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Solutions of the field equations of theories of gravity which admit distinct conformal frame
representations can look very different in these frames. We show that Brans class IV solutions describe
wormholes in the Jordan frame (in a certain parameter range) but correspond to horizonless geometries in
the Einstein frame. The reasons for such a change of behavior under conformal mappings are elucidated in
general, using Brans IV solutions as an example. We end with a brief discussion of the Schwarzschild case
and a conformally related metric as a further example of some of the peculiarities of the behavior of
horizons under conformal transformations.
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I. INTRODUCTION

Conformal transformations are widely used in general
relativity [1] and especially in alternative theories of gravity
[2–5]. Scalar-tensor and fðRÞ gravity (which can be reduced
to the former [6]) can be represented in infinitely many
conformal frames, ofwhich the Jordan and theEinstein frame
are commonly used [3,4]. By conformally transforming
a black hole, often the result is not another black hole
geometry. Other times, a horizonless geometry (possibly
containing a naked singularity) is conformally transformed
to a black hole solution of the field equations or even to a
wormhole and, vice versa, a black hole can be transformed
into a naked singularity. Although this phenomenology
has been noted occasionally in the literature (e.g., [7–10]),
to thebest of our knowledge it has not been investigated.Here
we fill this gap by tracing the cause of the disappearance of
horizons and the appearance of new ones under the action
of conformal transformations. For concreteness, we apply
our discussion to scalar-tensor gravity, but the context is
more general and our results can be applied to any situation
in which a spacetime metric is conformally transformed,
including in general relativity. For simplicity, however,
we consider spherically symmetric metrics and we provide
an example which is, in addition, static.
In the course of our discussion we elucidate (Sec. II) the

nature of the well-known Brans class IV solutions of Brans-
Dicke gravity, which constitute our example for the general
problem. For a certain range of parameters, they are found
to represent asymptotically flat wormholes with a horizon,
while for other parameter ranges they are horizonless
geometries hosting naked singularities. This radical change

in geometry is not limited to this example but occurs
frequently when conformal mappings of spacetime metrics
are involved, not only in scalar-tensor gravity but also in
general relativity. The reasons for such a change in geometry
are investigated and clarified in Sec. III for general situations.
We remind the reader that the (Jordan frame) action of

scalar-tensor gravity is

SST ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
1

16π

�
ϕR −

ωðϕÞ
ϕ

∇aϕ∇aϕ

�

− VðϕÞ þ Lmatter

�
; ð1Þ

where R is the Ricci curvature of spacetime, g is the
determinant of the spacetime metric gab, and ϕ is the Brans-
Dicke–like scalar field, while VðϕÞ is a scalar field
potential. A conformal transformation of the metric gab →
~gab ¼ Ω2gab with conformal factor Ω ¼ ffiffiffiffi

ϕ
p

, together with
the scalar field redefinition

d ~ϕ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j2ωðϕÞ þ 3j

16π

r
dϕ
ϕ

; ð2Þ

recasts the theory in its Einstein frame form

SST¼
Z

d4x
ffiffiffiffiffiffi
−~g

p �
R
16π

−
1

2
~gab∇a

~ϕ∇b
~ϕ−Uð ~ϕÞþ Lmatter

ðϕð ~ϕÞÞ2
�

ð3Þ
in which the gravity sector looks like general relativity
and the new scalar field ~ϕ couples minimally to gravity
(but nonminimally to matter) and has canonical kinetic
energy density and potential

Uð ~ϕÞ ¼ Vðϕð ~ϕÞÞ
ðϕð ~ϕÞÞ2 : ð4Þ
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We use units in which Newton’s constant G and the
speed of light c are unity, the metric signature is −þþþ,
and we follow the notations and conventions of Ref. [1].

