy)(pa)fob +Xpavﬂ)(0'b)
- 2aEgs¢2)(()?a”R;wbc _)?b”Ryvac)icDZpa)(ah =0,
(82)

with the definitions
Sﬂpo‘ = Sﬂab)(pa)(ab
AR ¢ 1 - ¢ 1 a, b
= G X | U Y 5 Ban VAW TS Ea (WX X
T[pﬂ] = J[ab])(pa)(o—b = pﬂ)(/m - Tﬂﬂ)(ﬂ/)- (83)

In defining the antisymmetric tensor field 77,,, we have
introduced the symmetric tensor field

Xuw = XX Nab (84)

which is dual to the symmetric tensor field p#* given
in Eq. (50).
Let us introduce a total angular momentum tensor

T e =L e + S 5, (85)

with L#,, and S¥,, being the rotational and spinning
angular momentum tensors, respectively. By combining
the conservation law of Lorentz invariance Eq. (81) with
the conservation law of the spin gauge invariance Eq. (82),
we obtain a new form of conservation law:

8/“-7”/)0' - (T[po'] - T[pa]) - Sﬂab(vp)(pa)(ub +)(pav/4)(0b)
- zaEgs(ﬁzZ()?aﬂR/wbc _)?bﬂRyyac))?cDZanab =0,
(86)

which shows that in the presence of gravitational inter-
actions the total angular momentum tensor defined above is
not conserved homogeneously, i.e., 6ﬂj "o 0.

When turning the spin and scaling gauge symmetries
into global Lorentz and scaling symmetries, i.e., all the
quantum fields relevant to the gauge theory of gravity will
be absent,

Qb - 0,

X = nds W, -0, (87)

PHYSICAL REVIEW D 93, 024012 (2016)

we get the following relations:

0, o = ~Tipo] (L6 = Tipe), (83)
where the conservation law of the spinning momentum
tensor is governed by the asymmetric part of the energy-
momentum tensor (which is seen to have an opposite sign
in comparison with the conservation law of the angular
momentum tensor). As a consequence, we arrive at the
conservation law for the total angular momentum tensor:

aujﬂ/m = 8;4(Lﬂpa + Sﬂ/)ﬁ) =0, (89)

which reproduces the result for the gravity-free theory in
the Minkowski spacetime.

We then come to the conclusion that, in the presence of
fermion field, the energy-momentum tensor is, in general,
asymmetric; neither the angular momentum tensor nor the
spinning momentum tensor is conserved homogeneously
due to the asymmetric part of the energy-momentum tensor,
and only the total angular momentum becomes homo-
geneously conserved due to the cancellation in their
asymmetric part of the energy-momentum tensor.

For the global scaling invariance, we obtain the follow-
ing conservation law:

(x” a% + 4) L) +0,T" =T =0,  (90)

with the definitions

TH="TFx", T=T/"=T,/;\, (91)

where 7# represents a scaling current and 7 = 7 ,* is the
trace of the energy-momentum tensor. As the integral
[ d*xA*y(2x)L(2x) is independent of 4, the differentiation
with respect to 4 at A = 1 leads to the following identity:

/d“x <xﬂ% + 4> (xL) =0,

which results in the conservation law
0,T" =T =0. (92)

When the energy-momentum tensor becomes traceless,
T =0, for the case that the scalar field is freezed out in
the gravity-free theory, one then yields the homogeneous
conservation law for the scaling invariance:

8,T+ = 0. (93)

E. Equation of motion and conservation
law for gravifield tensor

From the definition of the bicovariant vector current
shown in the equation of motion for the gravifield y,“ given
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in Eq. (58), we observe the following relation between
the energy-momentum tensor and the bicovariant vector
current for the gravifield:

T} =3, (94)

which enables us to obtain the equation of motion for
the gravifield in connection directly with the energy-
momentum tensor

apgy#p - gyﬂ = Tyﬂ’ (95)

which is a general gravity equation alternative to Einstein’s
equation of general relativity. Here we have introduced the
following definitions:

G = anbz;(;?W’ )?pv’ 20°Guva = =G,
uﬂ = aW¢2)0?;4;4’)?/)u’ (vp)(ua)gﬂ'l/a
= (7"V,o1, )G (96)

Here G,/ may be referred as the gauge-invariant gravifield
tensor and G,# as the gauge-invariant gravifield tensor
current.

In light of the energy-momentum conservation
9,T,} = 0,(J,x,") =0, we come to the following con-
served current:

0,6/ = 0,(£a°V,1,°G"") = 0, (27" 77V .20, Gutvra)
=0, (97)

which is considered to be an alternative conservation law
for the gravifield tensor current.

VI. GRAVITATIONAL GAUGE SYMMETRY
BREAKING AND DYNAMICS OF
BACKGROUND FIELDS

In establishing the gauge theory of gravity, we have
postulated the spin and scaling gauge symmetries and
introduced correspondingly the spin gauge field Q,‘jb (x)
associated with the essential gravifield y,“(x) and the
scaling gauge field W,(x) as well as the scalar field
¢(x). These fields are, in general, massless without con-
sidering gauge symmetry breaking. Based on the fact that
these particles are not yet observed experimentally, it
happens that either they are very heavy or their interactions
are very weak. To generate massive spin and scaling gauge
fields and study how weak the gravitational interactions
are, we shall take into account the gravitational gauge
symmetry breaking and the evolution of the Universe.

A. Gravitational gauge symmetry breaking

As the scaling gauge symmetry is directly related to the
mass scale, its gauge symmetry breaking can be analyzed
by making a special scaling gauge transformation to fix the
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local scaling gauge symmetry, for instance, by choosing a
gauge-fixing condition, so that the scalar field ¢(x) is
rescaled to be a constant mass scale. Let us consider a
special scaling gauge transformation &,(x) = 1/a,(x),
which leads to

P(x) = ¢'(x) = &u(X)p(x) = p(x)/a,(x) = M5, (98)

with Mg being regarded as the basic scaling energy scale
for fixing the scaling gauge transformation.

On the other hand, one can always choose an alternative
gauge condition to fix the scaling gauge symmetry, so that
the determinant of the gravifield y = dety,“ is rescaled into
unity:

x(x) = i (x) = & )y (x) = 1,

a,(x) > a(x) = & ()a,(v) = 7 (W)a,(x).  (99)
In such a fixing gauge condition y = dety,“ = 1, the scalar
field can be written as the following general form:

$(x) = Msa(), (100)
which will be shown to be a useful choice for discussing
the gravitational gauge theory within the framework
of QFT.

Let us now discuss the gravitational gauge symmetry
breaking under the scaling gauge-fixing condition
x(x) =1. We shall make a reliable postulate that the
gravitational gauge symmetry is broken down in such a
way that the theory still possesses a global Lorentz
symmetry. With this postulate, we are led to the following
simple background structure:

() =2 () =, (9(x)) = plx) = alx)Ms,

(W) = w,(x),  (Q(x) = mi @ (x).
et =, ,° = n,n,0, (U(x)) =0,
Wwx) =0,  (AL(x) =0, (101)

where ¢(x)(a(x)), @,(x), and w,(x) are the gravitational
background fields.

B. Equations of motion and dynamics for the
background fields

To analyze the properties of the background fields, we
shall find solutions of the background fields @(x), @(x),
and w(x) by solving their field equations of motion.

Let us first check the field strength for the background
fields. The field strength for the background spin gauge
field is found to be

[ab]

Da — ab _9 lab
le/) :dﬂa)pnw [ab] 2. [ab]

—d,a’ny — GsOpNpw - (102)
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It is then not difficult to yield the following results:

R = nanyREE = —6(0,0" + g,@,a"),
R4PRY = 4(d,@")* + 8d,i,d" &

+249,(d,&" + g,0,0")D,&". (103)

The field strength for the background gravifield is simply
given by

Gﬁv = Vu’lf - vv”z = ZQU - ’13@”7

Q}l = gs&)u - gwwﬂ’ (104)

and the field strength for the background scaling gauge
field has the usual form

(105)

The corresponding Lagrangian for the background fields
reads

L =—(d,@)* —2d,0,d"@d° — 69,0,0" @,
30 - . 1 1
+3 awQ,Q 5% — 2 WoaW +2d,0d°p

+ 6aEgs(8p&)p + gs(bp(bp>§_02 - /15(214, (106)
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where we have used the definitions

(107)

From Eqgs. (58)-(69), the equations of motion can be
written as follows:

[—0,0°@ + g,@°0,@" + 2g,@0,d° — 3g,@° @,
+ 22,0 @

1 AN = — — = b
+3 awg X P + ag, 0 p? — 2ap 2 Pn)

+ (0,000 - 29,0,0°0 — 9,0,

[ab]

- 9,@°0,@"|nsp” = 0, (108)

for the background spin gauge field (Q¢*(x)), and

aawd (p*Q,) = njaw|d’ (#°Q,) + g,(@,LY +2Q,0)?]
= —n2[d,0,d’@° + 2g,d, &’ ®,0° + 32 (0,0°)* — awQ,Q°%?]
—n22aggs(d,@ + 3g,@,0")p* — nSW,, W — dPpd,p — 2ayw ¥ Q, 5%
-ny2ld,a,d,&° + (d,@, + d,,)d,0° — d,0,d° @ + 2g,(d,0, + d,d,)D,0°]

+ nldapg,p*d’ @, — niL,

for the background gravifield (y,“(x)). Here we have
adopted the definition

ar (¢2Qp) = (ap - wa”)(@zQp)'

The equations of motion for the background scaling
gauge field and scalar field are given correspondingly by

O, W = —g,pd"p — 3ay ¥ p* (110)

and
(0, + guw,)d'p
= 60y Q' p* + 12a59,(0,0" + gs@,@")p — 4A,p°.
(111)

It appears difficult to solve exactly the equations of
motion. Especially, the equations of motion for the

(109)

|
background gravifield and spin gauge field look more
complicated. To simplify the equations, let us make a
rational ansatz that the conformally covariant derivative
defined in Eq. (107) for the background scalar field
vanishes:

dgp=0, ie., g,w,(x)=03,Inp(x), W,, =0,
(

112)

which indicates that the background scaling gauge field
w(x) is a pure gauge field and solely determined by the
background scalar field @(x). In other words, such an
ansatz is equivalent to the postulate that the background
scalar field has a vanishing conformally covariant kinetic
energy. From the equation of motion Eq. (110) for the
background scaling gauge field, such an ansatz leads to the
following relation:
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G, =0, ie. g,(x)=g,w,(x)=09,Inp(x), (113)
which shows that the background spin gauge field is also
governed by the background scalar field.

