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We derive a general expression for the probability of observing deviations from statistical isotropy in the
cosmic microwave background (CMB) if the primordial fluctuations are non-Gaussian and extend to
superhorizon scales. The primary motivation is to properly characterize the monopole and dipole
modulations of the primordial power spectrum that are generated by the coupling between superhorizon
and subhorizon perturbations. Unlike previous proposals for generating the hemispherical power
asymmetry, we do not assume that the power asymmetry results from a single large superhorizon mode.
Instead, we extrapolate the observed power spectrum to superhorizon scales and compute the power
asymmetry that would result from a specific realization of non-Gaussian perturbations on scales larger than
the observable universe. Our study encompasses many of the scenarios that have been put forward as
possible explanations for the CMB hemispherical power asymmetry. We confirm our analytic predictions
for the probability of a given power asymmetry by comparing them to numerical realizations of CMB
maps. We find that nonlocal models of non-Gaussianity and scale-dependent local non-Gaussianity
produce scale-dependent modulations of the power spectrum, thereby potentially producing both a
monopolar and a dipolar power modulation on large scales. We then provide simple examples of finding the
posterior distributions for the parameters of the bispectrum from the observed monopole and dipole
modulations.
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I. INTRODUCTION

It is very tempting to try to use large-scale features of the
primordial fluctuations, such as the hemispherical power
asymmetry, as a clue toward primordial physics. Such
signals are both intriguing (maybe they say something
about the beginning of inflation) and statistically unfortu-
nate (i.e., not all that unlikely to be a feature of a particular
realization of Gaussian, isotropic fluctuations). Many
studies of the observed power asymmetry and its statistical
significance have been reported using the WMAP data
[1–3] and the Planck data [4–9]. A variety of possible
explanations for this asymmetry have been discussed (see
e.g. [10]): several of the most intriguing ideas use super-
horizon fluctuations to generate the asymmetry, either
by using non-Gaussianity to couple them to observable
perturbations [11–34] or by postulating some different
primordial physics that precedes the usual slow-roll infla-
tion [35–38]. Alternatively, one can postulate scenarios
that are fundamentally anisotropic on the largest scales
[39–43].

It is quite general that if the primordial fluctuations are
non-Gaussian, the likelihood of observing statistical anisot-
ropies in our cosmic microwave background (CMB)
changes. Although one might expect that isotropy and
Gaussianity are independent criteria for the statistics of the
primordial fluctuations, this distinction is not actually clear
when we only have access to a finite volume of the universe
[44–46]. If the primordial fluctuations are non-Gaussian,
the observed large-scale “discrepancies” from the simplest
isotropic, power law, Gaussian fluctuations need not be a
signal of a special scale, time, or feature during the
primordial (inflationary) era. Instead, they may simply
be a consequence of cosmic variance in a universe larger
than the volume we currently observe, filled with non-
Gaussian fluctuations.
In this paper, we present a single framework to calculate

the distribution of expected deviations from isotropy in our
observed sky from any model with non-Gaussian primor-
dial fluctuations. This framework incorporates most suc-
cessful proposals for generating the power asymmetry, even
some that were not originally formulated as non-Gaussian
models. The reason is that if the assumption of statistical
isotropy is maintained, any explanation of the temperature
power asymmetry can be modeled by assuming a fluc-
tuation in a long wavelength modulating field that couples
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to some cosmological parameter relevant for determining
the CMB power spectrum (the fundamental constants, the
scalar spectral index, and the inflaton decay rate, for
example [10,21,28,39,40,47]). Since the asymmetry is well
modeled by a (small) range of shorter scales all coupling to
a longer scale, this is, by definition, a sort of non-
Gaussianity.
Using our analytic framework together with numerical

realizations, we show that isotropy violations in our
observable universe are more likely in models where
subhorizon modes are coupled to longer wavelength
modes. In some models, they are so much more likely
that the extent to which our observed sky is isotropic can be
interpreted as a constraint on non-Gaussianity.
In addition, we find that scale dependence of such

modulations is a generic outcome of non-Gaussianity
beyond the standard local ansatz. This result is important
because a major hurdle in model building for the power
anomalies has been their scale dependence, as the obser-
vations suggest a very sharp decrease in the power
asymmetry amplitude at smaller scales [5,48,49]. Scale
dependence of the type observed occurs whenever modes
closer to the present Hubble scale couple more strongly to
superhorizon modes than very short wavelength modes do.
This can be the case even for scale-invariant bispectra. For
example, since equilateral-type non-Gaussianity peaks
when the momenta configurations are nearly equal, the
modulation from an equilateral-type bispectrum is biggest
at large scales and quickly dies off at smaller CMB scales.
Further, we will see that any non-Gaussianity used to

explain the scale-dependent power asymmetry will also
produce a scale-dependent modulation of the power-spec-
trummonopole. This means that the observed low power on
large scales and the dipole power asymmetry can both
provide evidence in favor of non-Gaussian fluctuations. To
quantify the significance of these signals, we perform a
parameter estimation of the non-Gaussian amplitude and
shape using both monopole and dipole modulations, and
estimate Bayesian evidences against the Gaussian model.
Finally, we will show that scale-dependent non-

Gaussianity eliminates the need for enhanced inhomoge-
neity on superhorizon scales to generate the observed
asymmetry. The most common method for introducing a
dipolar power modulation is to postulate the existence of a
large-amplitude superhorizon fluctuation in a spectator
field during inflation that then alters the power spectrum
on smaller scales via local-type non-Gaussianity. (A
multiple-field model of inflation, or one that otherwise
breaks the usual consistency relation, is required because
superhorizon perturbations in the standard inflaton field
cannot generate an asymmetry [50].) Dubbed the Erickcek-
Kamionkowski-Carroll (EKC) mechanism [11], this
approach has been expanded upon and refined several
times since its inception [12,14–20,22–34]. In these
analyses, WMAP and Planck bounds on local-type

non-Gaussianity forced the amplitude of the superhorizon
perturbation to be much larger than predicted by an
extrapolation of the observed primordial power spectrum
to larger scales. Although possible origins for this large-
amplitude fluctuation have been proposed, such as a
supercurvature perturbation in an open universe [19], a
bounce prior to inflation [31], a nonvacuum initial state
[26], topological defects [18,27], or deviations from slow-
roll inflation [20,22], it is largely taken as an ad hoc
addition to the inflationary landscape. The scale depend-
ence of the asymmetry often requires an additional elab-
oration on the theory, either in the form of scale-dependent
non-Gaussianity [12,14,18,26,30–32] or isocurvature fluc-
tuations [12,20,25].
Dropping the idea of a special large superhorizon

fluctuation and instead starting with scale-dependent
non-Gaussianity changes this picture. Importantly, the
constraints on the amplitude of the non-Gaussianity on
large scales is rather weak; the Planck bound of flocalNL ¼
2.5� 5.7 at 68% CL [51] assumes a scale-invariant
bispectrum. To generate the observed power asymmetry,
we only need non-Gaussianity on the scales that are
asymmetric. For example, if we consider CMB multipoles
up to l≃ 100, the WMAP 5-year data give fNL ¼ −100�
100 [52]. (This constraint has not appreciably changed
since WMAP5: see also Fig. 11 of [51] for the most recent
plot of Planck’s lmax-dependent constraints.) Many arbi-
trary choices for lmax in the range [40, 600] (and different
binning schemes to study the scale dependence) can be
found in the literature for computing the large-scale power
asymmetry amplitude and its significance [1,4,5,8]. Wewill
use lmax ¼ 100 as our fiducial value to compute the
asymmetry for our numerical tests and statistical analysis
later. This also allows us to use the WMAP5 large-scale
bispectrum constraints computed with lmax ¼ 100.
The weaker constraint on fNL implies that it is possible

to generate the observed asymmetry without enhancing the
amplitude of superhorizon fluctuations, as was noted by
[13], which considered the power-spectrum modulations
generated by anisotropic bispectra. We note, however, that
the dipolar bispectrum considered there does not generate a

power asymmetry because the ~k → −~k symmetry of the
power spectrum forbids any modulation to the power
spectrum from bispectra that depend on odd powers of
the angle between the long and short modes; this point was
clarified in [53]. In this work, we will focus on isotropic,
scale-dependent non-Gaussianity (although our framework
can easily be extended to include fundamentally aniso-
tropic models), and we will show that this is sufficient to
generate the observed asymmetry without enhancing the
amplitude of superhorizon fluctuations.
The plan of the paper is as follows. In the next section,

we use the usual local ansatz to demonstrate the validity of
our analytic calculations of the statistical anisotropies
expected in non-Gaussian scenarios and to illustrate several

SAROJ ADHIKARI, SARAH SHANDERA, and ADRIENNE L. ERICKCEK PHYSICAL REVIEW D 93, 023524 (2016)

023524-2



of the key conceptual points relating non-Gaussianity and
anisotropies. We also show how our framework encom-
passes the EKC mechanism and demonstrate that exotic
superhorizon perturbations are not required to generate the
observed power asymmetry. In Sec. III, we test our analytic
calculations for monopole and dipole power modulations
using numerical realizations of CMB maps. We also
introduce and discuss our parameter estimation and model
comparison methods. In Sec. IV, we investigate non-
Gaussianity beyond the local ansatz and, in particular,
consider a representative model that generates features that
are fully consistent with constraints on the isotropic power
spectrum and bispectrum. We discuss and summarize
important aspects of our work and conclude in Sec. V.
The appendixes contain technical details.

II. ILLUSTRATING THE CONNECTION
BETWEEN NON-GAUSSIANITY AND ISOTROPY

We assume that at some early time (after reheating but
prior to the release of the cosmic microwave background
radiation) a large volume of the Universe (VL) contains
adiabatic fluctuations described by isotropic but non-
Gaussian statistics. To compare predictions of this model
with observations, we are interested in the statistics of the
fluctuations in smaller volumes, VS ≪ VL, that correspond
in size to our presently observable Hubble volume. We will
first consider the usual local model with constant fNL for
simplicity; we will present more general results in a later
section.

A. The local model

Suppose the Bardeen potential Φ is a non-Gaussian field
described by the local model:

ΦðxÞ ¼ ϕðxÞ þ fNLðϕðxÞ2 − hϕðxÞ2iÞ; ð1Þ
where ϕðxÞ is a Gaussian random field. When the large
volume is only weakly non-Gaussian, the power spectrum
observed in our sky, PΦ;Sðk;xÞ, will be related to the mean
power spectrum in the large volume, PϕðkÞ, by

PΦ;Sðk;xÞ ¼ PϕðkÞ
�
1þ 4fNL

Z
d3kl

ð2πÞ3 ϕðklÞeikl·x

�
; ð2Þ

where the radial integration for kl is confined to jklj <
π=rcmb when the CMB spectrum is the quantity of interest.
Our conventions for the power spectrum are stated in
Appendix A, and Appendix B provides the derivation of
this equation. Any particular model for generating the
fluctuations in volume VL should provide a well-motivated
lower bound on the kl integral (e.g., from the duration of
inflation). However, not all shifts to local statistics are
sensitive to the full range of the integral; for local-type non-
Gaussianity, as we will show later, only the monopole
receives contributions from all super-Hubble modes.

