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The discrepancy between the amplitudes of matter fluctuations inferred from Sunyaev-Zel’dovich (SZ)
cluster number counts and the measurement of temperature and polarization anisotropies of the cosmic
microwave background (CMB) measured by the Planck satellite can be reconciled if the local universe is
embedded in an underdense region as shown by Lee, 2014. Here using a simple void model assuming the
open Friedmann-Robertson-Walker geometry and a Markov Chain Monte Carlo technique, we investigate
how deep the local underdense region needs to be to resolve this discrepancy. Such local void, if it exists,
predicts the local Hubble parameter value that is different from the global Hubble constant. We derive the
posterior distribution of the local Hubble parameter from a joint fitting of the Planck CMB data and SZ
cluster number counts assuming the simple void model. We show that the predicted local Hubble parameter
value of Hloc ¼ 70.1� 0.34 km s−1 Mpc−1 is in better agreement with direct local Hubble parameter
measurements, indicating that the local void model may provide provide a consistent solution to the cluster
number counts and Hubble parameter discrepancies.
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I. INTRODUCTION

The standard model of cosmology, also referred to the
ΛCDM model, is now well established based on a number
of cosmological observations. The simplest ΛCDM model
contains six free cosmological parameters, each of which
has been determined with an accuracy of a few percent
through the measurement of cosmic microwave back-
ground (CMB) anisotropies by the Planck satellite [1].
The CMB anisotropies mainly manifest the nature of
density fluctuations in the universe at the recombination
era at z ≈ 1100. It is therefore of great importance to
confront the standard model with observations of the local
universe (z ≈ 0) to confirm that the standard model is
correct throughout the history of the universe (see sec-
tion 5.6 of [2] and references therein).
Some authors, however, have reported cosmological

measurements in the local universe that conflict with the
CMB result. For example, it has been claimed that the
amplitude of density fluctuations measured in the local
universe is systematically low compared with the prediction
from Planck’s CMB data (e.g., [3–9]). In particular, the
number of massive clusters derived from the Sunyaev-
Zel’dovich (SZ) effect by Planck is about half that expected

from the CMB anisotropies [10]. This SZ result from
Planck is consistent with the SZ-selected cluster number
counts from the Atacama Cosmology Telescope [11] and
the South Pole Telescope surveys [12]. Perhaps related to
this discrepancy, the local Hubble parameter measured
through the traditional distance ladder tends to show a
larger value (e.g., H0 ¼ 73.8� 2.4 km s−1 Mpc−1 by [13])
than that inferred from the Planck result (H0 ≈ 67.3�
1.0 km s−1 Mpc−1). There have been many proposals to
resolve these discrepancies, including beyond-the-standard
models, e.g., massive neutrinos [4,5], and decaying dark
matter [14], and reconsiderations of astrophysics and
calibration issues, e.g., the halo mass function [15–17],
and mass calibration [18–22].
Here, we reinvestigate the idea of Lee 2014 [23], where it

was shown that the discrepancy can be resolved if we reside
in a local underdense region. The idea is particularly
interesting because the local underdense region may
explain the observed discrepancy in the Hubble parameter
as well [24]. In our analysis, we employ a simple
Friedmann-Robertson-Walker (FRW) model with an open
geometry for the underdense region and investigated how
deep the underdense region is in order to resolve the
discrepancy using the Markov Chain Monte Carlo
(MCMC) technique. We show that the joint fitting of the
CMB and SZ data set predicts the local Hubble parameter*ichiki@a.phys.nagoya‑u.ac.jp
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value. The posterior distribution of the local Hubble
parameter from the MCMC analysis is then confronted
with direct local Hubble parameter measurements to check
the consistency of the local void picture.
The paper is organized as follows. In the next section

we describe our simple void model and our method of
analysis. We present our results and discussions in Sec. III.
The final section is devoted to our conclusion. The
normalized Hubble parameter h is defined by h≡
H0=ð100 km s−1Mpc−1Þ.