Applying the above ansatz and relation, i.e., g,@,(x) =
Gy (x) = 0,Inp(x), to the equations of motion
Egs. (108) and (109) as well as Eq. (111) for the spin
gauge field and gravifield as well as background scalar
field, we arrive at the following simplified equations of
motion, respectively:

3(0,p(x))0p(x) = p(x)9,(0zp(x))  (114)
and
1, o B
gaf)fﬂ - ag |[20,9"p — 0,0"p]
+ 3appdip — Ap* =0, (115)
1
(5 52 - aE> 20,00,5 - 99,0,8) = 0. (116)
as well as

3ag0}p(x) = 4,° (). (117)

The above four equations are actually not independent.
Equation (114) can be obtained from Eq. (117), while
Eq. (115) can be derived from Egs. (116) and (117).
Equation (116) is equivalent to

A # 30%,
(118)

20,p0,p = 90,0,p, ie., d,v, =0,

which shows that the covariant derivative for the back-
ground field @, (x) also vanishes. Thus, taking Egs. (118)
and (117) as independent equations of motion, we arrive at
the following exact solution for the background scalar field:

_ m
40()5) = 71()’ My =/ K;tKM-

ag(1 = x'x,

(119)

Here «, is regarded as a constant cosmic vector with the
cosmological mass scale m,. ag 1S a constant parameter.
For nonzero constants ag and A;, we obtain the following
relation:
Ay = 6apaz. (120)
It is noticed that the equations of motion possess a mirror
symmetry of Z,: ¢ — —@, and also the reflection symmetry
of spacetime: x* — —x*, @(x) — @(—x). The solution is
actually invariant under the transformation: x* — —x*,
k, — —k,. Thus, there are, in general, four solutions for
the background fields:
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mK

as(1Fxx,)

= (£)

P(x) = Py (%) = £Pes(x) = £ . (121)

which all satisfy the equations of motion.

VII. GEOMETRY OF GRAVIFIELD SPACETIME
AND EVOLUTION OF EARLY UNIVERSE WITH
CONFORMAL INFLATION AND DEFLATION

To understand the evolution of the Universe, we shall
study the geometry of gravifield spacetime. Obviously, the
background structure after gravitational gauge symmetry
breaking forms a background gravifield spacetime. With
the solution obtained above for the background scalar field,
it enables us to explore the properties of the background
gravifield spacetime and the evolution of the early
Universe.

A. Line element of gravifield spacetime
and scalinon field

Before discussing the background gravifield spacetime,
let us first define a spin and scaling gauge-invariant line
element in the locally flat gravifield spacetime with the
gravifield basis y“:

1 = amax 'y’ (122)
where the multiplying factor a,, is given by the scalar field,
a, = ¢* /M3, which ensures an invariant line element under
both the local and global scaling transformations.

In light of the coordinate basis in the flat Minkowski
spacetime, the above invariant line element can be
rewritten as

B = @ (0, (¥)1, (x)dvde = a2(x)z,, (x)dv d,
(123)

which sets a conformal basis with a;(x) as a conformal
scale field, where we have introduced a tensor field in the

flat Minkowski spacetime

X (%) = 2, ()2, () (124)
which defines a Lorentz covariant metric tensor field and is
referred as a gravimetric field for short and convenience.
Such a gravimetric field characterizes the geometric prop-
erty of the gravifield spacetime.

One can always make a scaling gauge transformation to
choose a special scaling gauge condition, for instance,
by taking the scaling gauge transformation, a,(x)—
af (1) =&, (V)ay (1) = 1. 7,%(x) = 7E(x) =& (0)7,(x) =
a,(x)y,(x), so that the line element can be expressed
as follows:
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L = a2(x)y,, (x)dx"dx” = yE (x)dx*dx",

Ky (%) = 205 (O () (125)
Such a choice of the gauge-fixing condition yields an
Einstein-type basis in the flat Minkowski spacetime of
coordinates.

On the other hand, by making an alternative special
scaling gauge transformation, ie., a,(x) = ay(x) =
2 )a, (x). 1, () = 129 () =174 (), (x). we arrive
at a specific line element

L = a2 (x)y,, (x)dx*dx* = af,(x)y 5, (x)dx*dx”,

U= detyle =1, (126)

X %) = 0 O ap. %
which sets another basis for the gravifield spacetime.
We may call such a basis a unitary basis.

For a convenience of expression, we will omit in the
following discussions the label “U” for all the quantities in
the unitary basis and express the line element as

= a?(x)y,,(x)dx"dx";

o (127)

y =dety,* =1
It will be shown that the unitary basis is a convenient
and physically meaningful basis for considering a quantum
effect within the framework of QFT. The resulting con-
formal scale field a(x) or the corresponding conformal
scalar field ¢(x) = Mga(x) reflects directly the physics
degree of freedom in the unitary basis; we may call such a
scalar particle ¢(x) a scalinon particle that characterizes the
conformal scaling evolution of the early Universe.

B. Background gravifield spacetime
and cosmological horizon

The background structure after gravitational gauge
symmetry breaking has been found to have the following
form in the unitary basis (y = dety,* = 1):

() = 2,9(x) = 0,
QP (x)) = g5 707 In (),

(@(x)) = p(x) = a(x)Ms.
(W) = 65' 9, Inp(x).
(128)

Such a background structure forms a background gravi-
field spacetime with the line element

(1) = MG (@* () napx” (x)x" (x)) = a@*(x)n,, dxdx”,
(129)

which coincides with a conformally flat Minkowski space-
time governed by the background conformal scale field
a(x). Such a background gravifield spacetime is distin-
guished from the globally flat Minkowski spacetime that is
introduced as the inertial reference frame of coordinates.
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Let us now demonstrate the property of the background
gravifield spacetime from the solutions of background
fields. a(x) is determined by the solutions of the back-
ground scalinon field @(x) in the unitary basis divided by
the basic scaling energy scale M:

m, 1
asMS l:F.X'”K'” '
(130)

Zl(x) - izl/(‘:l:(x) = i(pk:t(x)/MS ==+

The line element is invariant under the global Lorentz and
scaling transformations
Xt — X =Lt XY,

K, > K

/] v
4 u = Lk,

/
Ky = K, = AK,,

X o Xt = ) xH, ”

a(x) - a'(x') = ra(x).

As the scalar product x*k, is a Lorentz- and scaling-
invariant quantity, we are able to define a conformal proper
time 1 as follows:

XK, = Ren, (131)
where & is regarded as a conformal proper energy scale
and c is the speed of light in vacuum. In general, # and & are
allowed to obey a different conformal scaling transformation

n—n =1, R — & = MR, (132)
with a a constant parameter. Thus, the usual Lorentz time
component x° = ¢t can be expressed in terms of the
conformal proper time n

K Kk, . 1 )
WO =ct=—cn——"x'=—(cn—ux’),
Ko Ko Uy
K K;
Ugp E—O, u; ETlv (133)
R

R

and the infinitesimal displacement dx° of the Lorentz time
component is replaced by

dx® = cdt—uio(cdn—uidxi). (134)
The conformal scale field is rewritten to be
_ _ _ m 1
a(x) = a(n) — £a,.(n) = iaSAfIS L
and the line element can be expressed as follows:
(B) = a*(n)j,,dr*ds, = (cn, x'), (136)

where * denotes the coordinates with the conformal proper
time # and ,, is the corresponding background metric for
the background gravifield spacetime
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1 —U; Uil
)_(ﬂy_iz( 2_J >» Xij :nij+l—zjv (137)
Up \—u; Upxij U
which is, in general, nondiagonal.

One can, in principle, choose a special reference frame
and conformal scaling factor so that u; =0 (kx; = 0) and
K = m, = ko and uy = 1, which is known as the comoving
reference frame that can be made by a Lorentz and
conformal scaling transformation. Namely, only by fixing
the Lorentz transformation and conformal scaling condition
to be the comoving reference frame can one yield an
isotropic and homogeneous background gravifield space-
time:

() = a*(n)n,, d&*dx* = a*(1)n,,dx"dx", (138)
where 7 coincides with the comoving Lorentz time,
ie.,n=t.

We now turn to the background conformal scale field
which has a singularity when the conformal proper time or
the comoving Lorentz time approaches to the epoch given
by the inverse of the conformal proper energy scale

a(n) = ax(n) = oo, (139)

1
n—=ne=+—,

ck
which leads the conformal size of the background gravi-
field spacetime to be infinitely large. The light-traveled
distance from # = 0 to n = |5, | is given by
L= clnd = 1/, (140)
which defines the cosmological horizon in the background

gravifield spacetime.

In conclusion, the background gravifield spacetime is a
conformally flat Minkowski spacetime, which is described
by the cosmic vector k, with the cosmological mass scale
m, = ,/k,k". Such a background gravifield spacetime is
shown to be characterized by the conformal proper time
n = x,k*/ck with the cosmological horizon L, = 1/k at
which the conformal scale factor a(n) becomes singular.

C. Evolution of early Universe with conformal
inflation and deflation

To describe the evolution of the Universe in the back-
ground gravifield spacetime, it is useful to introduce a
cosmic proper time 7 via the following definition:

dr = a(n)dn, a(n) — £ae.(n)
m 1 o m 1
asMg 1Fken  — agMg1Fen/L,’

I
H_

(141)

Performing the integration, we arrive at the relation
between the conformal proper time #n and the cosmic
proper time 7:
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1

il — =dell",  —co<en<L,, —0<7<00,

—Ken
1 —H.ct

rep = O Lesonsoo, —w<r<oo,
1

:l:l_’_A = Feflxer, —oo<cen<L—-L,, —c0<L7<L00,
Ken
1

i]—’—A ::te_H"CT, —LKSCﬂ<Oo, —0<7t<®
Ken

(142)

The conformal scale factor in light of the cosmic proper
time is given by

a(r) = £a,. (1) = Lage < (orFage ™),

ay=k/H.=1./L,, (143)
with the definition
H M £ l ! (144)
=qa — = —
. §7S m,’ * H,

Here H, is regarded as the primary cosmic energy scale and
[, as the primary cosmic horizon. In obtaining the above
relation, we have used the conventional integration con-
dition for the conformal scale factor a(n = 0) = a(z = 0).
It is interesting to notice that it needs to take an infinitely
large cosmic proper time 7 — oo for the light-traveled
distance closing to the cosmological horizon ¢y — L,. The
line element in terms of the cosmic proper time reads

(l)%) = Z]ﬂ,,(r)d)?”d)e”; * = (cr, xi), (145)
with the metric tensor
gﬂIJ(T) -2 ( _ -2 02— )’
ug \—a(t)u; a (T)”ogij
Ml'l/t'
9ij = Mij + u—zj (146)

0

The metric of the background gravifield spacetime is, in
general, not isotropic in terms of the cosmic proper time z.
Only in the comoving reference frame with u; = 0 and
uy = 1, i.e., the cosmic proper time 7 is correlated to the
comoving Lorentz time ¢, does the background gravifield
spacetime become isotropic and homogeneous with the line
element

() = 2d7® + @ (t)n;;dx'dx’, (147)
which produces the well-known form of Friedman-
Lemaitre-Robertson-Walker metric for characterizing the
inflationary [a(7) = age=*] or deflationary [a(7) =
age~!x*] expansion of the Universe as the time arrow
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from past to future. In other words, only in light of the
cosmic proper time 7z does the background gravifield
spacetime appear to be a conformally inflationary or
deflationary Universe.

