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Recent measurements of the cosmic microwave background (CMB) anisotropies by Planck provide a
sensitive probe of dark matter annihilation during the cosmic dark ages, and specifically constrain the
annihilation parameter feffhσvi=mχ. Using new results (paper II) for the ionization produced by particles
injected at arbitrary energies, we calculate and provide feff values for photons and eþe− pairs injected at
keV-TeVenergies; the feff value for any dark matter model can be obtained straightforwardly by weighting
these results by the spectrum of annihilation products. This result allows the sensitive and robust constraints
on dark matter annihilation presented by the Planck collaboration to be applied to arbitrary dark matter
models with s-wave annihilation. We demonstrate the validity of this approach using principal component
analysis. As an example, we integrate over the spectrum of annihilation products for a range of Standard
Model final states to determine the CMB bounds on these models as a function of dark matter mass, and
demonstrate that the new limits generically exclude models proposed to explain the observed high-energy
rise in the cosmic ray positron fraction. We make our results publicly available at http://nebel.rc.fas.harvard
.edu/epsilon.
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I. INTRODUCTION

Dark matter (DM) annihilation or other new physics
could inject electromagnetically interacting particles into
the Universe during its early history, with potentially wide-
ranging observable consequences. In particular, injection of
ionizing particles during the cosmic dark ages will increase
the residual ionization fraction, broadening the last scatter-
ing surface and modifying the anisotropies of the cosmic
microwave background (CMB) [1–3]. Exquisitely sensitive
measurements of the CMB by a range of experiments (e.g.
WMAP [4], SPT [5,6] and ACT [7]), and most recently by
the Planck satellite [8], can thus place robust and model-
independent constraints on such energy injections (e.g.
[9–22]).
For the specific case of DM annihilation, precise con-

straints can be placed under the assumption that the power
deposited to the gas is directly proportional to that injected
at the same redshift, with some efficiency factor feff. More
generally, a model- and redshift-dependent effective effi-
ciency factor fðzÞ can be defined as the ratio of deposited
power to injected power at a given redshift (within some
arbitrary volume element), even if much of the deposited
power originates from energy injections at earlier times. It
has been demonstrated [18] that given a set of fðzÞ
functions characteristic of weakly interacting massive
particle (WIMP) models for DM [13], the impact on the
CMB is identical at the subpercent level, up to an overall

normalization factor, suggesting that approximating fðzÞ
by a constant feff is reasonable.
In order to convert from deposited power into modifi-

cations to the ionization history, the Planck collaboration
[8] assumed a simple prescription for the fraction of
deposited power proceeding to ionization. This prescription
was set by the corresponding fraction for 3 keV electrons,
as determined by detailed Monte Carlo studies of the
interactions of such electrons by the gas [20,23–26]; we
refer to this as the “3 keV” prescription. Earlier papers often
took an even simpler approach, the so-called “SSCK”
prescription (based on work by Shull and van Steenberg
[27], and Chen and Kamionkowski [2]), in which a fraction
ð1 − xeÞ=3 of deposited power proceeds into ionization;
here xe is the ionization fraction (as relevant to the gas
species in question; if helium is neglected, this is just the
hydrogen ionization fraction). In practice, these prescrip-
tions do break down; however, since the ionizing energy
produced by a given energy injection is set by the product
of the deposition-efficiency curve fðzÞ and the fraction of
deposited power proceeding to ionization, any errors in the
prescription for the latter may be absorbed as corrections to
fðzÞ. The Planck collaboration took this approach, employ-
ing corrected fðzÞ curves, to set limits for several specific
DM models: in this paper we employ the same constraints,
but demonstrate how to generalize them to a much broader
class of DM models (all those where the velocity-weighted
annihilation cross section hσvi can be treated as constant
during the cosmic dark ages).
In an accompanying article [28], referred to as paper II,

we have derived new results for the mapping from energy*tslatyer@mit.edu
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injection into power contributing to ionization, for eþe−
pairs and photons injected at arbitrary energy (in the keV to
multi-TeV range) and arbitrary redshift (during the cosmic
dark ages). Once an energy injection history is specified,
the power proceeding into ionization at any redshift can be
determined. In particular, in paper II we have provided
corrected fðzÞ curves for DM annihilation (to photons and
eþe− pairs) that compensate for the inaccuracies in the two
most popular ionization prescriptions in the literature,
SSCK and 3 keV. The only assumption on the annihilation
model, in deriving these curves, is that the redshift
dependence of the injected energy is dE=dVdt ∝
ð1þ zÞ6 (i.e. the power injected per unit volume is propor-
tional to the square of the density), and that the spectrum of
annihilation products is the same at all redshifts. To obtain
the fðzÞ curve for any given model, one need then only
integrate over the spectrum of photons and eþe− pairs
produced by the annihilation.
In this paper we demonstrate that, in accordance with

previous studies exploring a smaller range of DM models
[16,18,22], the impact of any conventional DM annihilation
model on the CMB can be captured by a single normali-
zation factor. The shape of the perturbation to the
anisotropy spectrum is independent of the spectrum of
annihilation products, and can be accurately obtained by
assuming a constant redshift-independent fðzÞ. We derive
and present the model-independent weighting function that
determines the normalization factor, given a (corrected)
deposition-efficiency curve fðzÞ. Having obtained this
weighting function, we can convert the corrected fðzÞ
curves presented in paper II directly into feffðEÞ, for
photons and eþe− pairs injected by DM annihilation at
some arbitrary energy E. Computing feff for any conven-
tional model of annihilating DM (i.e. one without a novel
redshift dependence) is then simply a matter of integrating
over the spectrum of annihilation products. As an example,
we perform this calculation for the DM masses and
Standard Model final states contained in PPPC4DMID
[29], and determine the resulting constraints from Planck
on the annihilation cross sections for these models.
We first review, in Sec. II, the interpretation of the

corrected fðzÞ curves that we employ. In Sec. III we
perform a principal component analysis (PCA) to derive the
weighting function, construct feff as a function of injection
energy and species, and demonstrate that the feff results are
insensitive to various choices in the analysis. We demon-
strate the application of these results to a range of DM
models in Sec. IV, and then present our conclusions in
Sec. V. The Appendices provide information on supple-
mental data files, which we make available [30], and review
some aspects of PCA and the derivation of the weighting
function.

