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We construct multipole moments for stationary, asymptotically flat, spacetime solutions to higher-order
curvature theories of gravity. The moments are defined using 3þ 1 techniques involving timelike Killing
vector constructions as in the classic papers by Geroch and Hansen. Using the fact that the Kerr-Newman
metric is a vacuum solution to a particular class of fðRÞ theories of gravity, we compute all its moments, and
find that they admit recurrence relations similar to those for the Kerr solution in general relativity. It has been
proposed previously that modeling the measured frequencies of quasiperiodic oscillations from galactic
microquasars enables experimental tests of the no-hair theorem.We explore the possibility that, even if the no-
hair relation is found to break down in the context of general relativity, theremay be anfðRÞ counterpart that is
preserved. We apply the results to the microquasars GRS 1915þ 105 and GRO J1655-40 using the
diskoseismology and kinematic resonancemodels, and constrain the spins and “charges” of their black holes.
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I. INTRODUCTION

The interpretation of parameters appearing within sol-
utions to the theory of general relativity (GR) has a rich
history [1,2]. In linear field theories, such as Newtonian
gravity or Maxwell electrodynamics, it is well understood
how the potential associated with a solution to the field
equations can be characterized by its multipole moments
[3,4]. The moments themselves generate a series expansion
for the field potential, which then offers a term-by-term
physical understanding [5]. Nonlinear field theories, such
as GR, do not obey the principle of superposition, making
multipole decomposition harder to define. Some of the
better known multipole expansions in GR are due to Thorne
[6], Curtis [7], Geroch [8], Hansen [9], Janis and Newman
[4] and others [10–12].
One practical application of multipole moments is to

characterize solutions in non-GR theories [13,14], e.g.
fðRÞ gravity [15]. Interestingly there exist vacuum solu-
tions to higher-order curvature theories which are simulta-
neously nonvacuum solutions in GR. For example, the
Kerr-Newman metric [16] is a vacuum solution to a
particular class of fðRÞ gravities [17–19]. In the GR
context, astrophysical interest in the Kerr-Newman solution
is limited due to the expectation that naturally formed black
holes are neutral. However, in fðRÞ gravity, the Kerr-
Newman metric serves as a natural extension of the
uncharged Kerr solution. In this paper, we explore the
properties of this metric as a solution to a vacuum fðRÞ
theory. We introduce multipole moments for higher-order
curvature theories through the Geroch-Hansen procedure,
[3,8,9,20,21] compute the Kerr-Newman moments, and

find that they reduce to their Kerr counterparts found by
Hansen, [9] when the appropriate limit is taken.
How can one determine if the Kerr-Newman solution in

fðRÞ gravity occurs in Nature? A contender for an experi-
ment to answer this question is provided by quasiperiodic
oscillations (QPOs) in X-ray binaries [22,23] or active
galactic nuclei [24]. While the physical origin of these
phenomena is still being debated [23], some models
suggest that, as the accretion disk swirls around the black
hole, certain fluid modes become trapped within the
ergosphere [25], producing quasiperiodic patterns of
electromagnetic activity via the Lense-Thirring effect
[26,27]. In GR, owing to the uniqueness results of
Israel, Carter, Robinson, and Hawking [28–30], the
frequencies of these modes are directly related to the mass
and spin of the Kerr black hole. Johannsen and Psaltis [31]
have demonstrated methods by which, given an indepen-
dent measurement of either the mass or spin, one can
determine whether the no-hair theorem in GR is violated by
monitoring QPO frequencies, or whether something else is
going on, e.g. fðRÞ gravity.
The multipole relations we find for the Kerr-Newman

solution in fðRÞ gravity obey recurrence relations similar to
those of the Kerr metric in GR, in that each moment is
computable from the lowest-order mass and current
moments. This result indicates the presence of a no-hair-
type result in fðRÞ gravity, except with three parameters
instead of two. Although it is unlikely that the Kerr-Newman
metric is the unique descriptor of black holes in fðRÞ gravity,
it may form part of an extended family of solutions generated
by the function f. This presents an alternative scenario to that
presented by Johannsen and Psaltis [31]: if no-hair-violating
data are discovered, the no-hair theorem may still be
preserved, provided that GR does not apply. Hence, for
any given object, an independent mass measurement
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combinedwith a QPO pair may not be enough to rule out no-
hair relations altogether. More generally, one would need m
measurements to potentially invalidate a no-hair theorem
involving m − 1 independent parameters, but one would
need only three measurements to determine whether GR
(or the Kerr no-hair relation) is consistent.
Given a QPO pair, one can compare theoretical relations

between the mass, spin, and quadrupole moment with
measured frequencies. The Kerr-Newman metric in fðRÞ
gravity contains a parameter ρ (no longer charge). Given
the measured frequencies of QPO pairs from the micro-
quasars GRS 1915þ 105 and GRO J1655-40, we place
bounds on ρ following Johannsen and Psaltis [31]. Some
GR estimates place the spin of GRS 1915þ 105 as high as
a=M ¼ 0.998 [32], where fðRÞ effects may be strong
[13,33,34]. A similar analysis using the Kerr-Newman
metric indicates that the spin of these objects may be over
or underestimated depending on the sign of ρ.
The paper is structured as follows. In Sec. II we revisit

the definitions given by Geroch and Hansen in GR and
generalize them to alternative gravities. In Sec. III we
derive the equations which govern the multipole moments
for spacetimes in general gravitational theories. In Sec. IV
we explicitly solve these equations for the fðRÞ Reissner-
Nördstrom and Kerr-Newman black holes and use the
solutions to generate the multipole moments. In Sec. V we
explore the consequences for QPO modeling to illustrate
how the moment calculation can be applied astrophysically.
We discuss the results in Sec. VI.

II. GEROCH-HANSEN MOMENTS IN GR

A. Definitions

The Geroch and Hansen moments [8,9] are defined for
asymptotically flat,1stationary2 solutions to the Einstein
equations outside of a source,

Rμν ¼ 0; ð1Þ

where Rμν denotes the Ricci tensor. They are built out of
potentials associated with the metric which satisfy Poisson-
like equations, thereby relinearizing a significant portion of
the problem. The geometric framework that facilitates the
relinearization, described below, also provides a convenient
recipe for generalizing from the Einstein theory to alter-
native gravitational theories.
We assume that the spacetime M is stationary, so that

there exists a timelike vector field ξ [35] which satisfies
Killing’s equation3

∇μξν þ∇νξμ ¼ 0: ð2Þ

If we define λ, the norm of ξ, by [20]

λ ¼ ξαξα; ð3Þ
and the twist, ω†, by [35]

ω†
α ¼ ϵαβγδξ

β∇γξδ; ð4Þ
then the metric g may be written in the generalized
Papapetrou form4 [10,28]

ds2 ¼ λðdtþ σidxiÞ2 − λ−1hijdxidxj; ð5Þ

where ω†
i ¼ −λ−2ϵijkDjσk, and D forms the covariant

derivative with respect to hij (see Appendix A). The
spacetime then admits a 1þ 3 split, and we denote the
manifold associated with the Riemannian metric h as S
[9,10,36]. We assume that S is simply-connected (such as
the exterior region to a black hole ergosphere), to ensure the
existence of a certain scalar field (see below) [10,37].