The power spectrum Pϕ and amplitude of non-
Gaussianity, fNL, appearing on the right-hand side of
Eq. (2) are those defined in the large volume. However,
looking ahead to the result for the dipole modulation from
the local ansatz, Eq. (15), Pϕ and fNL will be shifted to the
observed values. In particular, the local non-Gaussianity
that generates the observed power asymmetry is only the
portion that violates Maldacena’s consistency relation [54]
and is zero in single-clock inflation [50]. Since the
observed values are ultimately the relevant quantities in
the analysis, we will not increase the complexity of the
notation to distinguish the large and small volume param-
eters, except in the appendixes.
The field ϕðklÞ appearing in the integral is no longer

stochastic but consists of the particular realization of the
field that makes up the background of a particular Hubble
volume. The power spectrum in Eq. (2) can depend on
position x within VS because an individual realization
(local value) of the fluctuations ϕðklÞ can be nonzero. If
we consider the average statistics in the large volume
(equivalent to averaging over all regions of size VS), then
the term proportional to fNL in Eq. (2) above averages to
zero since hϕðklÞiVL

¼ 0. In that case, we recover the
isotropic power spectrum of VL. Finally, keep in mind that
Eq. (2) is still more general than our actual CMB sky: it
provides the statistics from which to draw realizations of
our observed modes. Any single sky realization will still be
subject to the usual cosmic variance that affects the values
of small l modes and that can generate a power asymmetry
even for volumes where the term proportional to fNL
is zero.
It is also interesting to consider a two-field extension of

Eq. (1):

ΦðxÞ ¼ φðxÞ þ σðxÞ þ fNLσðσðxÞ2 − hσðxÞ2iÞ; ð3Þ

where both φðxÞ and σðxÞ are Gaussian random fields and
are uncorrelated. In this case, the power spectrum observed
in our sky, PΦ;sðk;xÞ, is

PΦ;Sðk;xÞ ¼ PΦðkÞ
�
1þ 4ξfNLσ

Z
d3kl

ð2πÞ3 σðklÞeikl·x

�
;

ð4Þ

where PΦðkÞ ¼ PφðkÞ þ PσðkÞ is the mean power spec-
trum in the large volume and ξ ¼ PΦ;σ=PΦ is the fraction
of power in the σ field. We will only consider cases with
weak non-Gaussianity (fNLσ

2Pσ ≪ 1 and PΦ;σ ≈ Pσ).
The amplitude of the local-type bispectrum for this
weakly non-Gaussian two-field model is given by
fNL ¼ ξ2fNLσ. Therefore, the inhomogeneous power
spectrum in terms of the observed fNL and the fraction
of power ξ is
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PΦ;Sðk;xÞ ¼ PΦðkÞ
�
1þ 4

fNL
ξ

Z
d3kl

ð2πÞ3 σðklÞeikl·x

�
:

ð5Þ
A scale-dependent power fraction ξðkÞ is a natural way
to generate a scale-dependent power asymmetry, as can
be seen from the inhomogeneous term in Eq. (4); if ξðkÞ
decreases for large values of k, the modulation of the
power spectrum will decrease as well. Such mixed-
perturbation models also have other potentially observ-
able consequences: ξ affects the tensor-to-scalar ratio
and contributes to large-scale stochasticity in the power
spectra of galaxies [55].

B. Effect on the CMB sky

The imprint of the inhomogeneous power spectrum
given by Eq. (2) on the CMB can be described in terms
of a multipole expansion:

PΦðk; n̂Þ ¼ PϕðkÞ
�
1þ fNL

X
LM

gLMYLMðn̂Þ
�
; ð6Þ

where YLM is a spherical harmonic, and n̂ is the direction of
observation on the last scattering surface. To find the
expansion coefficients gLM, we make use of the plane
wave expansion

eikl·x ¼ 4π
X
LM

iLjLðklxÞY�
LMðk̂lÞYLMðn̂Þ; ð7Þ

where jL is a spherical Bessel function of the first kind, and
x ¼ xn̂ specifies the position of the observed fluctuation:
for the CMB, x ¼ rcmb is the comoving distance to the last
scattering surface. Equation (2) then implies that

gLM ¼ 16πiL
Z
jklj<π=x

d3kl

ð2πÞ3 jLðklxÞϕðklÞY�
LMðk̂lÞ: ð8Þ

The quantity gLM has a fixed value in any single volume
VS, but when averaged over all small volumes in VL,
hgLMiVL

¼ 0. The expected covariance, on the other hand,
is nonzero:

hgLMg�L0M0 iVL
¼ 256π2ð−1ÞL0

iLþL0
Z
jklj<π=x

d3kl

ð2πÞ3 jLðklxÞjL0 ðklxÞPϕðklÞY�
LMðk̂lÞYL0M0 ðk̂lÞ;

¼ 32

π
δLL0δMM0

Z
π=x

0

dklk2lj
2
LðklxÞPϕðklÞ; ð9Þ

¼ 64πδLL0δMM0

Z
π=x

0

dkl
kl

j2LðklxÞPϕðklÞ; ð10Þ

where in the last line, we have defined the dimensionless
power spectrum as PϕðkÞ ¼ k3PϕðkÞ=ð2π2Þ. We have
again used the subscript VL to indicate the ensemble
average is over the values of gLM in the full volume VL.
Note that both the individual values of gLM and their
variance depend on the size of the small volume through
the upper limit of integration in Eqs. (8) and (9). While the
mean statistics in the large volume cannot depend on the
scale for the small volume, the variance of the statistics
observed in subvolumes generically does. It is now
straightforward to study the monopole and dipole contri-
butions from non-Gaussian cosmic variance to the modu-
lated component of the power spectrum in a small volume.
In the case of the two-field extension, using Eq. (5) in the

definition of the modulation moments, Eq. (6) gives

hgLMg�L0M0 iVL
¼ 64πδLL0δMM0

ξ2

Z
π=x

0

dkl
kl

j2LðklxÞPσðklÞ;

¼ 1

ξ
hgLMg�L0M0 iVL;ξ¼1: ð11Þ

That is, for the same amplitude of non-Gaussianity
observed in the Φ field, the variance of the non-
Gaussian modulations increases by a factor of 1=ξ com-
pared to the single source (ξ ¼ 1) local model.

1. Monopole modulation (L ¼ 0)

The power-spectrum amplitude shift A0 in the para-
metrization of Eq. (6) is

PΦðkÞ ¼ PϕðkÞ½1þ A0� ¼ PϕðkÞ
�
1þ fNL

g00
2

ffiffiffi
π

p
�
; ð12Þ

where A0 can be either positive or negative, but has a lower
bound A0 ≥ −1. From the discussion above and Eq. (9), it
is clear that g00 is Gaussian distributed with zero mean and
variance given by

hg200i ¼ 64π

Z
dkl
kl

�
sinðklxÞ
klx

�
2

PϕðklÞ: ð13Þ
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Therefore, the distribution of the monopole power modu-
lation amplitude A0 also follows a normal distribution, for
small values of A0, (jA0j ≪ 1), with zero mean and
standard deviation:

σmono
fNL

¼ 1

2
ffiffiffi
π

p jfNLjhg200i
1
2: ð14Þ

The expression for hg200i is sensitive to the infrared limit of
the integral. That is, all super-Hubble modes can contribute.
Interesting aspects of cosmic variance arising from this
term, including effects on the observed non-Gaussianity in
small volumes, have been subjects of investigation in [56–
62]. In particular, the observed value of fNL is, in general,
shifted from the mean value in the large volume.
For a constant fNL, the effect of the monopole modu-

lation is to change the power-spectrum amplitude on all
scales and therefore is not observationally distinguishable
from the “bare” value of the power-spectrum amplitude.
For scale-dependent non-Gaussianity, there is a scale-
dependent power modulation, which can generically be
interpreted as shifting the spectral index in the small
volume away from the mean value in the large volume.
In cases where the amplitude of non-Gaussianity is small
(and consistent with zero) at small scales (large l), the
power-spectrum amplitude from those scales can be taken
as PϕðkÞ, and then one can look for monopole modulation
at large scales for which the non-Gaussianity constraints
are not as strong. The large-scale power suppression
anomaly [63,64] is exactly such a situation. We will return
to this point in more detail in Sec. IV.

2. Dipole modulation (L ¼ 1)

The dipole modulation of the power spectrum in the
parametrization of Eq. (6) is given by

PΦðk; n̂Þ ¼ PϕðkÞ
�
1þ fNL

X
M¼−1;0;1

g1MY1Mðn̂Þ
�
: ð15Þ

Since we are interested in the dipole modulation of the
observed power spectrum in theCMBsky, the above equation
should be obtained from Eq. (2) by absorbing the (unobserv-
able) monopole shift to the observed power spectrum. Then,
on the right-hand side of Eq. (15), PϕðkÞ is the observed
isotropic power spectrum and fNL is the observed amplitude
of local non-Gausianity within our Hubble volume. See
Eq. (B11) and the discussion there for details. (Appendix C
contains the corresponding expression in terms of bipolar
spherical harmonics.) The g1M coefficients are Gaussian
distributed with zero mean and a variance

hg1Mg�1Mi ¼ 64π

Z
dkl
kl

�
sinðklxÞ
ðklxÞ2

−
cosðklxÞ

klx

�
2

PϕðklÞ:

If we pick a direction ~di in which to measure the dipole
modulation Ai such that

PΦðkÞ ¼ PϕðkÞ½1þ 2Ai cos θ�; ð16Þ

where cos θ ¼ d̂i · n̂, then the contribution to the dipole

from the non-Gaussianity is ANG
i ¼ 1

4

ffiffi
3
π

q
fNLg10, which is

normally distributed with mean zero and standard
deviation:

σfNL ¼
1

4

ffiffiffi
3

π

r
jfNLjhg210i

1
2: ð17Þ

In the two-field model Eq. (3), using Eq. (11), the standard
deviation gets modified:

σfNL ¼
1ffiffiffi
ξ

p ½σfNL �ξ¼1
: ð18Þ

This shows that for ξ < 1 (e.g. a mixed inflaton-curvaton
model), it is easier to generate the hemispherical power
asymmetry with a small value of fNL. However, there is a
minimal value of ξ that can generate a power asymmetry of
a given amplitude: the requirement of weak non-
Gaussianity in the non-Gaussian field [σðxÞ in Eq. (5)]
demands that ξ≳ ANG

i .
The above discussion of the distribution of the dipole

asymmetry Ai assumes that we measure Ai in a fixed

direction ~di. However, we have no a priori choice of

direction ~di in most situations. This is especially true when
considering a power asymmetry that is generated by the
random realization of superhorizon perturbations as
opposed to a single exotic perturbation mode. Therefore,
observations of dipole power modulations are necessarily
reported using the amplitude of dipole modulation in the
direction of the maximum modulation. To obtain that
amplitude, we can consider any three orthonormal direc-
tions (d1, d2, d3) on the CMB sky and measure the
corresponding three dipole modulation amplitudes (A1,
A2, A3) in the three corresponding orthonormal direc-
tions for each sky. The amplitude of modulation for the
CMB sky (simulated or observed) is then given by
A ¼ ðA2

1 þ A2
2 þ A2

3Þ
1
2. Clearly then, A follows the χ dis-

tribution with 3 degrees of freedom (also known as the
Maxwell distribution). In Sec. III A, we will directly test the
distributions and parameters obtained in this section using
numerical realizations of CMB maps.