VIII. QUANTIZATION OF GRAVITATIONAL
INTERACTIONS IN UNITARY BASIS AND
QUANTUM INFLATION OF
EARLY UNIVERSE

Let us now discuss the quantization of gravitational
gauge theory based on the background structure of gravi-
field spacetime after the gravitational gauge symmetry
breaking. As a direct consequence, we demonstrate how
the quantum effect causes the inflation of the early Universe
and leads the inflationary Universe to end at the epoch
when the scaling symmetry is broken down spontaneously
in a quantum induced effective background scalar potential.

A. Quantization of gravitational interactions
in unitary basis

Based on the background gravifield spacetime charac-
terized by the conformally flat Minkowski spacetime, the
quantized fields are expressed as the following forms in the
unitary basis:

)(;la :)_(ua + hﬂa(‘x)/MW’
—”a — ’7;4“7
P(x) = @(X) +o(x),

‘y“

)
QP (x) = “”] @ (x) + Qi (x)
“”af(x + Hi @ (x) /My, + Qg (x),
W, (x) = w,(x) +w,(x),
(%) = 9,@,(x) = 9, In p(x),

with the definitions

GuW, (148)
) = 2,2 =05 = G () + By (x),
i (X)) = iy
i (x) = hnb, = byt =, B, + P,
— (b, k", — h,"h° ) /My,
24(x) = 0 = (x)/ My
=1 = h'(x) /My + N * /M5,
ht = ht =N /My,

N N o Ve
Nt =D S (0
n=1

(149)
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where we have introduced a weighting energy scale My,
to make the quantized gravifield /4,?(x) dimensionful.
My, may be fixed via the normalization of the kinetic
term for the gravifield and given by the basic scaling energy
scale

M3, = ayM3. (150)

The gravifield must satisfy an additional condition in the
unitary basis (y = dety,* = 1)

In dety,” = Tr In(n,* + h,*/My) =0,
= (1)
h") “nt = 0. 151
o0 Y e (151)

Before proceeding, we would like to point out that a
similar unitary basis was actually adopted in Einstein’s
original paper to make a significant simplification for the
equations of motion. It was emphasized by Einstein that
“if —detg,, (in curved coordinate spacetime) is always
finite and positive, it is natural to settle the choice of
coordinates a posteriori in such a way that this quantity
is always equal to unity.” “Thus, with this choice of
coordinates, only substitutions for which the determinant
is unity are permissible.” “But it would be erroneous to
believe that this step indicates a partial abandonment of
the general postulate of relativity. We do not ask: what are
the laws of nature which are covariant in face of all
substitutions for which the determinant is unity? But our
question is: what are the general covariant laws of
nature?” Obviously, the QFT of gravity described in
our present consideration based on the spin and scaling
gauge symmetries in the flat Minkowski spacetime pro-
vides an answer to the question that Einstein did not ask.
The answer is manifest that it is the scaling gauge
invariance that allows us to settle the choice of gauge-
fixing condition, so that the determinant of the metric
tensor field can always be made to be unity, i.e., y =
dety,* =1 or —dety,, = 1. Meanwhile, such a gravita-
tional gauge theory is invariant, or laws of nature are
covariant, in the face of all “substitutions” resulting from
both the local spin gauge transformations of SP(1,3) and
the global Lorentz transformations of SO(1,3) for which
the determinant is unity.

In terms of the above quantized fields £,"(x),
@(x), w,(x), and Q¢ (x) in the unitary basis, the action
for the quantum gravity gauge theory gets the following
form:
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| B . L |
S, = / d4x§ 0" (Wy,iD,V + y iV ) + Heel = y i (@ + @)y — Z)(”";(W [.7-",’,”.7-"”‘,”, +RPRyay + W W,y

_ | 1. _ _ o~ ~ N A
+ aw(@ + ¢)? 22 CLGa + 58 dupdyp = 4s(9 + @)t = lag(p + @)* = 1°®,0,]9:2' 75" R

+ 6aEgs ((0 + (p)zb?aﬂvu ()?ayd)u) + gs)?wd)ua)v] - 2aEgs ((p + (p)z)?yp@p AaMGzL/ - 39? ()?;w&)/td)u)z

A o o _ _
=+ E)(ﬂy [ggv(wu(p + Wﬂ(p) (W,/§0 + W,,(P) - ZQW(QDW” + Wﬂ(p>dl/(p]

—)?bp(bp)?ﬂ’u/}?WIG 2% Rab - 2)?:1”)214/ [vl/ ()?bp@p) - gs&)b’)?bp@p]RZII/’

W a Yy
1
4

N ! - A — 1 A A ! A — —
- )?ﬂﬂ )(W GZuw//vl/ (Xapwp) + EZ(J”)(W GZUaI/ ()(/wawa)

+ 297" 0, (7°®,0,)®, — 4952 'V (3 ®D,) 7" @0, + L' (x),

with

iD, =i0,+Q,+ A,

Xu =X Vas

R = 0, — 9, +g,(Q. Q" — Q.QP),

W, =0,w,—9d,w,,

dup = (0, — g,
G =V =V

=i + 95(Qn.” = Q).
Xiw = 00, = 00y,
Gl =V, =V,
=Gy + gwWu" =W, ),
P CoGuva = 2 7 GGuya + 49,8 74" Giuw,
+ 69501 w,w,. (153)

It will be useful to introduce the following notations for the
tensors of the gravifield:

Xuw = Mw + HMZ//M"V’

Hﬂl/ = H/w + N;w/va

H,, =h, +hy,,

N/,w = huahyb’/lab’

h/w = h;larlva’

=g — ']’-\{ﬂl//MW’

: : o (1)l

R = H = R My =30
MW

n=1

(Hn)m/’
filll/__ﬁ/lu Mflb—flﬂile
ab a My + Hahy, a b / W

Ny = Ny + Ny + ho By (154)

- _)?ﬂﬂ/)?yl/ b?po—&)p&)o'nab - )?a/))?bo—&)p@a] GZVGZZ/ - ziﬂl/vﬂ ()?apa)p)vv ()?ao—a)ﬂ) - b?a” vy ()?ap&)p)]Z

(152)

|
and express the field strength into the following form:

G;aw = (vﬂhua - vuhﬂa)/MW + gs(Qanub - ngnub)7

GZU = (vﬂhua - vl/hﬂa)/MW + gw(Wﬂ’ha - Wu”ﬂa)

+ gs (Qanub - ngﬂﬂb)' (155)

It is seen from the above quantized action Eq. (152) that
there exist rich gravitational interactions with respect to
the background fields. Note that, without specifying the
background fields @(x), @,(x), and Ww,(x), the resulting
action formally remains gauge invariant. Once applying the
background field solutions obtained from the equations of
motion to the above action, all the linear terms of quantized
fields become vanishing and the gravitational gauge sym-
metries are broken down to the corresponding global
symmetries.

B. Physical degrees of freedom with massless
graviton and massive spinon

To discuss the quantum effects, it is necessary to know
the physical quantum degrees of freedom for all the
quantum fields. For the Dirac fermion fields and internal
gauge fields, the counting rule on the physical quantum
degrees of freedom is well known. Concerning the quantum
fields y,%(x), Q4 (x), W,(x), and ¢(x) appearing in the
QFT of gauge gravity interactions, the same counting rule
should be applicable to figure out the independent physical
quantum degrees of freedom. In general, it should be
convenient to work in Euclidean spacetime by making a
Wick rotation.

Classically, the gravifield y,“(x) as a bicovariant vector
field has 16 field components, Q4”(x) possesses 24 field
components due to the antisymmetric feature QZI’ (x) =
—Qbi(x), W,(x) is a gauge vector field with four field
components, and ¢(x) is a single real field. There are totally
45 components. Before gauge symmetry breaking, they are
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all massless. For the massless gauge fields, only the
transverse components are physical quantum degrees of
freedom. Thus, there are 12 independent physical quantum
degrees of freedom for the massless spin gauge field
Q,‘jb (x), two independent physical quantum degrees of
freedom for the massless scaling gauge field W,(x), and
eight independent physical quantum degrees of freedom
for the massless gauge-type gravifield y,“(x). When fixing
the scaling gauge condition to the unitary basis, i.e.,
|

1
ZC_IZM%VV]W’ WG G//l/a

1 oo/ a a
:Zazrlﬂﬂrl (vuhv _vl/h’[l )(vy’hy’a V,h

1 3
—Ea 959 MF QW ilant +2a

with Q. up = Quup — Qpgy- It indicates that the fully
antisymmetric part of the spin gauge field €2, obtains
masses. Namely, four components of the spin gauge
field become massive. The spin gauge field gets additional
four physical quantum degrees of freedom and possesses
totally 16 physical quantum degrees of freedom. The
massive scaling gauge field has three physical quantum
degrees of freedom. As the gauge-type gravifield plays the
role as a Higgs-type boson for causing the spin and scaling
gauge symmetry breaking and generates masses for spin
and scaling gauge fields, its five physical quantum degrees
of freedom will be eaten by the spin and scaling gauge
fields. Eventually, the gauge-type gravifield possesses
only two independent physical quantum degrees of free-
dom. To be specific, it is natural to choose the following
two transverse components of the quantized gravifield

X (%) = ma & By (x)/ My

hia(x) = hyy(x), hyi(x) = —hxn(x)  (157)

to be independent physical quantum degrees of freedom.

Let us now carry out an alternative analysis. It is well
known that, for a gauge symmetry, one can always make a
particular gauge transformation to fix the gauge. For the
spin gauge symmetry, it concerns six free gauge group
parameters a,,(x) = —ap,(x) (a, b=0, 1, 2, 3) in the
spin gauge transformation S(x) = e/ DI g SP(1,3),
which allows us to rotate away six components of the
gauge-type gravifield y,“(x) and reduce its 16 components
into ten components. By appropriately choosing a gauge-
fixing condition, such ten components of the gauge-type
gravifield y,“(x) may be made to be ten symmetric
components for the gauge-type gravifield y,(x), ie.,
Xua(X) = Xqu(x). Such a fixing gauge is referred as a
unitary gauge. When further making a scaling gauge
transformation to fix the scaling gauge in such a way that

v ”a)+a MW”]”” w [gw ;47]1/ +gs ”brlv ](v hv’a

1
GuMiyw, w +2a 2 G M3 Qi Qa1 1
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y =dety,“(x) =1, the eight physical quantum degrees
of freedom for the gravifield y,(x) will be reduced to
seven. Thus, there are only 22 independent physical
quantum degrees of freedom including the single
scalar field.

