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Cosmic microwave background lensing has become a new cosmological probe, carrying rich
information on the matter power spectrum and distances over the redshift range z ≈ 1 − 4. We investigate
the role of scale dependent new physics, such as from modified gravity, neutrino mass, and cold (low sound
speed) dark energy, and its signature on CMB lensing. The distinction between different scale dependences,
and the different redshift dependent weighting of the matter power spectrum entering into CMB lensing and
other power spectra, imply that CMB lensing can probe simultaneously a diverse range of physics. We
highlight the role of arcminute resolution polarization experiments for distinguishing between physical
effects.
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I. INTRODUCTION

Gravitational lensing of the cosmic microwave back-
ground radiation (CMB lensing) is a recently measured,
powerful cosmological probe. The primordial photons are
deflected by mass concentrations along the line of sight,
sampling the matter density power spectrum–and the laws
of gravity–over the entire cosmic history from recombina-
tion to the present. While this rearrangement of photons has
long been recognized, with early papers accounting for the
key elements of both the dispersive and coherent nature of
the scattering, and its dependence on the matter power
spectrum, dating to the 1980s [1–4], the first statistically
significant detection in the CMB alone was in 2011 [5].
The lensing smears out the photon temperature power

spectrum, but also induces non-Gaussianity, generating
nontrivial four-point correlations [6,7], and a form of parity
violation, converting between E-mode (parity even) and B-
mode (parity odd) polarization [8]. These effects have now
all been detected [5,9–18].
From these observed effects one forms the CMB lensing

power spectrum, a measure of the lensing strength as a
function of the multipole, or angular scale. This will be the
tool we focus on in this paper to explore new physics. One
can compare this to, in the first instance, complete lack of
lensing (i.e. verifying that lensing exists), and then for
example, to the power predicted in the ΛCDM model as a
test of the cosmology. Current constraints on the CMB
lensing power spectrum include [10,12,16,19,20].
With the first measurements, the statistical significance

of detection relative to a null result was the main result.
This was often quoted in terms of the ratio of the measured
lensing power relative to that predicted in the concordance
cosmological constant plus cold dark matter (ΛCDM)

cosmology fit from the temperature power spectrum:
Alens ¼ Cdd=Cdd

ΛCDM [21]. Now that measurements of the
lensing power spectrum have dramatically improved, to
signal to noise levels greater than 40, the characterization of
the detailed power spectrum is of interest.
While one might consider the amplitude of the lensing

power as a measure of the overall growth of matter
clustering, this is not quite true: the lensing power spectrum
is a projection from many redshifts, hence the growth rate
effectively enters, and over many wave numbers to a given
angular multipole l, so that nonlinear density evolution can
enter even at low, ostensibly linear l. Thus any change in
cosmology should exhibit a different angular dependence
than in the given concordance model, at some level. This
implies that Alens becomes scale dependent.
Moreover, when scale dependent growth arises even in

the linear density regime, we expect a correspondingly
stronger signature of scale dependence (relative to ΛCDM)
in the CMB lensing power spectrum. Thus, CMB lensing
can act as a probe of such physics, i.e. modified gravity
with its scalaron Compton wavelength, neutrino mass with
its free streaming scale, or clustering dark energy with its
sound horizon.
Indeed, the authors of [10] recently measured Alens in

several bins of l (see their Table 1 and Fig. 6; also see
Fig. 34 of [22]) with mild hints of scale dependence.
Increased accuracy, especially from ongoing high resolu-
tion, ground based polarization experiments such as the
Atacama Cosmology Telescope [23], POLARBEAR/
Simons Array [24], and the South Pole Telescope [25],
and the next generation CMB-S4, will place constraints on
such scale dependent effects.
In Sec. II we review the basic relation of the CMB

lensing power spectrum to the matter power spectrum and
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gravitational coupling strength. We present a simple ana-
lytic expression to motivate intuition for the expected scale
dependent Alens in the ideal, large scale linear limit in
Sec. III. For full numerical results we adapt the Boltzmann
code MGCAMB in Sec. IV and investigate the lensing
power spectrum for several sources of scale dependent
physics. We conclude in Sec. V.