II. THE CORRECTED f ðzÞ CURVES
We use the fðzÞ curves from paper II [28], and refer the

reader to that paper for a detailed description of their

derivation. However, it is worth recapping the definition
and properties of the three types of fðzÞ curves we employ,
which we will denote fSSCKðzÞ, f3 keVðzÞ and fsimðzÞ. In
the notation of paper II, these curves correspond to
(respectively) fion;SSCKðzÞ, fion;3 keVðzÞ and fsimðzÞ. We
will refer to these curves generally as fðzÞ curves.
The “ion” superscript indicates that the deposition-

efficiency curves have been corrected to ensure that when
used with the stated prescription (SSCK or 3 keV), one
recovers the correct total power into ionization. This is the
appropriate condition for constraints arising from pertur-
bations to the ionization history, which in turn modify the
anisotropies of the CMB. It has been shown that in the case
of annihilating DM, other deposition channels can essen-
tially be ignored: for example, the limits from high-energy
free-streaming photons (discussed briefly in e.g. [3]),
distortions to the CMB spectrum [31–34] and modifica-
tions to the gas temperature (e.g. [11,21]) are all much
weaker (for s-wave-annihilating DM), and ignoring pro-
duction of Lyman-α photons altogether only changes the
constraints by ∼5% [16,20]. Accordingly, in this paper we
will only ever use fðzÞ curves corrected to obtain an
accurate description of the power proceeding into ioniza-
tion (in preference to the other deposition channels), and
the “ion” superscript is unnecessary.
The fsimðzÞ curve is obtained from a simplified estimate

for the power deposited into each channel. The overall
deposited power is corrected by subtracting previously
unaccounted power lost into photons below 10.2 eV, which
are no longer sufficiently energetic to interact efficiently
with the gas (see paper II [28] for details), and then the
remainder is multiplied by the SSCK or 3 keV prescription
to obtain the power into ionization. This approach is
denoted “approx” in [20], in contrast to the “best” treatment
that yields the deposition fractions which the fSSCKðzÞ and
f3 keVðzÞ functions are designed to reproduce; it relies on
the assumption that the SSCK or 3 keV prescriptions are
accurate once the energy losses of higher-energy electrons
(above 3 keV) to very low-energy photons are taken into
account. However, as shown for a range of specific models
in [20], this simplified approach gives results comparable to
the more detailed calculation.
To summarize, the fSSCKðzÞ, f3 keVðzÞ are our best

estimates for the appropriate corrected fðzÞ curves to use
with studies that assumed the SSCK or 3 keV prescriptions,
respectively; the fðzÞ curves have been corrected to take into
account errors in those prescriptions. The fsimðzÞ curve is the
result of a simpler calculation and can be used as a cross-
check.We plot all three sets of curves in Fig. 1, as taken from
paper II [28]. Note that all these curves only account for the
energy injected by annihilation of the smooth component of
DMwith the cosmological average density; they do not take
into account structure formation at low redshifts. However, it
has been shown that the contribution from structure for-
mation to the CMB constraints is generally very subdomi-
nant for s-wave annihilation [21].
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III. CONVERTING CORRECTED f ðzÞ
CURVES TO CMB BOUNDS

The most recent and strongest constraints on DM
annihilation from CMB anisotropies come from an analysis
of Planck data [8]. These constraints were computed using
the 3 keV baseline prescription, and were expressed in
terms of a bound on feffhσvi=mDM. For the models tested
by those authors, feff was determined by evaluating the
appropriate corrected fðzÞ curve for the model at z ¼ 600,
as originally suggested and validated in [17]. Analogous
feff values for arbitrary photon and eþe− energies can be
read off directly from Fig. 1, using the 3 keV baseline
prescription or the simplified fsimðzÞ curves (as discussed
above, the latter approach is simplified and likely to be less
accurate, but it gives a rough estimate of the possible
systematic errors arising from details of the first method).
A more careful derivation of feff—that is, the constant

value of fðzÞ which would have the same impact on the
CMB as the true corrected fðzÞ curve—can be achieved by
PCA, following the approach of [18].1 We review the

essentials of the Fisher matrix and PCA in Appendix B.
Performing PCA on a range of fðzÞ curves corresponding
to assorted DM models, the authors of [18,22] found that
the vast majority of the variance—exceeding 99.9%—was
contained in the first principal component, peaking around
z ∼ 600. Related studies [16,17,35] independently deter-
mined, using different methods, that the signal was largely
controlled by a single parameter, set by the behavior of fðzÞ
at z ∼ 600.
As described in [22], the “dot product” of a given fðzÞ

curve with the first principal component thus completely
determines its detectability. This dot product can be reex-
pressed as an integral over d lnð1þ zÞ, with the integrand
being the product of the fðzÞ curve with a weighting
function WðzÞ. The weighting function can be determined
from the first principal component, as described in [18,22];
we provide a detailed derivation in Appendix C. (An
alternate PCA, based on the ionization history rather than
the energy deposition history, was performed in [36].)
In principle, the weighting functionWðzÞ depends on the

details of the experiment (specifically, its sensitivity to
different multipoles l, in both temperature and polariza-
tion). It will also depend on the ionization prescription, as
this affects the mapping between fðzÞ and the CMB. In
practice, however, the impact of these choices turns out to
be very small.

FIG. 1. Corrected fðzÞ functions for particles injected by DM annihilation, as a function of injection energy and redshift of absorption.
In the left panel we use the 3 keV baseline ionization fractions [so these f3 keVðzÞ curves should be used with analyses that employed the
same prescription]; in the center panel we use the SSCK baseline. In the right panel we plot the simplified channel-independent fsimðzÞ
curve. The upper row describes eþe− pairs (the x-axis “energy” label here indicates the kinetic energy of a single member of the pair at
injection), the lower row describes photons.

