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We consider new regular exact spherically symmetric solutions of a nonminimal Einstein–Yang-Mills
theory with a cosmological constant and a gauge field of magnetic Wu-Yang type. The most interesting
solutions found are black holes with metric and curvature invariants that are regular everywhere, i.e.,
regular black holes. We set up a classification of the solutions according to the number and type of
horizons. The structure of these regular black holes is characterized by four specific features: a small cavity
in the neighborhood of the center, a repulsion barrier off the small cavity, a distant equilibrium point, in
which the metric function has a minimum, and a region of Newtonian attraction. Depending on the sign and
value of the cosmological constant, the solutions are asymptotically de Sitter (dS), asymptotically flat, or
asymptotically anti–de Sitter (AdS).
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I. INTRODUCTION

The interest in nonminimal theories, i.e., theories that
couple the gravitational field to other fields using cross
terms containing the curvature tensor, started to rise as
alternative theories of gravity a long time ago.
The nonminimal field theories are based on five classes,

divided accordingly to the types of fields that couple
nonminimally to gravitation. The first class of nonminimal
models deals with the coupling of scalar fields with the
spacetime curvature. They arose first within the Scherrer–
Jordan–Thiry–Brans-Dicke theory where a scalar field
couples nonminimally to the Ricci scalar, and the different
authors [1–4] had different motivations to set up such a
theory; see [5] for a historical perspective. In addition, a
scalar field conformally coupled to gravitation was sug-
gested in [6]; see [7] for a review on the subject. The second
class is based on the modeling of nonminimal interactions
of the electromagnetic field with curvature, usually called
nonminimal Einstein-Maxwell model, see, e.g., [8–11].
The third class comprises Einstein–Yang-Mills models with
SUðnÞ symmetry [12,13]. The fourth class embodies
Einstein–Yang-Mills–Higgs models [14,15]. And the fifth
class covers models in which an axion pseudoscalar field
appears, for instance coupling to the electromagnetic and
gravitational fields in what may be called nonminimal
Einstein-Maxwell-axion models [16].
Within these nonminimal theories exact solutions

for electric stars [17,18], magnetic stars [19], wormholes

[20–22], electric black holes [23,24] (where star-like
solutions can also be found), and regular magnetic black
holes [25], with a SUð2Þ Wu-Yang ansatz (see [26] for the
original ansatz and work, and [27] for a full study of its
properties) have been constructed. Various aspects of
star and black hole physics were discussed in these papers
in all five classes of the mentioned nonminimally coupled
theories.
Regular black holes are black holes without spacetime

curvature singularities and have been constructed with
general relativity coupled to some form of matter or within
alternative and extended theories of gravity. For a sample of
regular black holes see [28–44].
In this vein, we want to further investigate nonminimal

regular magnetic black holes in spacetimes with a cosmo-
logical constant, extended thus the work where no cosmo-
logical constant is considered [25]. We discuss new
examples of such exact solutions of a Λ nonminimal
SUð2Þ-symmetric theory of a gauge field of magnetic type
satisfying the Wu-Yang ansatz. Depending on the sign and
value of the cosmological constant the solutions are asymp-
totically de Sitter (dS), asymptotically flat, or asymptotically
anti–de Sitter (AdS). The new features appearing with the Λ
term in the structure of the black holes with a regular center
are certainly of interest. If the dark energy is indeed a
cosmological constant term and if a fundamental theory is
nonminimal then our study displays the role of the dark
energy on the regularization of the internal structure of
black holes.
The paper is organized as follows. In Sec. II we set up the

general formalism for a nonminimal Einstein–Yang-Mills
theory. In Sec. III we present a specific choice for the
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nonminimal parameters and display the important reduced
master equation. In Sec. IV we investigate the properties
and the horizons of the exact solution. A thorough analysis
is made of the solutions, in particular of the regular
magnetic black hole solutions, for positive cosmological
constant in Sec. V, for zero cosmological constant in
Sec. VI, and for negative cosmological constant in
Sec. VII. In Sec. VIII we conclude.

II. NONMINIMAL EINSTEIN–YANG-MILLS
THEORY: FORMALISM AND EQUATIONS
FOR STATIC SPHERICALLY SYMMETRIC
WU-YANG-TYPE MAGNETIC OBJECTS

A. General formalism and master equations

We study a nonminimal Einstein–Yang-Mills theory
with SUð2Þ symmetry and a Wu-Yang-type ansatz as
proposed in [25]. This theory is a generalization of the
nonminimal Einstein-Maxwell theory with Uð1Þ symmetry
studied in [11]. The basic elements of this Einstein–Yang-
Mills theory are given now.
The nonminimal Einstein–Yang-Mills theory can be

described in terms of the action functional

SNMEYM ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
Rþ 2Λ

8π
þ 1

2
FðaÞ
ik FikðaÞ

þ 1

2
RikmnFðaÞ

ik FðaÞ
mn

�
: ð1Þ

Here g ¼ detðgikÞ is the determinant of the metric tensor
gik, R is the Ricci scalar, Λ is the cosmological constant,
and 8π is the coupling constant (we are putting the speed of
light and the gravitational constant equal to one, c ¼ 1,
G ¼ 1, so that 8πGc4 ¼ 8π). Latin indices without parentheses
run from 0 to 3. Group indices, ðaÞ, run from 1 to 3, and
when repeated should be summed with a Kronecker delta
metric. The nonminimal susceptibility tensor Rikmn is
defined as

Rikmn ≡ q1
2
Rðgimgkn − gingkmÞ

þ q2
2
ðRimgkn − Ringkm þ Rkngim − RkmginÞ

þ q3Rikmn; ð2Þ

where Rik and Rikmn are the Ricci and Riemann tensors,
respectively, and q1, q2, q3 are the phenomeno-logi-cal
parameters describing the nonminimal coupling of the
Yang-Mills field with the gravitational field. The SUð2Þ
Yang-Mills field is described by a triplet of vector poten-
tials AðaÞ

m , where the group index ðaÞ runs over three values.
The Yang-Mills field components FðaÞ

mn are connected to the
potentials AðaÞ

i by the formulas

FðaÞ
mn ¼ ∇mA

ðaÞ
n −∇nA

ðaÞ
m þ fðaÞ·ðbÞðcÞA

ðbÞ
m AðcÞ

n : ð3Þ

Here ∇m is a covariant spacetime derivative, and the

symbols fðaÞ·ðbÞðcÞ denote the real structure constants of the

gauge group SUð2Þ.
The variation of the action (1) with respect to the Yang-

Mills potential AðaÞ
i yields

D̂kHðaÞik ¼ 0; ð4Þ

with

HðaÞik ¼ FðaÞik þRikmnFðaÞ
mn: ð5Þ

The tensor HðaÞik is the non-Abelian analog of the exci-
tation tensor in electrodynamics. This analogy allows us to
consider Rikmn as a susceptibility tensor. The gauge

covariant derivative D̂m of an arbitrary tensor QðaÞ···
···ðdÞ is

defined as follows

D̂mQ
ðaÞ…
…ðdÞ ≡∇mQ

ðaÞ…
…ðdÞ þ fðaÞ·ðbÞðcÞA

ðbÞ
m QðcÞ…

…ðdÞ

þ… − fðcÞ·ðbÞðdÞA
ðbÞ
m QðaÞ…

…ðcÞ −…: ð6Þ

The variation of the action functional Eq. (1) with respect to
the metric gik yields