II. CMB LENSING POWER SPECTRUM

In this section we give a brief review of CMB lensing and
its relation to the matter power spectrum and the gravita-
tional coupling strength. We also illustrate the role of the
projection of the matter power from different redshifts and
different wave numbers onto the lensing deflection power
spectrum observed at a given angular multipole.
As in weak gravitational lensing of background sources

such as galaxies, the angular power spectrum of the lensing
potential ϕ is given by (see, e.g., [26])

Cϕϕ
l ¼ 8π2

l3

Z
χlss

0

dχχ

�
χlss − χ

χχlss

�
2

PΨþΦ

�
k¼ l

χ
; χ

�
: ð1Þ

Here χ is the comoving distance to the lens, χlss is the
comoving distance to the CMB last scattering surface (for
simplicity we assume a spatially flat Universe), k is the
Fourier wave number, and PΨþΦ is the power spectrum of
the sum of the time-time and space-space metric gravita-
tional potentials Ψ and Φ. Thus lensing explicitly depends
on cosmic geometry and gravity as well as growth. Note
that unlike galaxy lensing, we do not have to integrate over
the (inexactly known) source distribution since for the
CMB the source is the well-defined last scattering surface.
This is an advantage of CMB lensing, in addition to its
precision measurements.
Since the lensing potential is not directly observable, we

use the deflection vector d ¼ ∇ϕ. This is also related to the
convergence κ ¼ −ð1=2Þ∇ · d ¼ −ð1=2Þ∇2ϕ. In Fourier
space, the power spectra will be related by Cκκ

l ¼
lðlþ 1ÞCdd

l ¼ ½lðlþ 1Þ�2Cϕϕ
l .

The potential power spectrum can be related to the matter
density power spectrum through

PΨþΦðk; zÞ ¼
9Ω2

mðzÞH4ðzÞ
8π2

GΨþΦ
eff ðk; zÞ
GN

k−1Pδðk; zÞ; ð2Þ

where ΩmðzÞ is the dimensionless matter density, H is the
Hubble parameter, z is the redshift, and Geff reflects that in
modified gravity the gravitational strength may not be
Newton’s GN , modifying the Poisson equation. A conven-
ient final expression for the convergence power spectrum is
[15]

Cκκ
l ¼

Z
dz

HðzÞ
χ2

W2ðzÞPδðk ¼ l=χÞ: ð3Þ

HereW is a window function, or kernel. It has a broad peak
roughly halfway to the last scattering surface, and so CMB
lensing has substantial sensitivity from z ≈ 0.5–5, allowing
it to probe matter and gravity to higher redshifts than many
other observables.
[As an aside, note that converting ΩmðaÞH2ðzÞ to

ΩmH2
0a

−3 in Eq. (2) and pulling the present matter density
Ωm outside the integral in Eq. (3) is not valid in models that
introduce a matter coupling [27].]
Figure 1 shows the CMB lensing deflection power

spectrum for a concordance ΛCDM cosmology, exhibiting
the main characteristics (also see the pioneering Figs. 3 and
4 of [26]). While the peak is at l ≈ 40, it extends over a
broad range of multipoles. Because of the projection in
both redshift and wave number, a given l does not
correspond to a unique length scale in the matter power
spectrum, or a unique time in the growth of density
perturbations. This is important in its effect of blending
linear and nonlinear physics.
We indicate what portion of the deflection spectrum

arises from lensing in different redshift ranges, and also
different Fourier wave numbers. The general rule of thumb
is that small k (large scales) corresponds to low l, and low
redshift corresponds to large angles for a given scale and
hence also low l. However, while high k modes that are
beyond the linear regime will dominate the high l
spectrum, because of projection (l ¼ kχ) they can also
influence the lower l region. Thus nonlinear, and scale
dependent, physics can leave its mark over a wide range of
the deflection power spectrum.
Figure 2 gives one example of the difference that scale

dependent physics can make to the redshift and wave

FIG. 1. The lensing deflection power spectrum for a concord-
ance ΛCDM cosmology with Ωm ¼ 0.3 (main, black curve) is
plotted vs multipole, showing a broad peak around the coherence
scale of ∼2°, but with power over a range of scattering angles
down to the typical deflection of a few arcminutes. The shorter
solid curves within the main envelope illustrate the contributions
of different Fourier modes k to the deflection spectrum; the
dashed curves show the contributions of different redshift
windows.
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number weighting. This shows the deviation from the
ΛCDM case for fðRÞ scalar-tensor gravity, as discussed
in Sec. IV. In this particular case, the contribution from
z < 1 is most strongly affected since the modified gravity
approaches general relativity at high redshift. In wave
number, there are different modifications in the low,
quasilinear, and high Fourier mode regimes. We give
further examples, for different physical origins for scale
dependence, in the next section.