1For convenience, in this paper we use the marginalized Fisher
matrices derived and made publicly available by [18]; while those
results employed WMAP measurements of the cosmological
parameters to determine the fiducial cosmological model, we
expect the impact of updating to Planck cosmological parameters
to be extremely small.
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We performed a new PCA, building our model space
from the fðzÞ curves for annihilation to eþe− and photons,
for 20 log-spaced energies between 1 keV and 10 TeV (for
40 models total). This is considerably more general than
previous studies which focused on the GeV-TeV WIMP
parameter space, but again we find that the first principal
component overwhelmingly dominates the variance
(accounting for more than 99.7% in all cases). In other
words, the space spanned by the possible imprints of
conventional s-wave DM annihilation on the CMB is
(within the confines of the approximate Fisher-matrix
approach) essentially one dimensional.
In order to justify computing the constraints on constant

fðzÞ and applying them to arbitrary annihilation models,
we need to show that scenarios with constant fðzÞ also
produce a perturbation to the CMB anisotropies lying
within this one-dimensional space. To test this question,
we consider two energy injection histories, one with
fðzÞ ¼ constant, the other with fðzÞ given by the first
principal component, with the same DM mass and anni-
hilation cross section. Suppose the fðzÞ curves are nor-
malized such that they correspond to the same signal
significance. As discussed in Appendix B (and using the
notation defined there), if ~v1 and ~v2 are the discretized
version of the fðzÞ curves, this condition implies
~vT1Fz~v1 ¼ ~vT2Fz~v2, where Fz is the Fisher matrix (as
determined in [18]).
The significance of the difference between these energy

injection histories, normalized to the overall significance of
either history, can be estimated within the Fisher matrix
approach as

σΔ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð~v2− ~v1ÞTFzð~v2− ~v1Þ

~vT1Fz~v1

s
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

�
1−

~vT2Fz~v1
~vT1Fz~v1

�s
: ð1Þ

Here we have used the normalization condition above, and
also the symmetry of the Fisher matrix to write
~vT1Fz~v2 ¼ ~vT2Fz~v1. We computed the bracketed quantity
on the right-hand side of Eq. (1), taking f1ðzÞ to be constant
and f2ðzÞ to be the first principal component. We found that
in all cases the bracketed quantity was below 0.001,
indicating that to a good approximation, the first principal
component also captures the effect of constant fðzÞ. Thus it
is reasonable to derive constraints on the case of constant
fðzÞ and convert them to constraints on general DM
annihilation histories using the weighting function.
We repeated the analysis for each independent combi-

nation of the following choices:
(i) A Planck-like experiment vs a cosmic variance

limited (CVL) experiment (as defined in [18]).
(ii) Including multipoles up to l ¼ 2500, vs l ¼ 6000.
(iii) Using fSSCKðzÞ, f3 keVðzÞ and fsimðzÞ to generate

the space of fðzÞ curves.

(iv) Choosing SSCK vs 3 keV as our baseline ionization
prescription [to translate the fðzÞ curve into its
impact on the CMB] when using the fsimðzÞ curve.

In all cases we used a Fisher analysis to estimate detect-
ability in the CMB, as described in [18]. We normalized the
weighting function as described in [22] and derived in
detail in Appendix C, so that

R
WðzÞd lnð1þ zÞ ¼ 1. Thus

for any arbitrary fðzÞ, R
fðzÞWðzÞd lnð1þ zÞ measures

detectability relative to the case of fðzÞ ¼ 1.
There are visible differences in the weighting functions

thus derived, with the largest impacts coming from chang-
ing the sensitivity to different multipoles—that is, by
considering a Planck-like experiment, vs a CVL experi-
ment up to l ¼ 2500, vs a CVL experiment up to
l ¼ 6000. However, the resulting variation in feff com-
puted by the different WðzÞ functions is always negligible
(percent level or less). We show the variousWðzÞ curves in
Fig. 2; in Fig. 3 we display the impact on the feff fractions
of scanning over all derived WðzÞ curves.
We recall that if the fSSCKðzÞ and f3 keVðzÞ curves are

each used with their specified ionization prescription, they
correspond to identical changes to the ionization history.
Consequently, their impacts on the CMB must be the same
(if contributions from nonionization channels are ignored).
However, since the fðzÞ curves are different, one might
expect that the weighting functionWðzÞ will be different—
and so must be chosen to match the ionization prescription
under which it was derived—in order to compensate. We
discuss this point in detail in Appendix D, but it turns out
that in practice, the similarity of the different ionization
prescriptions and the unit normalization ofWðzÞ means the
effect is tiny. Instead, the difference in baseline ionization
prescriptions is captured in the feff parameter, and the
derived constraints on that parameter; for example, a higher
baseline prescription for ionization would correspond to
lower fðzÞ for all models, and hence lower feff, but the
constraints on a given feff would be stronger (since the
higher ionization prescription corresponds to a larger effect
on the CMB).
We have explicitly tested the effect of using the “wrong”

weighting function—i.e. using WðzÞ derived using the
f3 keVðzÞ curves, in order to estimate feff for fSSCKðzÞ
curves. The effect is included in the bands in Fig. 3, and is
negligible.
Consequently, for the purposes of computing feff , it is

entirely adequate to use a single weighting function; we
choose the weighting function derived for a CVL experi-
ment including l up to 2500, built from the f3 keVðzÞ
curves. We note that this choice is largely arbitrary, as the
resulting value of feff is very stable. This weighting
function is likely to be broadly applicable beyond the case
of DM annihilation, although it may not capture all the
variance for energy injection histories that differ markedly
from that of conventional DM annihilation. We leave a
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more detailed PCA, based on a larger range of possible
injection histories, for future work.
One can integrate any electron and photon spectra