II. METHOD

A. Local void model

Suppose that we live in a local (under)dense region in a
background flat Friedmann-Robertson-Walker (FRW) uni-
verse. If the local region has a constant density profile, i.e.,
a top-hat profile, the evolution of the region is approxi-
mated by a slightly different FRW universe. The local
universe and the background universe may be characterized
by cosmological parameters:ðHloc;ΩlocÞ and ðHbg;ΩbgÞ,
respectively. The local cosmological parameters ðHloc;ΩlocÞ
candiffer in principle from those in theglobal FRWuniverse.
Here, for simplicity, let us assume that abundance ratios of
the energy components in the universe are same in the global
and the local underdense regions by demanding that

Ωα;loch2loc ¼ Ωαh2bg; ð1Þ

where the subscript α ¼ ðv; c; b; γ; nÞ stands for the vacuum
energy (v), CDM density (c), baryon density (b), photon
density (γ), and neutrino density (n). Note that we have
assumed that the curvature parameter in the background
FRW model is equal to zero, i.e., ΩK;bg ¼ 0. The local
curvature parameter, ΩK;loc is determined by

ΩK;loc ¼ 1 −X
i

Ωi;loc; ð2Þ

so that the difference betweenHloc andHbg is compensated.
Then, we findΩK;loc>0 ð< 0Þ forHloc>Hbg ðHloc<HbgÞ.
It should be noted that the present time must be fixed so that
the present CMB temperature is 2.725K. Therefore, our
assumption (1) implies that, for the present uniform density
time slice, the CMB temperature we observe and that in the
background universe are equally given by 2.725K.
Equation (1) also implies that the local void considered here
is in the growing mode (see e.g., Eq. (34) in [25]).
Let us introduce a parameter floc as follows:

Hloc ¼ flocHbg: ð3Þ

We are particularly interested in the case floc > 1 to explain
the discrepancy in the measured values of the Hubble
parameter. In this case, in order to change the present time

slice from the uniform density slice to the uniform Hubble
slice given byH ¼ Hloc > Hbg, we have to go back in time
and take the past slice in the background universe.
Consequently, in the background universe, the density
on this time slice is larger than that on the uniform density
time slice. This means that the density profile has a void
structure in the uniform Hubble slice. This observation is
consistent with the result reported in Ref. [24], which states
that the local underdense region may lead to a larger value
of the local Hubble parameter.1

In this paper, we calculate the cluster abundance based
on the local cosmological parameters: ðHloc;ΩlocÞ, which
are fixed by ðHbg;ΩbgÞ and floc through Eqs. (1) and (3). In
other words, we assume that the local void covers up the
entire region where the Planck clusters were found,
namely, z≲ 1, or in terms of the radial comoving distance,
≲3000 Mpc.
The effect of the parameter floc on the cluster abundance

is shown in Fig. 1. The decrease in the cluster abundance
with increasing floc mainly comes from a smaller amplitude
of density fluctuations at corresponding scales due to a
slower growth rate in the open FRW model than that in the
flat FRW one. Following the convention, we denote the
fluctuation amplitude by σ8;loc, the root-mean-squared of
linear fluctuations within a top-hat sphere of 8h−1 Mpc
radius. Assuming that primordial density fluctuations have
the same initial power spectrum both in the underdense
region and the surrounding background universe, the
parameter σ8;loc is derived from the other cosmological
parameters.
For simplicity, we assume that the angular diameter

distance to the last scattering surface remains unchanged.
This can be justified if the density profile in the high
redshift universe, say in 2≲ z≲ 1000, is modified to
compensate for the stretch in distance by the local under-
dense region. In this case, the Hubble parameter Hbg is not
directly observed but inferred from the CMB measure-
ments. On the other hand, Hloc can directly be observed
using local distance measurements.