After considering the gravitational gauge symmetry
breaking with (1,4(x)) = 7, = n,% ($(x)) = plx) =
aMyg, the leading gravifield dynamical interaction term
generates masses for the spin and scaling gauge fields:

vv h[l a)

ad' hb

(156)

the determinant of gravifield y,“(x) becomes unity, i.e.,
y = dety,“(x) = 1, which is shown to define a unitary
basis for the gravifield spacetime. Thus the symmetric
gravifield y,“(x) is constrained to be nine components. As
a consequence, in the unitary basis with a unitary gauge-
fixing condition, the independent physical quantum
degrees of freedom for the gauge-type gravifield y,,(x) =
Nya + Nua(x)/ My, are counted by the symmetric transverse
components with a traceless condition

Zhii =0, i,j=

which comes to the same result as Eq. (157). Such a
massless quantized transverse gravifield /;; should be the
graviton.

Before ending this subsection, let us illustrate the

hij:hji’ 1,2, (158)

gravitational gauge interactions with fermions. The
gauge-invariant Lagrangian for fermions is given by
1 = _o
Lr =" (Vr,iD,V +y,id,y) + Hee ]
_i_lg T yﬂlzab U+ },ﬂlzab %
4" ] 2 2
[(het = R /My) (874D, ¥
2My, w
+wy*iV,w) +Hel, (159)
with the relation
{rzey = e "yps. (160)

It can be seen that the leading spin gauge interaction with
fermions is governed by the totally antisymmetric compo-
nents of the spin gauge field Qj,,;, which leads to an axial-
vector current interaction. We may call such a totally
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antisymmetric spin gauge field Q. a spinon. As dem-
onstrated above, the spinon is massive and its interaction
is suppressed by a heavy mass. The interactions of the
massless graviton h,* are suppressed by the weighting
mass scale My, .

In conclusion, the gauge-type gravifield y,“(x) has two
independent physical quantum degrees of freedom that act
as the massless graviton with two transverse polarizations
h;;. The totally antisymmetric spin gauge field €2, acts as
the massive spinon, which leads to a torsional interaction.

C. Gauge-fixing contributions to quantization
of gravity theory

We shall show explicitly how the gauge-fixing require-
ment contributes to the quantization of gravity theory. In
the path integral approach, as both the path integral
measure of the gauge fields and the action are gauge
invariant, the functionally integrating over the gauge fields
will overcount the degrees of freedom. To overcome this
problem, a gauge-fixing condition is needed. In general, we
have the freedom to choose the gauge-fixing condition in
the path integral method, as the gauge fixing is realized by
inserting the delta functions into the path integral. Such a
formalism was initially developed by Faddeev and Popov
[28]. The main step of gauge fixing is to find an explicit
expression for the Faddeev-Popov determinant. Suppose
that a gauge-fixing condition is set to be

F(A,) =0; (161)
then the path integral is expressed as
/ DAJ[8(F(A))Ape’ ] 4, (162)

where Ap is the Faddeev-Popov determinant given by

_F (AN ()

Ap = det M,
r 5ak (y) g=e

M, (163)

with a; the group parameters. Both the 6 function and the
determinant can be expressed by the exponential form as
follows:

/ DA [6(F(A)Ape' [ 450
:/DA/Hd&kdl_gkeifd4x(£G+EGf+EGS)’
k
I .
Lop = =54 F j(A)FI(A),

Low = / 9 (x) M (. ) 94(). (164)
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where Lg, Lgy, and L, represent the Lagrangian for the
gauge-invariant theory of gravity, the gauge-fixing term,
and the Faddeev-Popov ghost term, respectively. Ar is an
arbitrary parameter, and 9 are the Grassman variables.

For the gauge theory of gravity described by the action
given in Eq. (49), the relevant gauge and tensor fields
concern the spin gauge field Q;‘b, the scaling gauge field
W, the gauge-type gravifield y,“, and the tensor field 7.
The action is, in general, invariant under the spin and
scaling gauge transformations. To fix the gauge, let us
take explicitly the following Lorentz-type gauge-fixing
conditions:

VZM 0,08 = 0,
VIR a0, = 0,

vitto,w, = 0. (165)

A

Note that the tensor gravifield 7#* = 7,/7,"n that couples
to all interaction terms remains invariant under the spin
gauge transformation as the spin gauge appears to be a
hidden gauge for the tensor gravifield y#*. For that, we shall
impose an additional gauge-fixing condition

VIO, 7" = (166)
Such a condition is equivalent, from the identity

0u7d" = (07" \Xva + 7" OuXva» to the following gauge-
fixing condition:

VIN A0, 7" =0, (167)

which is usually taken as the gauge-fixing condition for a
general coordinate invariance.

We now turn to calculate the Faddeev-Popov determi-
nant. Let us first consider the infinitesimal spin and
scaling gauge transformations S(x) = e/ ®="/2 = 14
iag,(x)Z?/2 € SP(1,3) and £&(x) = e*™) =1+ a(x),
respectively. The corresponding infinitesimal changes of
gauge fields and gravifield are found to be

1 , 1 /
59;11) ~ _gs—laﬂaab + 5aaa/lelz b _ EOlba,QZ a’
o = —ay,”,
6}&” = aill’”’

57 = 2ag,

5)(/1 :Xybaba’
5)?(1” = aab)?b”’
SW, = —0,a, (168)

and the Faddeev-Popov matrix elements read off
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N _ 1 1
M(ab)(cd) ()C, y) - \/)?Xﬂya[l —9Ys ]8v77ac77bd + _nacgudb - _nbcguda & (x - y)’

2 2
\/)?)(ﬂy\/_d)nud(ay)(m +)(L/L u)64(x_y)’
VIMae /PO 20" + 150,)5* (x = ¥),

M ay(eay(x,y) =
(x.y)

1) (%, ) = =VAP* A28t (x = ),
(x.y)
(x,y) =

Map)

X,

()X

M) (¥,

VI 70,8 (x — y),
—VIA" 95 0,0,8 (x — y). (169)

1) X,
From the above analyses, we arrive at the Lagrangian for the gauge-fixing and Faddeev-Popov ghost terms as follows:
1 A N a 1 A N a A Ad
‘ch = _)(5)“(1))(””)(” v [aﬂgubay’gv'ub + a}l Wl/aﬂl WI./I] +)(Z’1;(aw¢2 b{uu)(u v asz 8#’)(1/1; + ay)(a”au){ y]’

‘CGS = _\/)?)?W/@abap(rlacr]bdav =+ gsnachbd)'gai - \/)?\/ awdv?ﬂyaﬂvc”ab (gblgac - @ac&b) + \/)?\/ aw¢ay)?”ynab'§ac vc'gb

— XN QP (ébaﬂ&‘“ - 1_9“(3”191’) — Vv, drd (@“8”19 — 9(9”8”) - \/)?)?’”96”8,/19, (170)
with 99 = —9%% and 9°® = —9%¢ the antisymmetric ghost variables. By making a special gauge transformation, i.e.,

X = ;(1/4;(”“ and ¢ — y~'/*¢, we can rewrite the above Lagrangian in the unitary basis y = det 1 =1

1 1 . N
ﬁGf )“ ))(ﬂy P [a Qa 0 ’Qv'uh + aﬂanﬂ’Wv'] + Z’?’)(awq52 b?ﬂy)?u v dy)(uady’)(y’a + du)?a”dy)?ay}v

‘CGS = _)(141/1911 8ﬂ(nacr]bday + gsnacgybd>'96d Y/ aqu)?ﬂydu)(vcrlab (@b&ac - 911019[7) + V a»v(ﬁayﬂ?ﬂynabgac vc'gb
—a,dnagt (9b3ﬂ19“ — 9“08”1917) — ,/aqu;gaﬂ(@aa,,& - 98ﬂ19“) —)2’”“98”81/19, (171)

with the notations
1 n 1 ~ 1
dﬂzaﬂ—l—zﬁﬂlnx, dﬂzﬁﬂ—zaﬂlnx, d, =0 —Eaﬂln)(. (172)
The gauge-invariant Lagrangian for the gauge theory of gravity in the unitary basis reads
= % 2 (Ui D, + iV o) + Hee] =y = %;2”” 2w i + R Rytvan + WuWoiw = awd* G Gvdl
LA~ g B 2 1, 0 R~ A+ L), (173)
The total effective Lagrangian for the theory of quantum gravity is obtained by putting all the parts together:

‘Ceff - ‘CG + £Gf + EG‘\" (174)

D. Perturbative expansion and renormalizability of quantized gravity theory

It is noticed that the tensor gravifield 7#* couples to all kinematic terms and gauge interaction terms. Namely, the gravity
does interact with all fields and the motion of all fields is surrounded by the gravitational interactions, as y** is determined
by the inverse of the gauge-type gravifield y,“, which causes the nonlinear nature of the theory. To study the quantum theory
of gravity, it is useful to work out a practically calculating framework. Based on the conformally flat background gravifield
spacetime (y,“(x)) = n] in the unitary basis, it is not difficult to show that the leading Lagrangian with dimensionless
couplings has the following form:

1 I . =7 - 1 I/l/ ab a
Lg = B [Ufl(qjyalpﬂqj +yr lvﬂl//) + H'C-] — Vs Py — ZWW []:1 }—[' y T R R Wab T W/M/Wﬂ’z/ - aZGIll/Gllll/a]

1
+ 51" dupd,d — arg, Py Ra — At + L' (x), (175)
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with the definition

GZy = (vyhua - vbhﬂa) + gwMW(Wﬂ’/Iva - Wunﬂa) + gsMW(Qabnyb

PHYSICAL REVIEW D 93, 024012 (2016)

- Q). (176)

i

For the gauge-fixing and Faddeev-Popov ghost terms, we have

1 1 1
Loy = =3 A0 QPP Qg+ PW, W, + 5 1,02 (a,,hwayhva + 2 8,,h8”h) :

2)(

= 1 - - 1 -
LGs = _19ab8” (nacnbdaﬂ + gs’/]acgpbd)igcd —a <8ﬂh/w + Znycaﬂh> Mab (19b19ac - 19ac19b) —a (auHMD - ZayH) nucrlab&acgb

- \/a_w(.brlabncﬂ (@ba}ﬂgac - 1_9(16‘6”1917) - \/a_qu’/laﬂ (@aaﬂ& - 1@8ﬂ8”) - 96}46”197

with

HM = W + h#,  H = H"y, = 2h,

h/w = hznua’ h = hZT]Z = h’wn/w'
Thus, the leading effective Lagrangian and effective action
are given by

Ly = L + Lgy + L, Seft = /d4XLeffv (178)

and the total effective Lagrangian and effective action are
written as

Lot = Legr + Legr. (179)

It is shown that the identification of the physical

quantum degrees of freedom and the definition of a

quantum gravity theory are similar to the quantization of

Yang-Mills gauge theory. By decomposing the above|

1

(177)

leading effective action into a free part and interacting
part after considering the gauge symmetry braking, one can
write down the Feynman rules in a standard way.