produced by DM annihilation over the feff curves presented
in Fig. 3, in order to determine feff for an arbitrary model.
We show results separately for the 3 keV and SSCK
baseline prescriptions; however, when making comparisons
with the Planck constraints [8], the 3 keV baseline
prescription should always be used. We also show the

effect of taking our second simplified procedure for
computing fcorrðzÞ, and the effect of evaluating
fcorrð600Þ rather than using the weighting function; both
effects are rather small, at the < 10% level.
The feff curves (Fig. 3) exhibit significant structure as a

function of energy. At high energies, both eþe− pairs and
photons asymptote to feff ≈ 0.4; this convergent behavior is
expected, since at high energies electrons and photons both
participate in a pair production/inverse Compton scattering
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FIG. 2. Weighting functions for the fðzÞ curves, derived by PCA. Solid lines show the results for a CVL experiment covering
l ¼ 2–2500, dashed lines show the results for a CVL experiment covering l ¼ 2–6000, dotted lines show the result for a Planck-like
experiment covering l ¼ 2–2500. Black lines use the first procedure for estimating ionization history, red lines use the second procedure
with 3 keV baseline prescription, blue lines use the second procedure with SSCK baseline prescription. Left panel: suitable for 3 keV
baseline. Center panel: suitable for SSCK baseline. Right panel: “universal” weighting function recommended for general use.
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FIG. 3. feff coefficients as a function of energy for eþe− (left column) and photons (right column); appropriate for analyses with
baseline prescription 3 keV (top row) or SSCK (bottom row). The widths of the red and green bands indicate the impact of scanning over
all the derived weighting functions (see Fig. 2). Red stars are derived from the fSSCKðzÞ or f3 keVðzÞ curves as appropriate (labeled
“direct ionization calculation” in the legend), green stars from the fsimðzÞ curves (labeled “simple photon-loss rescaling” in the legend).
Diamonds indicate feff evaluated as fð600Þ, rather than using a weighting function.
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(ICS) cascade. Both species demonstrate some minor
structure in the GeV-TeV range but generally maintain
feff ∼ 0.4, with a peak of feff ∼ 0.7 for electrons at injection
energies around 10 GeV. Both species then exhibit a large
bump in feff , peaking at energies around 10–100 MeV, and
a trough at OðMeVÞ energies. This trough occurs because
mildly relativistic electrons suffer large losses into con-
tinuum photons with energies below 10.2 eV (see paper II
[28] for an in-depth discussion). Accordingly, MeV-scale
electrons have small feff , and the dominant energy loss
process for MeV-scale photons is Compton scattering,
which in turn produces more mildly relativistic electrons.
The peak at slightly higher energy occurs because 10–
100 MeV electrons lose most of their energy by inverse
Compton scattering into Oð100–104Þ eV photons, which
are efficient ionizers.
At low energies, below ∼1–100 keV (depending on the

redshift), photons become efficient photoionizers, causing a
large feff . In contrast, the eþe− feff at low kinetic energies
is rather low, of order 0.3—but as noted in [19], this is
because in the context of DM annihilation, almost all the
injected power is bound up in the mass energy of the pair in
this case. Consequently, the absorption of the kinetic
energy is almost irrelevant: what matters is the absorption
of the photons produced when the positron annihilates.
From inspection of feff for ∼0.5 MeV photons, one would
expect feff of 0.3 for pairs produced nearly at rest,
consistent with the results of the calculation.
The primary systematic uncertainties in this calculation

arise from the choice of fðzÞ curves [fSSCK;3 keVðzÞ or
fsimðzÞ]. Both of these curves involve an approximation; on
one hand matching the power into ionization exactly (up to
the limitations of our approximate treatment of the low-
energy photons) while not attempting to match the heating
and Lyman-α channels, on the other approximating all
channels by the cooling of 3 keVelectrons after accounting
for energy lost to continuum photons. Some approximation
of this form is inevitable, given that the true relative losses
into the different channels are not independent of the
injected particle energy as tacitly assumed by both the
SSCK and 3 keV prescriptions. As discussed more exten-
sively in [20], we estimate the potential systematic error
due to these approximations and our simplified treatment of
the low-energy photons to be at the ∼10% level. For some
channels, the constraints we present may also be slightly
too conservative, i.e. weaker than the true limits, at a similar
∼10% level, due to our neglect of energy deposition by
protons and antiprotons [37].

IV. CONSTRAINTS FOR SIMPLE
ANNIHILATION CHANNELS

In this section we apply the results of this paper to the
Standard Model final states provided in the PPPC4DMID
package [29], following the earlier analysis by [38].
PPPC4DMID provides the fluxes of positrons and photons

produced by DM annihilation to 28 Standard Model final
states, for masses ranging from 5 GeV to 100 TeV. The
fluxes include electroweak final state radiation [39], which
can be crucial at high DM masses; thus, for example, there
is a small but nonzero feff for annihilation to νν̄, arising
from the electroweak corrections.
We only show results up to 10 TeV, as above this mass,

additional processes not considered in [13] may contribute
to the cooling of electrons and photons in the early
Universe. However, we expect that the feff results will
be similar at higher DM masses, since the processes
neglected in [13] will only modify the details of the pair
production cascade experienced by particles injected at
high energy, which occurs much faster than a Hubble time
and so is anticipated to have little effect on the fraction of
power eventually deposited.
We take the positron and photon spectra provided in

PPPC4DMID [40], assume that by charge symmetry the
spectrum of e− is equal to that of eþ, and integrate the
resulting eþe− and photon spectra over the feffðEÞ curves
presented in Fig. 3. Specifically, if a given annihilation
produces a spectrum ðdN=dEÞeþ of positrons, and a
spectrum ðdN=dEÞγ of photons, the weighted feffðmχÞ
curve is given by

feffðmχÞ ¼
Rmχ

0 EdE½2feþe−eff ðEÞðdNdEÞeþ þ fγeffðEÞðdNdEÞγ�
2mχ

;