III. ANALYTIC SCALE DEPENDENCE

In the linear density perturbation regime, the matter
power spectrum in the standard model evolves with a scale
independent growth factor, only changing its amplitude.
The redshift dependent projection of different Fourier
modes k onto multipoles l, however, means that a scale
dependence in the lensing power spectrum is induced
nevertheless from any change in the growth that arises
from a change in the cosmic expansion. (Alteration of
growth due purely to a uniform multiplication of the
gravitational strength can indeed give a scale independent
Alens—indeed this is what [21] originally considered.)
Figure 3 demonstrates this scale dependence. It is

generally quite mild, which is why Alens was initially a
reasonable parametrization at the signal to noise levels first
obtained. We see that the scale dependence is a few percent
effect out to l ∼ 100, past the peak of the deflection power
spectrum, for a change ΔΩm ¼ 0.01 or Δw ¼ 0.1, where w
is the constant dark energy equation of state parameter. It
was only very recently that measurement uncertainties
dipped below the 10% level.
Several types of cosmological physics, however, can

induce scale dependence in the matter growth even in the
linear regime. Examples include modified gravity, such as

scalar-tensor theories, which have a Compton wave-
length associated with them, neutrino mass, which has
a free streaming scale, and cold (and hence clustered)
dark energy, which has a sound horizon. In this section
we present a simple analytic treatment purely to build
our intuition for the numerical results of the next
section.
Note that [28] presents a careful analysis of the effect of

the physical matter density on the CMB lensing deflection
spectrum. Their fitting formula contains an implicit scale
dependence through the local slope of the deflection
spectrum. Explicit scale dependent physics from neutrino
mass has recently been considered in [29].
As we will see, our results for these cases are in good

agreement with theirs, especially taking into account
different treatments of the nonlinear regime (they use
purely linear modes) and of other parameters (we fix all
parameters except the one we are plotting, for clarity in
exhibiting its effect; but see Sec. IV regarding preserving
the acoustic scale instead).
As our first example of scale dependent physics, con-

sider scalar-tensor gravity. Here the Poisson equation
relating the lensing potential Ψþ Φ to the matter density
perturbation is unaffected, but the equation governing the
growth of the density is changed. Theories like fðRÞ
gravity involve a particular scale dependence, and the
gravitational coupling in the density growth equation can
be written as

FIG. 2. The deviations in the lensing deflection power spectrum
between a ΛCDM and fðRÞ gravity cosmology are shown for the
total power and for various windows in redshift and wave
number. Scale dependence can change the redshift and Fourier
mode weighting (here exaggerated by taking B0 ¼ 0.01; see
Sec. IV for details).

FIG. 3. The effects of changes in the matter density and dark
energy constant equation of state on the lensing deflection power
spectrum are shown. Since the influence of these parameters on
the linear growth factor is scale independent, the resulting
deviations in the deflection power spectrum are nearly scale
independent–at low l where linear modes are untainted by
nonlinear modes. The error bars show uncertainties from Planck
2015 results [10], centered on the ΛCDM theory curve. The
current constraints have uncertainties greater than 5%–10% per
bandpower and cannot distinguish smaller effects.
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GΨ
eff

GN
¼ 1þ 1

3

1

1þ ½aMðaÞ=k�2 ; ð4Þ

where M is the mass of the scalaron and 1=M its Compton
wavelength. On scales larger than the Compton wave-
length, the coupling is restored to Newton’s constant, or
equivalently at early times when the scalaron mass is large
then the theory approaches general relativity. On smaller
scales, however, gravity is strengthened (while on much
smaller scales a chameleon screening mechanism can enter,
again restoring to general relativity).
Such changes to the source term of the growth equation

can be treated in the formalism of [30] to determine the
influence on growth to lowest order. From Eq. (21) of [30],
where their Qðk; aÞ ¼ GΨ

eff=GN, we have

PδðkÞ ¼ Pδ;GRðkÞ
�
1þ

Z
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da0
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ða04HÞ−1
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1þ ½a00Mða00Þ=k�2
�
2