B. Static and stationary spacetimes

Geroch initially considered static spacetimes withω† ¼ 0
[2,3]. Starting from Einstein’s equations on M, Rμν ¼ 0, he
derived the corresponding field equations over S. The
fundamental variables to be computed are λ and the compo-
nents hij. The equation for λ is equivalent to a conformally
invariant Laplace equation for a particular scalar field ϕM

(mass potential), for which the moments are defined. The
benefit of trading λ for ϕM is that, when the spacetime is
Minkowski (g ¼ η), the Newtonian equation ∇2ϕM ¼ 0 is
recovered. In particular, the procedure uniquely pulls out the
mass monopole moment for the Schwarzschild black hole,
with all other moments being identically zero.
The extension to the stationary case (ω† ≠ 0) was

given by Hansen [9]. For example, rotating solutions
require an additional moment-generating field, ϕJ [29,38].
Combining (2) and (4) with the Bianchi identities leads to

∇αω
†
β − ∇βω

†
α ¼ −ϵαβγδξγRδ

τξ
τ: ð6Þ

Assuming the Einstein condition (1), the right-hand side of
(6) vanishes, and there exists a scalar field ω† such that

∇αω
† ¼ ω†

α: ð7Þ
We explore generalizations of the quantity ω† in the next
section to extend the formalism to non-Einstein theories,
since the scalar ω† does not exist in general outside GR.
To ensure that the spacetime M is asymptotically flat,

one requires the existence of a manifold ~S, consisting of S
1We assume a 4-dimensional spacetime throughout and zero

cosmological constant in GR.
2A spacetime is stationary if the metric tensor does not depend

on any timelike coordinates.
3We consider torsionless theories of gravitation: ∇μgαβ ¼ 0.

4Throughout, Greek symbols range over spacetime indices
0,1,2,3 while Latin indices are reserved for spatial indices 1,2,3.
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plus one additional point Λ, subject to certain conditions
[8,20]. This point Λ is to be thought of as the “asymptotic”
point, in the sense that we can extend the metric h to the
boundary of S. In particular, we require the existence of a
scalar field, Ω such that ~hab ¼ Ω2hab is a metric on ~S, and
at Λ one has Ω ¼ 0, ~DaΩ ¼ 0, and ~Da

~DbΩ ¼ n ~hab for
some n. Euclidean 3-space is asymptotically flat in the
above sense with conformal factor Ω ¼ r−2, where r is the
distance from some origin [8,9,20].
One can now express the field equations on M in terms

of the variables fλ;ω†; hijg. In Appendix A we show how
to map these equations onto S. The equations of motion for
λ and ω† are replaced by ones for ϕMðλ;ω†Þ and ϕJðλ;ω†Þ
on S and ~S, which read5 [8,9]�

DiDi − 1

8
R
�
ϕA ¼ 15

16
λ−2κϕA; ð8Þ

with A ¼ M, J, where R is the Ricci scalar on S, and
κ ¼ ðDmλDmλþDmωDmωÞ. Equation (8) is solved sub-
ject to mixed Dirichlet and Neumann boundary conditions
(see §3). The factor 1

8
R ensures that the field equations are

conformally invariant with respect to ϕA (see Appendix B),
so that transforming into the space ~S leaves the moments
unaltered [10,39].
We remark in passing that one can work within the

original formalism due to Geroch [8], where Eq. (8) is taken
to be homogenous (κ ¼ 0), without altering the results of
this paper. The inhomogeneous terms added by Hansen
(equations (2.16) in [9]) preserve the conformal properties
of the Laplace equation while permitting closed form
solutions ϕA to (8) in GR. However, this calculational
advantage does not carry over to modified gravities except
in special cases. When the Ricci tensor is complicated, no
closed-form solutions exist in general, as there is no
obvious way to write the derivatives of ω, Q, or λ in terms
of the 3-metric hij [see (A4)]. The homogeneous and
inhomogeneous forms of the non-GR extension of equa-
tion (8) both produce the same moments, as calculated in
Sec. IV B, according to Theorem 4 in [36], even though the
generalized ϕA are different in the two cases. In this paper,
we persevere with Hansen’s inhomogeneous formalism to
match equation (2.16) in [9], at the cost of mildly
complicating the form of Eq. (8).
In order to define the moments, we construct recursively

a set of tensor fields PA
a1…as on ð ~S; ~hÞ by

PA¼ ~ϕA;

PA
a1…asþ1

¼C
�
~Da1P

A
a2…asþ1

−1

2
sð2s−1Þ ~Ra1a2P

A
a3…asþ1

�
;

ð9Þ

with ~ϕA ¼ Ω−1=2ϕA, where C½Ja…b� denotes the symmetric,
trace-free part of Ja…b and ~Rij is the Ricci tensor

associated with ~hij. We now define the 2s moment of
ϕA to be the value of PA

a1…as at Λ and write PM
a1…as ¼

Ma1…as and PJ
a1…as ¼ Ja1…as .

For some physical intuition, consider the Newtonian
gravitational potential ϕ defined on Euclidean 3-space. To
perform the conformal completion we take Ω ¼ r−2 and
~ϕ ¼ Ω−1=2ϕ ¼ rϕ. The vacuum Newtonian gravitational
potential [satisfying (8)] admits an expansion of the
form [9]

~ϕ ¼ U þUaxa þ
1

2!
Uabxaxb þ � � � ; ð10Þ

where U are the multipole moments and x is the position
vector. It follows immediately that at the point Λ ðjxj ¼ 0Þ
we have

U¼ ~ϕjΛ; Ua ¼ ~Da
~ϕjΛ; Uab ¼ ~Da

~Db
~ϕjΛ;…: ð11Þ

Equation (11) coincides exactly with Eq. (9) when the
curvature terms vanish.
In GR, one may solve (8) exactly for any stationary

vacuum solution [9]. For Rμν ≠ 0, factors emerge involving
the Ricci tensor, such as Rμνξ

μξν, which make finding a
general solution difficult. One must solve the non-GR
extended version of Eq. (8), namely Eq. (15), for individual
metrics in any given modified theory of gravity to define
the moments using (9), as we do for the Kerr-Newman
metric in Sec. IV.

III. NON-EINSTEIN GRAVITY

Having introduced the Geroch-Hansen procedure for GR
in Sec. II B, we explore the parts that break down when the
spacetime is non-Einstein.