The question arises from the nonlinear nature of the
tensor gravifield y* for the quantized gauge-type gravifield
2. =+ h My, e,

x>
IS}

=
—~
=
—
I
=
Q

=

|
=
S

=
£
=
+
=
IS}

=
~
S

R o (_l)n—l
N# =" (A1),
P = 2T = = B Moy + B M,

N;w — i (_l)n_l (HnJrl)/w,

n—1
MW

(180)

n=1

which leads to the high dimensionful interaction terms

lA‘G e (haﬂ - Nuﬂ/MW)[(@yalDll\Il + l/_/]/alv”l//) + HC}

2My

1 / A ! ! 1 / A ! ! A !
s [ = My = S (HO = R (M) (= R /M)
w

2My,

. [Fllll/flljl/ + Rzll/)Rﬂ/l/ab + WFUW”/”/ - GZGZDG”/D/a] + 2aE95¢2M

1 - - 1 - ~
=5 (bt =N/ My)(hy' = Ny [Mw) IR = 50— (H* = N* [My)d, ¢d, + L' (x).

Similarly, one can write down the high dimensionful
Lagrangian for the gauge-fixing and Faddeev-Popov ghost
terms.

The high dimensionful interaction terms may cause the
theory to be nonrenormalizable in the usual sense that the
divergencies cannot be absorbed into the basic parameters
of the theory. On the other hand, it has been shown that the
gravifield spacetime is associated with a noncommutative

1 A
My [(ho = N/ My,

181
My (181)

|
geometry due to the nonvanishing field strength of the
gravifield. It is conceivable that there exists a fundamental
energy scale that characterizes the ultraviolet behavior of
the theory. In such a case, there are in principle no
divergences appearing in the theory of quantum gravity,
so that the quantum contributions from the high dimen-
sionful interaction terms become finite and meaningful. It is
particularly interesting to make a detailed investigation for
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such an expectation. In Refs. [29,30], it has been realized
that there exists a symmetry-preserving and infinite-free
regularization and renormalization method, which allows
us to introduce intrinsically two meaningful energy scales
to avoid infinities without spoiling gauge symmetries of the
original theory. One of the energy scales is the so-called
characterizing energy scale that plays the role as the
ultraviolet cutoff. The consistency and applicability of
the method have been demonstrated in a series of works
[31-37]. In particular, it has been applied to calculate
the gravitational contributions to gauge Green’s functions
and show the asymptotic free power-law running of gauge
coupling [38]. More recently, it has been initiated to
explore the quantum electroweak symmetry breaking
mechanism for understanding the hierarchy problem [39].

E. Quantum inflation of early Universe

As has been shown, the background gravifield spacetime
describes either an inflationary or a deflationary Universe.
|

Ty = =M 2[d,0,da° + 2g,d,0 0,0 + 33 (@,0°)
- [W;MWU - dy(pdv(p - 2aWQyQy(p ] [d
+ ng (dﬂa)zx + dl/&)ﬂ)&){f&)o—] + 4aE.gx(77 d a)

Under the ansatz that the conformally covariant derivative
of the background scalinon field vanishes, d,p = 0, which
means that the background scalinon field has vanishing
conformally covariant kinetic energy, we then arrive at the
relation g,@,(x) = g,,w,(x) and the vanishing covariant
kinetic energy for the background gauge fields, i.e.,
d,o, = (0, — g,@,)®, = (0, — g,W,)®, = 0. It is then
not difficult to check that the above energy-momentum
tensor is conserved. In fact, we yield

7,=0,

uw (184)
which shows that the total energy-momentum of the
background gravifield spacetime vanishes. Namely, the
background gravifield spacetime represents the whole
Universe, as it has no energy-momentum exchanging with
its exterior.

Let us examine the solution of the background scalinon
field under the coordinate translation in the flat Minkowski
spacetime,

x, = X = x4 at,
m
P(x) > P (¥) = ————
(ﬂ( ) (pxi( ) aS(lq:xlﬂK.ﬂ)
my 4

= —) = @K/ji (x)’

185
as(1Fx'c, . (185)

- aWQGQ”
A, 0% + (dﬂ&),, + d,,c?)ﬂ)d,,&)" - dﬁ&)ﬂd"&)y
— L.
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In any case, the Universe will undergo an extremely rapid
exponential evolution in light of the cosmic proper time,
while it remains unclear how the inflation of the Universe
occurs and which epoch the inflationary Universe gets end.
It is hard to make a reliable issue on such a question without
considering the quantum effect.

Let us first check the Lagrangian density and energy-
momentum tensor for the background gravifield spacetime
after gravitational gauge symmetry breaking. The
Lagrangian for the background fields can be shown to
have the following form:

L= —60,0,0"@" + 12azg2@ /2,4)2 A,
22229

= —60°& Ma),, + Raggs@, @ — A,p*. (182)

The energy-momentum tensor for the background gravi-
field spacetime is found to be

% = 2059, (d,@ + 3g,0,0" ) p?

(183)

|
with

myy = /K" =m/(1Fa'k,),

(186)

Ko =K,/ (1Fa'x,),

which corresponds to the rescaled cosmic vector and
cosmological mass scale, respectively. It indicates that
the solutions of the background fields in difference refer-
ence frames of coordinates under the coordinate translation
can equivalently be characterized by the rescaled cosmic
vector. In other words, the background gravifield spacetime
can well be described by the cosmic vector k.

From the above Lagrangian, it is easy to find the minimal
condition for the background scalinon field @(x), which
leads to the following relation and a simplified Lagrangian:

2
w) <“—— 1) (187)
Eg s

where the relation between the background vector field and
scalinon field is consistent with the solutions obtained from
the equations of motion given in Eqgs. (113) and (119).
Thus, the minimal of the background scalar potential leads
the background scalinon field to approach
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»— 0, for 6a2/g? > As = 6azai > 6azg?,

» — oo, for 6at/g? < A, = 6agak < 6azg?,  (188)
which implies that the Universe characterized by the
background gravifield spacetime evolves spontaneously,
without considering quantum effect, to be stabilized at an
infinitely small conformal size @ — 0 for a% > apg?
(ak > A,g7/6) or to be stabilized at an infinitely large
conformal size » — +oo for a2 < apg? (a§ < A,9%/6).

Let us now discuss the quantum effect on the background
gravifield spacetime. For our present purpose, we are going
to demonstrate only a one-loop quantum effect. It can be
shown that the leading terms of the effective Lagrangian for
the background scalinon field get the following form:

Ls = up(@(x) + ¢(x))* = dy(@(x) + ¢(x))*
+20,(@(x) + 0(x)?9*(x) + Ay 9> (x) = Ju@* (),

(189)
with
2 —_2 o 2
uy(My/u) = (4ﬂ)2yS(MU —u),
4 M%]
Ay(My/n) =2 + (47;)2/% ln7,
] 2
Ry (My/p) = Wyg(M%] — i),
Ty =5+ e (190)
uv\My/p Pag* " (4n)? S 2
with
V§ =31 =64, = cugh — .42
22 = =122 + (2y2 — A)y? + Ll + it
y2 = A + 02, %=+ &, (191)

where My defines a basic energy scale of QFT in the
ultraviolet (UV) region and y is the sliding energy scale
reflecting the infrared (IR) property of QFT. The effective
parameters u7, and A, receive contributions from loops of
the singlet fermion field and scalinon field characterized
by the terms proportional to the parameters y, and A,
respectively. The contributions from the scaling and spin
gauge fields as well as the scalinon field are given by the
terms proportional to the parameters g,, and g, as well as
ag. The coefficients c¢,,, ¢, ¢y, %, Ty, and ¢, represent the
magnitudes of the contributions, which will be discussed in
detail elsewhere, as their values do not affect our present
general considerations.

It is seen that the purely quantum induced effective mass
parameters 2, and 2, arise from the loop quadratic

PHYSICAL REVIEW D 93, 024012 (2016)

contributions characterized by the UV basic energy scale
M ; and the sliding energy scale y as well as the coupling
constants at a given energy scale y. Note that it is such a
loop quadratic contribution that causes the breaking of the
global scaling symmetry. It has recently been shown that
the quantum loop quadratic contributions can play an
important role for understanding the electroweak symmetry
breaking and hierarchy problem within the SM of particle
physics [39]. Similarly, for a quantum-induced positive
mass parameter u3, iz, > 0 with y3, y2 > O and u < My, it
causes an unstable potential and generates the inflation of
the early Universe; namely, the Universe begins from an
infinitely small conformal size ¢ ~ 0 and approaches to an
infinitely large conformal size ¢ — oo0. Once the effective
coupling parameters A;; and A, including the quantum loop
contributions gain positive values A, 1, > 0, the effective
potential for the background scalinon field is broken down
spontaneously to an evolving minimal vacuum, which leads
the inflationary Universe to end at a global minimal. Since
the couplings y, 4y, g;, g,,,» and ag are all free parameters,
one can always yield a solution to satisfy the requirements.
In general, the background scalinon field will get an
evolving vacuum expectation value (eVEV)

o — o /’tz + /1sﬂ2 /ZU
ViMy/u) = (@ +¢)*) = m

=2
Ay | As
= —U“‘-_Vg(MU/M),

V(Mu/w) = (7) = 3+ 3 (192)

which makes the inflationary Universe evolve via the
minimalizing vacuum state when the sliding energy scale
runs down.

The scalinon field not only acts as a quantum field but
also characterizes the conformal size of the Universe. At the
beginning of the Universe with an extreme small conformal
size, all quantum fields must have a high energy momen-
tum around the UV basic energy scale M. On the other
hand, the smallness of the scalinon field characterized by
the cosmological mass scale m, indicates that a small
quantum fluctuation can cause a significant change to the
magnitude of the scalinon field. Consider the quantum
fluctuation to be at the order of cosmological mass scale
m,; namely, the sliding energy scale is taken to be
we~ My —m,, and the quadratic contribution is given
by M% — (My —m)? =2Mym, + m? =2Mym,. Thus,
the eVEV will be stabilized around

1 yi+ 93/ A
———/2M s
(@m) \| ay =223, VU

o U334\ s+ 334/ A2
Ve=ViM = |2 RO B i TS
s=VsMu/ko) =z L,ﬁ(@) ho — /iy

X \/2Mym,, (193)

Vs=Vs(My/py) =
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which determines the epoch when the inflationary Universe
ends. The corresponding scale factor of the Universe is
given by

e 1 H.ct,

a, = (a(x)) = = age (194)

Mg  asMg 1 —ken,

With the above considerations, we come to the con-
clusion that it is the quantum effect with the loop quadratic
contribution that causes the breaking of global scaling
symmetry and generates the inflation of the Universe; its
conformal size is characterized by the eVEV. The infla-
tionary Universe eventually ends when the eVEV of the
background scalar potential reaches a stabilized minimal
value. Such an inflation of the Universe may be referred
as the quantum scalinon inflation. We shall discuss its
phenomena in detail elsewhere.