ð5Þ

≈ Pδ;GRðkÞ
�
1þ k2

Z
a

0

da0

a0
ða04HÞ−1

×
Z

a0

0

da00

a00
a002HΩmða00Þ

M2

�
ð6Þ

≈ Pδ;GR½1þ k2pðaÞ�: ð7Þ

The last two lines with the approximate signs keep only
the lowest order terms in k, with the last line illustrating the
leading order k2 dependence of the modification. (Sound
horizon terms also enter as k2, while neutrino free stream-
ing gives a different dependence but the general formalism
still applies.) From Eq. (3) we note that an additional k2

term in PδðkÞ does not simply create an additional l2

modification of the lensing power spectrum. Instead it
reweights Cl from the mass power spectrum at each
redshift. That is,

Cdd
l

C̄dd
l

¼ 1þ l2

C̄dd
l

Z
dz

HðzÞ
χ2

W2ðzÞP̄δ
pðzÞ
χ2

≈ 1þ
�
pðzÞ
χ2

�
ð8Þ

where a bar indicates the unmodified (GR) case and angle
brackets indicate a weighting over redshift, accounting for
k ¼ l=χ. This is an important point, and means that scale
dependent physics does not necessarily have an
obvious form.
Where might we expect the largest modification in the

deflection power spectrum? This will be addressed numeri-
cally in the next section but here we can gain some
intuition. Modified gravity that is consistent with other

observations becomes important only fairly recently. For
example, from Fig. 6 of [31] we see that a modification in
the matter spectrum by 10% today may have been less than
1% at z ¼ 1. Equivalently, Fig. 5 of [31] shows that the
parameter B related to the Compton wavelength can easily
be one to two orders of magnitude smaller at z ¼ 1 than its
value B0 today. As discussed previously, low redshift
lensing contributed most to low multipoles, but so do
low k modes where the modification is suppressed by k2.
Conversely, higher k modes where modified gravity effects
are more important should appear at high l, but here one
also has high redshift lensing contributions where modified
gravity is diminished. Thus, the modified contributions are
diluted by the unmodified ones. Since there are many more
high k modes than low k ones, one might expect that the
modifications do grow with l, but much more slowly than a
naive k2 → l2 scaling, and that a low l tail should be
present. At high enough l (roughly Mpc scales, and low
redshift, so l≳ 103), the screening mechanism should
enter and the deflection power spectrum approach that
of ΛCDM. The numerical computations bear this out.
Let us further our intuition for the results by briefly

considering neutrino mass, cold (clustered) dark energy,
and standard matter density nonlinearities. If we compare
models with different sums of the neutrino masses, we have
to specify how we are compensating for this energy density
in order to retain a total dimensionless energy density of
unity, i.e. a spatially flat universe. If we trade matter density
(Ωmh2) for neutrino mass, then on large scales the non-
relativistic neutrinos act in the same manner as the
subtracted matter, and we expect no significant effect.
However on small scales, where the neutrinos free stream,
we not only erase gravitational potentials from the free
streaming but also reduce the matter clustering since there
is less matter; these effects together should reinforce each
other to cause substantial suppression of the deflection
power spectrum. If the extra neutrino mass is compensated
by reduced dark energy density (ΩΛh2), then the neutrino
free streaming is replacing what would anyway have been
suppression due to the dark energy negative pressure, and
so the effect should be more mild.
Figure 4 illustrates how the lensing deflection power

spectrum changes due to the presence of massive neutrinos
for the case of matter compensated neutrino mass. The
results are fairly similar in the case of dark energy
compensated neutrino mass except that, as stated above,
the matter compensated case has a stronger effect. Most of
the change in power due to neutrino mass is on intermediate
scales near the free streaming scale. This, together with the
projection between k and l, explains the pattern seen in the
figure.
As for dark energy, it can only clump on scales between