A. Definitions

For Rμν ≠ 0, the twist one-form ω† is not curl-free. We
introduce a one-form Q such that

ω ¼ ω† þ Q ð12Þ
is curl-free. Then a scalar field ω exists with ∇αω ¼ ωα,
provided that Q satisfies

dQ ¼ −⋆½ξ∧RðξÞ�; ð13Þ
where ⋆ is the Hodge star operator and ∧ is the
wedge product (see equation 2.16 of [29]).
Equation (13) constitutes a first-order partial differential
equation for the form Q [37], which may be solved by
defining a coordinate system (see Appendix C). We5Scripted letters refer everywhere to curvature tensors on S.
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explicitly construct Q for the case of the Kerr-Newman
black hole in Sec. IV.

B. Moments

In this section we derive the equations for the gravita-
tional potentials which define the multipole moments. We

introduce scalar fields τAðλ;ωÞ, generalizing the moment
functions ϕA of Geroch and Hansen. The goal is to choose
τA to satisfy Eq. (8) for Rμν ≠ 0, with τA ¼ ϕA for Rμν ¼ 0.

Making use of the chain ruleDjτ
A ¼ Djλ

∂τA
∂λ þDjω

∂τA
∂ω , we

are able to write

�
DmDm − 1

8
R
�
τA ¼ 1ffiffiffi

h
p ∂ið

ffiffiffi
h

p
hij∂jτ

AÞ − 1

8
RτA

¼ ðDmDmλÞτA;λ þ ðDmDmωÞτA;ω þ ðDiλDiλÞτA;λλ þ 2ðDjωDjλÞτA;λω þ ðDiωDiωÞτA;ωω − 1

8
RτA; ð14Þ

where we have adopted the notation fA;λω ¼ ∂2fA
∂λ∂ω and h forms the 3-metric as in (5). Making use of some identities derived in

Appendix A [Eqs. (A4)–(A6)] we find that the vanishing of the Poisson equation�
DmDm − 1

8
R
�
τA ¼ 15

16
λ−2κτA; ð15Þ

is equivalent to

0 ¼ DiλDiλ

�
1

2
λ−1τA;λ þ τA;λλ − 15

16
λ−2τA

�
þDmωDmω

�
τA;ωω − λ−1τA;λ − 3

4
λ−2τA

�
þDmωDmλ

�
2τA;λω þ 3

2
λ−1τA;ω

�

þDmωQm

�
2λ−1τA;λ − 3

8
λ−2τA

�
− λ−1QmQm

�
τA;λ − 3

16
λ−1τA

�
þ
�
DaQa − 3

2
λ−1QmDmλ

�
τA;ω − 2Rmnξmξnτ

A
;λ

−
Rmn

8
ðhmn − λ−1ξmξnÞτA: ð16Þ

For the mass potential, the above equation is to be solved
subject to the Neumann conditions τMðλ ¼ 1;ωÞ ¼ ω2

4
and

τM;λ ðλ ¼ 1;ωÞ ¼ 1
2
− 3

16
ω2. For the current potential, it is

solved subject to the mixed Dirichlet τJðλ;ω ¼ 0Þ ¼ 0 and
Neumann conditions τJ;ωðλ;ω ¼ 0Þ ¼ 1

2
[9]. Adding con-

stant terms to τA does not change the moment structure
(because we have ΩjΛ ¼ 0), so these boundary conditions
are sufficient [10]. For the Einstein case Rμν ¼ 0, equa-
tion (16) has solutions τM → ϕM ¼ 1

4
λ−3=4ðλ2 þ ω2 − 1Þ,

and τJ → ϕJ ¼ 1
2
λ−3=4ω, which differ from Hansen’s by a

factor of λ−1=4 due to the sign of the norm (3) (see
section VII of [40]).
For any metric, the equations of motion for λ and ω may

be replaced by (16), which reduces to the Laplace equation
for g ¼ η. There are also equations of motion for hij, which
depend on the theory of gravity but do not affect the
moments. As an example, we derive the field equations for
hij for fðRÞ gravity in Appendix A.
We explicitly solve (16) in Sec. IV for two cases of

“charged” black holes, which arise as vacuum solutions in
an fðRÞ theory of gravity: the Reissner-Nördstrom and
Kerr-Newman metrics. The moments for the modified
gravity solution are given through (9) with ϕA replaced
by τA. The process of computing PA iteratively from (9)
after finding τA may or may not be a difficult task. Several
authors [40–43] have developed alternative methods for
computing the moments rather than employing the

definition (9) directly, which are useful for complicated
metrics.

C. Static spacetimes

For ω† ¼ 0 and Q ¼ 0, Eq. (16) gives

DiλDiλ

�
1

2
λ−1τA;λ þ τA;λλ − 15

16
λ−2τA

�

þ 1

8
RmnðhmnτA − λ−1ξmξnτA − 16ξmξnτA;λÞ ¼ 0: ð17Þ

Furthermore, for Rμν ¼ 0, (17) reduces to ðDiλ ≠ 0Þ

1

2
λ−1τA;λ þ τA;λλ − 15

16
λ−2τA ¼ 0; ð18Þ

which has solutions τM → ϕM ¼ 1
4
λ−3=4ð−1þ λ2Þ and

τJ ¼ 0, where the dependence on λ differs from
Geroch’s result [8] due to κ ≠ 0. Taking κ ¼ 0, the
appropriately modified version of Eq. (18) reads

1

2
λ−1τA;λ þ τA;λλ ¼ 0; ð19Þ

which has the exact Geroch solutions τM → ϕM ¼ −1þffiffiffi
λ

p
and τJ ¼ 0 [8,40].

ARTHUR GEORGE SUVOROV and ANDREW MELATOS PHYSICAL REVIEW D 93, 024004 (2016)

024004-4



D. Axisymmetric spacetimes

In spacetimes that are axisymmetric, the tensor moments
(9) reduce to a set of scalar moments [9]. Axisymmetry
guarantees the existence of a spacelike Killing vector ζ in S,
i.e. there is a second field satisfying Killing’s equation (2).
The conformal factor Ω can be chosen, without loss of
generality, such that the axis vector zi ¼ 2ϵijkDjζk satisfies

~zk ~zkjΛ ¼ 1; ð20Þ
under the conformal transformation z → ~z; see Eqs. (3.2)–
(3.4) in Hansen [9]. Hence, at Λ, ζ defines rotations of
tensors, under which the multipole moments are preserved
[9,14]. Hansen showed that the only tensors at Λ invariant
under the action of ~z are products of the metric and ~z itself
[9]. As a result, the 2s moment PA

a1…as is necessarily a
multiple of C½~zi1…~zias �jΛ. Therefore, the only nonzero
components of PA are [14,40,43]

PA
s ¼ 1

s!
PA
a1���asz

i1 � � � zias jΛ: ð21Þ

IV. “CHARGED” BLACK HOLES

In this section we solve equation (16) for the Reissner-
Nördstrom and Kerr-Newman metrics. Although originally
obtained as charged black holes in GR, these black holes
can also arise as vacuum solutions in modified theories of
gravity, such as the fðRÞ theory, explaining the quotation
marks in the section heading. Our analysis follows various
authors [13,31,44] in evaluating the multipole moments
associated with a non-Einstein spacetime. The main dis-
tinction here is that the generalized Geroch-Hansen pro-
cedure allows us to directly compare the moments for exact
solutions in modified gravitational theories with their
Einstein counterparts at all orders.