Rik −
1

2
Rgik ¼ Λgik þ 8πTðeffÞ

ik : ð7Þ

The effective stress-energy tensor TðeffÞ
ik appearing in Eq. (7)

can be divided into four parts,

TðeffÞ
ik ¼ TðYMÞ

ik þ q1T
ðIÞ
ik þ q2T

ðIIÞ
ik þ q3T

ðIIIÞ
ik : ð8Þ

The first term

TðYMÞ
ik ≡ 1

4
gikF

ðaÞ
mnFmnðaÞ − FðaÞ

in FnðaÞ
k ð9Þ

is the stress-energy tensor of the pure Yang-Mills field.
The definitions of the other three tensors are related to the
corresponding coupling constants q1, q2, q3. So,

TðIÞ
ik ¼ RTðYMÞ

ik −
1

2
RikF

ðaÞ
mnFmnðaÞ

þ 1

2
½D̂iD̂k − gikD̂

lD̂l�½FðaÞ
mnFmnðaÞ�; ð10Þ
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TðIIÞ
ik ¼ 1

2
D̂l½D̂iðFðaÞ

kn F
lnðaÞÞ þ D̂kðFðaÞ

in FlnðaÞÞ�

−
1

2
gik½D̂mD̂lðFmnðaÞFlðaÞ

n Þ − RlmFmnðaÞFlðaÞ
n �

− FlnðaÞðRilF
ðaÞ
kn þ RklF

ðaÞ
in Þ

− RmnFðaÞ
im FðaÞ

kn −
1

2
D̂mD̂mðFðaÞ

in FnðaÞ
k Þ; ð11Þ

TðIIIÞ
ik ¼ 1

4
gikRmnlsFðaÞ

mnF
ðaÞ
ls

−
3

4
FlsðaÞðFnðaÞ

i Rknls þ FnðaÞ
k RinlsÞ

−
1

2
D̂mD̂n½FnðaÞ

i FmðaÞ
k þ FnðaÞ

k FmðaÞ
i �: ð12Þ

Now we consider the master equations for static spherically
symmetric spacetimes and objects.

B. Spherical symmetric ansatz, nonminimal
Wu-Yang-type magnetic ansatz and

the equations

Let us consider a static spherically symmetric spacetime
with metric

ds2 ¼ Ndt2 −
dr2

N
− r2ðdθ2 þ sin2θdφ2Þ: ð13Þ

Here ðt; r; θ;φÞ are spacetime spherical coordinates and N
is a function depending on the radial variable r only.
The gauge field is considered to be characterized by the

Wu-Yang ansatz (see, e.g., [25]). We use a position
dependent basis tðrÞ, tðθÞ, tðφÞ for the generators of the
SUð2Þ group, instead of the standard basis tð1Þ, tð2Þ, tð3Þ.
The generators tðrÞ, tðθÞ, tðφÞ are defined in terms of tð1Þ,
tð2Þ, tð3Þ as

tðrÞ ¼ cos νφ sin θtð1Þ þ sin νφ sin θtð2Þ þ cos θtð3Þ;

tðθÞ ¼ cos νφ cos θtð1Þ þ sin νφ cos θtð2Þ − sin θtð3Þ;

tðφÞ ¼ − sin νφtð1Þ þ cos νφtð2Þ; ð14Þ

and satisfy the commutation relations

½tr; tθ� ¼ tφ; ½tθ; tφ� ¼ tr; ½tφ; tr� ¼ tθ: ð15Þ

The Wu-Yang-type ansatz is of the form (see [25] for
details)

AðaÞ
0 ¼ 0; AðaÞ

r ¼ 0; AðaÞ
θ ¼ δðaÞðφÞ;

AðaÞ
φ ¼ −ν sin θδðaÞðθÞ: ð16Þ

The magnetic parameter ν is a nonvanishing integer. The
field strength tensor has only one nonvanishing component,

FðrÞ
θφ ¼ −AðφÞ

θ AðθÞ
φ ¼ ν sin θ: ð17Þ

Clearly, it is a magnetic-type solution and it does not
depend on the parameters Λ, q1, q2 and q3.
Then, the nonminimal gravitational field equations

reduced to spherical symmetry have the form

1−N
r2

−
N0

r
−Λ

¼ 8πν2

r4

�
1

2
−q1

N0

r
þð13q1þ4q2þq3Þ

N
r2
−
q1þq2þq3

r2

�
;

ð18Þ

1 − N
r2

−
N0

r
− Λ

¼ 8πν2

r4

�
1

2
− q1

N0

r
−ð7q1 þ 4q2 þ q3Þ

N
r2

−
q1 þ q2 þ q3

r2

�
;

ð19Þ

1

r
N0 þ 1

2
N00 þ Λ

¼ 8πν2

r4

�
1

2
−
q1N00

2
− ð7q1 þ 4q2 þ q3Þ

�
N0

r
−
2N
r2

�

þ 2ðq1 þ q2 þ q3Þ
r2

�
; ð20Þ

where a prime denotes a derivative with respect to the radial
variable r. Equation (20) can be deduced from Eq. (19)
upon differentiation.

III. SPECIFIC CHOICE FOR THE PARAMETERS
q1, q2, AND q3 AND THE REDUCED

MASTER EQUATION

A. Specific choice for the parameters q1, q2, and q3
Clearly, Eqs. (18) and (19) coincide when 13q1 þ 4q2þ

q3 ¼ −ð7q1 þ 4q2 þ q3Þ, i.e.,

10q1 þ 4q2 þ q3 ¼ 0: ð21Þ

This is our first choice for a relation between the parameters
q1, q2, and q3.
We search for solutions with Nð0Þ ¼ 1 and N0ð0Þ ¼ 0.

Equation (18) is compatible with these conditions at r → 0,
when 13q1þ4q2þq3¼q1þq2þq3, i.e., 12q1 þ 3q2 ¼ 0,
or

4q1 þ q2 ¼ 0: ð22Þ

This is our second choice for another relation between the
parameters q1, q2, and q3.
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These two requirements, Eqs. (21) and (22), restrict the
number of the three nonminimal coupling constants, q1, q2,
and q3, to just one independent coupling constant, q, say.
We then put

q1 ≡ −q; ð23Þ

and so

q2 ¼ 4q; ð24Þ

q3 ¼ −6q: ð25Þ

We assume that q > 0.