the sound horizon and the Hubble scale, so a low sound
speed (cold dark energy) is necessary for its clumping
(as well as an equation of state significantly different from
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w ¼ −1 at some epoch). If the dark energy clusters it can
add to the deflection power, and furthermore the value of
w ≠ −1 removes some of the suppression of power, so cold
(clustered) dark energy could leave an enhancement sig-
nature in the deflection power spectrum at low l.
Figure 5 summarizes these effects. It can be seen

that the influence is predominantly on large scales
(k < 0.1 h=Mpc), where the additional clustering enhances
the deflection power spectrum. Moreover this is mostly
relevant at low redshift (z < 1) when dark energy domi-
nates the energy budget of the Universe.
Finally, density perturbation growth beyond the linear

regime exhibits scale dependence. This enters at k≳
0.1 h=Mpc in the matter power spectrum, which normally

we would translate to roughly l≳ 1000. However, we
expect that due to projection effects even lower l can show
noticeable effects. (See Fig. 1, where the total power begins
to diverge from the k < 0.1 power around l ≈ 200, and
even sooner for higher Ωm.) In addition, nonlinearity is
more prevalent at low redshifts, also pushing the influence
to lower l. We will address this numerically in the next
section.

IV. NUMERICAL SCALE DEPENDENCE

To explore all these effects we carry out a full numerical
computation using the Boltzmann code MGCAMB (see
[32,33] for details). MGCAMB is a modified version of the
CAMB code [34] which includes a general parametrization
of modified gravity theories in the linear regime of
perturbations. This will enable us to investigate the scale
dependence of Cdd

l in the cases of modified gravity
theories, neutrino mass, and cold (low sound speed) dark
energy.
As a specific modified gravity theory we choose fðRÞ

models with the action

S ¼ 1

16πG

Z
d4x

ffiffiffiffiffiffi
−g

p ½Rþ fðRÞ þ Lm�: ð9Þ

These models can be tuned to reproduce any background
expansion history, and the remaining relevant quantity is
the squared Compton wavelength of the new scalar degree
of freedom fR ≡ df=dR mediating the fifth force. In units
of the Hubble length squared it is given by [35,36]

B≡ fRR
1þ fR

dR
d ln a

�
d lnH
d ln a

�
−1
: ð10Þ

For a fixed background expansion history, different fðRÞ
models can be parametrized by the parameter B0, which is
related to the present value of the scalaron parameter
fR0 ≈ −B0=5. The exact relation depends on the specific
fðRÞ model.
Note that because of the rapid evolution of the curvature,

a small value BðzÞ could correspond to a much larger B0 or
fR0. For example, in the exponential gravity model [31]
B0 ¼ 0.01 could come from Bðz ¼ 1Þ ¼ 10−4, and hence
show little growth modification at high redshift. Regarding
the expansion history, the maximum deviation of the dark
energy equation of state j1þ wmaxj ≈ B0=2 for exponential
gravity, essentially giving ΛCDM behavior. For examples
of these relations, see Fig. 5 of [31]. Thus, not all modified
gravity theories will give clear signatures in early growth or
in expansion. We consider instead a commonly used model,
essentially the easiest case to constrain: Hu-Sawicki fðRÞ
gravity with n ¼ 1 [36]. As n gets larger, B evolves more
rapidly, similar to the exponential gravity case, and
becomes harder to constrain.

FIG. 4. The deviations in the lensing deflection power spectrum
between ΛCDM and a model where part of the CDM energy
density is replaced with that of massive neutrinos with

P
mν ¼

0.05 eV are shown for the total power and for various windows in
redshift and wave number. The CMB lensing power is suppressed
due to neutrino free streaming and less CDM clustering. A similar
trend exists for the case where part of the dark energy density is
replaced with that of massive neutrinos.