A. Reissner-Nördstrom metric

A static, spherically symmetric metric on M may be
written in Boyer-Lindquist ðt; r; θ;ϕÞ coordinates as (see
e.g. [35])

ds2M ¼ AðrÞdt2 − BðrÞdr2 − r2dΩ2: ð22Þ

Static solutions have ω† ¼ 0, and λ ¼ AðrÞ. From (5), the
line element on S is

dσ2S ¼ BðrÞAðrÞdr2 þ r2AðrÞdΩ2: ð23Þ

The Einstein-Maxwell field equations read

Rμν − R
2
gμν ¼ 1

μ0

�
FμαFν

α − 1

4
gμνFαβFαβ

�
; ð24Þ

where Fαβ is the Faraday tensor (e.g. [29]). Choosing a
point source to generate F yields the Reissner-Nördstrom
solution (e.g. [45])

AðrÞ ¼ 1 − 2M
r

þ ρ

r2
¼ BðrÞ−1: ð25Þ

The parameter ρ, for the Einstein-Maxwell case, is defined
as the square of the total electromagnetic charge [45],

ρ ¼ q2: ð26Þ

We avoid writing ρ as a square, because ρ can be interpreted
as a negative number in modified gravity. To the authors’
knowledge, there is no neat physical interpretation for ρ
presently available in an fðRÞ gravity where there is zero
electromagnetic field. In the vacuum theory it appears as an
integration constant, and seems to have the effect of mass
renormalization (see Sec. IV B).
The Geroch-Hansen moments in GR are not able to

describe the multipolar decomposition of this solution6

since Rμν ≠ 0. However, the Reissner-Nördstrom metric
is in fact a solution to any vacuum fðRÞ gravity with
fð0Þ ¼ f0ð0Þ ¼ 0, such as the fðRÞ ¼ R1þδ models studied
by Clifton and Barrow [49]. In this paper we consider
models with δ > 0. Clifton and Barrow found that peri-
helion precession observations of Mercury place the tight
bounds 0 ≤ δ < 7.2 × 10−19 [49].
The field equations for fðRÞ gravity read (e.g. [15])

f0ðRÞRμν − 1

2
fðRÞgμν þ ðgμν□ − ∇μ∇νÞf0ðRÞ ¼ 0: ð27Þ

Noting that the Reissner-Nördstrom spacetime has R ¼ 0,
setting fð0Þ ¼ f0ð0Þ ¼ 0 automatically guarantees that
(22) with (25) is a solution to (27), since ∇μf0ðRÞ ¼
R;μf00ðRÞ and R is constant.
Using our expression for the 3-metric (23), Eq. (17) for

the Reissner-Nördstrom solution becomes

0 ¼ DiλDiλ

�
1

2
λ−1τM;λ þ τM;λλ − 15

16
λ−2τM

�
−
ðλ − 1Þ4ρf8M2pðλÞ2 þ ðλ − 1Þ2ρ2 þ 4M½pðλÞ2 þM2�pðλÞg

8λ½M þ pðλÞ�8
× ½ðλ − 1ÞτM þ 16λ2τM;λ � ¼ 0; ð28Þ

6However one can define separate moments for the Schwarzschild component and electromagnetic 4-potential A; see [11,46–48].
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with pðλÞ ¼ ½M2 þ ðλ − 1Þρ�1=2. We have τJ ¼ 0 by the
boundary conditions, as expected physically. Explicitly
taking the covariant derivatives of λ, i.e. Diλ ¼ DiAðrÞ ¼
δriA

0ðrÞ ¼ δriA
0ðA−1ðλÞÞ, we find

0 ¼ ½ðλ − 1Þρþ 30λ−1pðλÞ2�τM − 16½pðλÞ2 − λ2ρ�τM;λ
− 32λpðλÞ2τM;λλ: ð29Þ

Equation (29) with boundary conditions τMðλ ¼ 1Þ ¼ 0,
τM;λ ðλ ¼ 1Þ ¼ 1=2 has a lengthy solution involving con-
fluent hypergeometric functions [50], which is plotted in
Fig. 1 for a variety of values of ρ.
We now compute the moments following the recipe in

Sec. II and Sec. III. Following Hansen [9], we adopt a new
coordinate system ft; R̄; θ;ϕg which simplifies the calcu-
lation ofΩ considerably, where the new radial coordinate R̄
is defined via

R̄ ¼ exp

�Z
dr

ffiffiffiffiffiffiffi
hrr
hθθ

s �
: ð30Þ

Upon inversion for the Reissner-Nördstrom spacetime, we
find

r ¼ 1

R̄

�
1þMR̄þ 1

4
ðM2 − ρÞR̄2

�
: ð31Þ

Inspection of the resulting line element shows that a
suitable Ω can be taken as

Ω ¼ R̄2

1 − 1
4
ðM2 − ρÞR̄2

; ð32Þ

to yield

~dσ2~S ¼ dR̄2 þ R̄2dθ2 þ R̄2 sin2 θdϕ2; ð33Þ
satisfying ~h ¼ Ω2h. These choices reduce to those used by
Geroch and Hansen [8,9] when ρ → 0. Upon substituting
~τM ¼ Ω−1=2τM into (21), we find that the only nonzero

multipole moment for the fðRÞ Reissner-Nördstrom space-
time is

M0 ¼ −ðM2 − ρÞ1=2: ð34Þ
Equation (34) agrees with Geroch’s result M0 ¼ −M as a
special case for the Schwarzschild solution (ρ → 0).