B. Reduced master equation

With these choices the remaining master equation for the
gravitational field (18) can be rewritten as

d
dr

�
rðN − 1Þ

�
1þ 2Q2

mq
r4

��
¼ −

Q2
m

r2
− Λr2; ð26Þ

where

Q2
m ≡ 4πν2; ð27Þ

with Qm being the magnetic charge.

IV. EXACT SOLUTIONS TO THE
GRAVITATIONAL FIELD EQUATIONS:
GENERIC ANALYSIS AND HORIZONS

A. Four-parameter family of exact solutions
with q1 ¼ −q, q2 ¼ 4q, and q3 ¼ −6q:

A preliminary generic analysis

The solution to Eq. (26) is of the form

N ¼ 1þ
�

r4

r4 þ 2Q2
mq

��
−
2M
r

þQ2
m

r2
−
Λ
3
r2
�
: ð28Þ

Thus, we deal with a four-parameter family of exact
solutions. The first parameter is the nonminimal parameter
of the theory q, the second parameter is the cosmological
constant Λ, inbuilt into the theory, the third parameter, Qm,
is the magnetic charge of the Wu-Yang gauge field, and the
fourth parameter, M, is the asymptotic mass of the object,
that makes its appearance as a constant of integration.
We consider

q > 0: ð29Þ

Λ > 0; Λ ¼ 0; Λ < 0; ð30Þ

Q2
m > 0; ð31Þ

M ≥ 0 ð32Þ
in what follows.
The limiting case, q ¼ 0, gives the minimal coupled

theory. The corresponding solution, taken as the limit
q ¼ 0 of Eq. (28), is the magnetic Reissner-Nordström
solution with a cosmological constant,

NðrÞ ¼ 1 −
2M
r

þQ2
m

r2
−
Λ
3
r2: ð33Þ

This magnetic solution has curvature singularities at r ¼ 0.
In addition, for q < 0, Eq. (28) yields spacetime curvature
singularities at finite positive r. For q > 0 there are no
curvature singularities as shown below. That is why we
choose q > 0.
Near the center the metric function NðrÞ behaves as

follows:

NðrÞ ¼ 1þ r2

2q
−
Mr3

Q2
mq

þ…; ð34Þ

thus displaying that Nð0Þ ¼ 1, N0ð0Þ ¼ 0 and N00ð0Þ ¼ 1
q.

This means that the point r ¼ 0 is a minimum of the regular
function NðrÞ independently on the sign and value of the
cosmological constant Λ, and independently of the mass
value M. Since Nð0Þ ¼ 1, the curvature scalar is regular in
the center: Rð0Þ ¼ 6

q. The quadratic scalar RmnRmn ¼ 9
q2,

and other curvature invariants are also finite in the center
for q > 0 as we are considering. Thus, the spacetime is
truly regular at the center, and this is due to the non-
minimality of the model. The cosmological constant does
not contribute to the regularity at the center. All the objects
displayed are regular objects. We can anticipate some
features of the function NðrÞ. NðrÞ, independently of the
parameters q, Λ, Qm, and M, has a central small cavity.
Where does the boundary of this small cavity is situated?
The simplest definition of this boundary can be associated
with the nearest maximum of the function NðrÞ.
The position of this maximum, which gives the width of
the small cavity from r ¼ 0 up to this maximum, with the
corresponding value for N, is predetermined by the values
of all four parameters. However, it is the nonminimal
parameter q that provides the creation of this central small
cavity. For r greater than this first maximum, there exist a
zone in which the first derivative N0ðrÞ is negative. Thus,
we deal with a repulsion zone here. The size of the
repulsion zone is set by the parameter Qm, roughly of
the order of Qm. In addition when the mass M is small
enough and the cosmological constant is negative, Λ < 0,
the maximum can be converted into an inflection point
and the repulsion barrier vanishes. For a wide range of
values of the parameters q, M > 0, Q2

m > 0, and Λ there
exists a Newtonian-type attraction zone of the metric
function NðrÞ, where it behaves as 1=r. When Λ ¼ 0, this
zone starts at infinity and finishes at some point. When
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Λ ≠ 0, this Newtonian attraction zone appears only if the
mass of the object exceeds some critical value. Finally,
depending on the sign and value of the cosmological
constant, the solutions are asymptotically dS, asymptoti-
cally flat, or asymptotically AdS.
The most important feature of our investigation is the

analysis of the horizons as functions of the parameters.
Cauchy, event, and cosmological horizons can appear, and
in some instances they can coincide one with another or the
three altogether. The details are given below.

B. Horizons

1. Location of the horizons

When NðrhÞ ¼ 0, and the roots rh are real and positive,
we deal with horizons at these radii. Since the equation
NðrhÞ ¼ 0 can be reduced to an algebraic equation of
order six [see Eq. (28)], − Λr6

3
þ r4 − 2Mr3 þQ2

mr2þ
2Q2

mq ¼ 0, one can be sure that the number of horizons
is not more than six. We intend to show that in the model
under consideration the number of horizons cannot be more
than three. Moreover, all the existing solutions for the
horizons rh, namely, r1, r2 and r3, depend on sign and
value of Λ; i.e., the cosmological constant participates in
the formation of the causal structure of the spacetime.
Generically, the three horizons that appear are the Cauchy
horizon, the event horizon, and the cosmological horizon.
To study the causal structure of the corresponding space-
times we have, first, to count the horizon number, second,
to classify the horizons, and third, to visualize them in
figures.
Thus in order to find the location of the horizons, i.e., to

find rh explicitly one should solve

NðrÞ ¼ 0; ð35Þ

i.e., the sixth-order equation

−
Λr6

3
þ r4 − 2Mr3 þQmr2 þ 2Q2

mq ¼ 0: ð36Þ

2. Number of horizons

Another important property is the number of the hori-
zons. Instead of using Eqs. (35) and (36) and seeing how
many horizons there are by brute force, one can use a more
efficient method by introducing one auxiliary function
fðr; q;Qm;ΛÞ in the following context. Indeed, Eq. (36)
can be rewritten in the form

2M ¼ fðr; q;Λ; QmÞ; ð37Þ

fðr; q;Λ; QmÞ≡ −
Λr3

3
þ rþQ2

m

r
þ 2Q2

mq
r3

: ð38Þ

To count the horizon number we have to determine the
number of points in which the plot of the function y ¼
fðr; q;Λ; QmÞ is crossed by the horizontal line y ¼ 2M, the
mass line. From a physical point of view this procedure
shows how many horizons can appear when the mass of the
object is equal to a given M. There are only four types for
the function fðr; q;Λ; QmÞ. They are depicted in Fig. 1.
We consider the cosmological constant Λ to be positive,

zero, and negative. It is reasonable to start with the analysis
of the case Λ > 0, i.e., asymptotically dS, which is the most
interesting and complex. Then we study the case Λ ¼ 0,
i.e., asymptotically flat, in order to recall the partially
known results. Finally, we further analyze the case with
Λ < 0, i.e., asymptotically AdS.

