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Within a cosmological context, we study the behavior of collisionless particles in the weak-field
approximation to general relativity, allowing for large gradients of the fields and relativistic velocities for
the particles. We consider a spherically symmetric setup such that high resolution simulations are possible
with minimal computational resources. We test our formalism by comparing it to two exact solutions: the
Schwarzschild solution and the Lemaître-Tolman-Bondi model. In order to make the comparison we
consider redshifts and lensing angles of photons passing through the simulation. These are both observable
quantities and hence are gauge independent. We demonstrate that our scheme is more accurate than a
Newtonian scheme, correctly reproducing the leading-order post-Newtonian correction. In addition, our
setup is able to handle shell crossings, which is not possible within a fluid model. Furthermore, by
introducing angular momentum, we find configurations corresponding to bound objects which may prove
useful for numerical studies of the effects of modified gravity, dynamical dark energy models or even
compact bound objects within general relativity.
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I. INTRODUCTION

Recent results from the Planck mission [1], BOSS [2–4],
WiggleZ survey [5], CFHTlenS [6] and SNLS [7] have
consolidated the ΛCDM concordance model of cosmology
as providing a very good fit to observations. However, this
model is characterized by two semiphenomenological
ingredients—cold dark matter (CDM) and a cosmological
constant (Λ)—whose true nature still needs to be deter-
mined at the fundamental level. With the reach of linear
analysis now being nearly exhausted, phenomena at non-
linear scales can help to make progress. On the observa-
tional side, large surveys such as Euclid [8], DES [9], LSST
[10] and SKA [11] will make significant progress analyzing
these nonlinear scales. This puts the onus on the theoretical
side to understand precisely what we expect these surveys
to see. Due to the nonlinearity, numerical simulations will
be a necessary tool to probe this regime.
The N-body codes used for the study of cosmic large

scale structure normally employ Newton’s law of gravita-
tion. One expects that this approximation works well as
long as perturbations are generated by nonrelativistic matter
only. This is true if dark energy is indeed a cosmological
constant and dark matter is some heavy fundamental
particle (like in the weakly interacting massive particles

scenario). However, since these facts are not established it
seems that by using the Newtonian approximation we are
unable to access a viable part of model space.
In fact, even within the realm of known physics this

approximation will break down due to the existence of very
light, but still massive, neutrinos. In principle, the initial
conditions of simulations can be set late enough that
neutrinos have already become nonrelativistic; however,
this can be so late that the cold dark matter has already
begun to cluster significantly. Therefore, relativistic effects
are already important in order to rigorously model the
effects of neutrino masses in cosmology.
In an effort to address these shortcomings, a relativistic

framework for N-body simulations has recently been
developed [12,13]. This framework is based on a weak-
field expansion of Einstein’s equations, similar to the one
proposed in [14,15]. It does not require a particular form of
stress energy and relies solely on the assumption that
gravitational fields are weak, at least at large scales.
Therefore, it is applicable1 to a much larger set of models,
including hot dark matter [16,17] and many types of
dynamical dark energy [18].
Before investing significant computational resources in

order to do a full-scale cosmological simulation it is
interesting to study the relativistic effects in a simplified
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1Note however that in some models the stress energy tensor
may need to be modeled by a method other than simple N-body
particles.
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setup. Here we will consider the case of a single, isolated,
spherically symmetric structure which could, for instance,
be a model for a cosmological void or a galaxy cluster. The
idealization to exact spherical symmetry drastically reduces
computational requirements, allowing high-resolution sim-
ulations to be carried out at negligible cost. Furthermore,
the numerical scheme can be thoroughly verified by
comparing to several known exact solutions. When com-
paring to exact solutions, structures can also be allowed to
evolve into regimes where metric perturbations do become
large and the framework breaks down, allowing us to probe
the boundaries of where the framework can and cannot be
trusted.
Our approach is in some sense complementary to

existing methods for the numerical solution of Einstein’s
equations. For instance, the Baumgarte-Shapiro-Shibata-
Nakamura formalism [19–21] can probe the strong field
regime, but existing implementations rely on a fluid
description for matter. Our N-body method, on the other
hand, allows us to study matter configurations with highly
nontrivial phase space distributions.
In Sec. II we introduce the relativistic framework and

study some simple spherically symmetric setups. We first
consider a Schwarzschild solution to confirm that the
relativistic potentials are calculated accurately in vacuum.
We then add nonrelativistic matter and compare our
simulations to the exact Lemaître-Tolman-Bondi models
which describe spherically symmetric solutions with a dust
fluid. In order to avoid gauge issues, we construct several
physical observables which can be compared without
ambiguity. We note that the fluid solutions break down
at the formation of caustics, but our relativistic framework
remains valid and can thus probe settings beyond the fluid
approximation. Without support from pressure or angular
motion, overdensities tend to collapse quickly and cannot
easily form stable bound objects. In Sec. III, we propose a
way to introduce angular motion without breaking spheri-
cal symmetry. This is achieved by arranging the motion of
the particles such that they all individually have angular
momentum, but the total angular momentum of the system
remains zero. We demonstrate that one can find configura-
tions corresponding to bound objects. Such configurations
may be useful laboratories to study the effects of modified
gravity, dynamical dark energy models, or even the early
stages of the formation of primordial black holes [22,23], or
ultracompact minihaloes [24–26], within ordinary gravity.

II. THE MODEL

The perturbed Friedmann-Lemaître-Robertson-Walker
(FLRW) metric, in spherical coordinates and longitudinal
gauge, is

ds2 ¼ −a2ðτÞ½1þ 2Ψðτ; rÞ�dτ2
þ a2ðτÞ½1 − 2Φðτ; rÞ�½dr2 þ r2dΩ2�; ð1Þ

where τ is the conformal time, a is the scale factor and we
impose spherical symmetry of the perturbations by requir-
ing that the Bardeen potentials Φðτ; rÞ and Ψðτ; rÞ depend
only on the radial coordinate and time. We have also
assumed a spatially flat background although it would be
easy to generalize our model to allow for open or closed
geometries.
We examine this metric in the regime where gravitational

fields are weak. In other words, we are interested in
perturbations caused by structures that remain much larger
than their Schwarzschild radius. Such a weak-field setting
allows for a systematic expansion of the various equations
of motion (including Einstein’s field equations) in terms of
metric perturbation variables. We will follow an approach
studied in [12] which takes into account the most important
relativistic terms.
This approach can be summarized as follows: first,