ð2Þ

where E is the energy of the positron or photon (the factor
of 2 comes from the electron spectrum).
We use the best-estimate feffðEÞ curves suited for

the 3 keV baseline prescription, as we wish to apply
the constraints derived by the Planck collaboration [8].
We take the Planck limit to be feffhσvi=mχ <
4.1 × 10−28 cm3=s=GeV, which is the bound set by the
Planck temperature and polarization data. The limit can be
strengthened by ∼15% by the inclusion of either lensing or
external data sets.We show both the feffðmχÞ curves for each
channel and the resulting constraints on the annihilation cross
section in Fig. 4. For DM masses below 5 GeV, we show
estimated limits for DM annihilation to eþe−, γγ or
VV → 4e—the last channel corresponds to DM annihilating
to a pair of intermediate vector bosons, each of which
subsequently decays to eþe−. The results for the first two
channels are taken simply fromFig. 3,whereas forVV → 4e,
the eþe− spectrum is taken to be constant in dN=dE between
the kinematic limits me < E < mχ −me. For both channels
producing eþe−, there will also be an FSR contribution, but
its effect is generally small (at the percent level).
In general, we see that the final states considered fall into

three categories:
(i) Final states where the bulk of the power

proceeds into eþe− and photons, where at masses
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above 100 GeV the constraint approaches hσvi≲
10−27ðmχ=1 GeVÞ cm3=s.

(ii) Annihilation to neutrinos, where the constraint arises
entirely from electroweak corrections, and is negli-
gible below ∼200 GeV; at OðTeVÞ masses, cross
sections as low as a few ×10−23 cm3=s can be
constrained. Interestingly, this bound is competitive
with that placed by IceCube from observations of
galaxy clusters [45], the Galactic Center [46], and
the Milky Way halo [47], and unlike those limits is
independent of uncertainties in the local DM density,
the DM distribution, and the amount of DM sub-
structure.

(iii) A band with a width of roughly a factor of
150% in hσvi that encompasses all the other
channels studied, which at high masses corresponds
to hσvi ≲ 2 − 3 × 10−27ðmχ=1 GeVÞ cm3=s.

Accordingly, for any linear combination of these final
states that does not contain a significant branching ratio for
DM annihilation directly to neutrinos, one must have
hσvi ≲ 3 × 10−27ðmχ=1 GeVÞ cm3=s. It is thus challeng-
ing to obtain the correct thermal relic cross section
for s-wave annihilating DM with mass much below
mχ ∼ 10 GeV, without violating these limits (although
models with suppressed annihilation at late times may still
be viable, e.g. asymmetric DM models or the scenarios
proposed in [48,49]). At higher masses, the cross sections
constrained are well above the thermal relic value, but are
highly relevant for DM explanations of the positron excess
observed by PAMELA [50], Fermi [51] and AMS-02 [52].
For example, the authors of [42] identified a favored
scenario by which to explain this excess via DM annihi-
lation, respecting all existing constraints: 0.5–1 TeV DM
annihilating through a light mediator to a mixture of 75%
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FIG. 4. The upper panel shows the feff coefficients as a function of DM mass for each of a range of SM final states, as indicated in the
legend. The VV → 4X states correspond to DM annihilating to a pair of new neutral vector bosons V, which each subsequently decay
into eþe−, μþμ− or τþτ− (labeled by X). The lower panels show the resulting estimated constraints from recent Planck results [8], as a
function of DM mass, for each of the channels. The left panel covers the range from keV-scale masses up to 5 GeV, and only contains
results for the eþe−, γγ and VV → 4e channels; the right panel covers the range from 5 GeV up to 10 TeV, and covers all channels
provided in the PPPC4DMID package [29]. The light and dark gray regions in the lower right panel correspond to the 5σ and 3σ regions
in which the observed positron fraction can be explained by DM annihilation to μþμ−, for a cored DM density profile (necessary to
evade γ-ray constraints), taken from [41]. The solid yellow line corresponds to the preferred cross section for the best fit 4-lepton final
states identified by [42], who argued that models in this category can still explain the positron fraction without conflicts with
nonobservation in other channels. The red and black circles correspond to models with 4e (red) and 4μ (black) final states, fitted to the
positron fraction in [43]; as in that paper, filled and open circles correspond to different cosmic-ray propagation models. The near-
horizontal dashed gold line corresponds to the thermal relic annihilation cross section [44].
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τþτ− and 25% eþe−. The required cross section is roughly
hσvi ∼ 5 × 10−24 cm3=s at 500 GeV and roughly ∼1.5 ×
10−23 cm3=s at 1 TeV. This is clearly above the bounds for
the contributing annihilation channels in Fig. 4. Similarly,
the authors of [43] found that only annihilation through a
light mediator to muons or electrons could explain the
excess without violating bounds from studies of dwarf
galaxies in gamma rays. The preferred cross section was
∼1.3–1.6 × 10−24 cm3=s at a DM mass of ∼350 GeV for
the 4e final state, and ∼6–8 × 10−24 cm3=s at a DM mass
of ∼600–750 GeV for the 4μ final state. Again, these
preferred points are well above the bounds we derive for the
corresponding channels.
Figure 4 shows (1) the cross section band favored for the

models of [42] as a solid yellow line, (2) the points favored
by [43] as circles in red (4e final state) or black (4μ final
state), and (3) a gray contour describing the region in which
DM annihilation to μþμ− can explain the AMS-02 data
[41]. These favored regions should be compared, respec-
tively, to (1) an appropriately weighted combination of the
green dot-dashed and red dot-dashed lines in Fig. 4 (it is a
conservative choice to take the green dot-dashed line to set
the limit), (2) the red dot-dashed and black dot-dashed
lines, and (3) the solid black line. We see that in general
these models are ruled out by more than a factor of 2, and
up to an order of magnitude. The models presented in [53]
were studied in [8], and are similarly ruled out by these
constraints.