y

x0

(a) (b) (c) (d)

FIG. 1. Sketches of the auxiliary function fðr; q;Λ; QmÞ ¼ − 1
3
Λr3 þ rþQmr−1 þ 2Q2

mqr−3. In the points x ¼ rh, in which the
horizontal mass line y ¼ 2M crosses the plot of the function y ¼ fðr; q;Λ; QmÞ, the metric function NðrÞ takes zero values, i.e., the
spheres rh are the horizons of the regular nonminimal black holes. The plot of the function fðr; q;Λ; QmÞ depicted in panel (a) has one
inflection point and has no extrema; it illustrates the model with one simple horizon only. The plot in panel (b) demonstrates one
inflection point and a pair of extrema (the minimum is first, the maximum is second); depending on the mass M one can obtain one or
three simple horizons, or one simple and one double horizons (the double horizon appears when the mass-line y ¼ 2M touches the plot
in an extremum). The plot in panel (c) illustrates the case, when the minimum, the inflection point and the maximum of the plot coincide;
there is only one horizon in this case, and it is triple one. Panel (d) illustrates the cases when fðr; q;Λ; QmÞ has no inflection points and
has only one extremum, the minimum; in this case there are zero, one double horizon or two simple horizons.
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V. REGULAR NONMINIMAL BLACK HOLES
WITH POSITIVE COSMOLOGICAL

CONSTANT, Λ > 0

A. Introduction

Let us consider spacetimes with dS asymptotics. The
model with Λ > 0 has a variety of structures since a
cosmological horizon appears in addition to the usual inner
and outer horizons. All spacetimes are asymptotically dS.

B. Number of horizons and critical masses

1. Number of horizons

We start with the analysis of the number of horizons. We
focus on Eqs. (37) and (38) using the form

2M ¼ fðr; q; jΛj; QmÞ; ð39Þ

fðr; q; jΛj; QmÞ≡ −
jΛjr3
3

þ rþQ2
m

r
þ 2Q2

m

r3
q; ð40Þ

where we have written Λ ¼ jΛj in order to make explicit
that the cosmological constant is positive. Clearly, the
auxiliary function fðr; q; jΛj; QmÞ takes negative infinite
values at r → ∞, and positive infinite values at r → 0.
The extrema of fðr; q; jΛj; QmÞ are given through the

equation

d
dr

fðr; q; jΛj; QmÞ ¼ 0; ð41Þ

which in turn from Eq. (40) yields the equation

jΛjr6 − r4 þQ2
mr2 þ 6Q2

mq ¼ 0: ð42Þ
In terms of the auxiliary variable X ≡ r2, Eq. (42) gives the
cubic equation jΛjX3 − X2 þQ2

mX þ 6Q2
mq ¼ 0. It has

three roots X1, X2, and X3, for which the product

X1X2X3 ¼ − 6Q2
m

jΛj q is negative, and the sum X1 þ X2 þ
X3 ¼ 1

jΛj is positive. There are three cases: (i) there are three
real roots and two of them are positive, (ii) there are two
coinciding positive roots and one negative, and (iii) one real
root is negative and other two roots are complex con-
jugated. This means that three different situations are
available. The configuration can have two extrema (one
maximum and one minimum), or it can have two coincid-
ing extrema, or still it can have no extrema.
The points of inflection of fðr; q; jΛj; QmÞ are given

through the equation

d2

dr2
fðr; q; jΛj; QmÞ ¼ 0; ð43Þ

which in turn from Eq. (40) yields the bicubic equation

−jΛjr6 þQ2
mr2 þ 12Q2

mq ¼ 0: ð44Þ

In terms of the auxiliary variable Y ≡ r2, Eq. (44) gives the
cubic equation −jΛjY3 þQ2

mY þ 12Q2
mq ¼ 0. It has three

roots Y1, Y2, and Y3, for which the product Y1Y2Y3 ¼
12Q2

m
jΛj q is positive, and the sum is equal to zero,
Y1 þ Y2 þ Y3 ¼ 0. This means that only two cases are
available: (i) two real roots are negative and one real root is
positive, and (ii) the real part of a complex conjugated pair
of roots is negative and the only real root is positive. Since
negative and complex roots are not physical, we conclude
that there exists only one inflection point of the graph of the
function fðr; q; jΛj; QmÞ.
The sketches of the corresponding three plots of the

function fðr; q; jΛj; QmÞ are presented in Fig. 1, panels (a),
(b), and (c). The mass line y≡ 2M crosses the correspond-
ing plots at least in one point, meaning that there is at least
one horizon. More precisely, depending on the values of
parameters q, M, Qm, and jΛj, we deal with three
independent simple horizons, or with one simple and
one double horizon, or with one triple horizon, or even
with one simple horizon.

2. The critical masses

The analysis of horizons and extrema shows that there
are two critical masses, Mc1 and Mc2, say, for which the
corresponding horizons coincides with one of the extrema.
For these masses the horizon is in a fact a double horizon,
it is degenerate.
One coincidence takes place when the plot of the

function NðrÞ touches the line N ¼ 0 in its minimum,
and another coincidence happens when NðrÞ touches the
line N ¼ 0 in its maximum. The critical masses can be
calculated as

Mc1 ¼
1

2
fðrc1; q; jΛj; QmÞ; ð45Þ

Mc2 ¼
1

2
fðrc2; q; jΛj; QmÞ; ð46Þ

where the radii rc1 and rc2 are obtained as the correspond-
ing solutions of the pair of equations NðrÞ ¼ 0 and
dNðrÞ
dr ¼ 0.
Thus, two critical parameters Mc1 and Mc2 appear in the

course of analysis. These critical masses can also coincide.
In this case we deal with a triple horizon, when the two
extrema, the inflection point and all three zeros of the
function NðrÞ coincide.