II. BRANS CLASS IV SOLUTIONS

Brans class IV spacetimes [11] form an often quoted
class of static and spherically symmetric solutions of
vacuum Brans-Dicke theory (without scalar field potential).
Class III and class IV solutions [11] can be obtained from
each other by means of a mathematical transformation
involving the radial coordinate and the parameters [12,13].
Although the discovery of these solutions was made only
one year after the introduction of Brans-Dicke theory [11],
and often cited, they are still not well understood.
The line element and Brans-Dicke scalar field in iso-

tropic coordinates in the Jordan frame are given by [11]

ds2 ¼ −e2α0−
2

B0ϱdt2 þ e2β0þ
2ðC0þ1Þ

B0ϱ ðdϱ2 þ ϱ2dΩ2
ð2ÞÞ; ð5Þ

ϕðϱÞ ¼ ϕ0e
− C0
B0ϱ; ð6Þ

where dΩ2
ð2Þ ¼ dθ2 þ sin2θdφ2 is the line element on the

unit 2-sphere and

C0 ¼
−1� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

−2ω − 3
p

ωþ 2
ð7Þ

(which requires that 2ωþ 3 ≤ 0), and where α0, β0, B0, C0,
and ϕ0 are constants. The factors e2α0 and e2β0 can be
absorbed by rescaling the coordinates t and ϱ, respectively,
and in the following they are dropped.
A notable feature of Brans class IV solutions is that, as

the Brans-Dicke parameter ω → −∞, they do not reduce
to the corresponding vacuum solution of general relativity,
the Schwarzschild solution, but to

ds2 ≈ −e−
2

B0ϱdt2 þ e
2

B0ϱðdϱ2 þ ϱ2dΩ2
ð2ÞÞ; ð8Þ

ϕðϱÞ ≈ ϕ0: ð9Þ
This anomalous behavior is related to the fact that the
scalar ϕ does not have the usual [14] asymptotic behavior
ϕ ¼ ϕ0 þ ϕ1

ω þ ϕ2

ω2 þ � � � as jωj → þ∞ but rather follows

ϕ ¼ ϕ0 þ Oð1= ffiffiffiffiffiffijωjp Þ. It is well known that Brans class I
solutions exhibit the same phenomenon [15–18], so the
lack of a limit to general relativity for class IV solutions is
not a surprise.
The areal radius of the Brans class IV geometry (5) is

RðϱÞ ¼ e
C0þ1

B0ϱ ϱ: ð10Þ
Let us see how 2-spheres of symmetry behave as the
isotropic radius ϱ varies. We have

dR
dϱ

¼ e
C0þ1

B0ϱ

�
1 −

ϱ0
ϱ

�
; ð11Þ

where

ϱ0 ≡ C0 þ 1

B0

: ð12Þ

Assuming ω < −3=2 and B0 ≠ 0, we consider separately
three possible parameter ranges which we present in Fig. 1.

A. Parameter range B0 > 0, C0 > −1
In this case it is dR=dϱ ≥ 0 for ϱ ≥ ϱ0 and this derivative

is negative otherwise: the areal radius RðϱÞ diverges as
ϱ → 0þ, decreases as ϱ increases, assumes a global mini-
mum Rmin ¼ eϱ0 at ϱ0, and increases to þ∞ as ϱ → þ∞.
There are, therefore, two branches of the areal radius R as ϱ
varies in the range 0 ≤ ϱ < þ∞. In order to understand
what happens at ϱ0, we rewrite the line element (5) using
the areal radius instead of the coordinate ϱ, which gives
straightforwardly

ds2 ¼ −e−
2

B0ϱdt2 þ dR2

ð1 − ϱ0=ϱÞ2
þ R2dΩ2

ð2Þ: ð13Þ

The apparent or trapping horizons (if any exist) of any
spherically symmetric metric are located at the roots of the
equation ∇cR∇cR ¼ 0 [19–21] which, in these coordi-
nates, correspond to gRR ¼ 0 or ð1 − ϱ0=ϱÞ2 ¼ 0, which
has ϱ0 as a double root. Here, gRR does not change sign at
the minimum Rmin. In general wherever gRR changes sign,