all equations are expanded in terms of the metric
perturbations—in our case Φ and Ψ—and all terms up
to first order are kept without distinction. At higher orders,
however, one only wants to keep the most relevant terms.
Noting that linear perturbation theory is accurate on the
largest scales (close to or beyond the horizon) the only
higher order terms that we will keep are those which may
become large at small scales. These terms will be those with
two spatial derivatives,2 since a derivative will effectively
multiply a term by an inverse power of a length scale. To
arrive at a tractable set of equations that still contains the
most important relativistic corrections we will therefore add
all second order terms with two spatial derivatives and no
terms of any higher order. Although there are scenarios
where terms of higher than quadratic order can dominate
over the linear terms (e.g. Φ;ijΦ2 if Φ;ij > δij=Φ) these
higher order terms will always be subdominant to the
largest quadratic order terms that we do include. Further
details on this approximation scheme can be found in [12].
It is important to emphasize that any perturbations of the

stress-energy tensor, including momenta, are allowed to be
arbitrarily large. The perturbative expansion is only carried
out in terms of gravitational fields and we make no
assumptions about other perturbations. For instance, our
solar system perfectly fits into this scheme since the gravi-
tational field of the sun remains well within the weak-field
regime, despite the fact that its density is some 30 orders of
magnitude larger than the mean density of the Universe.
Using the “time-time” component of Einstein’s equa-

tions, G0
0 ¼ 8πGT0

0, we obtain an equation for the metric
perturbations:

Φ;rr þ
2

r
Φ;r − 3HΦ;τ − 3H2ðΦ − χÞ þ 3

2
ðΦ;rÞ2

¼ −4πGa2ð1 − 4ΦÞδT0
0; ð2Þ

2Note that Einstein’s equations are second order differential
equations, therefore no terms will have more than two derivatives.
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where commas denote partial derivatives with respect to r
or τ. Note that, in a spherical coordinate system as the one
used here, second spatial derivatives can give rise to terms
like Φ;r=r. We will treat these terms like second derivatives
in our expansion scheme, i.e. a factor 1=rwill effectively be
counted like a spatial derivative. We also introduced the
conformal Hubble parameter H ¼ d ln a=dτ and the differ-
ence of the potentials as χ ¼ Φ −Ψ. On the right-hand side,
δT0

0 stands for the perturbations of the stress-energy tensor,
δT0

0 ¼ T0
0 − T̄0

0. We will only consider contributions from
massive particles (e.g. cold dark matter). The background
model is governed by the Friedmann equation

H2 ¼ −
8πG
3

a2T̄0
0: ð3Þ

Another equation comes from the traceless part of
the “space-space” components of Einstein’s equations,
Gi

j − 1
3
δijG

k
k ¼ 8πGðTi

j − 1
3
δijT

k
kÞ, and reads

χ;rr −
1

r
χ;r þ χ2;r þ 2Φ2

;r þ 2

�
Φ;rr −

1

r
Φ;r

�
ð2Φ − χÞ

¼ 12πGa2ð1 − 2χÞΠrr; ð4Þ

where Πrr is the radial component of the anisotropic stress,
defined for a general coordinate system as

Πij ¼ δikTk
j −

1

3
δijTk

k: ð5Þ

Latin indices denote spatial coordinates only. As a conse-
quence of spherical symmetry the anisotropic stress is
purely longitudinal in our setting.
The stress-energy tensor is derived by varying the action

of an ensemble of massive point particles with respect to
δgμν [see e.g. Eq. (2) of [13]]. This gives

Tμν ¼
X
n

mðnÞ
δð3Þðx − xðnÞÞffiffiffiffiffiffi−gp

×

�
−gαβ

dxαðnÞ
dτ

dxβðnÞ
dτ

�−1=2 dxμðnÞ
dτ

dxνðnÞ
dτ

; ð6Þ

where we sum the contributions of n particles with masses
mðnÞ and spatial positions xðnÞ, and Greek indices run over
all four coordinates of space-time.
For a particle moving in the radial direction we can

define a momentum

p ¼ mð1 − ΦÞ drdτffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2Ψ − ð1 − 2ΦÞðdrdτÞ2

q ; ð7Þ

which is the proper relativistic momentum as measured in a
Gaussian orthonormal coordinate frame aligned with our

foliation of spacetime.3 The motivation for this is that it
allows us to derive an expression for the stress-energy
tensor that is valid (within the bounds of our approximation
scheme) even when the particles have arbitrarily high
velocities. In particular,

T0
0 ¼ −

1þ 3Φ
4πr2a3

X
n

δðr − rðnÞÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

ðnÞ þ p2
ðnÞ

q
; ð8Þ

and

Πrr ¼
2

3

1þ 3Φ
4πr2a3

X
n

δðr − rðnÞÞ
p2
ðnÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m2
ðnÞ þ p2

ðnÞ
q : ð9Þ

As we restrict our solutions to spherical symmetry we can
imagine collections of particles as representing spherically
symmetric shells with only radial positions. This is because
symmetry also requires that the particle distribution func-
tion is independent of angular position. We therefore
simply dropped the angular coordinates from above expres-
sions and defined the masses such that mðnÞ=ð4πr2ðnÞÞ is the
surface mass density (in coordinate space) of the shell with
label n. Thus, each shell accounts for all particles at given
radius rðnÞ with given radial momentum pðnÞ and we need
only sum over shells. Note that, for descriptive ease, from
here onwards we will refer to the individual shells as the
“particles” of our simulations.
In order to evolve the particle positions one can invert

Eq. (7),

dr
dτ

¼ pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ p2

p ð1þ ΦþΨÞ: ð10Þ

The geodesic equation for massive particles,

d2xμ

ds2
þ Γμ

νρ
dxν

ds
dxρ

ds
¼ 0; ð11Þ

finally determines the evolution of the momenta as

dp
dτ

¼ −ðH − Φ;τÞp −Ψ;r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ p2

q
: ð12Þ

Our aim is to study numerical solutions to the above
system of equations. To this end, we adopt a particle-mesh

3Explicitly, a Gaussian orthonormal coordinate frame is given
by a set of orthonormal basis vectors eμ0, e