FIG. 5. The deviations in the lensing deflection power spectrum
between ΛCDM and a cold dark energy model are shown for the
total power and for various windows in redshift and wave
number. In this case the CMB lensing power is enhanced, mostly
on large scales and at late times.
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In evaluating modified gravity effects it is important to
use a robust code and not assume aspects of standard
ΛCDM growth. MGCAMB has been tested against an
independent Boltzmann code EFTCAMB [37], for example
in [38], and the results are in good agreement. While
MGCAMB evaluates the evolution equations in the quasi-
static limit (while EFTCAMB treats them generally), this is
an excellent approximation on the scales of interest to us
[39–41]. The lensing analysis in [42] also confirms that the
quasistatic approximation is good. MGCAMB can also, in
principle, include the nonlinear matter power spectrum
unlike the intrinsically linear EFTCAMB formalism. We
have seen that nonlinearities enter already at l ≈ 200. To
incorporate the nonlinear density behavior for the fðRÞ
model, we employ the MGhalofit patch [43], which has
been calibrated from simulations to correctly account for
the modified gravity effects.
Figure 6 compares the CMB lensing power spectra of the

scale dependent models discussed in the previous section to
that from the fiducial (ΛCDM) model. In the fðRÞmodified
gravity model, we see an enhancement of power (as
expected since scalar-tensor theories strengthen the gravi-
tational coupling) on all scales. At low multipoles the effect
is weaker, since on large scales, greater than the Compton
wavelength, the coupling approaches Newton’s constant
[see Eq. (4)]. At high multipoles (which recall include very
nonlinear scales), the chameleon screening enters and again
the result goes toward the general relativity case. Thus the
expectation of Sec. III is borne out: the power approaches

the ΛCDM value on scales above the scalaron wavelength
and below the screening scale. However in general we see a
modification of CMB lensing power over a wide range of l
from a range of redshifts.
For the impact of massive neutrinos, recall we distin-

guished two cases. When we add massive neutrinos and
keep Ωmh2 fixed (retaining spatial flatness by decreasing
Λ), we see that free streaming suppresses lensing power at
small scales, smaller than the free streaming scale, as
expected. However, when the added energy density of the
massive neutrinos is compensated by decreasing that of the
CDM instead, the effect is more pronounced on all scales.
Not only is there suppression from free streaming but there
is also less clustering due to the lower Ωm.
Scale dependence can also arise due to density pertur-

bations above the sound horizon of cold dark energy with a
low sound speed. As predicted in Sec. III the effects of low
sound speed enter at low multipoles. At higher multipoles,
[44] showed that one could rescale the CMB lensing
deflection spectrum by a uniform factor Alens to a good
approximation to take into account the deviation of w from
Λ. This agrees well with Fig. 3, where we see that the
deviation in power due to w ≠ −1 is almost perfectly scale
independent. If in Fig. 6 one adjusted the high multipoles to
match ΛCDM, then the low multipoles show the expected
power gain due to the clustering of cold dark energy. We
make this more explicit in Fig. 7.
Note that the shapes of the deviations in the CMB

lensing spectrum are distinct between the different scale

FIG. 6. The CMB lensing deflection power spectrum is plotted
vs multipole l for several models with scale dependent physics,
including modified gravity with a Compton scale B0, neutrinos
with a sum of masses

P
mν, and cold dark energy with a sound

speed cs.

FIG. 7. Cold dark energy provides extra clustering, and hence
deflection power, on scales larger than the sound horizon (hence
low multipoles). This also leads to scale dependence in the ratio
of the power to that of ΛCDM, or quintessence. The bottom panel
shows the deviation of cold dark energy from quintessence with
the same value w ¼ −0.9, but cs ¼ 1.
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dependent physics. Modified gravity gives a rise and fall,
while neutrino mass leads to an almost tanh-like behavior
of a low l plateau, then nearly linear slope, then a high l
plateau, and cold dark energy gives a slightly more curved
version of this, and one that is not scale independent at high
l. (We have checked that a change in the Hubble constant
to preserve the CMB acoustic scale does not appreciably
change the shapes though it does increase the amplitude of
the deviations.)
The differing scale dependences would allow for iden-

tification of the non-ΛCDM physics with sufficiently
precise measurements. Here we have concentrated solely
on the deflection power spectrum. These effects of course
also show up in the matter power spectrum (which causes
the deflections) but there the measurement through galaxy
surveys has to contend with the expected scale dependent
galaxy bias. CMB lensing also affects other CMB power
spectra, giving secondary contributions to them involving
the extra physics, though these will be mixed with the
(unlensed) primordial perturbations.
However, we highlight in Fig. 8 a very interesting

property of the E-mode spectrum: at high multipoles it
is almost wholly due to lensing. This holds independent of
the details of the physics modifications we discussed in this
paper. As an example, Fig. 8 demonstrates the same
conclusion in the case of the modified gravity models as
well. High resolution CMB polarization experiments with
∼1 arcmin beams can reach l ¼ 10000 and our current
knowledge indicates that the E-mode polarization signals
should not be overwhelmed by foreground polarization, so
this could be a promising avenue for exploration.