FIG. 1. The areal radius RðϱÞ for the three ranges of values of
the parameters B0 and C0 considered in the text. We use
ðB0; C0Þ ¼ ð1;−1=2Þ, ð−1;−1=2Þ and ð−1; 1.9Þ for parameter
ranges A, B, and C, respectively.
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so that ∂gRR=∂R ≠ 0 there and gRR has a single root, there
exists a black hole horizon. In this black hole case, the
isotropic radius ϱ > 0 corresponds to a double covering
of the exterior region [22]. Therefore, for the range of
parameters we are considering here, ϱ ¼ ϱ0 corresponds
to an horizon but not to a black hole horizon: the line
element (5) corresponds to a wormhole with the two throats
joining at the horizon. This conclusion is similar to that
reached in Ref. [23] for the Campanelli-Lousto spacetimes
[24], another class of static and spherically symmetric
solutions of Brans-Dicke theory which are often (erro-
neously) referred to as black holes.
The Ricci, Ricci squared, and Kretschmann scalars are

R ¼ 2

R2

�
1 −

�
1 −

ϱ0
ϱ

�
2
�
; ð14Þ

RabRab ¼ 2

R4

�
1 −

�
1 −

ϱ0
ϱ

�
2
�
2

; ð15Þ

RabcdRabcd ¼ 4

R4

�
1 −

�
1 −

ϱ0
ϱ

�
2
�
2

; ð16Þ

respectively. These scalars do not diverge since R stops at
its minimum Rmin and does not reach zero value.

B. Parameter range B0 < 0, C0 > −1
For the parameter values B0 < 0, C0 > −1, it is ϱ0 ≡

C0þ1
B0

< 0 and dR=dϱ > 0 for any positive value of ϱ; hence
the areal radius has no positive minimum. The function
RðϱÞ increases monotonically from Rð0Þ ¼ 0 to positive
infinity as ϱ increases. In this case there are no horizons.
All the scalar invariants (14)–(16) diverge as R → 0
(corresponding to ϱ → 0). This spacetime harbors a naked
singularity at R ¼ 0.

C. Parameter range B0 < 0, C0 < −1
For this value of the parameters it is again ϱ0 ¼ j C0þ1

B0
j >

0 and the function RðϱÞ is again decreasing for 0 ≤ ϱ < ϱ0,
minimum at ϱ0, and increasing for ϱ > ϱ0. We have again
two wormhole throats joining at an horizon located at Rmin
and no spacetime singularities are present.

D. Einstein frame Brans IV metric

Let us consider now, for all values of the parameters B0

and C0, the Einstein frame version of Brans-Dicke theory.
By performing the usual conformal rescaling of the metric
to the Einstein frame

gab → ~gab ¼ Ω2gab; Ω ¼
ffiffiffiffi
ϕ

p
ð17Þ

and the nonlinear scalar field redefinition

ϕ → ~ϕ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j2ωþ 3j
16π

r
ln

�
ϕ

ϕ�

�
; ð18Þ

where ϕ� is a constant, the theory is recast in the form of
Einstein gravity with a minimally coupled scalar field.
Dropping irrelevant constants, one obtains the Einstein
frame line element and scalar field

d~s2 ¼ −e−
ðC0þ2Þ
B0ϱ dt2 þ e

C0þ2

B0ϱ ðdϱ2 þ ϱ2dΩ2
ð2ÞÞ; ð19Þ

~ϕ ¼ ϕ1 −
ϕ2

ϱ
; ð20Þ

where

ϕ1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j2ωþ 3j
16π

r
ln

�
ϕ0

ϕ�

�
; ð21Þ

ϕ2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j2ωþ 3j
16π

r
C0

B0

: ð22Þ

Now the areal radius is not given by (10) but by

~R ¼ e
C0þ2

2B0ϱ ϱ; ð23Þ

which differs from its Jordan frame counterpart in the
numerical coefficient of 1=ðB0ϱÞ in the exponent. The same
analysis performed in the Jordan frame can be repeated here
but now the critical isotropic radius is not ϱ0 but