1The correlation between the larger value of the local Hubble
parameter and the local underdense region can be also understood
by considering conventional perturbation theory. Usually, the
initial condition for the Hubble flow of the top-hat region is set
assuming that the density perturbation grows following linearized
perturbation theory; in the radiation dominated era, the density
contrast of region δ grows as δ ∝ a2 in the synchronous gauge,
where a is the cosmic scale factor. In this case, the relationship
between the Hubble parameters of the top-hat regionHloc and the
background universe Hbg is given by [26]

Hloc;i ¼ Hbg;i − 2

3
δiHbg;i;

where the subscript i denotes a specific initial time. If the top-hat
region is underdense, i.e., −1 < δ < 0, then Hloc;i > Hbg;i and
the inequality HlocðtÞ > HbgðtÞ always holds true.
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B. Mass function and cluster abundance

To predict the abundance of SZ clusters, we adopt
the fitting form of the mass function dnhalo=dM presented
in [27]. We adopt the parameters Dcrit ¼ 500 and
Dcluster ¼ Dcrit=ΩMðzÞ, where ΩMðzÞ is the total matter
density over the critical density at redshift z. The cluster
abundance of mass M at redshift z is given by

dN
dz

ðzÞ ¼ fsky

Z
∞

0

dMχðMÞ dN
dM

ðM; zÞ dVðzÞ
dz

; ð4Þ

where the comoving volume VðzÞ is given by

dVðzÞ
dz

¼ 4πð1þ zÞ2 dAðzÞ
2

HðzÞ ; ð5Þ

and the sky fraction that is covered by the Planck SZ
cluster counts is fixed to fsky ¼ 0.65. The function χðMÞ
represents the survey completeness as a function of halo
mass M that takes account of the fact that some fraction
of clusters falls out from detection due to the survey
strategy, detection limit, and so on. We simply write this
function as [28]

χðMÞ ¼
Z

∞

MminðzÞ
dM0PðM0jMÞ; ð6Þ

where the function PðM0jMÞ describes the probability that
the mass is estimated asM0 for a cluster with a true massM,
which for example originates from the scatter in the scaling
relation between halo masses and SZ signals. In this
analysis, we assumed that it follows a log-normal distri-
bution with variance σ2lnM as

PðM0jMÞ ¼ M0−1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2πσ2lnM

p exp

�
− ðlnM0 − lnMÞ2

2σ2lnM

�
: ð7Þ

We fix σlnM ¼ 0.2, which roughly reproduces the theo-
retical curve for the number counts of Planck SZ clusters
presented in [10], as shown by the black curve in Fig. 1.
The minimum masses obtained from the Planck SZ survey
are listed in Table I.
A caveat is that, while we have used the Tinker mass

function to compare our results with those of the Planck
fiducial analysis, the fitting function is not very well tested
in an open ΛCDM model which is of our main interest in
this paper. We expect that the fitting function works fine
even in nonflat universes as long as important ingredients
of the fitting function such as the matter density, linear
power spectrum, and linear growth rate are properly
included, but this assumption should be carefully validated
by e.g., N-body simulation.

C. MCMC

In our MCMC analysis we use both the Planck CMB
data and the SZ cluster number counts. Specifically, we
used a flatΛCDMmodel when fitting to the CMB data with
the six standard parameters, while we used an open ΛCDM
model with an extra parameter floc to fit to the SZ cluster
data; the other parameters were derived from the relations
in Eqs. (3)–(2). We use a modified version of CosmoMC
[29] to explore the likelihoods. For the likelihood of the
cluster number counts, we assume that the number of the
cluster obeys Poisson statistics [30], which is a good
approximation for massive clusters as considered here [31].