V. CONCLUSIONS

In this paper, we have mapped out the effective depo-
sition efficiency, feff , for photons and eþe− pairs injected
into the early Universe by DM annihilation, at
OðkeV-TeVÞ kinetic energies. We have made our key
numerical results publicly available online [30].
We have demonstrated that it is sufficient to use a simple

universal weighting function to convert any redshift-
dependent energy deposition history (originating from
conventional s-wave-dominated DM annihilation) into a
redshift-independent efficiency factor, confirming earlier
results for the WIMP regime. This efficiency factor then
converts Planck limits on energy injection from the CMB
into constraints on the DM model in question. Any DM
model featuring dominantly s-wave annihilation, with the
only redshift dependence in the annihilation rate arising
from the DM density squared, can thus be constrained
using these data. We emphasize that this does not subsume
the limits presented by the Planck collaboration, but
confirms the validity of the procedure employed in that
analysis, and demonstrates how to extend those bounds to
more general DM models.
We have performed an example calculation for 28

different annihilation channels over the DM mass range
5 GeV–10 TeV, and demonstrated that except for annihi-
lation directly into neutrinos, at high masses the constraint

from the CMB generically lies in the range
hσvi ≲ 1–3 × 10−27ðmχ=1 GeVÞ cm3=s. Even for annihi-
lation to neutrinos, at TeV-scale masses we can set an upper
bound on the cross section of order a few times
10−23 cm3=s, comparable to constraints from IceCube
observations of the Milky Way and galaxy clusters; this
bound arises from electroweak final state radiation pro-
ducing eþe− pairs and photons.
The constraints we obtain appear to rule out annihilating

DM models proposed to explain the observed excess of
cosmic-ray positrons, including models which could not be
excluded by any previous studies. This constraint could be
evaded if the DM annihilation is suppressed at low
velocities or early times.
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APPENDIX A: SUPPLEMENTARY MATERIALS

We make available [30] a selection of .fits and .dat
files containing the feff values presented in Figs. 3 and 4
(with the exception of the VV → 4e channel below 5 GeV,
which can be trivially obtained—at least at the level we
have calculated it—from the results for eþe−), as well as
the universal annihilation weighting function shown in
Fig. 2. We also provide an example Mathematica notebook to
demonstrate the use of the .fits files.
The .fits files are as follows:
feff_summary_species_base.fits
Here “species” can be “elec” (representing eþe− pairs) or

“phot” (representing photons), and “base” can be SSCK or
3 keV, corresponding to the choice of baseline ionization
prescription. For example, the 3 keV files should be used
with the constraints on DM annihilation of [8]. Each file
contains the following arrays:

(i) REDSHIFT: This 63-element array provides the
abscissa for deposition redshift.

(ii) WEIGHTFN: This 63-element array provides the
weighting function shown in the third panel of
Fig. 2, sampled at the redshifts given by the
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REDSHIFT array, and normalized so thatR
WðzÞd lnð1þ zÞ ¼ 1 (up to numerical error).

(iii) LOG10ENERGY: This 40-element array gives
log10ðE=eVÞ, where E is the kinetic energy of
one member of the pair of injected particles (for
eþe− pairs) or the energy of a single injected photon.

(iv) FEFF_BEST: This 40-element array gives feff
computed using the appropriate fbaseðzÞ curve,
weighted by the weighting function.

(v) FEFF_RESCALING: This 40-element array gives
feff computed using the appropriate fsimðzÞ curve,
weighted by the weighting function.

(vi) FEFF_BEST_600: This 40-element array gives
feff computed using the appropriate fbaseðzÞ curve,
evaluated at z ¼ 600.

feff_PPPC_3 keV.fits
This file contains the feff curves for different DMmasses

and annihilation channels as shown in Fig. 4, at DMmasses
above 5 GeV. Below 5 GeV, the results for the eþe−, γγ and
VV → 4e channels are easily obtained from the
feff_summary_species_3 keV.fits files. The
arrays in this file are

(i) DM_MASS: This 62-element array gives the DM
mass in GeV.

(ii) CHANNEL: This 28-element array labels the
channels as shown in the legend of Fig. 4.

(iii) FEFF: This 28 × 62 array contains the feff values
for each DM mass and channel, derived using the
appropriate f3 keVðzÞ curves and the weighting
function.

The .dat files simply contain condensed summaries of
the .fits files, and are as follows:
feff_PPPC_3 keV.dat
As feff_PPPC_3 keV.fits, except that the feff

values are laid out in a grid, with columns corresponding to
different channels (the first row describes the different final
states) and rows corresponding to different DMmasses (the
first column gives the DM mass in GeV).
feff_base.dat
This contains a subset of the information in feff_

summary_electron_base.fits and feff_
summary_photon_base.fits: the first column is
the LOG10ENERGY array from these files, describing the
injection energy; the second is the best-estimate feff value
[computed using the fbaseðzÞ curves and the weighting
function] for eþe− pairs; the third is the best-estimate feff
for photons. “base” can take the values SSCK or 3 keVand
should be chosen based on the ionization prescription used
in the analysis to which comparison is desired.
weighting_function.dat
This contains the weighting function WðzÞ shown in the

third panel of Fig. 2, sampled at the redshifts 1þ z given in
the first column.