~ϱ0 ≡ C0 þ 2

2B0

¼ ϱ0
2
þ 1

2B0

: ð24Þ

Assuming B0 > 0, one immediately sees that
(i) ~ϱ0 > ϱ0 if −1 < C0 < 0;
(ii) ~ϱ0 < ϱ0 if C0 > 0;
(iii) but ~ϱ0 > 0 and ϱ0 < 0 for −2 < C0 < −1.

These three scenarios are indicated in Fig. 2.
Consider the parameter range (iii) given by B0 > 0 and

−2 < C0 < −1 which is plotted in the blue dash-dotted
curves in Fig. 2: in the Einstein frame the Brans IV solution
describes a wormhole while in the Jordan frame, for the
same parameter range, it describes a horizonless geometry.
The reason for this change introduced by the conformal
transformation is discussed in Sec. IV. The Ricci, Ricci
squared, and Kretschmann scalars in the Einstein frame are

~R ¼ 2e
−2ðC0þ2Þ

B0ϱ

ϱ2
¼ 2

~R2
; ð25Þ

~Rab
~Rab ¼ 1

2
~Rabcd

~Rabcd ¼ 2e
−2ðC0þ2Þ

B0ϱ

ϱ4
ð26Þ
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and are regular in the parameter range B0 > 0 and −2 <
C0 < −1 since the coordinate ϱ does not go below the
minimum value ~ϱ0.

III. THE GENERAL PROBLEM

Let us consider now the general problem: how can it
happen that a geometry without horizons, when confor-
mally transformed, becomes a black hole or a wormhole?
Surely something so physically dramatic as a horizon does
not depend crucially on an overall factor in the metric. The
answer is that there is no straightforward relation between
(apparent) horizons in one geometry and (apparent)
horizons of the conformally transformed metric, or even
between the numbers of horizons present. Null geodesics,
the causal structure of spacetime and event horizons (which
are null surfaces) are conformally invariant, but apparent
and trapping horizons are usually spacelike or timelike
surfaces in dynamical spacetimes and, therefore, they are
affected by a conformal transformation.1

Let us restrict, for simplicity, to spherically symmetric met-
rics, the line element of which can generically be written as

ds2 ¼ −Aðt; RÞdt2 þ Bðt; RÞdR2 þ R2dΩ2
ð2Þ: ð27Þ

This line element is not required to be stationary and, clearly,
R is the areal radius. The apparent horizons, if they exist, are
located by the equation gRR ¼ 1=Bðt; RÞ ¼ 0 (which may or
may not have roots). In addition, in order to have a black hole
and not a wormhole it is required that gRR have single roots,
that is, ∂gRR=∂R ≠ 0, where gRR vanishes.

The conformally transformed geometry is given by

d~s2 ¼ −Ω2Adt2 þ Ω2BdR2 þ ~R2dΩ2
ð2Þ; ð28Þ

where Ω ¼ Ωðt; RÞ to preserve the spherical symmetry and
~R ¼ Ωðt; RÞR is the areal radius in the conformally trans-
formed world.
One rewrites the “new” metric (28) in the form (27) as

d~s2 ¼ − ~Að~t; ~RÞd~t2 þ ~Bð~t; ~RÞd ~R2 þ ~R2dΩ2
ð2Þ; ð29Þ

where ~t is a suitable time coordinate and ~R is the areal
radius in the Einstein frame. The form of the functions
~Að~t; ~RÞ and ~Bð~t; ~RÞ was computed in Ref. [25], which we
follow here.
The use of the relation