III. RESULTS AND DISCUSSION

First, we show the posterior distribution for floc from the
joint fitting of the CMB and SZ number counts in Fig. 2. As
shown in the figure, the parameter floc tends to be floc > 1
indicating that the model with a local underdense region fits

TABLE I. Mean minimum masses of the Planck 2013 SZ
cluster sample as a function of redshift, which are taken from
[10]. These masses are defined at 50% completeness on average
for the unmasked sky.

z MminðzÞ [M⊙]
0.05 3.12e14
0.15 6.15e14
0.25 8.20e14
0.35 9.66e14
0.45 1.06e15
0.55 1.13e15
0.65 1.17e15
0.75 1.20e15
0.85 1.21e15
0.95 1.21e15
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FIG. 1. SZ cluster number counts predicted in the local void
model are compared with the observed number counts from the
Planck 2013 result [10]. The parameter f ¼ floc defined in
Eq. (3) describes the difference between the local and global
Hubble parameters. The parameter h here denotes the normalized
local Hubble parameter value corresponding to each floc.
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better with the data set. The result floc ¼ 1.03� 0.01245
indicates that the standard ΛCDM model is excluded at
2.4σ level. We find the improvement of χ2 to be Δχ2 ≈ 8.44
with one additional parameter, which is, in terms of
Akaike’s information criterion, AIC ≈ 6.44. This indicates
that the void model is preferable to the ΛCDM model for
the combined CMB and SZ data set. The two dimensional
constraint on the floc − σ8;loc plane is shown in the left
panel of Fig. 3. It is evident that the trend for floc > 1 is
required in order to realize the smaller σ8 as inferred from
the measurements of the local universe.
An interesting relation is found in the right panel of

Fig 3, which shows a positive correlation between σ8;loc and
Hloc. This correlation is nontrivial because a larger floc
leads a smaller σ8;loc but a larger Hloc if the other
cosmological parameters are fixed. We find that this
correlation is attributed to the well-known σ8-Ωm degen-
eracy in the cluster abundance. In order to produce the same
cluster abundance, a larger σ8;loc requires a smaller Ωm;loc,
hence a larger Hloc because Ωm;loch2loc ¼ Ωmh2bg is tightly
constrained from the CMB.

A key feature of this local void model is that the local
Hubble parameter defined in Eq. (3) is automatically
adjusted as a result of fitting to the observed SZ cluster
number counts. Figure 4 shows the posterior probability
distributions of the Hubble parameters with and without the
void parameter floc, together with the local Hubble param-
etermeasurements fromRiess et al. [13] andEfstathiou [32].
The main results are summarized as follows. By keeping the
void parameter at the standard ΛCDM value (floc ¼ 1), the
Planck CMB gives H0 ¼ 67.3� 1.2 km s−1Mpc−1 whilst
the CMB and SZ combination gives H0 ¼ 70.7�
0.3 km s−1 Mpc−1, indicating the disparity between these
two data sets. We find that in the current void model, the
local Hubble parameter is predicted by the joint fitting of the
CMB and SZ cluster number counts as Hloc ¼ 100hloc ¼
70.1 � 0.34 km s−1Mpc−1. This value is in better agree-
ment with the local Hubble measurements by Riess et al.
[13], and interestingly, is in excellent agreement with the
value H0 ¼ 70.6� 3.3 km s−1 Mpc−1 recently derived by
Efstathiou using the updated geometric maser distance to
NGC4258 [32].
There are several other possibilities to resolve the

discrepancy. For example it may be possible that the mass
bias factor is significantly lower than the inferred value, i.e.,
masses of clusters observed by Planck SZ is in fact larger
than those inferred by the scaling relation, and therefore,
they are less abundant in the universe [18]. Since the
publishing of their results in 2013, the Planck collaboration
has updated their bias calibration using cosmic shear and
CMB lensing measurements, and their 2015 estimates give
similar mass bias values to that in the baseline model
assumed in 2013 [33]. The results of cluster number counts
in 2013 and 2015 are consistent with each other if the same

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0.9  0.95  1  1.05  1.1

pr
ob

ab
ili

ty

floc

FIG. 2. One-dimensional posterior probability distribution of
the parameter floc (see Eq. (3) from the joint fitting of the CMB
and SZ cluster number counts. The dotted line (floc ¼ 1) denotes
the standard cosmological model without any local over- or
underdense region.