IX. SPACETIME GAUGE FIELD AND QUANTUM
DYNAMICS WITH GOLDSTONE-LIKE
GRAVIFIELD AND GRAVIMETRIC FIELD

It has been shown that, when taking the gravifield basis
{¥* =y, %dx"} as a one-form with the gauge potential
G,(x) = x,%(x) 17, in the flat Minkowski spacetime, we
have the corresponding gauge covariant field strength

a(x) = V4 (x) = V,r,%(x) which describes the gravi-
tational force in the inertial reference frame of coordinates.
Therefore, the locally flat gravifield spacetime character-
ized by the gravifield basis {y“} is regarded as a dynamical
spacetime. The quantization of gravitational fields and
matter fields leads to the quantum dynamics of the gravi-
field spacetime. To correlate the quantum dynamics of the
gravifield spacetime with the quantum dynamics of coor-
dinate spacetime, we are going to settle a special gauge
condition by utilizing the gravifield in such a way that the
spin gauge symmetry is transmuted into a hidden gauge
symmetry in the bosonic gravitational interactions. Thus, it
enables us to compare with the Einstein theory of general
relativity.

A. Spacetime gauge field with Goldstone-like
gravifield and gravimetric field

Let us express the quantum fields in the FEinstein-
type basis, which is realized by making a scaling gauge
transformation

= a, (), (%),
- $(x)/a,(x),
—0,Ina,(x).

24 (x)
$(x)
9 W, (%) = g, W, (x)

As a consequence, the quantum fields get the following
forms in the Einstein-type basis:
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X (%) = a, () [, + hy* (x)/ My
= (a(x) + @(x)/Ms)[n,“ + h,*(x)/ My],
2a'(0) = a7 (D)[nt = et (x)/My)
= (a(x) + o(x)/ M)~ " + b, (x)/ My] ",
x(x) = dety,(x) = ay(x) = (a(x) + p(x)/M;)*,
P(x) = Mg,
QP (x) = 7y @ (x) + QP (x),
gs@,(x) = 0, Ina(x),
W, (x) = w,(x) +w,(x),
w,(x) =0, (195)

where we have omitted the label “E” in all quantities for
convenience.

It is meaningful to construct an alternative gauge
field through the gravifield and spin gauge field as
follows:

I, (x) (196)

= )?aovu)(ua = )?aa(aﬂ)(ya + ngZb)(z/b)’
where the spin gauge symmetry becomes a hidden sym-
metry and the gravifield appears as a Goldstone-like field
that transmutes the local spin gauge symmetry into the
global Lorentz symmetry. The gauge field Iy, (x) is a
Lorentz tensor field defined in the flat Minkowski space-
time; we may refer it as a spacetime gauge field so as to
distinguish from the affine connection defined in the curved
spacetime.

Analogous to the background field approach, let us
decompose the spin gauge field into two parts, so that they

have the following properties under the spin gauge trans-
formation S(x) = e ®="/2 € SP(1, 3):
QP (x) = 0l (x) + @fP(x),
w,(x) = @, (x) = Sw,(x)S™" + 50,571,
1
(I)M(.X) = a)zb(x) Ezah,

@, (x) = @), (x) = Si,(x)S™",

1
b

X

('x) 2 ab

@,(x) = g, (197)

Correspondingly, the spacetime gauge field 1§, (x) consists
of two gauge-invariant parts under the spin gauge trans-
formation

g, (x) =T5,(x) +I5,(x),
U5, (%) = 22700, + g50%2,"),
va(x) = gs)?aG&)zh)(yb7 (198)
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where the gauge fields w%’ (x) and @2”(x) should not be all
independent; half of their degrees of freedom must be
reduced so that the independent degrees of the freedom are
compatible with the initial ones in Q4”(x). From the above
definition, it can be checked that I w(x) reflects an
antisymmetric part of the spacetime gauge field Iy, (x)
with the following relation:

f;zz(x) oc — _fz;('x))(u’u- (199)
Thus, let us impose a reasonable condition that I'j, (x) is
symmetric, ie., I, (x) =T7,(x). As a result, the spin
gauge field w@’(x) is characterized purely by the
Goldstone-like gravifield y,“. Its explicit form is found

to be

G502 (x) = 2xb, = 2 x = B2 A o e

Iﬁb = 8;4)(1/” - 8v)(/4a' (200)

Here a),‘jb (x) appears as a pure gaugelike field. With such a
form of w4 (x), it is not difficult to check that Iy, (x) gets
the following explicit form:

1,
FZZ/ = Fgﬂ = _)(aﬂ [8;4)(1//1 + 61/)(;!/1 - 8/1)(/411]7

2
)(;w (X) = )(ﬂa (x))(yb<x)nab7
2(x) = 24" ()" (). (201)

I, (x) is characterized by the tensor field y,, (x) [or its
inverse 7#*(x)] and appears as a pure gaugelike spacetime
gauge field. y,, (x) behaves as a Goldstone-like gravimetric
field of spacetime and concerns only ten degrees of
freedom. This reflects the fact that the spin gauge symmetry
is fixed by the Goldstone-like gravifield y,* to be as a
hidden symmetry.

From the decomposition of the spin gauge field, the
corresponding field strength of the spin gauge field is also
decomposed into two parts:

ab __ pab Hab
Ri, = R, + R,

ab __ ab ab a ..cb a ,..cb
R,ub - 8ﬂwl/ - auwu + gy (a)/lcwu — Wy Wy )’
nab ~ab ~ab ~a ~cb ~a b
R;w - vﬂa)l/ - vuwy + g (a)ﬂcwu — Wy Wy, )’

b
U

V,,&)Zb = 3,,5)317 + gsa)zcd)ib + g,@5.@%¢. (202)
By using the relations and identities between the gauge
covariant spin field and the spacetime gauge field
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~a ar % T slabl p
gswﬂh('x) =Xo rZu(x)ZVh =1, (x))(t[:;l]”/yv

A, + g5, = Ti (x)x," = 0,

01" + g5 + T ()7 = 0. (203)
it is not difficult to demonstrate that the field strength R4
for the spin gauge potential wi’ is related to the field
strength R}, which is characterized solely by the spacetime
gauge potential I';,. Explicitly, we have

gsRZLl? = lRG 7l

o'
2 uwpX op' mr,
[ c _ o _ T 10 A To
Ry = 0,07, - 0,15, —T,I7, + varﬂ,{’

~lab ags sa

)(1[7/)]<x> =Xo )(bp_)(ab)( p* (204)
Similarly, we yield the following relation between IE{Zf
and R}y

0.ReL = SR T,
ﬁﬂlfﬂ = vﬂfgp - vvf;jp - ffwfgfl + fﬁp ~Z/1’
V.5, =0, -Ti,I7,+T50, (205)
In terms of the spacetime gauge field, the field strength
of the gravifield is found to be

G/(ju = vﬂ)(ua - vu)(/ta
= aﬂ){ua - au)(ua + gs(QZh)(ub - be)(ub)
= (FZII - ng))(aa

= (fZV_fZﬂ))(JaE r

([;w])(aa’ (206)

where I ‘[;w] defines a totally antisymmetric spacetime

gauge field.

In general, the field strength for the spin gauge field can
be represented by the field strength of the spacetime gauge
field as follows:

1 s ~lab] - ~0 ~lab]
gx RZ? = 5 Rﬂb/}%i/]ﬂpp = (R/,w/) + RMW)))(E;,]I’]/)‘O, (207)

| =

which shows a hidden gauge formalism.

B. Quantum dynamics of spacetime in the hidden
gauge formalism

In the hidden gauge formalism with the spacetime gauge
field and corresponding field strength, we are able to
reformulate the action for the gravitational interactions
with spin and scaling gauge symmetry breaking into the
following general form in the Einstein-type basis:
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I, Uy i T 7 - 1, " s/ - 4
Sy = / d“xx{Eb("”(‘lfxﬂlDy‘I“rWﬂlVyw)+H-C-]—ysMsWJrﬁ’(X)—Zx"”x P s+ Wi Woiw + 957 RERw 6]

A/l,\/ [odP e 1 1 1,\/,\/ Anp 'N - - T
+aWM.%)(Im |:Z)(WZGU’F6 y]rﬁt’u’] +§ <3+%> g%vwﬂwﬂ/] _Z)(/m)(w ()(ao")(pp _nﬁqﬁ-’)wﬂwﬂ/rﬁw]rﬁ//u’]

+aEM§(1 _)?paa)/)a)ﬁ/aEM%‘)R_lsM‘é—’_g;l (vo”&)o’_gs@o"@o'))?ﬂal ()?y/)RI(;l/[J +)?M)—Rﬂl/)

- 2)?””1)?1/1/ (vﬂ&)u) (vﬂ’ 6)1/) - ()?va@v)z + zg‘vﬂ?ﬂyaﬂ ()?pga)p@o-)@u _495')?”1/ (vya)u ))?/m&)p@o- }

with

Vo, =0,0,—-1,0, (209)
where the spacetime gauge field I, (x) and its field
strength R7,, consist of two parts:

I () =T(0)+17,(x). RL,=R,+R,. (210)
with the rank-2 tensor field strength R,, and the scalar
tensor field strength R defined as follows:
R.,=-R.7%=RZ, =R, +R

puY

R=4R, =R+R,
R, = 0,15, = 0,17, —T,Tg, + T3, = Ry,
ng = ay 1n)(7

R.,=V.I5 -V, I, -+,
1

ng =I,= Exva)?bﬁgs&)gb’ (211)
where R,, is a symmetric rank-2 tensor field strength
characterized purely by the symmetric Goldstone-like
gravimetric field y,,. The above action possesses a global
Lorentz and scaling invariance except for the fermionic
interactions. It is manifest that, after the gauge symmetry
breaking (y,,) = 1,,. the totally antisymmetric spacetime
gauge field I" "/D] and the scaling gauge field w,(x) as well
as the singlet fermion y(x) become massive in the Einstein-
type basis.