B. Kerr-Newman solution

The Kerr-Newman metric in Boyer-Lindquist-type
ðt; r; θ;ϕÞ coordinates takes the form (e.g. [28])

gtt ¼ 1þ ρ − 2Mr
r2 þ a2cos2θ

;

grr ¼ − r2 þ a2cos2θ
a2 − 2Mrþ r2 þ ρ

;

gtϕ ¼ að2Mr − ρÞsin2θ
r2 þ a2cos2θ

;

gθθ ¼ −r2 − a2cos2θ;

gϕϕ ¼ −
�
r2 þ a2 − a2ðρ − 2MrÞsin2θ

r2 þ a2cos2θ

�
sin2θ: ð35Þ

The parameter a ¼ J=M measures the spin, and ρ is once
again the total charge as in (26) for the Einstein-Maxwell
theory (but not in modified gravity).
The Kerr-Newman metric, which has R ¼ 0, is a vacuum

solution to any fðRÞ theory7 with fð0Þ ¼ f0ð0Þ ¼ 0 by the
same argument as in Sec. IVA. The Ricci tensor has a
nonvanishing off-diagonal component

Rϕ
t ¼ 2aρ

ðr2 þ a2 cos2 θÞ3 ; ð36Þ

so the generalized twist must be constructed. Solving
Eq. (13) using the equivalent system (C2)–(C4) we find
Q has nonzero components

Qr ¼ − 2aρ cos θ
ðr2 þ a2 cos2 θÞ2 ; ð37Þ

and

Qθ ¼ − 2arρ sin θ
ðr2 þ a2 cos2 θÞ2 ; ð38Þ

and hence

ω ¼ 2aM cos θ
r2 þ a2 cos θ

; ð39Þ

from (6) and (12). Equation (16) may now be written down
in its entirety. We do not record the result here as it is

0.0 0.5 1.0 1.5 2.0

1.5

1.0

0.5

0.0

M

FIG. 1. Solutions τMðλÞ to the Poisson equation (29) with ρ ¼
−0.4M2 (dotted), ρ ¼ 0.0 (solid), ρ ¼ 0.4M2 (dashed), and ρ ¼
0.99M2 (dash-dotted).

7This solution also appears as a vacuum solution in the
Randall-Sundrum braneworld class of theories [51].
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lengthy. We use the relation λ ¼ gtt and Eq. (39) to express
the coordinates r and θ as well the components of Q in
terms of r ¼ rðλ;ωÞ, θ ¼ θðλ;ωÞ, and Qα ¼ Qαðλ;ωÞ. All
terms involving the Ricci tensor may then be expressed in
terms of λ and ω.
Defining a new radial coordinate R̄ through the implicit

relationship

r ¼ 1

R̄

�
1þMR̄þ 1

4
ðM2 − a2 − ρÞR̄2

�
; ð40Þ

we find that

Ω ¼ R̄2

f½1 − 1
4
ðM2 − a2 − ρÞR̄2�2 − a2R̄2 sin2 θg1=2 ; ð41Þ

yields the desired form of the line element

~dσ2S ¼ dR̄2 þ R̄2dθ2

þ R̄2sin2θdϕ2

1 − a2R̄2sin2θ½1 − 1
4
ðM2 − a2 − ρÞR̄2�−2 ; ð42Þ

with ~h ¼ Ω2h. A quick check shows that (42) does satisfy
the constraints at the point Λ (R̄ ¼ 0).
Solving (16) and iteratively evaluating the moments PAjΛ

through equation (21) we obtain the multipole moments for
the Kerr-Newman solution in fðRÞ gravity:

M2s ¼ ð−1Þsþ1ðM2 − ρÞ1=2a2s; ð43Þ

M2sþ1 ¼ 0; ð44Þ

J2sþ1 ¼ ð−1ÞsðM2 − ρÞ1=2a2sþ1; ð45Þ

J2s ¼ 0: ð46Þ

Again, these results agree with those found by Hansen [9]
for the Kerr solution in the limit ρ → 0. It is worth pointing
out that the moments may each be written in terms of M0

and J1 (instead of M, ρ, and a) to recover the same
expressions as in Kerr, i.e.

M2s ¼ ð−1ÞsM0a2s; ð47Þ

and

J2sþ1 ¼ ð−1ÞsJ1a2s: ð48Þ

Therefore, in this sense, the (Kerr) no-hair relation is not
violated. Moreover, this allows one to interpret ρ as an fðRÞ
renormalization of the mass term in the Kerr metric; if the
Kerr mass M is replaced by the fðRÞ term

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 − ρ

p
, then

the Kerr moments are indistinguishable from the fðRÞ
Kerr-Newman moments.

V. QPOS IN MICROQUASARS

To illustrate how the above results can be applied to
practical problems, we consider X-ray observations of
QPOs in accreting compact objects, especially microqua-
sars [31,52]. There are several models in the literature for
the origin of QPOs (e.g. [53]). One possibility is that QPOs
arise from normal modes of oscillation trapped due to
Lense-Thirring precession in the accretion disks surround-
ing black holes [26,54]. We explore two simplified models
along these lines: the diskoseismology model (e.g. [55]) in
Sec. VA and the kinematic resonance model (e.g. [56]) in
Sec. V B. In the diskoseismology model, QPO frequencies
are attributed to the lowest order gravity (g-) and corruga-
tion (c-) modes [57]. In the kinematic resonance model, the
QPOs arise from resonances between the radial epicyclic
frequencies of disk particles and the corresponding
Keplerian frequencies [56]. Assuming particular resonan-
ces for the objects GRS 1915þ 105 and GRO J1655-40,
we explore the range of spin a and “charge” ρ values
compatible with the QPO models above and independent
mass measurements. We stick to using the parameter ρ
throughout this section, although we can easily solve for
(say) the mass quadrupole momentM2 defined in (43) from

ρ ¼ M2 −M2
2=a

4: ð49Þ
There are large systematic uncertainties in determining
black hole spins from QPOs, because there are many viable
models through which the data can be interpreted. The
purpose of this section is to point out that there may also be
uncertainties in the gravitational theory, which compound
those that enter through QPO modeling.

A. Diskoseismology model

For a massive particle falling freely in a stationary,
axisymmetric metric with four-momentum

pα ¼ μ
dxα

dτ
; ð50Þ

we have three conserved quantities: rest mass μ (which we
set to 1 without loss of generality), energy E ¼ −pt, and
axial angular momentum Lz ¼ pϕ [28]. Raising the indices
on these momenta we obtain the relations [13]

pt ¼ − gϕϕEþ gtϕLz

gttgϕϕ − g2tϕ
; ð51Þ

pϕ ¼ gtϕEþ gttLz

gttgϕϕ − g2tϕ
: ð52Þ

If we specialize to motion in the equatorial plane (pθ ¼ 0),
appropriate for a thin, unwarped accretion disk, the
remaining independent component of the geodesic equa-
tions turns into
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1

2
grrðprÞ2 ¼ 1

2
½−gttðptÞ2 − 2gtϕptpϕ − gϕϕðpϕÞ2 − 1�:

ð53Þ

The right-hand side of (53), written Veff , is called the
effective potential. Circular orbits are then characterized
by the additional constraints pr ¼ 0 and dpr

dr ¼ 0 [28,31].
Specializing to this case, we have from Eq. (53)

Veff ¼ 0; ð54Þ

and

d
dr

�
Veff

grr

�
¼ 0: ð55Þ

Using the momenta (51) and (52), solving Eqs. (54)
and (55) leads to expressions for the energy