FIG. 3. Posterior probability distribution on the floc − σ8;loc
(left) and Hloc − σ8;loc (right) planes.
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the direct local estimates for the Hubble constant by Riess et al.
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error bar shows the constraint from Planck CMB. In the local void
model, Hubble parameters are separated into local (Hloc) and
global (Hbg) parameters, as shown in the figure.
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mass bias is assumed. Independent analysis also shows that
the mass bias cannot fully resolve the discrepancy [34–36].
Recently, an important update has been made in Battaglia
et al. [22]. They found that an Eddington bias correction, if
it is applied to the weak lensing mass calibration analysis of
the Planck SZ clusters, brings the mass bias factors
measured in von der Linden et al. [18] and Hoekstra et al.
[36] closer to the values that are small enough to explain
both the Planck CMB and SZ results. Further analysis of
this systematic uncertainty is of primary importance for
understanding the origin of the discrepancy.
From a cosmological point of view, while massive

neutrinos may be an interesting possibility [4,5], a larger
neutrino mass generally demands a smaller Hubble param-
eter, which makes the discrepancy between the global and
local Hubble parameters even worse [37]. Other possibil-
ities include modification of the mass function due to
baryonic effects [15–17], and decaying dark matter [14].
Non-Gaussianity may also explain the discrepancy,
although the Planck bispectrum already put severe con-
straints [38], making this explanation difficult as long as the
non-Gaussianity is scale-independent [39].
Our current study needs to be advanced in several

directions. The large bulk flow associated with the local
void generates secondary CMB anisotropies through the
kinetic Sunyaev-Zeldovich effect (kSZ). Here we give a
rough estimate of the kSZ effect arising from the local void
following Moss et al. [40]. Suppose that the dipole induced
by the radial bulk velocity is the dominant anisotropy seen by
the scatterer (i.e., clusters). We estimate the amplitude of this
dipole from the difference in redshift between incoming and
outgoing CMBphotons felt for the same period in conformal
time. The dipole anisotropy at clusters is then given by

ΔT
T

≈ 1 − Rðη�Þ
aðη�Þ

; ð8Þ

where aðη�Þ and Rðη�Þ denote the scale factors of the
background and void regions when the incoming photon
enters into the void, and follow the Friedmann equations in
flat and open ΛCDM models, respectively. For our void
model that givesHloc ¼ 70, we obtainΔT=T ≈ 7 × 10−4 for
aðη�Þ ≈ 0.01 and ΔT=T ≈ 9 × 10−3 for aðη�Þ ≈ 0.1.
Therefore, a fairly large void seems necessary to avoid the

constraint from peculiar velocities measured by the Planck
collaboration, which gives ΔT=T ≲ 6.4 × 10−4 (2σ) [41].
These numbers above are order of magnitude estimates;
further detailed investigation would be needed for a more
quantitative constraint by using concrete models of spheri-
cally symmetric inhomogeneous universes, e.g., generalized
Λ-Lemaître-Tolman-Bondi dust models [42–44]. The effect
on other probes such as baryon acoustic oscillation and
cosmic shear measurements should also be investigated in
order to see whether the local void is a viable cosmologi-
cal model.
This study is based on the Planck 2013 results.

Interestingly, the discrepancy persists in the Planck 2015
results [33] and therefore our results should still be as valid
for the latest data set.

IV. CONCLUSION

In this paper, we have considered a simple FRW model
with an open geometry to investigate the magnitude of the
effect of the local underdense region on the number of SZ
clusters. We have shown that a local underdense region
may be responsible for the discrepancy between cosmo-
logical parameters from SZ cluster number counts and
the CMB. If we attribute the discrepancy to the local
void, the local Hubble parameter is predicted as H0 ¼
70.1� 0.34 km s−1Mpc−1, which is in better agreement
with direct local Hubble parameter measurements. Our
result indicates that the local void model may serve as a
new concordance model that explains the CMB, SZ cluster
number counts, and local Hubble parameter measurements
simultaneously.
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