APPENDIX B: REVIEW OF PRINCIPAL
COMPONENT ANALYSIS

Suppose we have some arbitrary energy deposition
history, characterized by a (corrected) efficiency function
fðzÞ. Let us discretize the fðzÞ function into nz bins
centered at zi, i ¼ 1;…; nz, thus describing the energy
deposition by a column vector ~v ¼ ðfðz1Þ; fðz2Þ;
fðz3Þ;…; fðznzÞÞ. We follow [18] in treating the energy
deposition profile fðzÞ in each bin as a Gaussian in
lnð1þ zÞ, normalized such that its integral with respect
to d lnð1þ zÞ is equal to the logarithmic bin width
Δ lnð1þ zÞ.
Within the approximation of linearity (which is a good

approximation for energy injections at the level constrained
by Planck [18]), the impact of this deposition history on the
anisotropies of the cosmic microwave background can be
written in the form

h≡ ΔCl ¼ T~v; ðB1Þ
where T is some transfer matrix of dimension nl × nz, and
nl is the number of multipoles we consider. Following [18],
in our notation each element of T (Tli) is itself a three-
element vector, holding the perturbations to the TT, TE and
EE anisotropy spectra at that l: T can be computed element
by element, as described in [18], by taking ~vj such that
vi ¼ δij, and computing the effects on the CMB using
RECFAST [54] (or a similar code such as CosmoRec [55] or
HyRec [56]) and CAMB [57]. Similarly, we can determine a
corresponding nl × 6 transfer matrix describing the effect
of varying the standard six cosmological parameters.
Once T has been mapped out, we can construct the

nz × nz Fisher matrix Fe as

ðFeÞij ¼
X
l

TT
li · Σ−1

l Tlj; ðB2Þ

where Σl is the appropriate covariance matrix for the
anisotropy spectra (see [18] for the explicit form).
Schematically, Fe ¼ TTΣ−1T; it is a symmetric matrix,
due to the symmetry of Σ, and its diagonal elements ðFeÞii
describe the (squared) signal significance per energy
deposition at redshift zi, before marginalization over the
existing cosmological parameters.
To perform this marginalization, one first constructs an

expanded Fisher matrix F0, using Eq. (B2) but expanding T
to include the effect of the standard six cosmological
parameters. We can write

F0 ¼
�
Fe Fv

FT
v Fc

�
; ðB3Þ

where Fe is the premarginalization Fisher matrix as defined
above, Fc is the Fisher matrix for the cosmological
parameters only, and Fv describes the cross terms. Then
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the marginalized Fisher matrix, describing the detectability
of an energy injection after projecting out the perturbations
parallel to the standard cosmological parameters, is given
by Fz ¼ Fe − FvF−1

c FT
v (see [18] for a discussion).

The principal components are given by the eigenvectors
of Fz, which we will denote f~Pig, i ¼ 1;…; nz. By
construction, they form an orthogonal basis for arbitrary
fðzÞ histories, and we can choose them to be orthonormal;
as such, one can write the vector corresponding to any
arbitrary fðzÞ in the form ~v ¼ P

αi ~Pi, where ~Pi is the ith
principal component and αi ¼ ~v · ~Pi. Each principal com-
ponent perturbs the CMB anisotropies with significance
proportional to the square root of the corresponding
eigenvalue (to the degree that the approximations inherent
in the Fisher matrix analysis are valid). Consequently, if the
principal components are ranked in order of their eigen-
values, the detectability of an arbitrary energy deposition
history can be described approximately by α1 ¼ ~v · ~P1, the
dot product with the first principal component. In this
sense, ~P1 acts as a redshift-dependent weighting function
that determines the detectability of an arbitrary energy
deposition history. The accuracy of this “weighting func-
tion” approximation will be controlled by the fraction of the
total variance described by the first eigenvalue (it may also
break down for specific energy deposition histories where ~v

is accidentally nearly orthogonal to ~P1).

APPENDIX C: DERIVING THE UNIVERSAL
WEIGHTING FUNCTION FOR

ANNIHILATING DM

Rather than working in terms of energy deposition
histories localized in redshift, one can perform a similar
PCA starting with any sample of fðzÞ functions (see [18]
for a more complete discussion); the resulting principal
components will be applicable to any energy deposition
history lying within the space spanned by these basis
functions. For the purposes of setting CMB constraints, any
conventional DM annihilation model can be described as a
linear combination of photons and eþe− pairs injected over
a range of energies.
Consequently, we can perform a PCA applicable to all

conventional DM annihilation models, by taking as our
basis functions the fðzÞ curves plotted in Fig. 1. We choose
20 log-spaced injection energies for photons and eþe−
pairs, thus giving rise to 40 fðzÞ curves as our sample. As
previously, we can sample these curves at nz redshifts,
translating them into nz-element column vectors, which we
will denote ~ui for i ¼ 1;…; 40. (More generally, we will
denote the number of models included in the PCA as nM: in
this case nM ¼ 40.) Let U be the nz × nM matrix with the
ith column given by ~ui. A general DM annihilation model
can be expressed as ~v ¼ U~α, where ~α now describes the
coefficients of the (not orthogonal) basis vectors ~ui. Thus

we can describe the matrix U as mapping from nM-
dimensional “coefficient space” into nz-dimensional “red-
shift space.”
Following the same procedure as previously, we can

compute the impact on the CMB of each of the ~ui histories,
thus constructing a nl × nM transfer matrix TM that maps
from coefficient space to the anisotropies of the CMB. In
terms of the earlier transfer matrix T, TM ¼ TU. Let us
label the associated nM × nM Fisher matrix (after margin-
alization over the standard cosmological parameters) as
FM, and the expanded premarginalization Fisher matrix
as F0M.
Since the transfer matrix for the cosmological parameters

is unchanged, writing TM in terms of T yields the following
relation between F0 and F0M:

F0M ¼
�

UTFeU UTFv

ðUTFvÞT Fc

�
: ðC1Þ

Consequently, the marginalized Fisher matrix becomes

FM ¼ UTFeU −UTFvF−1
c FT

vU ¼ UTFzU: ðC2Þ

Diagonalizing FM now yields a set of principal compo-
nents specialized to the case of DM annihilation; these
principal components are nM-element vectors, and describe
coefficient vectors ~α for the original basis fðzÞ curves.
Accordingly, they are orthonormal in coefficient space, not
redshift space. If we denote these principal components as
f~pig, i ¼ 1;…; nM, then following the reasoning above,
we can write ~α ¼ P

ið~α · ~piÞ~pi, and the detectability of the
energy deposition history characterized by the coefficient
vector ~α is determined approximately by ~α · ~p1.
Due to the similarity of the fðzÞ curves for different

energies and different species, when the eigenvalues are
calculated, the first principal component accounts for more
than 99% of the variance. Accordingly, having specialized
to the case of DM annihilation, the weighting function
approximation is expected to be accurate at the subper-
cent level.
However, we would prefer to express this dot product

directly in terms of the energy deposition history fðzÞ, or its
discretized counterpart ~v, rather than its coefficients with
respect to a somewhat arbitrary basis. To achieve this, note
that since ~v ¼ U~α, we can write