3. Higher multipole modulations

The anisotropic modulation of the power spectrum is
expected to continue to higher multipoles in the presence of
non-Gaussianity. However, as shown in Fig. 1, the expected
value of the modulation gets smaller quickly for higher
multipoles L. The corresponding expected variance of
higher multipole modulations for Gaussian CMB maps,
however, is only weakly dependent on L. See, for example,
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Fig. 2(d) of [6]. There is no evidence for modulation at
higher order multipoles in the Planck temperature anisot-
ropies data (see Fig. 34 of [4]). In statistical analysis of the
kind we discuss later in Sec. III D, it may, nevertheless, be
useful to add higher multipole modulations (at least the
quadrupole L ¼ 2) at large scales as it may provide
increased evidence for or against non-Gaussian mode
coupling. An approximate constraint on fNLg2M may be
obtained from the result for the Fourier space quadrupole
modulation constraint in [65]. There are two possible
scenarios: (i) the expected amplitude of the modulation
is larger than that from cosmic variance in the Gaussian
case; in this scenario, the lack of observation of such a
modulation in the data will disfavor the non-Gaussian
model that is used to explain the monopole and dipole
modulations. (ii) The expected amplitude of the modulation
is within the cosmic variance from the Gaussian case, in
which case the data are not discriminatory for or against the
non-Gaussian model.

C. Connection to prior work

Before proceeding, we pause to connect Eq. (15) to the
EKC mechanism to better see how scale-dependent non-
Gaussianity eliminates the need for enhanced perturbations
on superhorizon scales. In the EKC mechanism, a single
superhorizon perturbation mode in a spectator field during
inflation is responsible for generating the asymmetry; the
original proposal used a curvaton field [11], but later work
extended the mechanism to any source of non-Gaussian
curvature fluctuations [14,34]. For example, consider a

field σ that generates a curvature perturbation ζ ¼ N σδσ. A
superhorizon sinusoidal fluctuation in σ,

σSHð~xÞ ¼ σL cosð~kL · ~xþ θÞ; ð19Þ

will generate a dipolar power asymmetry in the curvature
power spectrum [34]:

Pζðk; ~xÞ ¼ P̄ζðkÞ
�
1 −

12

5
fNLð~kL · ~xÞN σσL sin θ

�
ð20Þ

to first order in kLx. In terms of the Bardeen potential,
Φ ¼ ð3=5Þζ, the power asymmetry is

PΦðk; ~xÞ ¼ PϕðkÞ½1 − 4fNLð~kL · ~xÞΦL sin θ�; ð21Þ

where ΦL ≡ ð3=5ÞN σσL. The Fourier transform of the
superhorizon fluctuation given by Eq. (19) is

ΦSHð~qÞ ¼ ð2πÞ3ΦL

2
½eiθδDð~kL − ~qÞ þ e−iθδDð~kL þ ~qÞ�:

ð22Þ

Inserting this expression into Eq. (8) for gLM implies that

g10 ¼ −16πΦL
1

6

ffiffiffi
3

π

r
kLx sin θ þOðk2Lx2Þ: ð23Þ

With this expression for g10, Eq. (15) matches Eq. (21) to
first order in kLx. Therefore, we see that the EKC
mechanism can be described by our framework.
For a single superhorizon mode, Eq. (21) implies that the

non-Gaussian contribution to the dipole is

ANG ¼ 2jfNLjΔΦ; ð24Þ

where ΔΦ ¼ ΦLkLx sin θ is the variation of Φ across the
surface of last scatter. Since kLx < 1, ΦL > ΔΦ. The rms
amplitude of Φ values given by extrapolating the observed
value of Pζ to larger scales is

Φrms ≃
ffiffiffiffiffiffi
Pϕ

q
; ð25Þ

where Pϕ ≃ 8 × 10−10 [66]. It follows that the amplitude of
the superhorizon mode ΦL is bounded from below as

ΦL

Φrms
≳ A

2jfNLj
ffiffiffiffiffiffi
Pϕ

p : ð26Þ

If A ¼ 0.06 (and is entirely due to the non-Gaussianity) and
jfNLj < 100, then ΦL=Φrms > 10.6, which implies that the
superhorizon mode must be at least a 10σ fluctuation. This
is why Eq. (19) was not originally considered to be part of
the inflationary power spectrum, but rather a remnant of

FIG. 1. The expected higher order modulations for fNL ¼ 500,
250 (red square, open green square). We see a sharp decrease in
the expected modulation amplitude from superhorizon fluctua-
tions at higher L multipoles. The blue circle for L ¼ 1 is the
variance measured from our Gaussian Sachs-Wolfe CMB maps.
The dependence of the corresponding variances for higher
multipoles L in Gaussian CMB maps on the multipole L is
much weaker than the sharp falloff seen in the expected
amplitude due to local non-Gaussianity [see Fig. 2(d) of [6],
for example].
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preinflationary inhomogeneity or a domain-wall-like fea-
ture in the curvaton field [11]. It was then necessary to
consider the imprint this enhanced superhorizon mode
would leave on large-scale temperature anisotropies in
the CMB through the Grishchuk-Zel’dovich (GZ) effect
[67]. Although the curvature perturbation generated by
Eq. (19) does not generate an observable dipolar anisotropy
in the CMB [68–70], it does contribute to the quadrupole
and octupole moments, and observations of these multi-
poles severely constrain models that employ the EKC
mechanism [11,69].
However, if we relax our upper bound on fNL to 270

or 500, Eq. (26) indicates that a 4σ or 2σ fluctuation,
respectively, could generate an asymmetry with A ¼ 0.06.
The odds of generating the observed asymmetry are also
improved by accounting for the fact that there are three
spatial dimensions, which provide three independent
opportunities for a large-amplitude fluctuation. We will
see in Sec. III D that considering the combined contribu-
tions of several superhorizon modes and accounting for the
red tilt of the primordial power spectrum further increases
the probability of generating the observed asymmetry, to
the point that the p-value for A ¼ 0.06 increases to greater
than 0.05 for jfNLj ≳ 300. Thus, if the perturbations on
large scales are sufficiently non-Gaussian, there is no need
to invoke enhanced superhorizon perturbations to generate
the observed power asymmetry.
In the absence of an enhancement of the superhorizon

power spectrum, the variance of the quadrupole moments
and octupole moments in the CMB will not be altered.
Consequently, we do not expect significant constraints on
such models from the GZ effect. We note though that the
specific realization of modes outside our subvolume will
still source quadrupole and octupole anisotropies in the
CMB. For realizations that generate a large power asym-
metry, the GZ contribution to these anisotropies would
likely be larger than expected from theoretical predictions
of C2 and C3 and aligned with the power asymmetry.
However, this effect may be difficult to disentangle from
the monopole power modulation described in Sec. II B 1,
and we leave a detailed analysis of this observational
signature to future work.
Furthermore, the ratio ΔΦ=Φrms for a given value of

A and fNL can be significantly reduced if we consider
mixed Gaussian and non-Gaussian perturbations. Using the
mixed perturbation scenario introduced in Eq. (3) (with
ξ ¼ PΦ;σ=PΦ),

ΦL;σ

Φrms;σ
>

A
ffiffiffi
ξ

p

2jfNLj
ffiffiffiffiffiffi
Pϕ

p >
A3=2

2jfNLj
ffiffiffiffiffiffi
Pϕ

p : ð27Þ

In the last inequality, we employ the fact that ξ > A is
required for the non-Gaussianity in the σðxÞ field to be
weak enough to make the OðfNLσ

2PσÞ contribution to
PΦ;σðkÞ negligible. In this case, ΦL could be sourced by a

1σ fluctuation in the σðxÞ field if jfNLj ¼ 270. The
possibility of using a mixed curvaton-inflaton model to
generate a scale-dependent asymmetry using a single large
superhorizon perturbation was explored in [12].

III. STATISTICAL ANISOTROPY IN THE CMB
POWER SPECTRUM

A. Numerical tests

We now present numerical tests of our analytic expres-
sions for the dipole power modulation in the case of local
non-Gaussianity. We will work in the Sachs-Wolfe (SW)
regime: we only consider

ΔT
T

¼ −
Φ
3
: ð28Þ

Therefore, for local non-Gaussianity, Eq. (1), the temper-
ature fluctuation is given by

ΔT
T

����
fNL

¼ ΔT
T

����
gaus

− 3fNL

�
ΔT
T

����2
gaus

−
�
ΔT
T

����2
gaus

��
: ð29Þ

We generate 10000 simulated Gaussian SW CMB skies
using

Cl ¼ 4π

9

Z
∞

0

dk
k
PϕðkÞj2lðkxÞ ð30Þ

for 0 ≤ l ≤ 300; the primordial power spectrum is given by

PϕðkÞ ¼ Aϕ

�
k
k0

	
ns−1 ð31Þ

with Aϕ ¼ 7.94 × 10−10 and ns ¼ 0.965 (from Planck TT,
TE, TEþ lowP columns in Table 3 of [66]), and k0 ¼
0.05 Mpc−1 as the pivot scale.
Then it is easy to generate non-Gaussian Sachs-Wolfe

CMB temperature maps using Eq. (29) for a constant fNL.
Unlike most CMB analyses, we will keep the dipole
variance term C1. A nonzero C1 is used to model the
dipolar anisotropy in density fluctuations on the scale of the
observable universe (from the perspective of the large
volume VL). However, note that the C1 we use is not what
we would measure for the CMB dipole, even if we assume
that the dominant contribution to the measurement of the
dipole from our local motion [71] has been subtracted out.
This is because, for adiabatic fluctuations, the leading-order
contribution to the observed CMB dipole from super-
horizon perturbations exactly cancels the Doppler dipole
generated by the superhorizon perturbations [69,70].
It is convenient to set the monopole C0 to zero for the

purpose of studying dipole modulations; otherwise, the
cosmic variance power asymmetry (i.e. the contribution
that is not due to local non-Gaussianity) will be different