μ
1, e

μ
2, e

μ
3, gμνe

μ
0e

ν
0 ¼ −1,

gμνe
μ
0e

ν
i ¼ 0, gμνe

μ
i e

ν
j ¼ δij with eμ0 orthogonal to the spacelike

hypersurface. The metric in the coordinates defined by this basis
locally looks like the Minkowski metric. The momentum p
defined in Eq. (7) is simply the spatial component of the covariant
4-momentum in that coordinate system. If we align eμ1 with the
radial direction, i.e. eμ1 ∝ δμr , we can write p ¼ muμgμνeν1, where
uμ denotes the covariant 4-velocity.
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(PM) scheme as used in many cosmological N-body
simulations. The “mesh” part of the scheme takes care
of the evolution of fields such as Φ or χ. All fields are
represented approximately by sampling their values on a
discrete set of points, hereafter referred to as the “grid.” The
field equations (2) and (4) are solved on the grid by
replacing the differential operators by finite-difference
versions thereof.
The particle part of the PM scheme, on the other hand,

takes care of the evolution of the particle ensemble. The
phase space of fundamental particles is sampled by a much
smaller number ofN-body particles which can be viewed as
discrete elements of phase space. Hereafter, the term
particle usually refers to the latter notion. Positions and
momenta of particles are real valued (i.e. they can exist in
arbitrary positions between grid points) and the geodesic
equation is solved by interpolating field-dependent quan-
tities such as Ψ;r to the particle positions.
Vice versa, a so-called particle-to-mesh projection is

required to construct the stress-energy tensor (whose com-
ponents are treated like a field) from the particle ensemble.
This is achieved by replacing δðr − rðnÞÞ → wðr − rðnÞÞ in
Eqs. (8) and (9), where w is a weight function which depends
on the projection method. We use the so-called “triangular-
shaped particle” method where w is constructed using a
piecewise linear (triangle-shaped, hence the name) function
of the separation. Some details on the projection and
interpolation methods can be found in Appendix C.
In the following subsections, in order to validate the

numerical scheme, we will compare simulations to two
well-known exact solutions of Einstein’s equations.

A. The Schwarzschild solution

The Schwarzschild metric describes the spherically
symmetric vacuum solution around a central mass con-
centration. Within the context of our simulations this metric
is suitable for regions void of particles, and can hence be
used to test the implementation of the field equations
independently of the particle evolution.
In order to obtain explicit expressions for the two Bardeen

potentials, it is useful to write the Schwarzschild solution in
so-called “isotropic coordinates” [27],

ds2¼−
ð1− rS

4rÞ2
ð1þ rS

4rÞ2
dt2þ

�
1þ rS

4r

�
4

½dr2þr2dΩ2�; ð13Þ

where rS ¼ 2GM denotes the Schwarzschild radius.
As long as the massM is distributed over a central region

much larger than rS, the exterior Schwarzschild solution
can be viewed as a perturbation around Minkowski space.
Within our simulations, such a background is described by
T̄0
0 ¼ 0 and hence H ¼ 0. We can therefore set a ¼ 1 and

τ ¼ t. In order to obtain a numerical solution we set up a
homogeneous ball of particles (much larger than its
Schwarzschild radius) in the center of an otherwise empty

simulation volume. The Bardeen potentials Ψ and Φ
outside of the ball are independent of time, as guaranteed
by Birkhoff’s theorem. Their behavior in the weak-field
regime is given by the large-r expansion of the above exact
metric. For r ≫ rS we have

ð1 − rS
4rÞ2

ð1þ rS
4rÞ2

¼ 1þ 2ΨðrÞ ¼ 1 −
rS
r
þ r2S
2r2

þ � � � ; ð14aÞ

�
1þ rS

4r

�
4

¼ 1 − 2ΦðrÞ ¼ 1þ rS
r
þ 3r2S

8r2
þ � � � : ð14bÞ

In Fig. 1 we show some results for Φ and χ obtained with
our numerical scheme and compare them to the corre-
sponding analytic results obtained from the exact solution.
We only consider the vacuum region outside the central
mass concentration. Evidently, our numerical scheme
accurately accounts for the leading-order post-Newtonian
corrections and is therefore one order (in post-Newtonian
counting) better than a purely Newtonian scheme. Using
the results of our simulation it would be possible, for
instance, to get an accurate prediction for the advance of the
perihelion of Mercury.

FIG. 1. Top: Numerical results for Φ (green) and χ ¼ Φ −Ψ
(red) as a function of r=rS. They are in excellent agreement with
the exact result, shown as dashed and dot-dashed lines, respec-
tively. Bottom: Relative error of the numerical values of Φ with
respect to the exact result (in green). For comparison, the relative
error of the Newtonian approximation, Φ ¼ −GM=r, is shown as
a dotted line (in black).
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B. The Lemaître-Tolman-Bondi solution

If spacetime is filled with a dust fluid then one can
construct a spherically symmetric class of exact parametric
solutions known as Lemaître-Tolman-Bondi (LTB) models.
For our simulation this is equivalent to requiring that
particles occupying identical space-time points also have
identical velocities, or more precisely, having a phase space
distribution function which, at each spacetime point, is a
single Dirac delta distribution in velocity space. Being
exact solutions, these models do not require the density to
be nearly homogeneous, allowing the study of strongly
nonperturbative settings. However, it is impossible to
extend these solutions beyond the point where particle
trajectories cross and the phase space distribution function
loses its simple delta-distribution character without using a
different coordinate system to the comoving-synchronous
one used here.
In this coordinate system, the LTB line element reads

ds2 ¼ −dt2 þ ½R;rðt; rÞ�2
1þ 2EðrÞ dr

2 þ R2ðt; rÞdΩ2: ð15Þ

In order to compare the LTB solutions to our numerical
calculations we choose initial conditions such that the
density perturbation is linear. In the perturbative regime we
can easily work out the coordinate transformation between
the synchronous comoving coordinates used to parametrize
the LTB solution and the coordinates used in our frame-
work, which are related to the longitudinal gauge.4 Details
can be found in Appendix A. A more general treatment of
this coordinate transformation has previously been consid-
ered in [29]. Setting initial conditions in this way we can
make a comparison based on identical physical situations.
This procedure does not precisely match the exact LTB
solution to the perturbed FLRW solution; however it is
sufficient for our purposes of comparing observables in the
two physical models. For a more rigorous comparison
see [30].
Figures 2 and 3 show some simulation results. We

plotted the evolution of the density contrast, momentum
of particles p, scalar perturbation Φ and the difference of
the two potentials χ as a function of comoving radius r. The
density contrast here is defined as ρ=ρ̄ ¼ T0