The gravitational interactions can be described by the
antisymmetric spacetime gauge field I7,(x) with
I Z;(x))(w =-TI ’;,:,(x))(ur,, and the symmetric Goldstone-
like gravimetric field y,, except for the fermionic inter-
actions that always couple with the gravifield (where we
have used the notation y, = y,"y,). Though the gravita-
tional gauge symmetries become hidden ones in the
bosonic gravitational interactions, the independent physical

1 A !N Al g/ ~5 = A A T — — ~ — A — — A = —
+gs_]§()(0'6’)(pp —ﬂtﬂr’?ﬁ/))(””)(”” R,Zuprﬁly’]wp’ _){1414 )(W r([;;p]wu’vu’wd+6aEgsM§(Xlwv/4wu +gs)(”ywﬂwu)_3g§()(m/wﬂwy)2

(208)

|

quantum degrees of freedom in terms of the quantized
fields should be the same as the gauge theory of quantum
gravity analyzed in the previous section.

Therefore, in terms of the hidden gauge formalism, we
come to the conclusion that all the bosonic gravitational
interactions can be characterized by the symmetric gravi-
metric field y,, with ten independent field components and
the antisymmetric spacetime gauge field that has the same
independent field components as the spin gauge field. It is
manifest that the six independent field components of the
gauge-type gravifield y,* are reduced in the hidden gauge
formalism for the bosonic gravitational interactions, which
enables us to compare the bosonic part of the above action
with the Einstein theory of general relativity. It is noticed
from the above action that there is an interaction term given
by the scalar tensor field strength R = 7**R,, = R + R.
Here the first part of the scalar tensor field strength R does
characterize the Einstein theory of general relativity, as it is
governed purely by the gravimetric field y,,. Nevertheless,
the fermionic interactions always involve the gravifield y,“
or y,”, so that the basic gravitational field should be the
gravifield y,“ rather than the gravimetric field y,, when
considering the basic fermionic interactions. It indicates
that the Einstein theory of general relativity must result as
an effective low-energy theory by integrating out the
fermion fields and also integrating the high-energy con-
tributions into the renormalized coupling constants and
quantum fields.

X. GRAVITY EQUATION BEYOND AND
EXTENSION TO EINSTEIN’S EQUATION AND
HIDDEN GENERAL COORDINATE INVARIANCE

To be more explicit in comparison with the Einstein
theory of general relativity, we shall reformulate, in terms
of the hidden gauge formalism, the equation of motion for
the gravifield given in Egs. (95) and (96) in the Einstein-
type basis. For that, let us first rewrite the gauge-invariant
action of Eq. (49) into the following expression in the
hidden gauge formalism:
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S, = /d4x)(£,

PHYSICAL REVIEW D 93, 024012 (2016)

1 A = . - . — 1 A /Al/l// — o
L =3[ (VgD + iV o) + Hee] =y Msipy + L1(x) = 2 2% 2\ FuF oy + Wi Ww + 97 R Ryi0p0]

1 NN jad adp) / N
+ aWMg Z/’(ﬂﬂ%yv)(go‘/(r‘[:tl/] + gWW([;U/])(FE«l/V,] + gWWEA’I/]) + (XEM?R + M%ga//'{/ﬂﬂ W/"Wﬂ/ — ASM4,

with the spacetime gauge field

FZU()C) :faavy)(ua = )?ao-(ay)(ua —+ ngZb)(bb)7
sz = C()Zb + sz,

rg, =19, +1I7

pv>
U5, (%) = 24700, + g508,2."),
75, (x) = 2.7,
P =T =T =T~ 17,
We, = Wung = W, (213)

and the field strength tensors
Rﬂll)f; = RZ”P/)? P, R/,n/pa = R/(;vp)( odor
R = ,R'/w)?m/ = Ry”ﬂ;v R = _R/)Zvng = Rﬂzw

=
R, =R,.4", Ry =R/ ¥ pws (214)
where the symmetric spacetime gauge field I}, is governed
purely by the gravimetric field y,, as shown in Eq. (201)
and I" "v(x) is an antisymmetric part of the spacetime gauge
field with the antisymmetric relation I, (x)y,, =
-I (X)X - Note that here we have used different notations
for the gauge fields so as to distinguish two cases: with and
without the spin and scaling gauge symmetry breaking.
Once the spacetime gauge field is decomposed into
symmetric and antisymmetric parts I, (x) =T, (x)+
I',(x), its field strength Rf,, can be written into two
parts, respectively,
Ry =R, + RL

Hvp

(215)
where Ry, is determined solely by the symmetric space-
time gauge field I'j,. The rank-2 tensor field strength R,
(R,*) and the scalar tensor field strength R are also
decomposed into two parts:

RW = RW + 7?’/“/’ ’R,”” =R+ + ’f\{yﬂ’
R=R+R, R=R," =R/, (216)

where the first part R, is the symmetric tensor field
strength that is governed solely by the symmetric gravi-
metric field. The corresponding scalar tensor field strength

(212)

|
R in the action describes the Einstein theory of general
relativity.

The gauge-invariant gravifield tensor G,*” and gravifield
tensor current G,# defined in Eqs. (95) and (96) get the
following expressions in the hidden gauge formalism:

2 = g M Tt + 00— W]
- _gypﬂa

gl/’l = r,gygaﬂp + wapgyWJ' (217)

In terms of the hidden gauge formalism, the gravity

equation can simply be expressed as

VG =TNW, (218)

with a definition for the gauge-invariant covariant
derivative

v, G, =08,G, —I5,G," —

gW, G/ (219)

The energy-momentum tensor is rewritten as

1 i
T = =0 £+ 527"V DY + gy Voy + Hee

28 P TFFlo + Wit Waa + 95 R Ry

Wp
+ yawM quﬂ?””l [ a)fuf ﬁ/p]f flia]
+ (2 + l/aW)gng;/Wl/ + ggv)(ﬂ’u)?pawpwﬂ]

+ 2yagMER (220)

with the Lagrangian density given in Eq. (212).

In general, the above gravity equation holds for 16
components, as the energy-momentum tensor is not
symmetric. Let us decompose the energy-momentum

tensor into symmetric and antisymmetric parts through a
redefinition

Tﬂl/ = T”G)(m, = Guv -+ T;u/ + T[;w]’ (221)

where G, and T, are the symmetric parts and 7, is the
antisymmetric part. They are explicitly given by
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1
G/w = 2aEM§)( |:R,Ltl/ - E)(m/R:| ,

T;w :)(/AUTS + Tﬁy _)(/wTF + Tllfy

1 1
- _)(ﬂyTR + T/S;y - _)(/wTGv (222)
2 4
for the symmetric part with the definitions
TS = xy Mgy + A M,
1 -
Tﬁy = Z%[l\p()(ﬂpv +)(uDﬂ)\II
+ip(r, vV, + 2.V, )y + Hel,
T/va :)(aEMg(,f?’/w + kvﬂ) +)(M§g§vWﬂWyv
TS, = =22 [FlpFlo + WiWie + 62 Reif Rogap)
+XaWM§b?pafﬁ4p]f[vaa] + 2.9ngva]’
TF = Tﬁvﬂ?ﬂy’ TR = Tﬁvﬂ?ﬂy,
T¢ = T/(t;u)?”y’ f[uo‘a] = fﬁm])(/ia’ (223)
and
Ty) = Gpu) + T,
be] = ZaEMg(R;w - Rw)’
1 .-
T[/,w] = ZX[I\II(ZﬂDD _ZD,D;!)\II
+ u/_/()(uvu _)(L/v/l)l// + HC] (224)

for the antisymmetric part.
Let us also decompose the gravifield tensor into sym-
metric and antisymmetric parts:
;45 = gﬂap)(m/ = Guf + g[u/:] (225)

with
1 A
Gﬂpy = aWMggw)( |:§ (I’[le/ + %Wﬂ) _)(ﬂl/)(pawo-] ,
2 500 1
Gy = awMzy [F ol + Gws (MW, — nﬁWﬂ)} . (226)

The covariant derivative of the gravifield tensor G,, can
also be expressed into the corresponding symmetric and
antisymmetric parts:

Th=V,Gu = T4+ T8,

=
vpgll'f = (ap - ngvp)g/“/j

]’

- Fgﬂ go'ﬁ - FZyguff =-I le goﬁ’

(227)

with Tgv the symmetric part and Tﬁw] the antisymmetric
part. Their explicit forms read
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T/({u = (8,0 - wap)Gﬂ;L - FZ,,Ga/L - rvaﬁﬁ
1 -~ -
~ S 73,68 + 75,94
1.~ -
= T}‘X/ _)(/wTW + aWM§)(§ b(pg(r/(;;tr[aua]
—+ fgvf[aya]) - gw(fgywy + fguWﬂ>]’
G _
T = (0, = 9Wp) G = TouGi0) + 1590
1 -~
- 5 [r;))-ﬂgo'ﬁ

I -
= aWM.%)(E b(p (vpr[uow] - vpr[/mb])

- fﬁugﬂm

- wa/u/ - gw(fat;Wy - fﬂiwﬂ)] (228)
with definitions
1
T = aWM?ggW)(E VW, +V,W,),
™ :)?WT";‘:,
VW, =(0,-g,W,)W, - FZ,,W/,,
W, = (%WD - ayW”,
Vol wow) = (0 = W)l oy = Toul (oo
~ 0ol va) = Tl woa) = L il o) (229)

From the above analyses, we arrive at two types of gravity
equation by comparing the symmetric part and antisym-
metric part of equation V,G/, = T ,,, namely,

G, =-T,+T5, (230)
_ 4
Gy = =T + 17, (231)

where the first equation is the extension to Einstein’s
equation of general relativity, i.e.,

1
2(XEM§)( |:le - EJ(MVR]

1
= - |:)(/4DTS =+ T;fu _)(/u/TF =+ Tﬁzx - E)(/U/TR

1
+ TS, - Z)(/WTG} +Th = 2TV

(I .
+ “WM@(E (Ll 1ova) + T ool oya)

— gu(T5, W, +T5,W,)], (232)

while the second equation is a new type of gravitational
equation
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2aEM§)((7~?'/w - kw) + aWM_ZSXWp(;(vpf[yau] - vpf‘[wm])
+ gw(f:ﬂwv - f{fDWﬂ)]

1 .-
= _EZ[Z\IJ(X#,DIJ _)(uDﬂ>\Il

- )(aWMggw W/un

(233)

which characterizes the twisting and torsional effects.

It is natural to ask how the first gravity equation in the
hidden gauge formalism becomes a natural extension to
Einstein’s equation of general relativity though we start
from the principles and postulates alternative to the ones of
general relativity. In the general relativity, the main postu-
late made by Einstein is that the physical laws of nature are
to be expressed by equations which hold good for all
systems of coordinates, which indicates that the physical
laws should be invariant under the general linear trans-
formations of local GL(4,R) symmetry. In fact, it is
interesting to note that via a linear group transformation
the action of Eq. (212) is indeed invariant under a general
coordinate transformation

Ox'* Ox?
Y — v /  —
dx B dx", 8,, RRT d,,
Ox'¥ OxH
Vi=ga Ve Al =5aA (234)

with V% and A% representing vector fields, such as Vi, = 7,/
and A} = (AL Q% »,*.W,). Although the gauge theory
of gravity is built based on the global Lorentz symmetry
of coordinates in the flat Minkowski spacetime, either the
gauge- and Lorentz-invariant action of Eq. (49) or the
Lorentz-invariant action of Eq. (212) in the hidden gauge
formalism, they all possess a hidden local symmetry of
linear group GL(4, R) under the general coordinate trans-
formation. Such a hidden general coordinate invariance is a
natural consequence of the postulate that the action must be
expressed to be coordinate independent in the gravifield
spacetime as shown in Eq. (45). Therefore, the postulate
of the gauge invariance and coordinate independence is
thought to be a more general one.