LARGE-SCALE ANOMALIES IN THE COSMIC MICROWAVE … PHYSICAL REVIEW D 93, 023524 (2016)

023524-7



for the weakly non-Gaussian realization compared to the
Gaussian realization from which it is generated. Therefore,
in this section, we use numerical realizations with nonzero
C0 values only when testing the monopole modulation
formula. The expression for C0 is infrared divergent, so we
assume an infrared cutoff kmin; the same cutoff scale is used
to compute the expected amount of monopole power
modulation A0. Numerically,

C0 ¼
4π

9

Z
∞

kmin

dk
k
PϕðkÞ

�
sin kx
kx

�
2

: ð32Þ

The kmin cutoff can be related to the number of super-
horizon e-folds of inflation (if interpreted as such) as
Nextra ¼ ln½ðπ=rcmbÞ=kmin�. The above integral gets most
of its contribution from k < π=rcmb, and therefore can be
well approximated by [58]

C0 ≈
4π

9
Aϕ

�
π

k0rcmb

	
ns−1

�
1 − e−ðns−1ÞNextra

ns − 1

�
ð33Þ

for ns≠1, and ð4π=9ÞAϕNextra for ns¼1. Additional details
about our numerical results can be found in Appendix D.

B. Monopole modulation (L ¼ 0)

The normally distributed monopole shift amplitude A0

for a local non-Gaussian model is given by Eq. (14) and can
be written in terms of C0 using Eq. (32) as

σmono
fNL

≈ 6jfNLj
ffiffiffiffiffiffi
C0

π

r
: ð34Þ

The necessary infrared cutoff has already been set by the
value of Nextra in Eq. (33) to compute C0. Although it is not
possible to observe monopole modulations for a constant
local fNL, we can test the expected modulations assuming a
value of Nextra. The probability distribution of the shift for
any fNL ≠ 0 is

pNðA0; σmonoÞ ¼ 1

σmono
ffiffiffiffiffiffi
2π

p Exp

�
−
1

2

�
A0

σmono

	
2
�
; ð35Þ

where the variance has contributions from the Gaussian
realization and the non-Gaussian coupling to the realization
of long wavelength modes: ðσmonoÞ2¼ðσmono

fNL
Þ2þðσmono

G Þ2.
For our numerical tests, σmono

G is the variance of A0

measured in Gaussian CMB maps. The quantity we
measure for A0 from each realization of CMB maps is

A0 ¼
1Plmax

l¼2ð2lþ 1Þ
Xlmax

l¼2

ð2lþ 1Þ
�
Cl − Ctrue

l

Ctrue
l

�
; ð36Þ

where Ctrue
l are the input angular power-spectrum values

used to obtain the set of numerical CMB maps, and Cl is

the angular power spectrum of a particular realization of
that set of CMB maps, and lmax ¼ 100. In Fig. 2, we plot
the distribution of A0, using Eq. (35), for fNL ¼ 0, 50, 100,
along with the distribution obtained from the numerically
generated Sachs-Wolfe CMB maps.

C. Dipole modulation (L ¼ 1)

A dipole modulation of the power spectrum defined as in
Eq. (16) generates a hemispherical power asymmetry with
the same amplitude 2Ai. Therefore, we will look at the
quantity

Ai ¼
1Plmax

l¼2ð2lþ 1Þ
Xlmax

l¼2

ð2lþ 1ÞΔCl

2Cl
; ð37Þ

with lmax ¼ 100 and ΔCl ¼ Cþ
l − C−

l , where þ and −
refer to two hemispheres in some direction di. We will
consider Ais in three orthonormal directions d1, d2, and d3
on the sky. Each Ai in a particular direction di is normally
distributed with zero mean. The variance σ2G can be
measured from the numerical realizations of Gaussian
Sachs-Wolfe CMB maps and depends on the CMB multi-
poles used in Eq. (37) and the value of the Cls. For non-
Gaussian maps, the distribution of the Ais have an
increased variance given by σ2¼σ2fNL þσ2G, where σfNL is
given by Eq. (17). The power asymmetry dipole amplitude
for each CMB sky is then A ¼ ðA2

1 þ A2
2 þ A2

3Þ
1
2. The

probability distribution function (pdf) of A is the χ
distribution (or the Maxwell distribution):

FIG. 2. Test of the monopole modulation formula Eq. (35) for
the local non-Gaussian model with fNL specified in the figure.
The dotted blue line for the fNL ¼ 0 (Gaussian) model is the best-
fit normal distribution to the distribution obtained from numeri-
cally generated Sachs-Wolfe CMB maps, while the other two
curves (dashed green, fNL ¼ 50; solid red, fNL ¼ 100) are
obtained using Eq. (35). The value of the CMB monopole C0

is set using Eq. (33) with Nextra ¼ 50. The measurement of A0 is
bounded below, i.e. A0 ≥ −1. The normal distribution is an
excellent fit for small modulations, i.e. jA0j ≪ 1, whereas the
distribution is positively skewed for larger values of jA0j.
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pχðA; σÞ ¼
ffiffiffi
2

π

r
A2

σ3
Exp

�
−A2

2σ2

�
; ð38Þ

where σ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2fNL þ σ2G

q
. Figure 3 shows that the distribu-

tion of asymmetry amplitudes obtained from the CMB
realizations agree extremely well with the χ distribution
given above. Note that only σG is measured from the
numerical maps; σfNL is directly computed for a value of
fNL using Eq. (17).

D. Statistical analysis

In this section, we present examples of how we can
perform a statistical analysis using the results from the
previous section for the distributions of power modulation
on the Sachs-Wolfe CMB sky. While direct comparison of
the amplitudes obtained in our Sachs-Wolfe CMB realiza-
tions with the reported values of power asymmetry A is not
possible, we can make a connection between our simpler
case and the asymmetry in the observed CMB sky by using
the p-value of the asymmetry. For a given measurement of
A and the normalized pdf for A, pðAÞ [which in our model
depends on fNL, see Eq. (38)], the p-value is simply given
by

R
∞
A pðA0ÞdA0; i.e. it gives the probability that the

observed value of the asymmetry amplitude is greater than
some threshold value A. We find that an asymmetry
amplitude of A ¼ 0.055 is approximately 3.3σ, i.e. a
p-value of 0.001 with respect to the distribution of A
obtained in our Gaussian Sachs-Wolfe CMB maps. This is
approximately equal to some of the more recent reports for

the significance of the hemispherical power asymmetry
[6,72]. Therefore, we will use A ¼ 0.055 as the value of the
asymmetry when making connections with the observa-
tions of the anomaly.
When we have a measurement of the power asymmetry

amplitude A, we can write the likelihood for fNL as
LðfNLjAÞ ¼ pχðA; σÞ, whose expression is given in
Eq. (38). From this likelihood, we can infer the posterior
distribution for fNL given a measurement of A. We can
interpret the statistics in different ways:

(i) We can use any power asymmetry as a signal of local
non-Gaussianity. Using only the large-scale CMB
multipoles (l ≤ 100), for a given value of A, we can
obtain the posterior distribution for jfNLj (averaged)
for the corresponding range of scales. In Fig. 4, we
plot the fNL posterior for a few values of the
asymmetry A, assuming a uniform prior on jfNLj.

(ii) We can combine the large-scale bispectrum con-
straints on fNL with the constraints from the power
asymmetry A. For this, we use a rough estimate
of fNL for l≲ 100 of fNL ¼ −100� 100ð1σÞ (esti-
mated from Fig. 2 of [52]). We assume that the fNL
posterior from WMAP is a normal distribution.
However, since thepower asymmetry is only sensitive
to the magnitude of fNL and not the sign, we use the
folded normal distribution (given fmeasured

NL ¼ μ� σ):

pfoldðfNLÞ ¼
(

1

σ
ffiffiffiffi
2π

p ½e−1
2
ðfNL−μσ Þ2þe−

1
2
ðfNLþμ

σ Þ2 � fNL ≥ 0

0 fNL < 0
:

FIG. 3. Left panel: The distribution of power asymmetry Ai (in a particular direction di) measured in 10000 simulated CMB skies as
described in the text. From each simulated map, three Ai values are generated in three orthonormal directions in the sky. The dotted blue
line for the Gaussian CMB maps is the best-fit normal distribution curve; this gives us the Gaussian cosmic variance standard deviation
σG. The curves (dashed green and solid red) for the non-Gaussian models are normal distributions with zero mean and variance given by
σ2 ¼ σ2G þ σ2fNL , where σfNL is computed using Eq. (17). Right panel: The distribution of the amplitude of power asymmetry A from the
simulated Gaussian and non-Gaussian CMB maps. The lines are the computed Maxwell distributions for corresponding σ values and
match the distributions obtained in numerical realizations very well. Note that the figures were generated for the single source local
model. If we used the mixed inflaton-curvaton two-field extension with the curvaton power fraction ξ < 1, we would get the above
distributions for smaller values of fNL. For example, for ξ ¼ 0.25, the distributions shown for fNL ¼ 500 above would be generated by a
smaller fNL ¼ ffiffiffiffiffiffiffiffiffi

0.25
p

× 500 ¼ 250.
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Then,wemultiply the above pdfwithLðfNLjAÞ to get
the combined likelihood from which we can get the
posterior for fNL after normalizing. We show the
combined posterior distribution of fNL for a few
power asymmetry amplitudes A in Fig. 5.

(iii) Although the power asymmetry data alone
(A ≈ 0.055) prefers jfNLj ≈ 500 as the most likely

value (or jfNLj ≈ 200 when the bispectrum con-
straints are also applied), the probability of an
asymmetry increases whenever fNL ≠ 0. In Fig. 6
we quantify how the probability of an observed
dipole modulation changes as jfNLj increases. For
example, the p-value of 0.001 for A ¼ 0.055
changes to 0.046 for jfNLj ¼ 265 (which is within
the 2σ window of the large-scale bispectrum con-
straint). In other words, even an amplitude of non-
Gaussianity well below jfNLj ≈ 500 renders the
observed asymmetry less “anomalous.”