0=T̄
0
0, where T

0
0

is constructed according to Eq. (8) and T̄0
0 is taken from the

background model. The density, Φ, and χ are quantities
projected to the grid with the method described in
Appendix C, whereas the momentum portrait shows the
momentum for each particle separately. The first set of
figures portrays the collapse of a spherically symmetric
overdensity and the second set shows the expansion of a
spherically symmetric void. The initial densities were set as
“compensated tophat profiles,” where a central region of

constant density contrast is surrounded by a second layer
with constant density contrast of opposite sign such that the
entire region can be matched onto a homogeneous FLRW
exterior solution. In both cases we find χ to be proportional
to ∼Φ2 and negative.
In the expansion of a void, we can also observe a “shell

crossing” which happens when a set of particles moves
outwards faster than particles that were initially at a larger
radius. As mentioned before, this cannot be described
with the comoving synchronous coordinates—they become
singular as soon as shell crossing occurs. Note that LTB
model can also exhibit shell crossings if constructed with
noncomoving coordinates [31].
When following the respective solutions into the non-

linear regime we face the problem that the coordinate
transformation becomes highly nontrivial. This makes it
difficult to compare quantities like the density or metric
components directly. A good way to proceed is to compute
and compare observables. In the following section we will
discuss some examples in detail.

C. Observables

1. Redshift of radially in-falling source

The first observable we will study is the redshift of a
source of light that is moving with the flow of particles
surrounding it. We place this source of light at an initial
radius r1 from the center and an observer at r2, the
boundary where the inhomogeneous LTB patch is matched
to FLRW. For this example, the source and observer are
along the same radial line. The source constantly emits
photons at a fixed energy given in the rest frame of the
source. As the simulation progresses, we propagate these
photons through the simulation volume until they reach the
observer. There they are detected and we calculate their
observed redshift, which is defined as

1þ zobs ¼
ðgμνkμuνÞjsrc
ðgμνkμuνÞjobs

; ð16Þ

where the product of the photon’s 4-momentum kμ and the
4-velocity of the source (observer) uμ can be related to the
momentum p of the source (observer) particle in the limit
of weak fields as

gμνkμuν ¼ −k0að1þΨÞ 1
m

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ p2

q
− p

�
: ð17Þ

To propagate a photon through the simulation, we use the
null condition (ds2 ¼ 0). We can actually find a fixed
relation between dr=dτ and dφ=dτ, a consequence of the
fact that a photon always travels at the speed of light:

1þ 2Ψþ 2Φ ¼
�
dr
dτ

�
2

þ
�
dφ
dτ

�
2

r2 ð18Þ4For a discussion on why this is a coordinate transformation
rather than a gauge transformation see [28].
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which gives

dr
dτ

¼ �ð1þΨþ ΦÞ⇔ dφ
dτ

¼ 0: ð19Þ

On every step, the photon’s energy can be evaluated by
integrating the time component of the geodesic equation:

dk0

dτ
þ
�
Ψ;τ − Φ;τ þ 2Ψ;r

dr
dτ

þ 2H
�
k0 ¼ 0: ð20Þ

The results for this observable are shown in Fig. 4. As
can be seen, the simulation agrees well with the LTB
predictions. In fact, for this plot the leading source of

deviation actually comes from imprecise matching of initial
conditions, which could only be improved by performing
that matching at a higher order of perturbation theory.

2. Lensing of nonradial rays

Another observable we can analyze is the deflection of a
ray that propagates not only in the radial, but also in an
angular direction. The trajectory of such a ray is lensed by
the gravitational potentials. Spherical symmetry ensures
that the trajectory of a light ray will be planar, so we only
have to consider the radial direction and one angular
direction. By setting ϑ ¼ π=2 or kϑ ¼ 0, one can derive
the two equations that determine that path of the photon
from the geodesic equation:

FIG. 2. Top left: The evolution of the density profile of a spherically symmetric compensated tophat perturbation. Different-
colored lines correspond to outputs at different times in the simulation, parametrized by the background redshift zFLRW. The last
output at zFLRW ¼ 0.5 happens just before the collapse occurs. Density plots exhibit some discreteness noise, which is caused by
having a finite number of particles. Bottom left: The momentum of the shells moving inwards. Top right: Evolution of the
underlying scalar metric perturbation Φ. This profile is continuous even where the density has a step. Bottom right: Evolution of
the difference of the two potentials χ ¼ Φ −Ψ. This is a purely relativistic quantity and does not exist in a Newtonian setup. The
magnitude of χ is ∼Φ2. Parameters of the simulation were: size of the box: 20 Mpc=h, initial radii of tophat overdensity and
compensated region, respectively: r1 ¼ 6 Mpc=h, r2 ¼ 18 Mpc=h, initial density contrast of the overdensity: δ ¼ 1=200, initial
redshift: zin ¼ 500.
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d2r
dτ2

− 2ðΨ;r þ Φ;rÞ
�
dr
dτ

�
2

− ðΨ;τ þ Φ;τÞ
dr
dτ

−
�
dφ
dτ

�
2

rþ ðΦ;r þΨ;rÞ ¼ 0; ð21aÞ

d2φ
dτ2

þðΦ;τ−Ψ;τ−2Φ;τÞ
dφ
dτ

þ
�
2

r
−2Ψ;r−2Φ;r

�
dr
dτ

dφ
dτ

¼ 0:

ð21bÞ
Varying the initial angle at which photons enter the
perturbed region and observing the deflection angle
(the angle by which its outgoing trajectory differs from
the incoming one), we get a gauge independent probe of the
underlying potentials.
In Fig. 5 we show the trajectories of photons that

propagate through the simulation volume. We tracked
200 photons, entering at different angles α. The photons
that experience the most lensing are those that pass near the
edge of the overdensity. A photon that enters at α ¼ 0 and
passes through the center of the overdensity is not lensed,

since its path is radial. Likewise, a photon that enters at
α ¼ π=2 spends too little time inside the nonhomogeneous
region to change its path substantially. In Fig. 6 we show
the deflection angle as a function of α.