dR ¼ d ~R − Ω;tRdt
Ω;RRþΩ

ð30Þ

in the line element (28) provides

d~s2 ¼ −
�
Ω2A −

Ω2
;tR2Ω2B

ðΩ;RRþ ΩÞ2
�
dt2 þ Ω2B

ðΩ;RRþ ΩÞ2 d
~R2

−
2Ω2Ω;tBR

ðΩ;RRþ ΩÞ2 dtd
~Rþ ~R2dΩ2

ð2Þ: ð31Þ

The dtd ~R cross term can be removed by the use of a new
time coordinate ~tðt; RÞ which satisfies

d~t ¼ 1

F
ðdtþ βdRÞ; ð32Þ

with βðt; RÞ an unknown function to be determined and
Fðt; RÞ an integrating factor which necessarily obeys the
differential relation

∂
∂R

�
1

F

�
¼ ∂

∂t
�
β

F

�
; ð33Þ

which ensures that d~t is an exact differential. Substitution
of dt ¼ Fd~t − βd ~R into the line element yields

d~s2 ¼−
�
Ω2A−

Ω2
;tR2Ω2B

ðΩ;RRþΩÞ2
�
F2d~t2

þ
�
−β2

�
Ω2A−

Ω2
;tR2Ω2B

ðΩ;RRþΩÞ2
�

þ Ω2B
ðΩ;RRþΩÞ2þ

2βΩ;tΩ2BR
ðΩ;RRþΩÞ2

�
d ~R2

þ 2F

�
β

�
Ω2A−

Ω2
;tR2Ω2B

ðΩ;RRþΩÞ2
�
−

Ω;tΩ2RB
ðΩ;RRþΩÞ2

�
d~td ~R

þ ~R2dΩ2
ð2Þ: ð34Þ

FIG. 2. Einstein frame and Jordan frame areal radius for the
three scenarios described in the text.

1This statement applies also to stationary black hole space-
times subject to a time-dependent conformal transformation.
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We now fix the function β as

βðt; RÞ ¼ Ω;tΩ2BR

½Ω2A − Ω2
;tR

2Ω2B
ðΩ;RRþΩÞ2�ðΩ;RRþΩÞ2

ð35Þ

and the line element is diagonalized:

d~s2 ¼ −
�
Ω2A −

Ω2
;tΩ2BR2

ðΩ;RRþ ΩÞ2
�
F2d~t2 þ Ω2B

ðΩ;RRþ ΩÞ2

·

8<
:1þ Ω2

;tΩ2BR2

ðΩ;RRþΩÞ2
h
Ω2A − Ω2

;tΩ2BR2

ðΩ;RRþΩÞ2
i
9=
;d ~R2

þ ~R2dΩ2
ð2Þ: ð36Þ

By comparing Eqs. (29) and (36) one obtains

~A ¼
�
Ω2A −

Ω2
;tΩ2BR2

ðΩ;RRþ ΩÞ2
�
F2; ð37Þ

~B ¼ BΩ2

ðΩ;RRþ ΩÞ2
�
1þ Ω2

;tΩ2BR2

ðΩ;RRþ ΩÞ2½Ω2A − Ω2
;tΩ2BR2

ðΩ;RRþΩÞ2�

�
:

ð38Þ

The equation locating the apparent horizons of the tilded
geometry is now 1= ~B ¼ 0. Restricting to static, spherically
symmetric metrics (such as those of Sec. II), this equation
reduces to

ðΩ;RRþΩÞ2
BΩ2

¼ 0: ð39Þ

The roots of this equation are obtained by combining:
(1) the roots of the “old” equation locating the apparent

horizons 1=B ¼ 0 (if they exist and they fall in the
physical spacetime region).

(2) The roots of Ω → þ∞; these are usually discarded
because the conformal transformation becomes ill
defined there, but sometimes one can perform a
conformal transformation and then extend the new
solution thus obtained to spacetime regions in which
the original conformal transformation is not defined
(“conformal continuation” [26]).