E. Bayesian evidence

The previous section demonstrated that the power
asymmetry data can be used to constrain non-Gaussian
models, and that the amplitude of the observed asymmetry
is less “anomalous” when non-Gaussianity is included.
However, we also need to ask whether the data are such that
the non-Gaussian model is preferred over the Gaussian.
To compare the posterior odds for different models Mi,

given the data ~y, we compute the Bayes factor

B12 ¼
pð~yjM1Þ
pð~yjM2Þ

; ð39Þ

where the factors in the numerator and denominator are the
model likelihoods for models 1 and 2, respectively. In the
simplest comparison, we take fNL as the only parameter of
the models. The data we consider include the measured

FIG. 5. The posterior probability distribution of jfNLj after
combining the bispectrum constraints at large scales (l ≲ 100,
fNL ¼ −100� 100) with the power asymmetry constraint for the
given value of A.

FIG. 4. The posterior probability distribution of jfNLj values for
different observed amplitudes A of power asymmetry. Only large-
scale CMB modes l ≤ 100 are used to compute the cosmic
variance pdf for A. A ¼ 0.055 corresponds to a p-value of 0.001
in our fNL ¼ 0 numerical maps. This is about 3.3σ, approx-
imately equal to some of the reported significance of the power
asymmetry anomaly [6,72]. Although our formula for the
expected asymmetry becomes less accurate for larger values of
fNL, we have checked that it approximates the numerical results
quite well even for fNL ¼ 2000. Therefore, the shape of the
posterior distributions obtained above in the fNL window will not
be affected by the inaccuracy of the formula at larger fNL values.
However, the change in the distribution for larger fNL can change
the normalization.

FIG. 6. The p-value for different values of asymmetry ampli-
tudes A (i.e. the probability of obtaining an asymmetry amplitude
equal to or greater than A) in a local non-Gaussian model as a
function of the value of jfNLj. For A ¼ 0.055, we see that the
significance goes below 3σ around jfNLj ≈ 100. For the two-field
extension of the local model (with a curvaton power fraction ξ)
described in the text, the x-axis should be labeled jfNLj=

ffiffiffi
ξ

p
.

Then, for ξ < 1, a smaller bispectrum amplitude jfNLj (by a factor
of

ffiffiffi
ξ

p
than labeled in the figure above) is required to achieve the

p-value shown in the figure above.
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amplitude of the power asymmetry and the CMB constraint
on the amplitude of the local bispectrum on large angular
scales. For an introduction to Bayesian statistical methods
applied to cosmology, see for example [73].
The non-Gaussian model reduces to the isotropic

Gaussian model for fNL ¼ 0 (while the probability of
the power asymmetry remains nonzero). In that case the
evaluation of the Bayes factor can be simplified and a
direct Bayesian model comparison can be done using the
Savage-Dickey density ratio (SDDR) [73,74]. The SDDR is
given by

B01 ¼
pðθij~y;M1Þ
πðθijM1Þ

����
θi¼θ�i

ð40Þ

where M1 is the more complex model (non-Gaussian in
our case) that reduces to the simpler modelM0 (Gaussian)
when the set of parameters θi goes to θ�i (fNL → fNL ¼ 0).
Here, pðθij~y;M1Þ is the posterior for fNL (plotted in
Fig. 5) and πðθijM1Þ represents the prior for the parameter
in the complex model M1. Our current case only has one
parameter (fNL) and one datum (the dipolar asymmetry A).
While there may be other interesting possibilities to
consider for the prior probability of fNL, we illustrate
the calculation of B01 above using the constraint on the
parameter fNL from large-scale bispectrum measurements
as reported by the WMAP and Planck missions as the prior.
In Table I, we list SDDR for a few values of Aobs. For the

prior, we have used the folded normal distribution for
fNL ¼ −100� 100 which is a rough estimate of fNL for
the largest scale, i.e. up to l ¼ 100 from [52]. Note that the
only value from the prior pdf that is used to compute
the SDDR is fNL ¼ 0, so the above consideration from
large-scale fNL constraints is the same as using a uniform
prior for jfNLj in the range ð0; 1

πðfNL¼0ÞÞ ≈ ð0; 207Þ. If the
prior range is expanded, then the magnitude of B01

increases, thereby reducing the evidence for nonzero

fNL. For Aobs ¼ 0.055 (whose p-value roughly corre-
sponds to observed A), the strength of evidence for a
nonzero fNL is between weak and moderate in the
empirical (Jefferys) scale [75] quoted, for example, in
Table 1 of [73].
The results in Table I show that the data we have used, at

least in this simple analysis, show no more than a weak
preference for the non-Gaussian model. A more thorough
analysis is unlikely to change this conclusion very much: in
[76], the authors use earlier studies of the power asymme-
tries in the WMAP data to put the best possible Bayesian
evidence of lnB01 ≈ −2.16 corresponding to odds (≤ 9∶1,
weak support). The method to compute the maximum
possible Bayesian evidence is based on Bayesian calibrated
p-values [77]. The p-value used from the data analysis of
the 3-year WMAP maps was p ¼ 0.01 [78]. If one instead
used p ¼ 0.001, which is approximately the level of
significance from various more recent analyses of Planck
and WMAP temperature anisotropy maps, the best possible
Bayesian evidence in favor of the A ≠ 0 anisotropic
model becomes lnB01 ≈ −4.0, corresponding to the odds
(≤ 50∶1). A p-value of 0.0003 (about 3.6σ) is necessary to
obtain a best possible lnB01 ≈ −5.0, which implies strong
evidence [76].

IV. BEYOND THE LOCAL ANSATZ

The previous section discussed in detail the effect of
local-type non-Gaussianity with constant fNL that couples
a gradient (induced by superhorizon modes) across the
CMB sky to the observable modes. We demonstrated that a
dipolar asymmetry is expected in models with local-type
non-Gaussianity. Of course, local non-Gaussianity as the
source of the asymmetry is only compatible with the data if
we restrict ourselves to the largest scales. Both the
amplitude of the asymmetry and the amplitude of non-
Gaussianity must sharply decrease on smaller scales. The
question then is whether there is a different model of non-
Gaussianity that is consistent with all observational con-
straints and generates the observed asymmetry in detail. If
so, does the current data favor this model over the isotropic,
Gaussian assumption? Could future data ever favor such
a model?.
To address some of these questions, we will first

demonstrate that scale-dependent modulations are a generic
feature of non-Gaussian models other than the local model.
We will then construct a scenario that is more likely to be
preferred by the data by considering scale-dependent local
non-Gaussianity. Finally, we will provide examples of
evaluating the Bayesian evidence for this scenario.
Although a model of non-Gaussianity beyond the local
ansatz may add more parameters, if the model has other
consequences in the data we might hope to find more
evidence for it. This is particularly true if the model has
measurable effects on smaller scales, where the usual
cosmic variance for Gaussian models is smaller.

TABLE I. SDDR for different observed values of dipole power
modulations at large scales. The p-values listed above are
computed with respect to the distribution of A values from
Gaussian CMB maps. A reasonable value to compare to various
reports of the observed hemispherical power asymmetry is a p-
value of 0.001 (≈3.3σ), i.e. A ¼ 0.055. Values of j lnB01j ¼ 5.0,
2.5 suggest strong and moderate evidence, respectively [73]. In
our convention above, a negative value for the logarithm of the
Bayes factor means the evidence is in favor of the more complex
non-Gaussian model M1.

Aobs p-value SDDR (B01) lnB01

0.02 0.5511 1.1362 0.128
0.04 0.0381 0.6174 −0.482
0.05 0.0043 0.3211 −1.136
0.055 0.001 0.2012 −1.603
0.06 0.0003 0.1123 −2.186
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A. Power asymmetry from general bispectra

We can easily extend the inhomogeneous power-
spectrum calculation in the presence of local non-
Gaussianity to other bispectrum shapes. For example,
consider that a Fourier mode of the Bardeen potential is
given by [62]

ΦðkÞ ¼ ϕðkÞ þ fNL
2

Z
d3q1

ð2πÞ3
Z

d3q2ϕðq1Þϕðq2Þ

× N2ðq1;q2;kÞδDðk − q1 − q2Þ þ � � � ð41Þ

where as before ϕ is a Gaussian field. The kernel N2 can be
chosen to generate any desired bispectrum, and the dots
represent terms higher order in powers of ϕ (which generate
tree-level n-point correlations). Considering only the
generic quadratic term, the power spectrum in subvolumes
can be computed as in the case of the local bispectrum (see
Appendix B), and we get PΦ;Sðk;xÞ:

PϕðkÞ
�
1þ 2fNL

Z
d3kl

ð2πÞ3 ϕðklÞN2ðkl;−k;kÞeikl·x

�
:

ð42Þ

From the form of the above equation, one can see that a k-
dependent power modulation is a feature of nonlocal non-
Gaussianity; i.e. the k dependence of the kernel N2 is
carried by the modulated component of the power spectrum
in the small volume. The kernels for local, equilateral and
orthogonal bispectrum templates are [62]

Nlocal
2 ¼ 2;

Northo
2 ¼ 4k2l − 2kkl

k2
;

Nequil
2 ¼ 2k2l

k2
: ð43Þ

If one uses the kernel for equilateral- or orthogonal-type
non-Gaussianities, then the monopole shifts are not infrared
divergent. However, the magnitudes of modulation (both
monopole and dipole) are smaller compared to the local
case; i.e. a very large amplitude of fequilNL or forthoNL is
necessary for the effect to be interesting. For example,
we plot the expected modulation amplitude for local-,
equilateral- and orthogonal-type non-Gaussianities in
Fig. 7. In Fig. 8, we illustrate that for local, orthogonal
and equilateral bispectra, the power asymmetry is generated
by perturbation modes that lie just outside the horizon. The
quasisingle field model [79] may also be interesting to
consider: it has a scale-independent bispectrum with a
kernel that varies between the local and equilateral cases
depending on the mass of an additional scalar field coupled
to the inflaton.

In general, then, if the power asymmetry is coming from
mode coupling, the fact that the observed asymmetry falls
off on small scales implies that shorter scales are more
weakly coupled to superhorizon modes than larger scales
are. This is possible with either a scale-independent
bispectrum (as the equilateral and orthogonal cases above
demonstrate) or with a scale-dependent bispectrum.

FIG. 7. The expected dipolar modulation of the power spectrum
for large amplitude local-, orthogonal- and equilateral-type non-
Gaussianities. While the amplitude of expected modulation is
smaller for nonlocal shaped bispectra, the modulation generated
by them is scale dependent.