III. ANGULAR MOMENTUM

Using the formalism presented so far, any initial over-
density would collapse to a singularity within a finite
amount of time. For realistic cosmological structures this
does not happen due to the process of virialization during
which the initial potential energy of a large scale density
fluctuation is partially converted into radial and angular
kinetic energies of individual particles. Most importantly,
the angular momentum thus generated in individual
particles causes these particles to miss the center of a
collapsing structure. This then avoids the production of
densities large enough to cause singularities to arise.
Essentially, the produced angular momentum provides an
effective pressure term that resists the collapse.
We show in this section how we can model this pressure

by adding angular momentum to the particles in our

FIG. 3. The same set of plots as for Fig. 2, this time for an evolving underdensity. The last two outputs exhibit a shell crossing, which
can be seen in the density and momentum portraits. This nonlinear feature can only be modeled with an N-body simulation. The
parameters used here were: size of the box: 120 Mpc=h, r1 ¼ 36 Mpc=h, r2 ¼ 84 Mpc=h, δ ¼ −1=40, zin ¼ 500.
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simulation box, without losing spherical symmetry as
conceived in [32]. The downside to the method we present
is that there can be no exchange of angular momentum
between particles. This is because adding such an effect
would necessarily require some degree of deviation from
spherical symmetry. Unfortunately, this limits how far we
can model the true virialization process; nevertheless, as we
show, we can still set initial conditions that produce stable,
bound, spherical structures.
We can now imagine the shells to be made up of

infinitesimal pointlike particles, evenly distributed over
the sphere. Apart from the radial momentum, which is the
same for all infinitesimal pointlike particles on a given
sphere, we can assign each of those particles an angular
momentum in a particular direction, in such a manner that
once we perform the average over the momenta of all
infinitesimal particles on a given sphere, there is no
preferred direction of angular momentum. One can imagine
that for every infinitesimal particle with some angular
momentum, there is another particle on a trajectory in
the same plane, but traveling in the opposite direction.
Although we cannot observe any nonradial motion of
spherical shells, their radial motion is nevertheless
affected. This is because the equation that governs the
propagation of particles in the radial direction involves a

FIG. 4. Top: The redshift of light, emitted by an in-falling
source particle, as a function of the background redshift zFLRW at
the time when the light is detected by the observer. Initially, the
observed redshift is decreasing, which is something we would
expect for two particles comoving with the background in a
matter dominated universe. Later, as the collapsing structure
evolves, the velocity of the in-falling source becomes the
dominant contribution and the redshift starts increasing again.
Bottom: Relative error between our relativistic simulation and
the LTB solution. The error is mainly due to the first-order
matching of the initial conditions. The error increases as the
collapse evolves. This is because the collapse time itself receives
a first-order correction. Therefore, the divergence in observed
redshift happens at slightly offset times, resulting in the error
blowing up. For this plot, the same parameters as the ones in
Fig. 2 were used.

FIG. 5. Schematic representation of the trajectories of lensed
photons in an LTB geometry. The rays enter the LTB region at
varying angles on the right end of the plot. Along their way
through the simulation volume their trajectories are deflected due
to the underlying overdensity.

FIG. 6. Lensing of photons by an underlying overdensity.
We plot the LTB predictions (solid lines) and the results from
our simulation (dashed lines on top of them) at four selected
redshifts. The parameters used here are the same as the ones
in Fig. 2.
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pressurelike term that depends on the angular momentum
of the particle.
We start again with the geodesic equation

d2xμðnÞ
ds2

þ Γμ
νρ

dxνðnÞ
ds

dxρðnÞ
ds

¼ 0: ð22Þ

Calculating all the Christoffel symbols Γμ
ρσ we have three

equations for evolution of coordinates:

d2τ
ds2

¼ −ðHþΨ;τÞ
�
dτ
ds

�
2

− 2Ψ;r
dτ
ds

dr
ds

− ðHð1 − 2Φ − 2ΨÞ − Φ;τÞ
��

dr
ds

�
2

þ r2
�
dφ
ds

�
2
�
;

ð23aÞ

d2r
ds2

¼ −Ψ;r

�
dτ
ds

�
2

− 2ðH − Φ;τÞ
dτ
ds

dr
ds

þ Φ;r

�
dr
ds

�
2

þ rð1 − rΦ;rÞ
�
dφ
ds

�
2

; ð23bÞ

d2φ
ds2

¼ −2ðH − Φ;τÞ
dτ
ds

dφ
ds

− 2

�
1

r
− Φ;r

�
dr
ds

dφ
ds

: ð23cÞ

Here we only kept one angular coordinate. Since the
potentials are spherically symmetric, each infinitesimal
pointlike particle will move in a two-dimensional plane
and so the reference frame can always be rotated so that the
direction of the angular momentum is perpendicular to this
plane. We see that the last equation (23c) can be integrated
analytically with respect to ds once, to give

dφ
ds

¼ L
ðarÞ2 ð1þ 2ΦÞ; ð24Þ

where L is the constant of integration. We can express the
evolution of coordinates r and φ with respect to coordinate
time dτ instead of eigentime ds using a simple trick:

d2r
dτ2

¼
�
d2r
ds2

−
d2τ
ds2

dr
dτ

��
dτ
ds

�
−2
; ð25Þ

and equivalently for φ. With this we can combine
Eqs. (23b) and (23c) with (23a) to express

d2r
dτ2

¼ ð−Hþ 2Φ;τ þΨ;τÞ
dr
dτ

−Ψ;r þ ðΦ;r þ 2Ψ;rÞ
�
dr
dτ

�
2

þ ðr − r2Φ;rÞ
�
dφ
dτ

�
2

þ ðHð1 − 2Φ − 2ΨÞ − Φ;τÞ

×

��
dr
dτ

�
2

þ r2
�
dφ
dτ

�
2
�
dr
dτ

ð26aÞ

d2φ
dτ2

¼ð−Hþ2Φ;τþΨ;τÞ
dφ
dτ

þ
�
−
2

r
þ2Φ;rþ2Ψ;r

�
dr
dτ

dφ
dτ

þðHð1−2Φ−2ΨÞ−Φ;τÞ
��

dr
dτ

�
2

þ r2
�
dφ
dτ

�
2
�
dφ
dτ

:

ð26bÞ
In addition we have the “mass-shell condition” for particles
with mass:

gμν
dxμ

ds
dxν

ds
¼ −1 ð27Þ

which is expressed, using our metric, as5

− a2
�
dτ
ds

�
2

ð1þ 2ΨÞ þ a2
�
dr
ds

�
2

ð1 − 2ΦÞ

þ a2r2
�
dφ
ds

�
2

ð1 − 2ΦÞ ¼ −1: ð28Þ

The momentum of the particles now has a radial
component,

pr ¼
mð1−ΦÞ drdτffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 2Ψ− ð1− 2ΦÞðdrdτÞ2− ð1− 2ΦÞr2ðdφdτÞ2
q ð29Þ

and an angular one,

pφ ¼ mð1 − ΦÞr dφ
dτffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 2Ψ − ð1 − 2ΦÞðdrdτÞ2 − ð1 − 2ΦÞr2ðdφdτÞ2
q :

ð30Þ
Using the mass-shell condition (28), the definition of the

conserved quantity L (24), and (23a), we can extract the
angular velocity of infinitesimal particles,

dφ
dτ

¼ L
ar2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4Φþ 2Ψ − ð1þ 2ΦÞðdrdτÞ2

1þ L2ð1þ2ΦÞ
a2r2

vuut ; ð31Þ

and eliminate it from the momenta equations:

pr ¼ m
dr
dτ

ð1 − ΦÞ
ar

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2r2 þ L2ð1þ 2ΦÞ

1þ 2Ψ − ð1 − 2ΦÞðdrdτÞ2
s

ð32Þ

and

pφ ¼ mLð1þ ΦÞ
ar

: ð33Þ

Note that it is L which is the conserved quantity, not pφ,
within our framework. With this setup, we can finally

5Again, we have set ϑ ¼ π=2, so dϑ=ds ¼ 0.
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express the equation for evolution of shell particles (23b) as
a system of two first-order equations:

dpr

dτ
¼ ðΦ;τ −HÞpr −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ p2

r þ p2
φ

q
Ψ;r

þ
�
1

r
− Φ;r

�
p2
φð1þ ΦþΨÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ p2

r þ p2
φ

q ð34Þ

and

dr
dτ

¼ prffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ p2

r þ p2
φ

q ð1þ ΦþΨÞ: ð35Þ

These two equations describe the movement of shell
particles and need to be solved numerically. A sanity check
verifies that if we set pφ to zero, we recover the momentum
evolution equation in the case without angular momen-
tum, (12).
With our new definitions of pr and pφ, the energy-

momentum tensor expresses as

T0
0 ¼ −

1þ 3Φ
4πr2a3

X
n

δðr− rðnÞÞ
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m2 þp2
r þp2

φ

q �
ðnÞ

ð36Þ

and

Πrr ¼
1þ 3Φ
4πr2a3

X
n

δðr − rðnÞÞ

0
B@ 2

3
p2
r − 1

3
p2
φffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m2 þ p2
r þ p2

φ

q
1
CA

ðnÞ

:

ð37Þ

The angular motion also gives rise to a transverse
Doppler effect. This can be seen, e.g., from Eq. (17) being
modified as

gμνkμuν¼−k0að1þΨÞ 1
m

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2þp2

rþp2
φ

q
−pr

�
: ð38Þ

In Fig. 7 we have plotted the radial trajectories of shells
within balls that have uniform density, but nonzero and
nonuniform angular momentum. Each panel corresponds to
the same initial density state, but different initial states of
angular momentum. As can be seen, our code is able to
describe balls that collapse to a point; balls that first begin
to collapse under gravity but then stabilize; balls where the
effective pressure due to angular momentum perfectly
balances gravitational attraction; balls that first expand
due to effective pressure, but then stabilize; and finally,

FIG. 7. Space-time diagrams showing the radial trajectories of shells initially arranged as a uniform ball with zero radial motion.
Different colors label different shells, black labeling the outermost one. From left to right, the angular momentum of the shell particles
was set to L ¼ 0 where we get collapse; L ¼ 0.5LK where a violent reconfiguration to a new, much more compact state happens;
L ¼ LK at which point the behavior is almost Keplerian, with tiny perturbations caused by relativistic corrections—stability is
guaranteed for a very long time scale; L ¼ 1.1LK with quasistable oscillations with relatively long time scale for chaotic behavior; and
L ¼ 1.4LK which corresponds to an unbound state. Here, LK is the (r-dependent) value of L which corresponds to a circular Keplerian
orbit in Newtonian theory. The radius is plotted in units of rS, the Schwarzschild radius of the ball; initially the ball has a radius of 50rS.
The time coordinate is plotted in units of tc, the collapse time of the irrotational ball.
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balls which are blown apart by pressure. Only in the first
and last situations respectively will our code certainly break
down, and even then it will survive until the weak-field
limit breaks down, or a particle leaves the box. In these
plots, the balls begin only 50 times larger than their
Schwarzschild radii, therefore relativistic effects will not
be negligible.
We have not considered the stability of the shells in our

simulation. This is a nontrivial issue [33,34]. From the
results in [33,34] it is clear that the assumption of stable,
fixed mass shells is not always physically valid and that the
shells would in fact disperse if examined in finer resolution.
In fact, in the second panel of Fig. 7 we can see this effect
occurring in our own analysis. For example, the red and
orange lines begin close to each other in phase space and
could even be considered as parts of the same shell in a
lower resolution simulation of the same initial conditions.
However at later times (e.g. at t ¼ 5tc) the two shells are
moving in opposite directions. An interesting analysis that
could be done within our framework is to analyze two
simulations with different resolutions, but the same initial
conditions. It would then be possible to follow the
evolution of the subshells of one large shell to quantita-
tively determine the stability of the larger shell. Such an
analysis, which is beyond the scope of our present paper,
would hopefully reproduce, in the simulation, the results of
[33,34]. If our method were to be applied to real physical
structures, such an issue would need to be examined and
quantified.