E ¼ −2Mrþ r2 � aðMr − ρÞ1=2 − aρ

r
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi−3Mrþ r2 � 2aðMr − ρÞ1=2 þ 2ρ

p ; ð56Þ

and axial angular momentum

Lz ¼ � ½a2 þ r2∓2aðMr − ρÞ1=2�ðMr − ρÞ1=2∓aρ

r
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi−3Mrþ r2 � 2aðMr − ρÞ1=2 þ 2ρ

p ; ð57Þ

where the upper sign is taken for prograde orbits and the
lower sign for retrograde orbits. Restoring dimensional
factors of G and c and using expressions (56) and (57) we
define the Keplerian frequency Ωϕ,

Ωϕ ¼ − c3

G

gtϕEþ gttLz

gϕϕEþ gtϕLz
; ð58Þ

the radial epicyclic frequency κr given by [31]

κ2r ¼ −
�
c3

G

�
2 ∂2

∂r2
�

Veff

grrðptÞ2
�
; ð59Þ

and the angular epicyclic frequency Ωθ given by [31]

Ω2
θ ¼ −

�
c3

G

�
2 ∂2

∂θ2
�

Veff

gθθðptÞ2
�
; ð60Þ

evaluated in the equatorial plane θ ¼ π=2. The expressions
for these quantities as functions of r, E, and Lz are lengthy
but can be evaluated easily using the metric components
written down in Sec. IV B.
Following previous authors [26,54], we assume that the

fundamental g-mode frequency is given by the maximum
value of κr=2π with respect to r, while the fundamental
c-mode frequency is given by the Lense-Thirring frequency
ΩLT ¼ Ωϕ −Ωθ (e.g. [28]) evaluated at the innermost
stable circular orbit (ISCO) [31]. The radius of the
ISCO, rISCO, for the Kerr-Newman metric is given as the
smallest (real) solution to the equation,

0 ¼ Mð6M − rISCOÞr2ISCO þ a2ð3MrISCO − 4ρÞ
� 8aðMrISCO − ρÞ3=2 − 9MrISCOρþ 4ρ2: ð61Þ

In Fig. 2 we plot the resulting g- and c-mode frequencies
for the Kerr-Newman metric as a function of spin for a
range of values of ρ. As ρ increases in the positive direction,
the frequency of the relevant g-mode can become very large
(≳0.3 kHz), when a=M ∼ 0.9 for a 10M⊙ object, as can the
frequency of the c-mode (≳kHz). In GR, the g-mode
frequency is bounded above by 248.3ðM=10M⊙Þ Hz for
the extreme case a ¼ M. Allowing for positive values of ρ
in fðRÞ gravity permits the frequency to exceed this bound.
Furthermore, the c-mode frequency is undefined in the
presence of a naked singularity, which forms for the Kerr-
Newman solution when a >

ffiffiffi
3

p
M=

ffiffiffi
5

p
for ρ ¼ 0.4M2 as

indicated by the spike in the dashed curve. We see that for
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FIG. 2. Fundamental g-mode (left panel) and c-mode (right panel) frequencies as functions of spin with ρ ¼ 0 (solid), ρ ¼ 0.4M2

(dashed) and ρ ¼ −0.4M2 (dotted).
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0.1≲ a=M ≲ 0.4 the g-mode frequencies predicted for
ρ ¼ 0.4M2 and ρ ¼ 0 are almost indistinguishable.
In Fig. 3, we plot deviations in the g- and c-mode

frequencies from the Kerr value (ρ ¼ 0) for two different
quasar systems GRS 1915þ 105 and GRO J1655-40. To
demonstrate, we take the Middelton et al. values [32] for
the spin of GRS 1915þ 105 (a ¼ 0.998M) and the Motta
et al. values [58] for the spin of GRO J1655-40
(a ¼ 0.29M). These values were obtained by fitting con-
tinuum and precession models to the data [59] and are
compatible with our estimates computed in Sec. V B. We
see that increasing ρ in the positive direction increases the
frequencies of the g- and c-modes. For a ¼ 0.998M in GRS
1915þ 105, the model breaks down for ρ ≈ 10−2M2

(naked singularity), as indicated by the spike in the
c-mode frequency.

B. Kinematic resonance model

In the kinematic resonance model, the measured QPO
frequencies are identified with the Kepler frequencyΩϕ and
the radial epicyclic frequency κr, whose ratio is a simple
fraction in resonance. Here we determine combinations of a
and ρ which are consistent with the measured frequencies.
QPO pairs are typically observed to have frequency

ratios of 3=2 or 1=2 [34]. Assuming these ratios are
universal, several authors have estimated the spins of black
holes assuming a Kerr description (for e.g. GRS 1915þ
105 [52] and others [56,60]). We show here that if the
object is actually a Kerr-Newman black hole in fðRÞ
gravity, different spin estimates arise. If, in addition, one
has an independent measure of the mass of the black hole,
interesting bounds follow on a and ρ. As ρ can be swapped
for the mass quadrupole moment (or any higher order
moment) of the Kerr-Newman metric, we can also test
whether or not the no-hair theorem is violated in GR, if
ρ ¼ 0 does not allow for any value of a to fit the data. One

needs an independent measurement of the spin to then also
test whether or not any fðRÞ no-hair relations are violated.
Independent measurements of the black hole mass in the

systems GRS 1915þ 105 (M ¼ 14.0� 4.4M⊙) and GRO
J1665-40 (M ¼ 5.31� 0.07M⊙) have been made using
optical ray tracing [61,62] and X-ray timing techniques
[58]. Given a QPO pair at a given resonance with
frequencies q1 and q2 we determine valid combinations
of a and ρ as follows. We solve for the radius rres such that
κrðrresÞ ¼ q1 and determine values of a and ρ which yield
ΩϕðrresÞ ¼ q2. We obtain a band of possible values owing
to the error bars placed on the measured mass.
Using Doppler spectroscopy, Greiner et al. [62] esti-

mated the mass of GRS 1915þ 105 via Kepler’s Third Law
with an orbital separation of ð108� 4ÞR⊙, (i.e., separation
≫ rHorizon) from data taken at the Antu European South
Observatory Very Large Telescope. The inferred mass is the
same for both the Kerr and Kerr-Newman metrics, which
have the same far-field (Newtonian) limit. In contrast, the
more accurate mass estimate obtained for GRO J1665-40
through X-ray timing assumes a Kerr metric to analyse
epicyclic frequencies [58]. In principle, this approach is
incompatible with our analysis, since these frequencies, and
hence the mass estimate, are computed from the metric
components (5) [see Eqs. (58)–(60)]. Independent optical
measurements of the mass of GRO J1665-40, e.g. by Beer
and Podsiadlowski [63] who found M ¼ 5.4� 0.3M⊙
from Kepler’s Third Law, avoid this problem while
remaining consistent with Motta et al. [58]. Our aim is
to demonstrate that, even with tight error bars on the mass,
as achieved by [58], a large range of spins can accom-
modate QPO observations, a conclusion which is unaltered
(but is less evident) if one uses the self-consistent values of
the mass from Beer and Podsiadlowski [63]. As better data
become available in the future, it would ultimately be worth
recalculating the measured mass based on the assumption
of a central Kerr-Newman object following the rigorous
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FIG. 3. Deviations in predicted g-mode (solid curve) and c-mode (dashed curve) frequencies from the Kerr frequencies (ρ ¼ 0) as a
function of ρ for GRO J1655-40 (left panel) with spin parameter a ¼ 0.29M and GRS 1915þ 105 (right panel) with spin parameter
a ¼ 0.998M.
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statistical approach of Motta et al. [58] for an entirely self-
consistent analysis, but this lies outside the scope of the
present paper.
Méndez et al. [64] reported pairs of QPOs from GRS