Before ending this section, we would like to emphasize
again that the gravitational interactions with boson fields
can be characterized by the symmetric gravimetric fields
Xuw in terms of the hidden gauge formalism, while the
gravitational interactions with fermion fields have to be
described by the gravifield field y,“. In the gravity
equations, it is explicitly seen that the fermionic energy-
momentum tensors T,fb and Ty, always couple to the
gravifield y, = x,%v,.

By comparing to the Einstein theory of general relativity,
we are able to fix the combination of the coupling
parameter and scaling mass scale as
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1 1

(235)
with Mp the Planck mass and ay and ay the effective
couplings at low energy. Such a relation results from the
requirement that the free part of the gravifield in quantizing
the gauge theory of gravity Eq. (49) is equivalent to the free
part of the gravimetric field in quantizing the general theory
of relativity as an effective field theory at low energy.
Namely, the high-order derivative terms of the gravimetric
field in Eq. (212) is considered to be negligible in a good
approximation when the energy scale is much below the
Planck scale Mp.

Furthermore, we would like to point out that the hidden
gauge formalism Eq. (212) for the gauge theory of gravity
[or Eq. (208) with gravitational gauge symmetry breaking]
is presented in order to compare with the general theory
of relativity formulated by Einstein based on geometrical
considerations in curved spacetime. In general, for a
quantum theory of gravity, it is demonstrated in the present
paper that the gauge theory of gravity Eq. (49) based on
gauge invariance and coordinate independence should
provide a better approach than the usual straightforward
methods of perturbative quantum gravity based on the
general theory of gravity. In principle, only the gravifield is
essentially thought to be a basic gravitational field that
interacts with the basic building blocks of fermionic matter
fields, and also only the gravifield is really treated as a
gauge-type field that is associated with the gauge field in
the coset Tg® = PG(1,3)/SP(1,3) of internal Poincaré
gauge group PG(1,3) in the spinor representation of gravi-
field spacetime. Thus, the quantization of the gravifield can
be carried out straightforwardly in a standard approach
within the framework of relativistic QFT in the perturbative
expansion. In contrast, as shown in the hidden gauge
formalism Eq. (212), the Goldstone-like gravimetric field
in the bosonic interactions concerns high derivative gravi-
tational interactions, i.e., g5 ;?””;?”"R,,‘f,ﬁ R, sqp, Which makes
the quantization of gravity unusual. Only in the low-energy
limit with an energy scale much below the Planck scale M p
does it enable us to take appropriately the general relativity
of gravity as an effective field theory to make a perturbative
quantization of gravity [40].

Moreover, it is interesting to notice that the relation ay =
2ay given in Eq. (235) indicates that the bosonic gravi-
tational interactions in the gauge theory of gravity Eq. (49)
possess only a local gauge symmetry of spin group SP(1,3)
rather than a local symmetry of internal Poincaré gauge
group PG(1,3). This is due to the fact that only in the case
with ay = ay does the bosonic part of the action in
Eq. (49) get an enlarged symmetry of gauge group SP
(1,4) that can be regarded as a gauged internal Poincaré
group PG(1,3) in the spinor representation of gravifield
spacetime. In fact, for the gravitational interactions with
fermionic fields, there possesses in any case only a local
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gauge symmetry of spin group SP(1,3). Thus, the gravi-
tational interactions for both bosonic and fermionic parts
can only have a local gauge symmetry of spin group
SP(1,3) as a subgroup of internal Poincaré gauge group
PG(1,3). With such an observation, the hidden gauge
formalism of the gauge theory of gravity Eq. (212) is, in
general, not expected to be obtained as an extension of the
standing way of gauging the global Poincaré group P(1,3)
in flat Minkowski spacetime.

In conclusion, within the framework of relativistic QFT,
the postulate of gauge invariance and coordinate independ-
ence should be a key principle for establishing a gauge
theory of quantum gravity shown in Egs. (45) and (49) with
the gravifield as a basic gauge-type gravitational field.

XI. CONCLUSIONS AND REMARKS

By treating the gravitational force on the same footing as
the electroweak and strong forces within the framework
of QFT in flat Minkowski spacetime, we have described
the QFT of gravity based on the spin and scaling gauge
symmetries. A biframe spacetime has been initiated to
describe such a QFT of gravity. One frame spacetime is the
globally flat coordinate Minkowski spacetime that acts as
an inertial reference frame for the motions of fields, and the
other is the locally flat noncoordinate gravifield spacetime
that functions as an interaction representation frame for the
degrees of freedom of fields. The gauge invariance and
coordinate independence in the gravifield spacetime have
been shown to be a more general postulate for establishing
the QFT of gravity. Such a quantum gravity theory has been
demonstrated to have the following properties: (i) The basic
gravitational interaction is characterized by a bicovariant
vector field y,“(x) sided on both a locally flat noncoordi-
nate spacetime and a globally flat Minkowski spacetime.
x,“(x) is an essential ingredient for gauging the spin
symmetry SP(1,3) and scaling symmetry of the basic
fermion fields; it couples to all kinetic terms and interaction
terms of the gauge field and is referred as gravifield for
short. (ii) The locally flat noncoordinate spacetime is
spanned by the gravifield to form a locally flat gravifield
spacetime characterized by the dual gravifield bases {y* =
2 (x)dx*} and {7, = 7,/(x)0,}; such a gravifield space-
time shows a property of noncommutative geometry. The
vector field y“(x) = y,“(x)dx" has been regarded as the
one-form gauge-type potential in the Minkowski space-
time; its field strength describes the gravitational interac-
tion. It has enabled us to construct a gauge-invariant and
coordinate-independent action for the QFT of gravitational
interaction. (iii) The globally flat Minkowski spacetime in
QFT sets an inertial frame for a reference to describe
motions of quantum fields and to make a meaningful
definition for the momentum and energy; we are able to
derive equations of motion for all quantum fields. (iv) Such
a QFT of gravity has allowed us to obtain basic conserva-
tion laws with respect to all symmetries. An alternative
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equation of motion for the gravifield tensor has been
deduced in connection with the energy-momentum tensor.
(v) The spin and scaling gauge symmetries have been
assumed to be broken down to a background structure that
has global Lorentz and scaling symmetries. A unitary basis
defined by fixing a special scaling gauge condition has
been adopted to yield an exact solution for equations of
motion for the background fields. (vi) The geometric
property of the gravifield spacetime is, in general, charac-
terized by the gravimetric field and the scalinon field. The
resulting background gravifield spacetime has been found
to coincide with a Lorentz-invariant and conformally flat
Minkowski spacetime of coordinates. The background
gravifield spacetime has been shown to be characterized
by the cosmic vector with a nonzero cosmological mass
scale. Such a background gravifield spacetime is, in
general, not isotropic in terms of the conformal proper
time except in a special comoving reference frame. The
conformal size of the Universe has been shown to be
singular when the light travels close to the cosmological
horizon in terms of the conformal proper time or in the
comoving frame. It has also been demonstrated that the
Universe appears inflationary or deflationary in light of
the cosmic proper time.

The action of the quantized gravitational interactions has
explicitly been constructed in the unitary basis. The gauge-
fixing contributions to the quantization of gravity gauge
theory have been presented by using the Faddeev-Popov
formalism in the path integral approach. It has been shown
that it is, in general, no more difficult to make the
identification of the physical quantum degrees of freedom
and the definition of a quantum gravity theory analogous to
the quantization of Yang-Mills gauge theory. Based on the
background gravifield spacetime, we have explicitly writ-
ten down the leading effective action which enables us to
read the Feynman rules and investigate the quantum effects.
The main issue is the universal coupling of the inverse
gauge-type gravifield, which causes the nonlinear nature of
the theory and may result in the nonrenormalizability of the
theory. On the other hand, the gravitational interaction with
the scaling gauge invariance indicates the existence of a
fundamental energy scale that characterizes the ultraviolet
behavior of the theory, so that the theory appears to be
infinite-free and meaningful by appropriately treating the
divergence integrals. When the spin and scaling gauge
symmetries are broken down to a background structure that
possesses the global Lorentz and scaling symmetries, there
exist rich gravitational interactions with the background
fields. The quantum effect on the inflation of the Universe
has been discussed based on the effective background
scalar potential of the scalinon field at the one-loop level.
We have concluded that it is the quantum loop quadratic
contribution that causes the breaking of global scaling
symmetry and generates the inflation of the early Universe,
and the end of the inflationary Universe occurs when the
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evolving vacuum expectation value of the background
scalar potential approaches a minimal condition.

When taking the gravifield as a Goldstone-like field that
transmutes the local spin gauge symmetry into the global
Lorentz symmetry, an alternative spacetime gauge field
has been constructed from the spin gauge field, i.e.,
I7,(x) = 2%, + 9s20,x,"), so that the spin gauge
symmetry becomes a hidden gauge symmetry. Such a
spacetime gauge field is a Lorentz tensor field defined and
valued in flat Minkowski spacetime. With this consider-
ation, we have presented an alternative action of quantum
gravity which shows that the bosonic gravitational inter-
actions can be described by the Goldstone-like gravimetric
field y,,(x) and the spacetime gauge field except for the
gravitational interactions with the fermion fields, which
enables us to compare the present gauge theory of gravity
with the Finstein theory of general relativity. It is manifest
that the Einstein theory of general relativity results as an
effective low-energy theory. Two types of gravity equation
have been obtained; one is as the extension to Einstein’s
equation of general relativity, and the other is a new type
of gravitational equation that reflects the twisting effect. It
is interesting to see that both the gauge-invariant action
and the Lorentz-invariant action in the hidden gauge
formalism possess a hidden symmetry of local linear
group GL(4,R). Namely, the resulting gauge theory of
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gravity possesses a hidden general coordinate invariance,
which indicates that the gauge invariance and coordinate
independence in the gravifield spacetime become a more
general postulate for establishing a gauge theory of
gravity.

Finally, we would like to remark that in this paper we
have described mainly a general framework for the quan-
tum field theory of gravity based on the spin and scaling
gauge symmetries and paid special attention to the mecha-
nism of quantum scalinon inflation of the Universe. We
shall leave other important issues elsewhere for further
investigations in detail.
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