IV. CONCLUSION

We have presented an N-body framework for spherically
symmetric solutions valid in the weak-field regime of
general relativity. We have primarily applied this frame-
work in a cosmological context, expanding around an
FLRW metric; however nothing forbids the application
of the framework to other contexts. Spherical symmetry
was imposed in order to obtain an economic setup for
numerical studies. We compared our code against two types
of known exact solutions, Schwarzschild and Lemaître-
Tolman-Bondi, and found good agreement. However, our
scheme is suitable also for setups where no exact solution is
known, for instance when the fluid description of matter is
not valid.
Furthermore, we demonstrated that the relativistic poten-

tials are computed more accurately than in a Newtonian
scheme. This feature will be useful for the study of models
which have exotic sources of stress-energy perturbations,
such as dynamical dark energy or modified gravity. On a
related note, we stress that our scheme does not make any
assumptions about the nature of perturbations apart from
the requirement that they give rise to weak gravitational
fields only. This assumption breaks down, e.g., if a black
hole is formed.

In order to avoid the collapse of an overdensity into a
black hole, we have introduced a method to create a stable
bound structure supported by angular momentum. Such
configurations may, in some sense, be more realistic
proxies for cosmic structures such as galaxy clusters,
and can therefore be useful laboratories for studying gravity
at these scales. They may also be useful for the study of
weakly relativistic, compact bound objects that can form in
the early universe, such as ultracompact minihaloes, or for
the early stages of the formation of primordial black holes.
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APPENDIX A: LINEAR RELATION BETWEEN
LTB SOLUTION AND LONGITUDINAL GAUGE

In this Appendix we give the linear coordinate trans-
formations which we use to set up initial conditions
corresponding to a given LTB solution. These relations
are valid to the extent that the matching is done at a time
when linear perturbation theory can be applied. LTB
solutions which do not allow a perturbative description
at any time are more difficult to translate into our gauge,
and there may be cases where it is impossible. We will not
consider solutions of this type in this paper.
Our starting point is the LTB line element given in

Eq. (15). At the initial time tin where we will do the
matching, we will rescale the coordinate r such that, at that
time, Rðtin; rÞ ¼ aðtinÞr. The (time independent) gravita-
tional mass function can then simply be obtained as

2MðrÞ ¼ 8πGa3ðtinÞ
Z

r

0

~r2ρðtin; ~rÞd~r

¼ 3H2a3
Z

r

0

~r2ð1þ δðtin; ~rÞÞd~r: ðA1Þ

In this paper we are interested in setups where the metric is
FLRWeverywhere except for a finite spherical region. This
can be achieved by choosing a “compensated” density
profile such that the mass function becomes the one of
FLRW, MðrÞ ¼ H2a3r3=2, at the boundary of the region.6

We will choose a particularly simple profile, given by

6Note that H2a3 is independent of time in a matter dominated
universe.
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δðtin; rÞ ¼
8<
:

δ1 r < r1
δ2 r1 < r < r2
0 r > r2;

ðA2Þ

where δ2 ¼ −δ1r31=ðr32 − r31Þ gives the correct matching to
FLRW as can be seen by inspecting the resulting mass
function.
Next we will use the parametric expression for the exact

LTB solution in order to determine the metric function
EðrÞ. Let us consider EðrÞ < 0, the opposite case is
analogous. The parametric expressions are

Rðt; rÞ ¼ −
MðrÞ
2EðrÞ ð1 − cos ηÞ; ðA3aÞ

ðη − sin ηÞ2=3 ¼ −
2EðrÞ
M2=3ðrÞ t

2=3: ðA3bÞ

While the parameter η cannot be eliminated in closed
form, it is possible to do so perturbatively for small η, i.e. at
early time. We find that

EðrÞ ¼ −
5

6
r2H2ðtinÞa2ðtinÞfðrÞ; ðA4Þ

where

fðrÞ ¼
8<
:

δ1 if r < r1
δ2 þ r3

1

r3 ðδ1 − δ2Þ if r1 < r < r2
0 if r > r2:

ðA5Þ

In the linear regime we also have

Rðt; rÞ ¼ aðtÞr
�
1þ 1

3
fðrÞ

�
1 −

aðtÞ
aðtinÞ

��
: ðA6Þ

Let us now write the line element in a convenient
perturbative notation,

R2ðt; rÞ ¼ a2ðtÞr2½1þ 2bðt; rÞ�; ðA7aÞ

½R;rðt; rÞ�2
1þ 2EðrÞ ¼ a2ðtÞ½1þ 2yðt; rÞ�; ðA7bÞ

which implies

bðt; rÞ ¼ 1

3
fðrÞ

�
1 −

aðtÞ
aðtinÞ

�
; ðA8aÞ

yðt; rÞ ¼ bðt; rÞ þ rb;rðt; rÞ − EðrÞ: ðA8bÞ

We can now work out the linear coordinate transforma-
tion from synchronous to longitudinal gauge (see also
[35]). A straightforward calculation shows

r
∂
∂r

�
1

r
Φ;rðt;rÞ

�
¼−b;rrðt;rÞþHðtÞa2ðtÞ½y;tðt;rÞ−b;tðt;rÞ�

−
2

r2
½yðt;rÞ−bðt;rÞ�þ1

r
y;rðt;rÞ; ðA9aÞ

r
∂
∂r

�
1

r
Ψ;rðt;rÞ

�
¼2HðtÞa2ðtÞ½b;tðt;rÞ−y;tðt;rÞ�

þa2ðtÞ½b;ttðt;rÞ−y;ttðt;rÞ�: ðA9bÞ

Since the combination H2a3 is independent of time in a
matter dominated universe we can evaluate it at t ¼ tin and
find

r
∂
∂r

�
1

r
Φ;rðt; rÞ

�
¼ r

∂
∂r

�
1

r
Ψ;rðt; rÞ

�

¼ 1

2
H2ðtinÞa2ðtinÞrf0ðrÞ; ðA10Þ

which can be integrated twice to obtain Φ and Ψ. The
constants of integration should be chosen such that we can
match smoothly to FLRW at r ¼ r2. In other words, we
require Φjr¼r2 ¼ Ψjr¼r2 ¼ Φ;rjr¼r2 ¼ Ψ;rjr¼r2 ¼ 0. The
corresponding solutions are