C. The function N and the eight distinct cases

1. The function N in terms of auxiliary parameters
and effective parameters

The family of solutions under discussion is described by
four positive parameters with different intrinsic units: q,M,
Qm, and Λ. In order to clarify the fine details of these
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solutions we use below auxiliary and effective parameters
and auxiliary and effective variables. First, we introduce
four auxiliary parameters with units of length

rΛ ≡
ffiffiffiffiffiffi
3

jΛj

s
; rg ≡ 2M;

rq ≡ ð2Q2
mqÞ14; rQ ≡Qm: ð47Þ

Second, we construct three effective positive parameters
without units, namely,

α≡ rg
rΛ

; β≡
�
rQ
rΛ

�
2

; γ ≡
�
rq
rΛ

�
4

: ð48Þ

Third, since Λ ≠ 0, in fact here Λ > 0, we introduce the
variable x without units through

x≡ r
rΛ

: ð49Þ

We thus use the cosmological scale for the description of
the internal structure of the regular nonminimal black holes.
In terms of these variables the metric NðrÞ, given in

Eq. (28), is now NðxÞ and takes the form

NðxÞ ¼ γ þ βx2 − αx3 þ x4 − x6

x4 þ γ
: ð50Þ

Its first derivative is

N0ðxÞ ¼ −
x½2x8 − αx5 þ 2x4ðβ þ 3γÞ þ 3αγx − 2βγ�

ðx4 þ γÞ2 ;

ð51Þ

where 0 ≡ d
dx. Clearly, only the three parameters without

units, α, β, and γ, are the ones that matter in the search for
horizons, NðxÞ ¼ 0, and in the search for extrema,
N0ðxÞ ¼ 0.
In this analysis the masses Mc1 and Mc2 given in

Eqs. (45) and (46) are important. They give the cases in
which there is a double horizon. This double horizon can be
an extreme black hole horizon or an extreme cosmological
horizon, each with a corresponding radius xc1 and xc2.
The critical masses can coincide giving a triple horizon.
The plots of NðrÞ are presented in Fig. 2. Below we
describe the features of the solutions for the different
characteristic masses.

2. The eight distinct cases

(i) The case M ¼ 0
When the mass M vanishes, we deal with a regular

nonminimal object that is not a black hole. At x ¼ 0 there is
a minimum with Nð0Þ ¼ 1; then the function NðxÞ reaches
a maximum at x ¼ xmax, where

xmax ¼
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

4
ðβ þ 3γÞ2 þ βγ

r
−
1

2
ðβ þ 3γÞ

�1
4

: ð52Þ

The zone 0 < x < xmax is a central attraction zone. The
zone xmax < x < ∞ is a repulsion zone. There is one
inflection point of curve NðxÞ in this zone.
This spacetime has only one horizon, namely, the

cosmological horizon at rch ¼
ffiffiffiffiffi
3
jΛj

q
xch, where xch can be

found as follows. Define γ� and Γ as

γ� ¼
2

27
½ð1þ 3βÞ32 − 1� − 1

3
β; ð53Þ

Γ ¼ 1þ 27ðγ − γ�Þ
2ð1þ 3βÞ32 : ð54Þ

When γ > γ�, one obtains that

xch ¼
ffiffiffiffiffiffiffiffiffiffiffi
1

3
þ χ̄

r
;

χ̄ ¼ 2

3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 3β

p
cosh

�
1

3
log ðΓþ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
Γ2 − 1

p
Þ
�
: ð55Þ

When γ ¼ γ�, one obtains that

xch ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1

3
þ χ�

r
; χ� ¼

2

3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 3β

p
: ð56Þ

When γ < γ�, one obtains that

xch ¼
ffiffiffiffiffiffiffiffiffiffiffi
1

3
þ ~χ

r
;

~χ ¼ 2

3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 3β

p
cos

�
1

3
arccosΓ

�
: ð57Þ

This case is illustrated by curve I in Fig. 2.
(ii) The case 0 < M ≤ MN
Inside the range 0 < M < Mc1 there exists a specific

mass value,

MN ¼ 1

2
fðrN; q; jΛj; QmÞ; ð58Þ

which distinguishes the models with no Newtonian-type
attraction zone from the ones with a Newtonian-type
attraction zone, i.e., with a 1=r dominating term in the
gravitational potential. For masses in the range 0 < M ≤
MN there is no Newtonian-type attraction zone. The
corresponding radius xN appears as a solution of the pair
of equations, N0ðxNÞ ¼ 0 and N00ðxNÞ ¼ 0; i.e., this point
of the graph of the function NðxÞ has a coincidence of
extrema points and an inflection point. This limiting case,
where the mass is MN is illustrated by curve II in
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Fig. 2 and is representative of the range 0 < M ≤ MN . The
nonminimal regular objects within this mass range
are not black holes, since the single simple horizon is a
cosmological horizon.
(iii) The case MN < M < Mc1
Clearly, within this range the following features can be

visualized; see curve III in Fig. 2. There is, first, a central
small cavity (between the center r ¼ 0 and the nearest
maximum), second, a repulsion barrier (between the nearest
maximum and the following minimum), third, the zone of
Newtonian-type attraction, i.e., similar to the 1=r behavior
of the Newtonian gravitational potential (between the
minimum and the final maximum), and fourth, the zone
of cosmological repulsion (between the final maximum and
infinity). The nonminimal regular objects within this mass
range are not black holes, since the single simple horizon is
a cosmological horizon.
(iv) The case Mc1 ¼ M
When the mass M has this value, the nonminimal

coupled regular black hole is extremal with the inner
and the even horizon coinciding. The minimum coincides
with a double horizon. There is still an outer cosmological
horizon. This is shown in curve IV of Fig. 2.
(v) The case Mc1 < M < Mc2
When the mass M is in this range, we deal with regular

nonminimal black holes inside a cosmological horizon.
Specific features of these solutions follow (see curve V in
Fig. 2). Each solution of this type displays a small cavity

near the regular center, a repulsion barrier, a Cauchy
horizon, a black hole region, an event horizon, a zone of
Newtonian-type attraction of 1=r plus corrections, an
intermediate maximum, and a zone of cosmological
repulsion.
(vi) The case Mc2 ¼ M
When the mass M has this value, the nonminimal

coupled regular black hole is extremal with the even
horizon coinciding with the cosmological horizon. The
maximum coincides with a double horizon. There is still an
inner Cauchy horizon. This is shown in curve VI of Fig. 2.
In this case the black hole is a cosmological extremal
supermassive regular black hole as the whole visible
universe is swallowed by this supermassive object.
(vii) The case Mc2 < M
When the mass exceeds the second critical mass, the

Cauchy horizon of the regular nonminimal black hole
becomes the cosmological horizon. We deal now with a
supermassive black hole with central small cavity, a
unified repulsion barrier, and without a standard zone
of Newtonian-type attraction, see curve VII on Fig. 2.
Since for M > Mc2 the Cauchy horizon is also a cosmo-
logical horizon, the black hole is ultramassive. In such
universe there is only one horizon, which is a cosmologi-
cal one, together with a repulsion zone. In this context this
ultramassive black hole is of a new type, for which all
three horizons coincide, namely, the Cauchy, event and
the cosmological horizons.