UTFz~v¼ UTFzU~α¼ FM

XmN

i¼1

ð~α · ~piÞ ~pi ¼
XmN

i¼1

λið~α · ~piÞ ~pi:

ðC3Þ

Here λi is the ith eigenvalue of FM, and so FM~pi ¼ λi ~pi by
definition. Taking the dot product with ~p1 then yields

p1 · ðUTFz~vÞ ¼ λ1ð~α · ~p1Þ; ðC4Þ
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and consequently,

~α · ~p1 ¼
1

λ1
pT
1U

TFz~v ¼
�ðU~p1ÞTFz

λ1

�
· ~v: ðC5Þ

If a constraint on some deposition history f0ðzÞ (lying
within the space spanned by conventional DM annihilation)
has been computed, therefore, the constraint on any other
fðzÞ (at the same DM mass and cross section) can be
computed by rescaling the bound by a factor:

feff ¼
�
ðU~p1ÞTFz

λ1

�
· ~v�

ðU~p1ÞTFz
λ1

�
· ~v0

¼
� ðU~p1ÞTFz

ððU~p1ÞTFzÞ · ~v0

�
· ~v: ðC6Þ

A higher feff corresponds to a more detectable fðzÞ, and
hence to a stronger bound. The quantity in square brackets
now acts as a weighting vector ~W which converts ~v to feff .
In principle, we could use any vector ~v0 to determine the
reference bound, but in practice the usual choice is
fðzÞ ¼ 1, so feff represents “effective deposition effi-
ciency” relative to the case corresponding to total prompt
energy deposition (with one of the simplified ionization
prescriptions). This choice yields

~W ¼ ðU~p1ÞTFzP
iððU~p1ÞTFzÞi

: ðC7Þ

We can define a continuous weighting function WðzÞ by
interpolation, fixing

WðziÞ ¼
ð ~WÞi

d lnð1þ zÞ : ðC8Þ

Then the normalization condition
P

ið ~WÞi ¼ 1 translates
into

P
iWðziÞd lnð1þ zÞ ¼ 1, and so when the continuous

limit is taken,
R
WðzÞd lnð1þ zÞ ¼ 1. We can likewise

rewrite feff in terms of the continuous functions fðzÞ
and WðzÞ,

feff ¼
X
i

fðziÞð ~WÞi ¼
X
i

fðziÞWðziÞd lnð1þ zÞ

→
Z

fðzÞWðzÞd lnð1þ zÞ: ðC9Þ

This is the weighting function provided in the main text.

APPENDIX D: EXPECTED CHANGE TO THE
WEIGHTING FUNCTION DUE TO
IONIZATION PRESCRIPTION

As discussed in Sec. III, the weighting function has some
dependence on the presumed baseline ionization pre-
scription, even though the fSSCKðzÞ and f3 keVðzÞ curves

correspond to identical physical ionization histories (when
properly combined with the appropriate ionization pre-
scriptions). There is also a separate dependence on the
presumed baseline ionization prescription when the fsimðzÞ
curve is used, but in this case the dependence is physical; it
affects the mapping from DM models into the CMB, by
changing the transfer matrix TM (and T).
In the notation of Appendix C, when fSSCKðzÞ or

f3 keVðzÞ curves are used, the FM Fisher matrix (and
resulting principal components) are unaffected by the
choice of ionization prescription, as these depend only
on the (physical) CMB signatures of particular DM
annihilation models. However, the U and Fz matrices,
which involve mappings between DM models and fðzÞ
curves, or fðzÞ curves and the CMB, are affected.
Let U1 and U2 denote the matrices that hold the fðzÞ

curves for two different baseline ionization prescriptions,
and let i1ðzÞ, i2ðzÞ describe the fraction of deposited power
proceeding into ionization (as a function of redshift) in
those two prescriptions. Let I1 and I2 define the nz × nz
diagonal matrices such that ðIaÞjk ¼ iaðzjÞδjk. Then since
by the definition of fbaseðzÞ curves, the power into ioniza-
tion at any redshift is invariant, we can write I1U1 ¼ I2U2.
Now if Fz1 and Fz2 are the Fisher matrices correspond-

ing to the two baseline ionization prescriptions, we
can write FM ¼ UT

1Fz1U1 ¼ UT
1 I1I

−1
1 Fz1I−11 I1U1 ¼

UT
2 I2I

−1
1 Fz1I−11 I2U2 ¼ UT

2Fz2U2. It follows that

Fz2 ¼ I2I−11 Fz1I−11 I2: ðD1Þ

Then we can immediately write down the relationship
between the weighting vectors corresponding to the two
prescriptions,

~W2 ¼
ðU2 ~p1ÞTFz2P
iððU2 ~p1ÞTFz2Þi

¼ ðI−12 I1U1 ~p1ÞTI2I−11 Fz1I−11 I2P
iððI−12 I1U1 ~p1ÞTI2I−11 Fz1I−11 I2Þi

¼ ðU1 ~p1ÞTFz1I−11 I2P
iððU1 ~p1ÞTFz1I−11 I2Þi

¼ ~W1I−11 I2

P
iððU1 ~p1ÞTFz1ÞiP

iððU1 ~p1ÞTFz1I−11 I2Þi
: ðD2Þ

We see that if I1 and I2 only vary by a redshift-

independent normalization factor, the effect on ~W cancels
out entirely, and this is quite a good approximation at all
redshifts of interest for the signal (see e.g. paper II [28]).
Thus while the redshift dependence of I−11 I2 does slightly
distort the shape of the weighting function, the impact on
the extracted feff is negligible (as demonstrated explicitly
in Sec. III).
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