FIG. 8. The expected amplitude of the power asymmetry
from superhorizon modes (kl < π=rcmb), as a function of the
minimum wave number kl;min considered to compute hg21Mi0.5,
for large-amplitude local-, orthogonal- and equilateral-type
non-Gaussianities. We can see that most of the contribution is
due to the modes with wavelengths almost the size of the
observable universe, i.e. within one e-fold. We get similar
behaviors for the monopole modulations (not shown in the
figure) except for the case of local non-Gaussianity. For local
non-Gaussianity, the monopole modulation gets contributions
from arbitrarily small k modes and hg200ilocal becomes infrared
divergent.
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B. Generating a scale-dependent power asymmetry

To match the observed scale dependence of the power
asymmetry anomaly, the strength of coupling of subhorizon
modes to the long wavelength background must be scale
dependent. The relevant scale dependence in this context
can be fully parametrized by introducing two bispectral
indices that capture the scale dependence in our observable
volume and a more general coupling strength to the long
wavelength modes:

PΦ;Sðk;xÞ ¼ PϕðkÞ
�
1þ 4fNLðk0Þ

�
k
k0

	
nf

×
Z

d3kl

ð2πÞ3
�
kl
k0

	
α

ϕðklÞeikl·x

�
: ð44Þ

Here nf < 0 turns off any power asymmetries on shorter
scales. The parameter α < 0 enhances the sensitivity of the
model to infrared modes (as used in [13,31]). In the case
α ≤ −1, the dipole asymmetry would be infrared divergent
in a universe with a scale-invariant or red-tilt power
spectrum. Notice that scale-invariant bispectra always have
nf ¼ −α, so any scale-invariant bispectrum that increases
IR sensitivity also increases the expected asymmetry on
smaller scales. Finally, although we have used fNL to label
the coefficient above, a similar expression can be derived
from higher-order correlation functions (e.g., to capture the
effects of gNL [33]). Previous discussions of the power
asymmetry from scale-dependent non-Gaussianity include
[12,14,18,26,30–32].
In principle, additional data could eventually constrain

all of the parameters introduced above (or at least their
values on subhorizon scales). However, here we will
consider only one additional measurement (the large-scale
power suppression), and so we will restrict our attention to
the case with just one additional parameter. We take a local-
shape bispectrum with an amplitude that depends on the
scale of the short wavelength mode as

fNLðkÞ ¼ f0NL

�
k
k0

	
nfNL

: ð45Þ

In terms of the parameters in Eq. (44), nf ¼ nfNL
and α ¼ 0.
In addition to a scale-dependent power asymmetry and a

scale-dependent bispectrum amplitude, a scale-dependent
local non-Gaussianity also generates a scale-dependent
modulation of the power-spectrum amplitude. This is the
monopole power modulation (L ¼ 0) discussed in Sec. II B
(a similar point was made in [30]). When local-type
non-Gaussianity has a scale-independent amplitude, the
power-spectrum amplitude is modulated similarly at all
scales, thereby making the effect unobservable. However,
the scale-dependent case is more interesting as it makes the
power modulation scale dependent and therefore an observ-
able effect. This can be easily seen by generalizing Eq. (12)
for the case of fNLðkÞ:

PΦðkÞ ¼ PϕðkÞ
�
1þ fNLðkÞ

g00
2

ffiffiffi
π

p
�
: ð46Þ

As previously discussed, g00 is normally distributed with
zero mean and the variance hg200i requires a cutoff to limit
contributions from arbitrarily large modes, which we have
parametrized earlier as the number of superhorizon e-folds
of inflation. While the above formula is only valid for small
modulations A0, Fig. 2 shows that the formula is quite
accurate at least up to jA0j ≈ 0.3. There is an additional
subtlety because, in the presence of a monopole shift, the
observed bispectrum on large scales will not be exactly of
the form in Eq. (45). However, the difference is small for
small A0.
Consider a simple example of scale-dependent local non-

Gaussianity given by nfNL ¼ −0.64, k0 ¼ 60ðπ=rcmbÞ and
f0NL ¼ 50. In multipole space, one can approximate f0NL ¼
fNLðl ¼ 60Þ ¼ 50 and fNLðlÞ ¼ 50ðl=60Þ−0.64. These
numbers are chosen to facilitate comparison with the
scale-dependent modulation model results in [9] (see
Table I therein). In Fig. 9, we plot fNL, σfNL (the expected
1σ amplitude of the power asymmetry in a particular
direction due to fNL), and σmono

fNL
(the expected 1σ shift

in the amplitude of the power spectrum due to fNL), as a
function of the multipole number l. The purpose of the
figure is to illustrate how scale-dependent local non-
Gaussianity can produce more than one signature in the
CMB. Therefore, we have not included the effect of the

FIG. 9. The effect of a simple scale-dependent local non-
Gaussian model, fNLðlÞ ¼ 50ðl=60Þ−0.64, in the bispectrum
(top), the power asymmetry amplitude (middle), and the modu-
lation of the power-spectrum amplitude (bottom). A different
choice of f0NL will only rescale the lines above.
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Gaussian cosmic variance, which would add variance to
both the power asymmetry and monopole modulation
amplitudes; this becomes important when performing
parameter estimation of f0NL and nfNL . While such a full
parameter estimation analysis is beyond the scope of this
work, we illustrate in the next section that, in a simplified
context, adding the A0 constraint can be useful in some
situations.
Notice that the scale-dependent non-Gaussian model of

Eq. (45) also generates asymmetries in the spectral index:

d lnP
d ln k

����
k0

¼ ðns − 1Þϕ þ nfNL
ΔPðk0;xÞ

1þ ΔPðk0;xÞ
; ð47Þ

where ðns − 1Þϕ is the spectral index of the Gaussian field
and

ΔPðk0;xÞ ¼ 4f0NL

Z
d3kl

ð2πÞ3 ϕðklÞeikl·x ð48Þ

is the super cosmic variance contribution. As before, ΔP
may be expanded in multipole moments. A spatial modu-
lation of the spectral index was used in [10] as an
alternative way to produce the power asymmetry. Here
we see that such a modulation is a natural consequence of
non-Gaussian scenarios that generate a scale-dependent
power asymmetry.

C. Statistical analysis

The Planck 2013 analysis reported a power deficit at
l≲ 40 with a statistical significance of approximately
2.5σ − 3σ [63], while the more recent Planck 2015 analysis
[80] shows a slightly lower statistical significance to the
deficit. Although that measurement alone does not require a
new model, the scale-dependent non-Gaussian scenario
generically generates a power modulation. Therefore, the
data should be included in constraining the model. If we
include a measurement of the monopole modulation A0 in
addition to the dipole power asymmetry amplitude A, the
combined likelihood for fNL is

LðfNLjA; A0Þ ¼ pχðA; σÞpfoldðA0; σmonoÞ: ð49Þ

In Fig. 10, we show examples in which, in addition to the
power-asymmetry amplitude A, we also consider the
monopole-modulation amplitude A0. For simplicity, we
assume that the result of a scale-dependent non-Gaussianity
produces some large (statistically significant at ≈3.3σ, for
example) power asymmetry at large scales l ≤ 100 and
becomes smaller in magnitude and therefore less significant
at small scales. In Fig. 10, therefore, we always take
A ¼ 0.055, and we have also added the estimate of fNL ≈
−100� 100 at these scales. This simplification allows us to
use the Gaussian cosmic variance from our constant fNL
CMB realizations and simply augment the analysis in the

previous section with the added information from a possible
monopole modulation. This is because we expect the scale-
dependent non-Gaussianity to produce a monopole modu-
lationA0 at large scales, thevarianceofwhich dependson the
strength of non-Gaussianity at the scales used to obtain
the monopole modulation amplitude A0. We will define the
measured A0 as in Eq. (36), i.e. a weighted average over
multipoles 2 < l ≤ 100. Depending on the values of f0NL
and nfNL , a scale-dependent non-Gaussianity may generate
significant monopole modulation at higher multipoles. But,
wewill restrict our analysis to a singlevalueA0 obtained from
the range 2 < l ≤ 100. Thus, our simple analysis is only
sensitive to the average amplitude of non-Gaussianity at
these scales and cannot constrain nfNL , for which we will
need to consider multiple bins of A0 in the data.
For A0 [in Eq. (36)] generated at large scales from a

scale-dependent non-Gaussianity,Ctrue
l is the angular power

spectrum at large multipoles where the non-Gaussianity,
and therefore the effect of superhorizon modes on the
observed power spectrum, is small. In the case of the
Planck satellite measurement of A0 in [63], the best-fit
angular power spectrum, which is also dominated by the
larger-l modes, is taken as the Ctrue

l .
In Fig. 10, we see that for A0 ¼ 0.02, which is about 1.5σ

in the distribution of A0 values for our Gaussian CMB
realizations, the posterior distribution shows more support
for the Gaussian model. However, for a larger value
A0 ¼ 0.04 (about 2.9σ), the addition of the A0 data favors
the non-Gaussian model for a superhorizon e-folds of
Nextra ¼ 50. For a larger number of superhorizon e-folds,

FIG. 10. The posterior distribution of jfNLj for Aobs ¼ 0.055
and different assumed values of A0;obs and Nextra. Note that the
use of A0 changes the shape of the posterior distribution and
generates a peak at around fNL ≈ 10 for A0 ¼ 0.04, Nextra ¼ 50
(blue dotted line) in addition to the peak at jfNLj ≈ 200 from the
use of A ¼ 0.055 and the bispectrum constraints (black dashed
line). For a larger Nextra ¼ 100 (green solid line), the peak shifts
towards jfNLj ¼ 0 as the variance of the prediction of the non-
Gaussian model increases; the evidence for the non-Gaussian
model also decreases.
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Nextra ¼ 100, the support for the non-Gaussian model again
decreases because of the increased variance in the pre-
diction from the non-Gaussian model itself. (However,
some care should be taken in extrapolating this result since
our analytic expressions are not valid when the non-
Gaussianity in the large volume is strong.) The SDDR
values for these cases are shown in Table II.
Wehave only shownexamplesof howusingA0 (i.e. power

modulation from scale-dependent non-Gaussianity) can
change the posterior probability (and hence the evidence)
of scale-dependent non-Gaussianity in a simplified situation.
A more involved analysis (i.e. including larger lmodes and
measuring the scale dependence of fNL from bispectrum
measurements with the latest data) is necessary to see how
useful the inclusion of A0, in addition to the power asym-
metry amplitude, proves to be in the actual CMB data. In
addition, we have chosen a simple model that may capture
the features seen in the data but that may not be easily
achievable from an inflationary point of view [81].