N

r

VII

VI

V

I

II

III

IV

1

0

1

0
r

N

VIII

(a) (b)

FIG. 2. Λ > 0. The plots of the metric function NðrÞ for the nonminimal regular models with Λ > 0. Note that Nð0Þ ¼ 1 for all curves
so that the spacetimes are regular. All the curves have small cavities near the center, repulsive barriers, and a dS asymptotic behavior. In
panel (a), seven cases are displayed. Curve I is the caseM ¼ 0. Curve II is representative of the case 0 < M ≤ MN where there is no zone
of Newtonian-type attraction. Curve III, for MN < M < Mc1, describes regular nonminimal stars inside a cosmological horizon, and
possessing a Newtonian attraction zone. Curve IV represents the case M ¼ Mc1, where Mc1 is a critical mass. There is an extremal
nonminimal regular black hole, with the Cauchy and event horizons coinciding, it is a double horizon. Curve V is forMc1 < M < Mc2.
Here the nonminimal regular black hole has a Cauchy horizon, an event horizon and a distant cosmological horizon. Curve VI is the case
M ¼ Mc2, where Mc1 is another critical mass. The event and cosmological horizons coincide, so it is a double horizon. Curve VII for
Mc2 < M represents ultramassive black holes with a regular center and a Cauchy horizon that has turned into a cosmological horizon. In
panel (b) curve VIII has a triple horizon of the cosmological type. For this curve, four specific points coincide: the inflection point and
three zeros of the function NðrÞ.
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(viii) The case Mc1 ¼ Mc2
When the critical masses Mc1 and Mc2 coincide, two

separatrices convert into one curve, depicted in panel (b) of
Fig. 2, curve VIII. This curve illustrates the situation, when
four specific points of the function NðxÞ coincide, namely,
the maximum, the minimum, the inflection point and the
horizon. We deal now with a triple horizon. When
M < Mc1 ¼ Mc2, the solutions behave like curve III (but
without extrema). When M > Mc1 ¼ Mc2 the curves look
like curve VII (but without extrema).

VI. REGULAR NONMINIMAL BLACK HOLES
WITH ZERO COSMOLOGICAL

CONSTANT, Λ ¼ 0

A. Introduction

This case has been studied in [25] and we briefly review
the results. All spacetimes are asymptotically flat.

B. Number of horizons and the critical masses

In this case we do not need to introduce variables without
units as we did in the previous case. A typical sketch of the
auxiliary function fðr; q; 0; QmÞ looks like the curve
depicted in panel (d) of Fig. 1. There is a critical mass
Mc, corresponding to the minimum of that curve.
Depending on the value of M of the object, the line y ¼
2M can cross the curve y ¼ fðr; q; 0; QmÞ zero times, one
time or two times. The corresponding spacetimes have no
horizons, when the mass M is less than the critical mass,
M < Mc, it has one horizon, a double one, when M ¼ Mc,
and it has two horizons, when M > Mc.
In more detail, for Λ ¼ 0, Eqs. (37) and (38) turn into

2M ¼ fðr; q; 0; QmÞ; ð59Þ

fðr; q; 0; QmÞ ¼ rþQ2
m

r
þ 2Q2

mq
r3

: ð60Þ

When the mass line y ¼ 2M touches the curve y ¼
fðr; q; 0; QmÞ at the point of minimum, the mass is a
critical mass, Mc, given by

Mc ¼
1

2
fðrc; q; 0; QmÞ; ð61Þ

where rc is the critical radius. This radius can be found by
imposing NðrcÞ ¼ 0 and N0ðrcÞ ¼ 0, yielding

rc ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q2

m

2
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q4

m

8
þ 6Q2

mq

rs
: ð62Þ

Equations (61) and (62) then give

Mc ¼
ffiffiffiffiffiffiffiffiffi
2Q2

m

q 	
1þ 8q

Q2
m
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 24q

Q2
m

q 

	
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 24q

Q2
m

q 
3
2

: ð63Þ

The parameter rc is convenient for the analyses. Using it
we obtain, in particular, 6Q2

mq ¼ r2cðr2c −Q2
mÞ and Mc ¼

1
3rc

ð2r2c þQ2
mÞ.

C. The function N and the four distinct cases

Now we give the main features of the four distinct types
that appear for Λ ¼ 0; see Fig. 3.
(i) The case M ¼ 0
When M ¼ 0 we deal with a pure nonminimal object.

The metric function NðrÞ given in Eq. (28) is

NðrÞ ¼ 1þ Q2
mr2

r4 þ 2Q2
mq

; ð64Þ

and its derivative has also a simple form, N0 ¼
2Q2

mr
ðr4þ2Q2

mqÞ2 ð2Q
2
mq − r4Þ. The plot of the function NðrÞ

(see curve I in Fig. 3) is located above the horizontal line
N ¼ 1 and has a maximum at r ¼ ð2Q2

mqÞ14, and a mini-
mum at the center. Thus, a Newtonian-type attraction zone
is absent now, and there is a repulsion barrier that prolongs
itself into infinity. There is no equilibrium point and there
are no horizons in the spacetime.
(ii) The case 0 < M < Mc
When M < Mc there are no horizons in the spacetime,

and we deal with regular stars. When the mass M is in this
range one can find the point of minimum of NðrÞ, rmin, say,

IV
III
II
I

r

N

0

1

FIG. 3. Λ ¼ 0. The plots of the metric function NðrÞ for the
nonminimal regular models with Λ ¼ 0. Note that Nð0Þ ¼ 1 for
all curves so that the spacetimes are regular. All the curves
contain a small cavity near the center, a repulsion barrier, and a
flat asymptotic behavior. Curve I displays the behavior of NðrÞ,
when M ¼ 0. Curve II is for the case 0 < M < Mc. There are no
horizons in the spacetime, the object is a regular star. Curve III,
for caseM ¼ Mc, is the critical case. There is a double horizon at
the minimum of the metric function NðrÞ, i.e., the Cauchy and
event horizons coincide. Curve IV describes a black hole with
mass exceeding the critical mass M > Mc, it contains a Cauchy
horizon and an event horizon. Curves II, III, and IV, which
correspond to massive objects, have zones of Newtonian-type
attraction.
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which is an equilibrium point, in which the zones of
attraction and repulsion make contact; see curve II in
Fig. 3. Since at this point N0ðrminÞ ¼ 0, the gravitational
force does not act on any massive particle; i.e., a particle
can be at rest at this point. Any small perturbation puts this
particle to oscillate near this equilibrium point.
(iii) The case M ¼ Mc
In the critical caseM ¼ Mc the horizon is double and has

radius r ¼ rc given in Eq. (62). The metric function NðrÞ
given in Eq. (28) has for this case the simple form

NðrÞ ¼ ðr − rcÞ2
r4 þ 2Q2

mq

�
r2 þ 2Q2

mq
r2c

�
2r
rc

þ 1

��
: ð65Þ

The multiplier ðr − rcÞ2 shows explicitly that the horizon at
r ¼ rc is a double horizon. In other words, we deal with an
extremal regular nonminimal black hole. As r → ∞ the
spacetime is asymptotically flat. The plot of the function
(65) is presented in Fig. 3 curve III. The curve contains a
zone of Newtonian-type attraction, which starts at infinity
and finishes at the horizon. The interior of this extremal
black hole is regular. It contains a zone near the center
which is a nonminimal small cavity, and it also contains a
nonminimal repulsion barrier which is locate between the
sphere on which NðrÞ has a maximum and the double
horizon.
(iv) The case Mc < M
When Mc < M, the interior of the regular black hole

contains a nonminimal small cavity and a repulsion barrier
that are separated from the exterior by a nonminimal well;
see curve IV in Fig. 3. The edge of the well nearest to the
center is the Cauchy horizon, the distant edge is the event
horizon, it separates the interior from the zone of
Newtonian-type attraction with a 1

r potential term.