Φðt; rÞ ¼ Ψðt; rÞ ¼ 1

2
H2ðtinÞa2ðtinÞ

Z
r

r2

~rfð~rÞd~r: ðA11Þ

APPENDIX B: INITIAL PARTICLE DATA

Given a linear solution for Φ, Ψ which specifies the
initial conditions, we can work out the initial particle
configuration. To this end, we linearize Eq. (2),

Φ;rr þ
2

r
Φ;r − 3H2Φ ¼ −4πGa2δT0

0; ðB1Þ

where we have used that Φ;t ¼ χ ¼ 0 at linear order.
The aim of this section is to construct a linear displace-

ment field δrðrÞwhich specifies the initial particle positions
rðnÞðtinÞ ¼ r0ðnÞ þ δrðr0ðnÞÞ as infinitesimal displacements
from a homogeneous distribution r0ðnÞ. Expanding Eq. (8)
to linear order we find

δT0
0 ¼ T̄0

0

�
3Φ − δr;r −

2

r
δr

�
: ðB2Þ

To see this, take the continuum limit of the particle sum,

T0
0 ¼ −

1þ 3Φ
4πr2a3

X
n

mðnÞδðr − rðnÞÞ

→ −
1þ 3Φ
4πr2a3

Z
f̄ðr0ðnÞÞδðr − rðnÞÞdr0ðnÞ; ðB3Þ
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with a distribution function f̄ðr0ðnÞÞ ∝ ðr0ðnÞÞ2 corresponding
to the homogeneous distribution. Next, change the inte-
gration variable to rðnÞ to obtain Eq. (B2). Inserting into
Eq. (B1) and using Eq. (3), the solution for the displace-
ment is found to be

δr ¼ 5

r2

Z
r

0

~r2Φðtin; ~rÞd~r −
2

3H2
Φ;r: ðB4Þ

Here the constant of integration is fixed by requiring
regularity at the origin, which implies δrjr¼0 ¼ 0.
The initial particle velocities can be obtained simply by

taking the time derivative of above equation,

dr
dτ

����
tin

¼ δr;τ ¼ −
2

3H
Φ;r; ðB5Þ

where we used H0 ¼ −H2=2 in a matter dominated
universe.

APPENDIX C: PARTICLE-MESH SCHEME FOR
SPHERICAL COORDINATES

Standard particle-mesh schemes [36] usually employ a
Cartesian mesh which means that a few modifications are
required in order to make them fit for our purpose. Our
mesh will have a uniform resolution in r, the radial
coordinate, meaning that the volume of the cells increases
as one moves outwards from the center. The mass reso-
lution can be set independently by changing the number of
particles per cell—a number which can also depend on
radius and should be chosen according to the problem
at hand.
The stress-energy tensor on the grid is computed by

means of a particle-to-mesh projection. It is constructed by
smearing out each particle over a finite radial interval and
then determining the fraction of its mass within each cell.
Explicitly, we replace

δðr − rðnÞÞ
4πr2

→
r¼ri

wðri − rðnÞÞ
Vi

; ðC1Þ

where ri denotes the center of the ith cell, Vi is the cell’s
volume, rðnÞ is the position of the nth particle, and w is a
weight function which depends on the smearing. We use
triangular-shaped particles where

wðri − rðnÞÞ ¼
Z

⊓ðr − riÞ∧ðr − rðnÞÞdr; ðC2Þ

with

⊓ðΔrÞ ¼
�
1 if − dr

2
< Δr < dr

2

0 otherwise;
ðC3Þ

and

∧ðΔrÞ ¼
8<
:

1þ Δr
dr if − dr < Δr < 0

1 − Δr
dr if 0 < Δr < dr

0 otherwise:
ðC4Þ

Here and in the following, dr denotes the grid unit.
Pictorially, ⊓ characterizes the footprint of the cell (an
interval of width dr centered at r ¼ ri), whereas ∧
characterizes the shape of the particles (its mass distribution
along the radial coordinate).
Our grid cells are centered at ri ¼ idr, with i ¼ 0; 1;….

The volume of the ith cell is computed as

Vi ¼
4π

3

�
ri þ

dr
2

�
3

−
4π

3

�
ri −

dr
2

�
3

¼ 4π

�
i2 þ 1

12

�
dr3 ðC5Þ

for i > 0, and

V0 ¼
4π

3

�
dr
2

�
3

¼ 4π

24
dr3 ðC6Þ

for the cell at the origin. Contributions which would be
projected at negative radius are simply folded back onto the
positive axis.
Next, we want to construct a particle distribution which

would correspond to a homogeneous universe. A perturbed
distribution can then be obtained by acting with an infini-
tesimal displacement as explained in Appendix B. Our
homogeneous distribution will be constructed in a way as
to minimize discretization issues. For simplicity, let us
discuss a setup where we have one particle per grid cell
(mass resolution can be increased by subdividing particles).
If we choose initial particle positions as rðnÞ ¼ ðnþ 1

2
Þdr,

with n ¼ 0; 1;…, one can recursively construct the mass
assignment for each particle which would lead to an exactly
uniform projected density under the above projection
method:

mðnÞ ¼ 4π

�
1

12
þ nþ n2

�
dr3a3ρ̄: ðC7Þ

Here, ρ̄ ¼ −T̄0
0 is the homogeneous density of the back-

ground FLRW model. Evidently, at very large radius rðnÞ ≫
dr this expression asymptotes to the correct continuum limit
mðnÞ ¼ 4πr2ðnÞdra

3ρ̄. The corrections which come in at small
radii are chosen to compensate for discretization effects, such
that the projected density remains exactly homogeneous,

1

a3
X
n

wðri − rðnÞÞ
Vi

mðnÞ ¼ ρ̄ ∀ i: ðC8Þ

The weight function w can also be used in order to
interpolate grid-based quantities (fields, gradients of fields,
etc.) to the positions of the particles. This is necessary for
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the integration of the geodesic equations. For instance, in
order to interpolate Φ, we would define

ΦðrðnÞÞ ¼
X
i

ΦðriÞwðri − rðnÞÞ: ðC9Þ

Note that the sum is now taken over the grid points.
Similarly, we can interpolate a gradient as

Ψ;rðrðnÞÞ ¼
X
i

Ψðriþ1Þ −ΨðriÞ
dr

w

�
ri þ

1

2
dr − rðnÞ

�
;

ðC10Þ

based on a standard one-sided two-point gradient which
naturally sits at half-integer grid units.
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