V. SUMMARY AND CONCLUSION

We have performed a systematic study of the power
asymmetry expected in the CMB if the primordial pertur-
bations are non-Gaussian and also exist, with no special
features, on scales larger than we can observe. We have
derived an expression to compute the expected deviations
from isotropy of the observed two-point function due to
mode coupling with our specific realization of superhorizon
modes, which generate anisotropy across our Hubble
volume. Although we have focused our analysis on local
non-Gaussianity, our method is quite general for describing
deviations from statistical isotropy in a finite subvolume of
an isotropic (but non-Gaussian) large volume.
Exploiting the fact that local non-Gaussianity naturally

produces a power asymmetry, we have shown how the
observed asymmetry can be used for parameter estimation
of the non-Gaussian amplitude fNL. We have also com-
bined fNL constraints from bispectrum and power-asym-
metry measurements to evaluate the Bayesian evidence for
fNL ≠ 0. In our simple examples, we find that the observed
CMB power asymmetry only provides weak evidence for
non-Gaussianity on large scales.
Manypreviousworks that proposemechanisms to generate

the CMB power asymmetry have required a departure from

the simplest extrapolation of our observed statistics to larger
scales in addition to non-Gaussianity. The most popular new
feature is a large-amplitude superhorizon fluctuation that has
an origin beyond inflation. Generating the observed scale
dependence of the power asymmetry requires an additional
elaboration, either in the form of scale-dependent non-
Gaussianity or isocurvature fluctuations.However, our results
show that scale-dependent non-Gaussianity of the local type is
sufficient to generate adipolepower asymmetryat large scales
without invoking exotic superhorizon fluctuations. Avalue of
fNL consistent with the rather weak large-scale-only con-
straint (butwell above the scale-independentbound) is enough
tomake the observedpower asymmetryno longer anomalous.
It is also worth noting that scale-dependent bispectra are only
required for the local ansatz: scale-independent nonlocal
bispectra can generate a scale-dependent power asymmetry.
All that is required to qualitatively match the observed scale
dependence of the asymmetry is that smaller scales couple
moreweakly than large scales do to near-Hubble scalemodes.
For scale-dependent non-Gaussianity, we have demon-

strated that a large-scale suppression or enhancement of the
isotropic power spectrum is expected. Consequently, obser-
vations of a scale-dependent shift in the amplitude of the
power spectrum can provide additional evidence in favor of
non-Gaussianity. Although we have not found that the
observed power deficit at large scales is sufficient to say the
data strongly prefer the non-Gaussian model, we have also
not performed a thorough analysis nor forecast the
improvement possible with future data. Our parameter
estimation and model comparison works were performed
in a simplified setting to illustrate that a more careful look
at the CMB data is necessary and useful.
Our results strongly suggest that to evaluate the obser-

vational evidence for models of the cosmological pertur-
bations, departures from Gaussianity and from statistical
isotropy in the data can and should be considered together.
Furthermore, in weighing whether the large-scale CMB
anomalies are evidence of something beyond slow-roll
inflation lurking just outside the horizon, we should be sure
to account for the possibility of non-Gaussian cosmic
variance contributions to anisotropy, which do not require
the introduction of additional physics.
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TABLE II. SDDR for A ¼ 0.055 and different observed values
of monopole power modulations A0 at large scales. See the text
for a discussion on why the evidence increases and decreases for
different values of A0 and Nextra.

A0;obs Nextra SDDR (B01) lnB01

� � � � � � 0.2012 −1.603
0.02 50 1.107 0.102
0.04 50 0.0664 −2.712
0.04 100 0.1475 −1.914
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APPENDIX A: CONVENTIONS AND
DEFINITIONS

Throughout the paper, we follow the following Fourier
convention:

ϕðxÞ ¼
Z

d3k
ð2πÞ3 e

ik·xϕðkÞ;

ϕðkÞ ¼
Z

d3xe−ik·xϕðxÞ: ðA1Þ

As usual, the temperature fluctuations of the CMB are
decomposed into spherical harmonics:

ΔT
T

ðn̂Þ ¼
X
lm

almYlmðn̂Þ; ðA2Þ

with the spherical harmonics normalization given byZ
dΩn̂Y�

lmðn̂ÞYl0m0 ðn̂Þ ¼ δll0δmm0 : ðA3Þ

Therefore, the multipole coefficients alm of the CMB
temperature fluctuations are given by

alm ¼
Z

dΩn̂Y�
lmðn̂Þ

ΔT
T

ðn̂Þ: ðA4Þ

For Sachs-Wolfe temperature fluctuations (ΔTT ¼ −Φ=3)
and when the Bardeen potential Φ is a Gaussian field
[ΦðxÞ ¼ ϕðxÞ], the Sachs-Wolfe alm is given by

alm ¼ −
4π

3
il
Z

d3k
ð2πÞ3 ϕðkÞjlðkxÞY

�
lmðk̂Þ: ðA5Þ

From this, we can obtain the Sachs-Wolfe angular power
spectrum Cl defined as halma�l0m0 i ¼ δll0δmm0Cl.

CSW
l ¼ 4π

9

Z
∞

0

dk
k
j2lðkxÞPϕðkÞ; ðA6Þ

where we have defined the power spectrum PϕðkÞ as

hϕðkÞϕðk0Þi ¼ ð2πÞ3δDðkþ k0ÞPϕðkÞ; ðA7Þ

or equivalently, hϕðkÞϕ�ðk0Þi ¼ ð2πÞ3δDðk − k0ÞPϕðkÞ,
and the dimensionless power spectrum Pϕ is defined
as PϕðkÞ ¼ 2π2PϕðkÞ=k3.

APPENDIX B: DERIVATION OF MODULATED
POWER SPECTRUM FOR LOCAL

NON-GAUSSIANITY

For a homogeneous and isotropic cosmology, the two-
point correlation function depends only on the magnitude
of the separation between the two points and is the Fourier
transform of the power spectrum:

�
Φ

�
x −

r
2

	
Φ

�
xþ r

2

	�
¼

Z
d3k
ð2πÞ3 PΦðkÞeik·r: ðB1Þ

A hemispherical power asymmetry (a dipole modulation)
cannot be described by allowing the power spectrum to be

anisotropic in the usual way, PðkÞ → Pð~kÞ. (Since the

fluctuations are real, the Fourier modes of ~k and −~k are
related, which forbids a dipole modulation. See, e.g., [82]).
Instead, if the amplitude of the coincident two-point
function hϕðxÞϕðxÞi varies spatially, we can likewise
introduce position dependence into the power spectrum,
PΦðkÞ → PΦðk;xÞ. Both even and odd multipole modu-
lations can now be incorporated.
This inhomogeneous power spectrum is well defined

for Fourier modes with wavelengths that are much smaller
than the length scale on which the power spectrum changes
because these modes have unambiguous and constant
wavelengths even if their amplitude varies spatially. In
contrast, a plane wave with an amplitude that varies sig-
nificantly within one wavelength does not have a well-
defined amplitude or wavelength. Therefore, PΦðk;xÞ is
only defined for wave numbers such that PΦðk;xÞ≃
PΦðk;xþ ð2π=k2ÞkÞ. On a similar note, defining

�
Φ

�
x −

r
2

	
Φ

�
xþ r

2

	�
≡

Z
d3k
ð2πÞ3 PΦðk;xÞeik·r ðB2Þ

only makes sense if PΦðk;xÞ≃ PΦðk;x� rÞ; otherwise, it
is futile to describe the two-point function hΦðx−
r=2ÞΦðxþ r=2Þi in terms of a single power spectrum.
In this appendix, we show that a spatially varying

power spectrum defined as in Eq. (B2) arises naturally
in non-Gaussian scenarios where short wavelength modes
are coupled to long wavelength modes. For example,
suppose the statistics in some large volume VL → ∞ are
described by the local ansatz in real space: ΦðxÞ ¼ ϕðxÞþ
fNLðϕðxÞ2 − hϕðxÞ2iÞ, where ϕ is a Gaussian random
field. Fourier modes of the non-Gaussian field are related
to those of the Gaussian field by

ΦðkÞ ¼ ϕðkÞ þ fNL

Z
d3q
ð2πÞ3 ½ϕðk − qÞϕðqÞ − hϕðk − qÞϕðqÞi�: ðB3Þ

The two-point correlation of the non-Gaussian field is
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�
Φ

�
x −

r
2

	
Φ

�
xþ r

2

	�
¼

Z
d3k
ð2πÞ3

Z
d3k0

ð2πÞ3 hΦðkÞΦðk
0Þieiðkþk0Þ·xeiðk−k0Þ·r

2;

¼
Z

d3k
ð2πÞ3 PϕðkÞeik·r þ fNL

Z
d3k
ð2πÞ3

Z
d3k0

ð2πÞ3 e
iðkþk0Þ·xeiðk−k0Þ·r

2

×

�Z
d3p
ð2πÞ3 hϕðk

0ÞϕðpÞϕðk − pÞi þ
Z

d3p0

ð2πÞ3 hϕðkÞϕðp
0Þϕðk0 − p0Þi

�
þOðf2NLP2

ϕÞ:

ðB4Þ

When we consider statistics entirely within an infinite
volume, the terms proportional to a single power of fNL
vanish because ϕ is a Gaussian field. In that case, the
power spectrum is corrected only by the last term (propor-
tional to f2NL), which is small when non-Gaussianity
is weak.
Now, suppose we instead consider the statistics in

a single subvolume. Each subvolume sits on top of a
single realization of modes with wavelengths the size
of the subvolume or larger. So, for example, if mode p

corresponds to a long wavelength mode while modes k and
k0 are well within the subvolume, then

hϕðk0ÞϕðkÞϕðpÞijsubvolume ¼ ϕðpÞhϕðk0ÞϕðkÞijsubvolume:

ðB5Þ
That is, ϕðpÞ takes a particular value in the subvolume,
while ϕðkÞ and ϕðk0Þ are still randomly distributed. Then,
taking Eq. (B4) and considering a Fourier mode ϕðpÞ to be
stochastic only if p ¼ jpj > kmin,

�
Φ

�
x −

r
2

	
Φ

�
xþ r

2

	�
subvolume

¼
Z
jkj>kmin

d3k
ð2πÞ3 e

ik·rPϕðkÞ

þ 2fNL

Z
d3k
ð2πÞ3 PϕðkÞeik·r

Z
jpj<kmin

d3p
ð2πÞ3 ϕðpÞ½e

ip·ðxþr=2Þ þ eip·ðx−r=2Þ�

þOðf2NLP2
ϕÞ; ðB6Þ

¼
Z
jkj>kmin

d3k
ð2πÞ3 e

ik·rPϕðkÞ
�
1þ 4fNL

Z
jpj<kmin

d3p
ð2πÞ3

�
ϕðpÞ cos

�
p · r
2

	�
eip·x

�
:

ðB7Þ

As discussed above, PΦðk;xÞ can be defined in terms of
the two-point function hΦðx − r=2ÞΦðxþ r=2Þi only if
PΦðk;xÞ≃ PΦðk;x� rÞ. In Eq. (B7), we see that the
spatial variation of the power spectrum arises from the
eip·x factor, which implies that PΦðk;xÞ will be nearly
constant on scales that are shorter than 1=jpj, i.e. scales that
are well within the subvolume. Therefore, we should
restrict the two-point function to separations such that
p · r ≪ 1, in which case the cosine term in Eq. (B7) is
approximately unity. Then Eq. (B2) implies that