VII. REGULAR NONMINIMAL BLACK HOLES
WITH NEGATIVE COSMOLOGICAL

CONSTANT, Λ < 0

A. Introduction

The case Λ < 0 has some features similar to the Λ ¼ 0
case, with in addition some more structure. All spacetimes
are asymptotically AdS.

B. Number of horizons and the critical masses

Let us consider spacetimes with AdS asymptotics,
Λ < 0. The case Λ < 0, like the Λ ¼ 0 case, is simpler
than the case Λ > 0 and there is no need to introduce
variables and parameters with no units.
A typical sketch of the auxiliary function

fðr; q;−jΛj; QmÞ looks like the curve depicted in panel
(d) of Fig. 1. In this case there is also a critical mass Mc
related to the minimum. Depending on the value of M of
the object, the line y ¼ 2M can cross the curve y ¼
fðr; q;−jΛj; QmÞ zero times, one time or two times. The

corresponding spacetimes have no horizons, when the mass
M is less than the critical mass, M < Mc, it has one
horizon, a double one, when M ¼ Mc, and it has two
horizons, when M > Mc. Since the spacetime is asymp-
totically AdS for sufficient large radii there is a cosmo-
logical attraction.
In more detail, for Λ < 0, Eqs. (37) and (38) turn into

2M ¼ fðr; q;−jΛj; QmÞ; ð66Þ

fðr; q;−jΛj; QmÞ≡ jΛjr3
3

þ rþQ2
m

r
þ 2Q2

m

r3
q; ð67Þ

where we have set Λ ¼ −jΛj. Since the second derivative of
the function fðr; q;−jΛj; QmÞ is positive everywhere, and
fð0; q;−jΛj; QmÞ ¼ fð∞; q;−jΛj; QmÞ ¼ þ∞, a typical
sketch of this function is like panel (d) in Fig. 1. This
function has features similar to the function fðr; q; 0; QmÞ
analyzed previously.
We can find the critical value of the mass Mc. It is

Mc ≡ 1

2

�jΛjr3c
3

þ rc þ
Q2

m

rc
þ 2Q2

m

r3c
q

�
; ð68Þ

where rc is the real positive solution of the following
bicubic equation

jΛjr6c þ r4c −Q2
mr2c − 6Q2

mq ¼ 0: ð69Þ
In this case there is only one real positive solution. Indeed,
if we introduce the quantity X as X ≡ r2, we see that the

product of the roots of Eq. (69), X1X2X3 ¼ 6Q2
mq

jΛj is positive,

and the sum X1 þ X2 þ X3 ¼ − 1
jΛj is negative. This can

happen in three instances: first, when there are two complex
roots and one real positive root, say, X1 > 0; second, when
there are three real roots, two of them being negative, and
one positive, X1 > 0; third, when X2 ¼ X3 < 0, and
X1 > 0. In any case, there is only one real positive solution
rc ¼

ffiffiffiffiffiffi
X1

p
of Eq. (69). Technically, in each of the three

mentioned above situations, the unique real positive root X1

can be extracted from the three corresponding solutions of
the standard Cardano formula, namely,

X ¼ Y −
1

3jΛj ; Y1 ¼ μþ ν;

Y2;3 ¼ −
1

2
ðμþ νÞ � i

ffiffiffi
3

p

2
ðμ − νÞ; ð70Þ

where

μ≡
�
−
Q
2
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P3

27
þQ2

4

r �1
3

;

ν≡
�
−
Q
2
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P3

27
þQ2

4

r �1
3

; ð71Þ
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Q≡ 2þ 9Q2
mjΛj − 162Q2

mqjΛj2
27jΛj3 ;

P ≡ −
1þ 3Q2

mjΛj
3jΛj2 : ð72Þ

The number of real roots is known to be controlled by the
discriminant Δ ¼ P3

27
þ Q2

4
. There are three real roots, when

Δ ≤ 0, two roots coincide when the discriminant vanishes
Δ ¼ 0, and there is one real root when Δ > 0.
Let us consider one interesting example exactly solvable.

We put Q ¼ 0, i.e.,

jΛj ¼ 1

36q

 
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 16q

Q2
m

s !
: ð73Þ

Then Δ ¼ P3

27
< 0, and we obtain from (70)–(72) three real

roots

X1 ¼ −
1

3jΛj þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 3Q2

mjΛj
3jΛj2

s
; X2 ¼ −

1

3jΛj ;

X3 ¼ −
1

3jΛj −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 3Q2

mjΛj
3jΛj2

s
: ð74Þ

The root X1 is positive and thus the minimum of the
function fðr; q;−jΛj; QmÞ gives rc ¼

ffiffiffiffiffiffi
X1

p
, i.e.,

rc ¼
1ffiffiffiffiffiffiffiffiffi
3jΛjp

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3þ 9Q2

mjΛj
q

− 1

r
; ð75Þ

which is the radius corresponding to Mc in Eq. (68) in this
particular case studied.

C. The function NðrÞ and the five distinct cases

(i) The case M ¼ 0
When M ¼ 0, the metric function is

NðrÞ ¼ 1þ r2

3

3Q2
m þ jΛjr4

r4 þ 2Q2
mq

: ð76Þ

Clearly, for M ¼ 0 and negative cosmological constant
NðrÞ ≥ 1 everywhere, and thus there are no horizons. The
derivative

N0ðrÞ ¼ 2r
ðr4 þ 2Q2

mqÞ2

×

�
1

3
jΛjr8 þQ2

mr4ð2qjΛj − 1Þ þQ4
mq

�
ð77Þ

is equal to zero at the center r ¼ 0, and so this point is a
local minimum for the metric function NðrÞ. Now, there are

still further features depending on whether 6qjΛj < 1,
6qjΛj ¼ 1, or 6qjΛj > 1.
When 6qjΛj < 1, there are two additional extrema, the

maximum at

rmax ¼
�
3Q2

m

2jΛj
�
ð1 − 2qjΛjÞ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − 2qjΛjÞ2 − 8

3
qjΛj

r ��1
4

;

ð78Þ

and the minimum at

rmin ¼
�
3Q2

m

2jΛj
�
ð1 − 2qjΛjÞ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − 2qjΛjÞ2 − 8

3
qjΛj

r ��1
4

:

ð79Þ

In the limiting case jΛj → 0 the minimum drifts to infinity,
and the maximum coincides with the value ð2Q2

mqÞ14, thus
recovering the case with Λ ¼ 0.
When 6qjΛj ¼ 1, the two radii above coincide with an

inflection point, i.e.,

rinflection ¼ rmax ¼ rmin ¼ ð6Q2
mqÞ14; ð80Þ

yielding NðrinflectionÞ ¼ 1þ
ffiffiffiffiffi
Q2

m
6q

q
.