(3) The roots of the equation Ω;RRþΩ ¼ 0. These
roots (if they exist and lie in the physical spacetime
region) are always double roots of Eq. (39).

Suppose that the nontilded geometry gab had apparent
horizons located by the roots of gRR ¼ 1=B ¼ 0; the
apparent horizons of its conformal cousin will correspond
to the roots of ~g ~R ~R ¼ 0. These roots will include the old
ones (expressed in terms of the rescaled radius ~R) if they
fall in the physical spacetime region. In general, the old

apparent horizons could belong to a region of the new
geometry separated by the “physical” region of the new
geometry by a singularity. In this way, old apparent
horizons could disappear from the conformally transformed
geometry. New ones can appear because the rather com-
plicated equation 1= ~B ¼ 0 can in principle have new roots
in addition to those of the simpler equation 1=B ¼ 0.
It is also possible that black hole apparent horizons of the

old metric which are roots of gRR ¼ 0 with ∂gRR=∂R ≠ 0
become apparent horizons of the new metric corresponding
to ~g ~R ~R ¼ 0 but with ∂gRR=∂R vanishing there: in this case
the conformal cousins of the black hole apparent horizons
are located at a wormhole throat. Armed with this under-
standing, let us revisit the example of Sec. II.

IV. REVISITING BRANS CLASS IV METRICS

Let us examine the equation Ω;RRþ Ω ¼ 0 which
introduces possible new roots following the conformal
transformation to the Einstein frame of Brans class IV
geometries. Since

Ω ¼
ffiffiffiffi
ϕ

p
¼

ffiffiffiffiffi
ϕ0

p
e−

C0
2B0ϱ; ð40Þ

the expression of the areal radius (10) gives

Ω;R ≡ dΩ
dR

¼ dΩ
dϱ

dϱ
dR

¼
ffiffiffiffiffi
ϕ0

p
e−

C0
2B0ϱ

�
C0

2B0ðϱ − ϱ0Þ
þ 1

�
;

ð41Þ
and hence Eq. (39) has the only root

ϱ ¼ ϱ0 −
C0

2B0

¼ C0 þ 1

B0

−
C0

2B0

¼ C0 þ 2

2B0

; ð42Þ

which is exactly ~ϱ0 defined by Eq. (24). As discussed
above, this is a double root of Eq. (39) locating the apparent
horizons and signals a wormhole throat. Therefore, for
Einstein frame Brans IV geometries the apparent horizons
originate as roots of the equationΩ;RRþΩ ¼ 0 introduced
by the conformal transformation where, in the Jordan
frame, there were no apparent horizons (i.e., no roots
of 1=B ¼ 0).

V. EPILOGUE: CONFORMALLY
TRANSFORMING SCHWARZSCHILD

In this additional section we discuss the simplest
example of a spacetime where the behavior of horizons
under conformal transformations can be approached in
general terms. The purpose of this section is to approach
several general open questions with a simple example.
The Schwarzschild metric

ds2¼−
�
1−

2m
r

�
dt2þ

�
1−

2m
r

�
−1
dr2þ r2dΩ2 ð43Þ
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is, of course, an exact solution to the Einstein field
equations. Consider the spacetime obtained by appending
a time-dependent conformal factor to the Schwarzschild
metric

d~s2 ¼ a2ðtÞ
�
−
�
1−

2m
r

�
dt2þ

�
1−

2m
r

�
−1
dr2þ r2dΩ2

ð2Þ

�
:

ð44Þ

Such a metric can be thought of as an exact solution to
the Einstein equations by placing all the additional terms
from the transformation Rab → ~Rab ¼ fða; RabÞ onto the
right-hand side of the trace-free vacuum Einstein equation
Rab ¼ 0, satisfied by Schwarzschild.
This seemingly innocent modification of Schwarzschild

dramatically alters the horizon structure: whereas
Schwarzschild possesses a single static event horizon
located at r ¼ 2m, the spacetime described by (44) pos-
sesses a rich horizon phenomenology which depends on
the dynamics encoded in aðtÞ which we present in Fig. 3.
In particular, the surface r ¼ 2m in the transformed
geometry no longer delineates the boundary between the
trapped and untrapped portions of the spacetime, as it did
in Schwarzschild. That is, the surface r ¼ 2m is not an
(apparent) horizon (AH) in the transformed spacetime.
Instead, this surface is the location of a finite-radius
spacelike singularity, since the Ricci scalar

R ¼ 6ä
a3ð1 − 2m=rÞ ð45Þ

diverges at r ¼ 2m.2

In Fig. 3 we see that a single horizon persists all the way
back to t ¼ 0 while a pair of additional horizons are
produced at a finite later time t�. The innermost horizon
is separated from the other two by a finite-radius spacelike
singularity. The interpretation of the outermost two hori-
zons is that one represents a black-hole-type and the other a
cosmological-type horizon. For times t less than the critical
instant t�, the black hole AH is larger than the cosmological
AH and cannot be seen; at the critical time t� the two AHs
coincide (and they are instantaneously null), or they are
“created”; while for t > t� the black hole AH fits inside the
cosmological AH.
This example poses one or two interesting questions, for

which the answers in general remain elusive but never-
theless are possible to address in this simple case. Firstly,
since causal structure is conformally invariant, how can it

be that an event horizon can be “transformed away” by a
conformal transformation? That is, if an event horizon is a
causal boundary, how do signals propagate near this surface
if it no longer represents a horizon after a conformal
transformation? Secondly and somewhat related, when
an event horizon can be transformed away in this manner,
what is left to cover the spacetime singularity if there is no
longer a horizon where there was one before?
In the case of the transformed Schwarzschild geometry,

the answer to these conundrums is subtle as can be deduced
from Fig. 3. Before the formation of what might be called
the “black hole horizon,” produced simultaneously with a
cosmological horizon, the central singularity is never-
theless covered by a new horizon which has no analogue
in the static case. On top of that, the causal structure
remains intact due to the new spacelike singularity: the
surface r ¼ 2m remains as a causal boundary for outgoing
signals due to the singularity of the geometry there.
Strangely, also inward propagating signals may be unable
to cross this boundary (see the detailed discussion in
[27–29]), differing from the one-way nature of an event
horizon. The way the transformed Schwarzschild spacetime
solves the two conundrums is by introducing new AHs
and a new kind of causal boundary which is not a horizon
but is singular. It would be very interesting in the future
to investigate in detail the behavior of geodesics in the
transformed Schwarzschild spacetime and the causal struc-
ture they reveal, on the lines of what was done in [27–29].

FIG. 3. The structure of the apparent horizons of the trans-
formed spacetime (44) (solid lines) for aðtÞ ¼ t2=3. A single
horizon persists all the way back to t ¼ 0 while a pair of
additional horizons are produced at a finite later time. The
innermost horizon is separated from the other two by a finite-
radius spacelike singularity.

2One might be concerned that the Ricci scalar does not
appear to be singular at the origin r ¼ 0. This is expected as
Schwarzschild also has a regular Ricci scalar at the origin; indeed
R ¼ 0 everywhere for Schwarzschild. In Schwarzschild it is the
Kretschmann scalar RabcdRabcd which diverges at r ¼ 0 as r−6,
which for the conformally related spacetime (44) also diverges at
r ¼ 0 as r−6.
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VI. CONCLUSIONS