PΦ;Sðk;xÞ≃ PϕðkÞ
�
1þ 4fNL

Z
d3kl

ð2πÞ3 e
ikl·xϕðklÞ

�
;

where the subscript l specifies that the integral is only over
long wavelength modes (k < kmin).
Expanding the factor eikl·x, we can see the effects of

nonzero long wavelength modes as a multipole expansion:

PΦ;SðkÞ ¼ PϕðkÞ
�
1þ fNLg00 þ fNL

X
M¼f−1;0.1g

g1MY1Mðn̂Þ

þ � � �
�
: ðB8Þ

The monopole shift is not observable, so we absorb it into
the coefficient to define the observed isotropic power
spectrum:

Pobs
Φ ðkÞ ¼ Pobs

ϕ ðkÞ
�
1þ

�
fNL

1þ fNLg00

	 X
M¼f−1;0.1g

g1MY1Mðn̂Þ

þ � � �
�
: ðB9Þ

Finally, the shift to the power spectrum also shifts the
observed value of fNL as defined from the local template
for the bispectrum:
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hΦSðk1ÞΦSðk2ÞΦSðk3Þi≡ ð2πÞ2δDðk1 þ k2 þ k3ÞBobsðk1; k2; k3Þ;
Blocal;obsðk1; k2; k3Þ ¼ 2fNL½1þ fNLg00�Pϕðk1ÞPϕðk2Þ þ sym;

≡ 2fobsNLP
obs
Φ ðk1ÞPobs

Φ ðk2Þ þ sym: ðB10Þ

Since Pobs
Φ ¼ Pϕ½1þ fNLg00� (considering only the iso-

tropic piece), the second and third lines imply that
fobsNL ¼ fNL=½1þ fNLg00�. Then, the expression for the
power spectrum, including the dipole asymmetry, is

Pobs
Φ ðkÞ ¼ Pobs

ϕ ðkÞ
�
1þ fobsNL

X
M¼f−1;0.1g

g1MY1Mðn̂Þ þ � � �
�
:

ðB11Þ

The superscript “obs” on fNL should also be taken to
indicate that the value does not contain the contribution cor-
responding to the Maldacena consistency relation for single
clock inflation [fNL ∝ ðns − 1Þ], which is unobservable [50].

Related useful works that derive estimators when the
primordial temperature field is modulated by an anisotropic
field include [83,84].

APPENDIX C: BIPOLAR SPHERICAL
HARMONICS

Many works quantifying the likelihood of the
power asymmetry make use of bipolar spherical harmonics
[85,86]. As an aid to that analysis, we repeat the calculation
of Appendix B, but for the alm. In the Sachs-Wolfe
approximation, the statistics of the observed CMB two-
point function are simply related to the two-point correla-
tion of the potential at the time of decoupling:

hal1m1
a�l2m2

i ¼ 1

9

Z
dΩ1Y�

l1m1
ðn̂1Þ

Z
d3k1

ð2πÞ3 e
ik1·n̂1x

Z
dΩ2Yl2m2

ðn̂2Þ
Z

d3k2

ð2πÞ3 e
−ik2·n̂2xhΦðk1ÞΦ�ðk2Þi; ðC1Þ

where x is the comoving distance to the last scattering surface. When the potential is non-Gaussian according to the local
ansatz, Eq. (B3), the statistics observed in a subvolume will depend on the realization of the long wavelength modes:

hal1m1
a�l2m2

isub−volume ¼
1

9

Z
dΩ1dΩ2Y�

l1m1
ðn̂1ÞYl2m2

ðn̂2Þ
�Z

jkj>kmin

Z
d3k1

ð2πÞ3 Pðk1Þe
ik1·n̂1xe−ik2·n̂2x

þ 2fNL

Z
jk1j>kmin

d3k1

ð2πÞ3 Pðk1Þ
Z
jpj<kmin

d3p
ð2πÞ3 ϕ

�ðpÞeik1·n̂1xe−iðk1þpÞ·n̂2x

þ2fNL

Z
jk2j>kmin

d3k2

ð2πÞ3 Pðk2Þ
Z
jpj<kmin

d3p
ð2πÞ3 ϕðpÞe

iðpþk2Þ·n̂1xe−ik2·n̂2x

�
;

¼ Clδl1l2δm1m2
þ 2fNLð4πÞð−1Þm1

X
L;M

ð−iÞL
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2l1 þ 1Þð2l2 þ 1Þ

4πð2Lþ 1Þ

s
Cl1l2L
−m1m2M

Cl1l2L
000

×

�
Cl1

Z
jpj<kmin

d3p
ð2πÞ3 ϕ

�ðpÞYLMðp̂Þ þ Cl2

Z
jpj<kmin

d3p
ð2πÞ3 ϕðpÞYLMðp̂Þ

�
: ðC2Þ

Here Cl is given by Eq. (30) as usual, and Cl1l2L
m1m2M

are the Clebsch-Gordon coefficients.

The standard notation for the bipolar spherical harmonic expansion is

hal1m1
a�l2m2

i ¼ Clδl1l2δm1m2
þ
X
LM

ð−1Þm1Cl1l2L
−m1m2M

ALM
l1l2

; ðC3Þ

so that the local model gives

ALM
l1l2

¼ 2fNLð4πÞð−iÞL
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2l1 þ 1Þð2l2 þ 1Þ

4πð2Lþ 1Þ

s
Cl1l2L
000

×

�
Cl1

Z
jpj<kmin

d3p
ð2πÞ3 ϕ

�ðpÞYLMðp̂Þ þ Cl2

Z
jpj<kmin

d3p
ð2πÞ3 ϕðpÞYLMðp̂Þ

�
: ðC4Þ
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APPENDIX D: NOTES ON NUMERICAL
REALIZATIONS

In Sec. III A, we used Gaussian and non-Gaussian
Sachs-Wolfe CMB maps to test some of our analytical
formulas. The generation of non-Gaussian CMBmaps for a
more realistic CMB sky has been described in [87,88].
Following [88], we can write the temperature multipole
moments as an integration over multipole moments of the
Bardeen potential as a function of comoving distance r:

alm ¼
Z

drr2ΦlmðrÞαlðrÞ; ðD1Þ

αlðrÞ ¼
2

π

Z
dkk2glðkÞjlðkrÞ; ðD2Þ

where glðkÞ is the transfer function of temperature in
momentum space. The process of generating non-
Gaussian CMB maps as detailed in [88], therefore, requires
generating non-Gaussian Φlm at different comoving dis-
tances ri, considering the covariance hΦl1m1

ðr1ÞΦl2m2
ðr2Þi

and numerically integrating over the comoving distance r.
For a Sachs-Wolfe universe, glðkÞ¼−jlðkrcmbÞ=3, and [89]

αlðrÞ ¼ −
2

3π

Z
∞

0

dkk2jlðkrcmbÞjlðkrÞ

¼ −
δDðr − rcmbÞ

3r2cmb

:

Using this, we obtain

alm ¼ −
1

3
ΦlmðrcmbÞ: ðD3Þ

Therefore, we can generate the local non-Gaussian CMB
Sachs-Wolfe temperature anisotropies simply using
Eq. (29). The maps used in our study were generated
using the HEALPIX software [90], with lmax ¼ 300 for the
input Cls and Nside ¼ 128 for map-making. With the
10000 Sachs-Wolfe simulated CMB maps for Gaussian
and non-Gaussian potentials, we can perform a number of
correlation tests in the Gaussian and non-Gaussian maps to
understand what generates the power asymmetry.
In Fig. 11, we show three plots to illustrate some useful

correlations among quantities in the simulated maps. In the
top panel of Fig. 11, we plot the directional power
asymmetry amplitudes Ai for the Gaussian maps fNL ¼
0 and non-Gaussian maps with fNL ¼ 500. The significant
correlation between fNL ¼ 0 and fNL ¼ 500 (with a
correlation coefficient ρ ¼ 0.5) is expected because both
maps contain approximately the same amount of power
asymmetry that comes from Gaussian cosmic variance.
The fNL ¼ 500 CMB skies contain additional power
asymmetry on top of the fNL ¼ 0 asymmetry. We have

checked that the correlation gets weaker for larger values
of fNL.
In the middle panel, we plot C1 (which we have used

to model the background dipole anisotropy in density

FIG. 11. Top panel: The relation between the Cl asymmetry in
three orthonormal directions for 1000 of our simulated Gaussian
maps (x axis) and the corresponding local non-Gaussian maps
with fNL ¼ 500 (y axis). We find a correlation coefficient of 0.5.
The correlation coefficient for the corresponding A values (not
shown) is 0.25.Middle panel: The correlation between the power
asymmetry amplitude and C1 for Gaussian maps (blue circles)
and non-Gaussian maps with fNL ¼ 500 (red stars). The corre-
lation for the Gaussian case is weak, while the correlation
coefficient of the power asymmetry amplitude with C1 in the
fNL ¼ 500 realizations is strong. This shows that the power
asymmetry due to non-Gaussianity also depends on the value of
C1, a measure of the background dipole anisotropy for each map.
Bottom panel: The power asymmetry amplitude A distribution
from Gaussian Sachs-Wolfe CMB maps (blue) and the corre-
sponding power asymmetry amplitude A distribution from non-
Gaussian maps (red histogram; the non-Gaussianity is of local
type with fNL ¼ 500) but withC1 ¼ 0. For comparison, the green
histogram shows the distribution of A with C1 present in the
Gaussian maps.
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fluctuations) against the dipole asymmetry amplitude A
measured in both Gaussian (fNL ¼ 0) and local non-
Gaussian (fNL ¼ 500) models. The C1 values remain
almost the same, with a correlation coefficient of 0.995;
this indicates that the contribution from theOðf2NLP2Þ term
to the power spectrum is small for fNL ¼ 500. We find that
the correlation between C1 and A for the Gaussian maps is
very weak (correlation coefficient ¼ 0.035) compared to
the correlation in the fNL ¼ 500 model (correlation
coefficient ¼ 0.685). This shows that the combination of

the background dipole anisotropy and non-Gaussianity is
responsible for the power asymmetry in the non-Gaussian
maps. To further test this notion, we also generated a set of
fNL ¼ 500 non-Gaussian maps in which C1 ¼ 0. As we
can see in the bottom panel of Fig. 11, we do not find a
significant increase in the power asymmetry distribution A
for fNL ¼ 500 with C1 ¼ 0, which provides further evi-
dence that the non-Gaussian power asymmetry is generated
by a mode coupling between a background dipole
anisotropy and the small-scale modes.
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