When 6qjΛj > 1 there are no additional extrema. This
latter case, 6qjΛj > 1, is illustrated by curve I in Fig. 4.
(ii) The case 0 < M ≤ Mt

N IIIIII

r

V

IV

1

0

FIG. 4. Λ < 0. The plots of the metric function NðrÞ for the
nonminimal regular models with Λ < 0. Note that Nð0Þ ¼ 1 for
all curves so that the spacetimes are regular. All the curves
contain a small cavity near the center, a repulsion barrier, and an
AdS asymptotic behavior. Curve I displays the behavior of NðrÞ
when M ¼ 0. Curve II, for M ¼ Mt is also representative of the
case 0 < M < Mt. There are no horizons, the objects are non-
minimal stars. Curve III, for Mt < M < Mc also represents
nonminimal stars, in addition it has a flat well with a repulsive
barrier followed by a Newtonian-type attraction zone. Curve IV is
the critical case M ¼ Mc with a double horizon, it describes an
extremal black hole. Curve V describes a black hole with
Mc < M, it has a Cauchy horizon and an event horizon.
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For 0 < M ≤ Mc there appears another specific massMt,
with t denoting triple, for which N0ðrtÞ ¼ 0 and
N00ðrtÞ ¼ 0. At this radius, the curve of the metric function
NðrÞ has two extrema coinciding with the inflection point.
For M ¼ Mt the objects correspond to regular stars since
there are no horizons; see curve II in Fig. 4. We note that
this curve is of the same type as the curve for the case
M ¼ 0 and 6qjΛj ¼ 1. In the range 0 < M ≤ Mt there are
no horizons in the spacetime also, and so we also deal with
regular stars, of which curve II is representative.
The plots of the metric function NðrÞ for the nonminimal

regular models with Λ ¼ 0. Note that Nð0Þ ¼ 1 for all
curves so that the spacetimes are regular. All the curves
contain a small cavity near the center, a repulsion barrier,
and a flat asymptotic behavior. Curve I displays the behavior
ofNðrÞ, whenM ¼ 0. Curve II is for the case 0 < M < Mc.
There are no horizons in the spacetime, the object is a
regular star. Curve III, for caseM ¼ Mc, is the critical case.
There is a double horizon at the minimum of the metric
function NðrÞ, i.e., the Cauchy and event horizons coincide.
Curve IV describes a black hole with mass exceeding the
critical mass M > Mc, it contains a Cauchy horizon and an
event horizon. Curves II, III, and IV, which correspond to
massive objects, have zones of Newtonian-type attraction.
(iii) The case Mt < M < Mc
When Mt < M < Mc there are no horizons in the

spacetime. The plot of NðrÞ in this case has a minimum
at rmin, for which N0ðrminÞ ¼ 0; see curve III in Fig. 4.
Since at rmin one has N0ðrminÞ ¼ 0, massive particles suffer
no force and can be at rest there. However, any small
perturbation puts the particle to oscillate near this equilib-
rium position.
(iv) The case M ¼ Mc
When M ¼ Mc, we deal with an extremal regular black

hole in an asymptotically AdS spacetime. The horizon is a
double horizon; see curve IV in Fig. 4. There are no specific
points up to the second order that distinguish the zone of
Newtonian-type attraction and the zone of cosmological
attraction.
(v) The case Mc < M
When Mc < M we deal with regular black holes with a

Cauchy horizon and an event horizon in an asymptotically
AdS spacetime; see curve V in Fig. 4.

VIII. CONCLUSIONS

The solution for the metric potential NðrÞ that we have

found, namely N ¼ 1þ ð r4

r4þ2Q2
mq
Þð− 2M

r þ Q2
m

r2 − Λ
3
r2Þ,

presents a new exact spherically symmetric static solution
of a nonminimal SUð2Þ Einstein–Yang-Mills theory with a
cosmological Λ and a Wu-Yang ansatz. The expression for
NðrÞ shows explicitly a four-parameter family of exact
solutions. These parameters are the nonminimal parameter
q, the cosmological constant Λ, the magnetic charge Qm,
and the mass M.

The most important feature of the family of exact
solutions is that it has solutions with horizons depending
on the relative values of the parameters. We would like to
stress the following details in this context.
For Λ > 0, depending on the values of the parameters,

the black hole solution can have three horizons, the
Cauchy horizon, the event horizon and the cosmological
horizon. When M < Mc1, the first critical mass value,
there is only one horizon, the cosmological horizon. This
means that a typical profile of the metric function NðrÞ
contains a central small cavity, a repulsion barrier, a zone
of rest for matter near the point of minimum, a Newtonian-
type attraction zone, a zone of cosmological acceleration
and a zone beyond the cosmological horizon. When
M ¼ Mc1, there is a double extremal horizon, formed
by the Cauchy and event horizons together, in addition to
the cosmological one. When Mc1 < M < Mc2 there are
then three separate horizons, the Cauchy, event and
cosmological horizons. When M ¼ Mc2, there is a sepa-
rate Cauchy horizon, and there is another horizon coinci-
dence, the event horizon and the cosmological horizon
come together. In this case, the black hole is a cosmo-
logical extremal supermassive regular black hole as the
whole visible universe is swallowed by this supermassive
object. For M > Mc2 the Cauchy horizon is also a
cosmological horizon, the black hole is ultra massive.
In such a universe, there is only one horizon, which is a
cosmological one, together with a repulsion zone. In this
context, this ultramassive black hole is a new type, in
which all three horizons coincide—the Cauchy, event, and
cosmological horizons. There is also the case for which
Mc1 ¼ Mc2, where the three horizons coincide.
For Λ ¼ 0, there is no cosmological horizon and depend-

ing on the values of the parameters, the black hole solution
can have two horizons—the Cauchy horizon and the event
horizon. When the mass is below a critical mass Mc, there
are no horizons; forM ¼ Mc a double horizon appears, and
when M exceeds Mc there are the Cauchy horizon and
event horizons.
For Λ < 0, there is also no cosmological horizon, and

depending on the values of the parameters, the solution can
have two horizons—the Cauchy horizon and the event
horizon. There is also a critical massMc, below which there
are stars and above which there are regular black holes with
two horizons. The critical case is a black hole with a double
extremal horizon.
Geodesics of massive and massless test particles in these

regular black hole geometries display a great variety of
cases. Test particles can be in a state of rest on the bottom of
the well, or oscillate around this minimum, other particles
can overcome the repulsion barrier and be lodged in the
central small cavity, and several other trajectories are
possible. However, particles cannot leave the well into
the exterior since there is a black hole horizon, i.e., there is
a one-way membrane.
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