We have clarified the nature of Brans class IV solutions
of Brans-Dicke theory. These geometries do not contain
black holes, as is sometimes implied in the literature, but
they describe wormholes or naked singularities. Now,
asymptotically flat black holes in scalar-tensor gravity
are the same as in general relativity, according to well-
known no-hair theorems [30–32]. The only exceptions are
“maverick” black holes which are either unstable or in
which the scalar field diverges somewhere (usually on the
horizon) or vanishes there (in which case the gravitational
coupling strength diverges) [31]. If Brans IV solutions
(which have regular nonvanishing scalar ϕ) did indeed
describe black holes, they would violate the no-hair
theorems, but we have shown them to describe wormholes
or naked singularities in all their parameter range instead.
Turning to the general problem of the changing nature of

a spacetime geometry subject to conformal mappings, it
seems odd that a solution of scalar-tensor gravity hosts no
horizons and describes a naked singularity in one con-
formal frame, while it admits a horizon and describes a
wormhole in another conformal frame. This change under
conformal mappings is even more surprising if one adopts
the widespread point of view (which goes back to Dicke
[33]) that different conformal frames are merely different
representations of the same physical theory, with the
condition that units of length, time, and mass change in
the Einstein frame while they are fixed in the Jordan frame
[33]. According to Dicke, under a conformal rescaling of
the metric gab → Ω2gab, the units of length and time scale
as Ω, while the unit of mass scales as Ω−1 and derived units
scale according to their dimensions [33]. The physics in the
two frames is the same once the rescaling of units is taken
into account because all that is measured in a physical
experiment (and all that matters from an operational point
of view) is the ratio of a quantity to its unit. For example,
both the mass of a particle and its unit scale as Ω−1 in the
Einstein frame and their ratio stays constant [33]. While it is
hard to disagree with Dicke’s view in principle, matters are
more complicated in practice. Dicke’s argument is easy to
follow for test particles: Jordan frame timelike geodesics
are mapped into nongeodesic curves in the Einstein frame
because of the variation of particle masses in this frame3

[33]. However, the apparent horizons located by the roots
of the equation ∇cR∇cR ¼ 0 in spherical symmetry (or by
the more complicated definition using the expansions of
ingoing and outgoing null geodesic congruences in the
absence of spherical symmetry [19–21]) are not related in
any simple way to test particles. In spherical symmetry,
apparent horizons are related to the Misner-Sharp-
Hernandez massMMSH of spacetime [34], which is defined
by the equation

1 −
2MMSH

R
¼ ∇cR∇cR ¼ 0; ð46Þ

which in turn gives RAH ¼ MAH=2 at the apparent hori-
zons. It is well known that the Hawking-Hayward quasi-
local energy [35,36] (defined in general relativity without
restrictions of symmetry or asymptotic flatness) reduces to
the Misner-Sharp-Hernandez mass in spherical symmetry
[37]. The Hawking-Hayward mass and its special case, the
Misner-Sharp-Hernandez mass, are complicated integrals
involving several physical quantities constructed with the
ingoing and outgoing null geodesics through a compact,
spacelike, orientable 2-surface and their gradients [35,36].
It is not surprising, therefore, that the quasilocal energy
does not transform simply as Ω−1 (that is, as the mass of a
test particle), as expected naively from Dicke’s dimensional
considerations [33]. (The transformation property of the
Misner-Sharp-Hernandez mass in spherical symmetry was
worked out in [25] and that of the full Hawking-Hayward
mass in [38].) Since apparent horizons are intimately
related to a complicated quantity such as the quasilocal
mass, it is not surprising that they change in nontrivial ways
under conformal rescalings of the spacetime metric. While,
from a fundamental point of view, lengths and times may
just scale as Ω and masses as Ω−1, the transformation
properties of composite objects and more complicated
physical quantities may be much harder to predict and
even counterintuitive. Therefore, although the two con-
formal frames may ultimately be physically equivalent at
the classical microscopic level, in practice this equivalence
can be well hidden and is not manifest when considering
horizons and their conformal rescalings.
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3Null geodesics, of course, remain null geodesics under
conformal rescalings as they suffer only an irrelevant change
of parametrization [1].
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