V. CONCLUSIONS

CMB lensing is a unique probe of the physics driving
both expansion and growth over vast ranges of cosmic
history, sensitive to z ≈ 5 and beyond. Experimental mea-
surements are approaching percent precision in dozens of
multipole bins, and now- or imminently operating high
resolution CMB polarization experiments such as ACTpol,
POLARBEAR/Simons Array, and SPT-3G, and the next
generationCMB-S4, can achieve this over large areas of sky.
This opens windows on physics beyond that mapped by the
temperature power spectrum, or unlensed polarization. Here
we focused on physics that introduces a new scale, such as
modified gravity, massive neutrinos, and cold dark energy.
We explored the signatures of this physics, first through

analytic approximations to build intuition on the effects,
and then through rigorous numerical calculations, for
example using a modified gravity Boltzmann code and
nonlinear prescription calibrated by simulations. The ana-
lytic intuition works well at predicting the areas and
qualitative behavior of deviation from ΛCDM in the
CMB lensing deflection power spectrum.
Moreover, the shapes (angular dependence) of the

deviations are fairly distinct between the various scale
dependent physics origins. Sufficiently accurate measure-
ments thus have the promise of distinguishing the nature of
the physics behind detected deviations—i.e. measuring the
gravitational coupling Geff , the sum of neutrino massesP

mν, or the dark energy sound speed cs. While hints of
scale dependent variation are seen in current data, they are
not yet statistically significant.
For modified gravity, we found that fðRÞ gravity with

fR0 ≈ 10−4 could give a deviation roughly the same in
amplitude as a shift in the matter density of ΔΩm ¼ 0.01.
Due to the projection of wavemodes, it is crucial by l ≈ 200
already to treat the nonlinear wave numbers consistently,
which we did using MGhalofit. Other recent applications of
CMB lensing to test gravity (not necessarily scale depend-
ence, as we focus on here) include [45,46]. Neutrino
masses, even at the level of

P
mν ¼ 0.05 eV, also give

a couple of percent signal, with a characteristic shape. Cold
dark energy only distinguishes itself from quintessence at
low multipoles, where cosmic variance dominates.
Neglecting to account for scale dependent physics

despite its presence will generally bias other cosmological
parameter estimation. This can also be an issue for
delensing of B-modes: if the poorly reconstructed parts
of the deflection spectrum (and their contributions to the B-
mode lensing polarization) are employed assuming some
model that lacks existing scale dependence, this can bias
the fit of the tensor to scalar ratio r of inflation.
The scale dependent physics will also show up in other

power spectra. For the galaxy power spectrum this may be
difficult to separate from scale dependent galaxy bias, small
scale nonlinearities, and baryonic effects. OtherCMBpower
spectra have the lensing contributions mixed with the

FIG. 8. CMB lensing smears out the acoustic peaks, causing
oscillatory enhancements and dilutions of the unlensed, primor-
dial power. However, it also converts the higher amplitude T
modes into E-mode polarization, in particular on the character-
istic scattering scale of ∼20. This leads to almost all the E-mode
power at l > 5000 being due to CMB lensing. The black curve
shows the ratio of unlensed to lensed E-mode power as a function
of multipole for a ΛCDM cosmology, while the dashed, red curve
shows that the same behavior holds in fðRÞ gravity.
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primordial spectra. However, with the advance of high
resolution CMB polarization experiments capable of reach-
ing l ¼ 10000, and the hint that polarized foregrounds are
small enough for such arcminute scale data to be useful, it is
exciting to note that E-mode polarization at l≳ 5000 is
almost purely due to CMB lensing. CMB lensing, and itsE-
and B-mode contributions, is an arena capable of offering
new physics insights beyond the concordance model.
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