1915þ 105 with frequencies 35 Hz and 67 Hz, and from
GRO J1655-40 with frequencies 300 Hz and 450 Hz.
Clearly the QPOs come from 1∶2 and 2∶3 resonances
respectively. For the rough estimates below we assume that
these are exact values. The measured error bars are quite
tight: 35.1� 0.4 Hz and 67.9� 0.1 Hz for GRS
1915þ 105, and 289� 4 Hz and 446� 2 Hz for GRO
J1655-40 respectively.
In Fig. 4 we plot the possible parameter space for the

object GRO J1655-40 with error bars flowing from M as
given by [58]. The ∼1% error on M results in a thin band,
with 0 ≤ a=M ≤ 1 and −2.0≲ ρ=M2 ≲ 0.5. As ρ increases
in the positive direction, the required spin parameter
decreases. This is in contrast to the behavior of the
quadrupole moment (43), which decreases when either ρ
is positive and increasing, or a decreases. Compatibility
with the measured QPO frequencies then, for this model,
demands that the quadrupole moment decreases if ρ is
positive and increasing, or increases if ρ is negative and
decreasing. For ρ≳ 0.35M2 the lower end of the measured
mass (M ≲ 5.25M⊙) requires a < 0.
In Fig. 5 we repeat the analysis for the object GRS

1915þ 105 with error bars on the mass as given in [61].
We obtain a large range of allowed combinations for a and
ρ given the relatively poorly constrained mass measurement
of M ¼ 14.0� 4.4M⊙. As ρ increases from 0 to 0.25M2,
the predicted range of a drops from 0.2≲ a=M ≲ 0.999 to
0.06≲ a=M ≲ 0.83, meaning that GRS 1915þ 105 may
not be a near-extreme Kerr black hole as previously
suspected [32]. In contrast to the GRO J1655-40 case,
we find that for ρ≳ 0.25M2 the top end of the measured
mass range (M ≳ 17M⊙) does not allow for a solution,

because the required value of a exceeds the naked
singularity threshold a >

ffiffiffi
3

p
=2M.

We close this section with a suggested experiment to
determine all three valuesM, a, and ρ. In reality, the quasar
system may not be in equilibrium, and will be subject to
perturbations, such as fluctuations in the accretion flow
[65,66]. These perturbations will distort the mass quadru-
pole moment, resulting in the emission of gravitational
waves [35,38], whose luminosities will be sensitive to the
governing theory of gravitation [67,68]. Given a combi-
nation of gravitational wave detections (from e.g. LIGO
[69]) and QPO measurements one could uniquely deter-
mine a, M, and ρ (e.g. [70]). Some perturbation theory has
been developed for fðRÞ gravity (e.g. [15,33]) and would
be useful in this context. Furthermore,M, a, and ρmay also
be determined independently by measuring multipole
moments of a central black hole from gravitational wave
observations of an extreme-mass ratio inspiral, as pioneered
by Ryan [38,71].

VI. DISCUSSION

In this paper we derive a set of mass and angular
momentum multipole moments, that generalize earlier
works to higher-order curvature theories of gravity, like
fðRÞ theories. The twist 4-vector ω† used by Hansen [9] is
generalized to ensure that there exists a scalar field ω such
that ωα ¼ ∇αω. The multipole moments then arise by
evaluating moment functions, which satisfy Poisson
equations.
In Sec. V we calculate the multipole moments associated

with a Kerr-Newman spacetime. Interestingly, the latter
metric can arise either as a coupled Einstein-Maxwell
solution of GR or as a pure vacuum solution to a range
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FIG. 5. Values of the spin a and “charge” ρ for the object GRS
1915þ 105 consistent with a measured mass of
M ¼ 14.0� 4.4M⊙. The large error bars in the mass mean that
many possible values of a and ρ allow for the measured QPO
frequencies of 67 Hz and 35 Hz. The shaded region indicates the
allowed zone.
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of fðRÞ theories. Indeed, any GR solution with matter also
arises as a vacuum fðRÞ solution provided the trace of the
stress energy tensor, TrðTÞ, is constant (as in the case of
Maxwell fields in four spacetime dimensions) [17]. This
has interesting consequences for the I-Love-Q type results
regarding no-hair-like relations (or three-hair relations)
among multipole moments for neutron stars and quark
stars pioneered by Yunes, Yagi, and others [72–74].
Suppose we make a multipole measurement of a compact
object, and it disagrees with the Kerr prediction. In GR, this
would indicate the presence of an inherently hairy object
such as a neutron star with strong magnetic field [75].
However, it is also possible the object is actually a nonhairy
black hole but that the theory of gravity is not GR. Higher-
order moment measurements may remove the ambiguity
but not if both objects satisfy no-hair-type relations
(cf. [76,77]).
Our results demonstrate that accretion disk models of

QPOs, specifically the diskoseismology and kinematic
resonance models, may be unable to uniquely identify
properties of black holes or refute the no-hair theorem
when combined with QPO data. We find that a wide
range of possible combinations of the spin and
“charge” are possible to explain QPO observations of
GRS 1915þ 105 and GRO J1665-40. Interestingly, the
g-mode frequency for the Kerr case is bounded above due
to a ≤ M, while for the Kerr-Newman case we have a free
parameter ρ which, when large, allows for QPOs with
kHz frequencies within the diskoseismology paradigm,
such as those observed in low mass X-ray binaries like
Sco X-1 [78].
Suppose we consider an axisymmetric spacetime

that is not stationary. One can separate out the azimuth
terms by constructing a spacelike Killing vector ζ ¼ ∂

∂ϕ,
allowing the construction of S with respect to the space-
like Killing vector ζ instead of ξ. It would be worth
exploring this avenue for generalizing the moment cal-
culations in future work. For example, one could calculate
the multipole moments associated with a radiating Vaidya
spacetime, which appears as a vacuum solution to some
fðRÞ theories [79]. Additionally, one can apply the results
to metrics other than Kerr-Newman, such as those derived
using pointlike Lagrangian techniques [80]. In GR, results
such as those of Xanthopoulous and Gursel [81,82]
demonstrate that each spacetime carries with it a unique
set of multipole moments and vice versa. Furthermore, it
can be shown that any stationary, asymptotically flat
solution to Einstein’s equations approaches the
Kerr solution near infinity [10,36]. Since the Geroch-
Hansen moments are evaluated at infinity, the two results
together show that the Kerr metric is unique in GR. The
extension of the moments presented here may help to
prove uniqueness results in modified gravity along
these lines.
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APPENDIX A: TENSOR RELATIONS ON S

In this section we derive some useful relations for tensor
fields over S. First, it was shown by Geroch [20] that there
is a one-to-one correspondence between tensor fields T b…d

a…c

on S and tensor fields Tb…d
a…c on M. Hence the covariant

derivative D over S can be written in terms of the covariant
derivative ∇ over M as [20,21]

DeTb…d
a…c ¼ hpe hma…hnchbr…hds∇pTr…s

m…n; ðA1Þ

where h is the 3-metric on S as in (5). Let k be an arbitrary
vector field over S. Then using Eq. (A1) we find

DaDbkc ¼ hpahsbh
t
c∇p∇skt − λ−1hpahqbhrcð∇pξqÞξs∇skr

− λ−1hpahqbhrcð∇pξrÞξt∇qkt: ðA2Þ

By antisymmetrizing the above equation to find
ðDaDb −DbDaÞkc, we obtain an expression for the
Riemann tensor Ra

bcd over S:

Rabcd ¼ hp½ah
q
b�h

r
½ch

s
d�½Rpqrs þ 2λ−1ð∇pξqÞð∇rξsÞ

þ 2λ−1ð∇pξrÞð∇qξsÞ�: ðA3Þ

Contracting indices and simplifying the result using the
definitions (4) and (13) we find that the Ricci tensor on S
Rab ¼ Rc

acb satisfies

Rab ¼
1

2
λ−2½DaωDbω − habDmωDmω�

þ 1

2
λ−1DaDbλ − 1

4
λ−2ðDaλÞðDbλÞ þ hma hnbRmn

þ 1

2
λ−2½QaQb −DaωQb −QaDbω − habQmQm

þ 2habQmDmω�: ðA4Þ

From the definitions (3) and (12) for λ and ω, we find
that these objects satisfy the Laplace equations [using (A1)]

DaDaω ¼ 3

2
λ−1DmωDmλ − 3

2
λ−1QmDmλþDaQa; ðA5Þ

and
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DjDjλ ¼
1

2
λ−1ðDmλÞðDmλÞ

− λ−1½DmωDmω − 2DmωQm þQmQm�
− 2Rmnξ

mξn: ðA6Þ

The fundamental field equations on S are given by (A5)
and (A6) in combination with a set of field equations for hij
will depend on the specific theory of gravity. As an

example, the vacuum field equations for fðRÞ gravity over
M read (e.g. [15])

f0ðRÞRμν − 1

2
fðRÞgμν þ ðgμν□ − ∇μ∇νÞf0ðRÞ ¼ 0: ðA7Þ

Using the identities (A1) and (A4), the fðRÞ field equations
over S read

�
1

2
λ−2½DaωDbω − habDmωDmω� þ

1

2
λ−1DaDbλ − 1

4
λ−2ðDaλÞðDbλÞ þ hma hnbRmn þ

1

2
λ−2½QaQb −DaωQb −QaDbω

− habQmQm þ 2habQmDmω� þ habDjDj −DaDb

�
f0
�
−λ−2

�
3

2
DmωDmωþ 3

2
QkQk − 3DpωQp

�

þ Rmn

�
hmn − 1

λ
ξmξn

��
− 1

2
habf

�
−λ−2

�
3

2
DmωDmωþ 3

2
QkQk − 3DpωQp

�
þ Rmn

�
hmn − 1

λ
ξmξn

��

¼ f0ðRÞRab − fðRÞ
2

hab þ ðhabDjDj −DaDbÞf0ðRÞ: ðA8Þ

The fundamental equations for an fðRÞ gravity over S
with Killing vector ξ are (A5), (A6), and (A8). They reduce
to those found by Geroch [8] for Rμν ¼ 0 and fðRÞ ¼ R.

APPENDIX B: CONFORMALLY INVARIANT
POISSON EQUATIONS

The wave equation for a scalar field ϕ with forcing term
f on a curved background,

gαβ∇α∇βϕ ¼ f; ðB1Þ

is not conformally invariant; a metric g scaled by some
functionψ (i.e. ~g ¼ ψ2g) will not be a solution to (B1) unless
ψ is trivial. In general, a conformally invariant equation will
not exist unless f is of conformal weight −ð1þ n=2Þ, i.e.
~g → ψ2g ⇒ f → ψ−1−n=2f [83]. To obtain a conformally
invariant equation one must insert a term involving the Ricci
scalar of the form (see [35], page 447)�

gαβ∇α∇β − n − 2

4ðn − 1ÞR
�
ϕ ¼ f; ðB2Þ

where we have n ¼ dimðMÞ. On the space Swe have n ¼ 3
and as such Eq. (B2) reduces to�

habDaDb −R
8

�
ϕ ¼ f; ðB3Þ

where h is the 3-metric as in (5). Equation (B3) is precisely
the formof thePoisson equations (8) considered in this paper,

where f ¼ 15
16
λ−2κϕ. This is the same function f used by

Hansen, where it was proved that f is of conformal weight
−5=2 [9], which is equal to −1 − n=2 for n ¼ 3. Therefore,
Eq. (8) is conformally invariant.

APPENDIX C: THE DIFFERENTIAL
EQUATION FOR Q

In order to generalize the twist scalar ω, we require the
introduction of a one-form Q obeying

dQ ¼ −⋆½ξ∧RðξÞ�; ðC1Þ

where the differential equation is solved with Dirichlet
boundary conditions to ensure Q ¼ 0 for Rμ

νξν ¼ 0. In a
Boyer-Lindquist coordinate system ft; r; θ;ϕgwemay take
ξμ ¼ δμt and Q ¼ ð0; Qr; Qθ; QϕÞ without loss of general-
ity. Then (C1) can be written as the coupled system

∂Qϕ

∂θ − ∂Qθ

∂ϕ ¼ 2
ffiffiffiffiffiffi−gp

Rr
t ; ðC2Þ

∂Qr

∂ϕ − ∂Qϕ

∂r ¼ 2
ffiffiffiffiffiffi−gp

Rθ
t ; ðC3Þ

∂Qr

∂θ − ∂Qθ

∂r ¼ −2 ffiffiffiffiffiffi−gp
Rϕ
t ; ðC4Þ

where we make use of the symmetry Γα
μν ¼ Γα

νμ of the
Christoffel symbols. In practice, the system (C2)–(C4) can
be solved through repeated integration (e.g. [84]).
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