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We show that simple thermodynamic conditions determine, to a great extent, the equation of state and
dynamics of cosmic defects of arbitrary dimensionality. We use these conditions to provide a more direct
derivation of the velocity-dependent one-scale (VOS) model for the macroscopic dynamics of topological
defects of arbitrary dimensionality in a (N þ 1)-dimensional homogeneous and isotropic universe. We
parametrize the modifications to the VOS model associated with the interaction of the topological defects
with other fields, including, in particular, a new dynamical degree of freedom associated with the variation
of the mass per unit p-area of the defects, and we compute the corresponding scaling solutions. The
observational impact of this new dynamical degree of freedom is also briefly discussed.
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I. INTRODUCTION

The production of topological defects as remnants of
phase transitions in the early universe is expected in many
grand unified scenarios and string-theory inspired infla-
tionary models. In these models, a significant contribution
to the gravitational field—albeit subdominant, at least on
large cosmological scales—is causally seeded by defect
evolution on increasingly larger scales. Topological defects
may then generate specific signatures on a wide range of
cosmological observations. These include the cosmic
microwave background temperature and polarization
anisotropies [1–6], the stochastic gravitational wave back-
ground [7–14], small-scale structure formation [15–19] and
reionization [20–23], and gravitational lensing observa-
tions [24–27]. A quantitative forecast of the distinct
observational signatures associated with cosmic defects
requires a detailed understanding of the evolution of these
networks. Although this may be achieved, for specific
models, using high-resolution numerical simulations, semi-
analytical multiparameter frameworks are often more
flexible and informative.
Initial attempts to model the macroscopic dynamics of

defect networks [28–30] were focused on cosmic strings
and assumed that a single dynamical variable—the char-
acteristic length of the network—is sufficient to describe
their dynamics. A more sophisticated macroscopic model,
the velocity-dependent one-scale (VOS) model, which

incorporates the root-mean-squared (RMS) velocity of
the cosmic string network as a dynamical variable, was
later proposed in [31,32]. This model has been thoroughly
tested and calibrated using numerical simulations and later
extended to account for the dynamics of domain walls
[33,34]. More recently, a unified framework for the macro-
scopic evolution of featureless p-branes of arbitrary dimen-
sionality in (N þ 1)-dimensional homogeneous and
isotropic spacetimes (with N > p) was rigorously derived
in [35,36]. This unified paradigm provides a common tool
for describing defect dynamics in cosmology as well as in a
wide variety of other contexts (including condensed matter
[37] and biology [38]).
In this paper, we provide a unified thermodynamic

derivation of the VOS equations of motion for the macro-
scopic dynamics of cosmic defects, including the defect
mass per unit p-dimensional area as a new dynamical
degree of freedom. In Sec. II, we start by showing that the
VOS model for the evolution of a network of point
particles, interacting minimally with each other and with
other fields, may be derived using simple thermodynamic
conditions. In Sec. III, we extend the results of the previous
section to describe the dynamics of noninteracting feature-
less planar domain wall networks in (3þ 1) dimensions,
while assuming entropy conservation in a homogeneous
universe. In Sec. IV, we further generalize our results for a
network of topological defects of arbitrary dimensionality
in a (N þ 1)-dimensional homogeneous and isotropic
universe, incorporating the effect of friction and of a
new dynamical variable associated with the variation of
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the defect mass per unit p-dimensional area. After incor-
porating in the model the conventional curvature and
energy loss parameters, we compute the corresponding
scaling solutions. We then conclude in Sec. V.
Throughout this paper we use units such that c ¼ 1,

where c is the value of the speed of light in vacuum.

II. THE SIMPLEST CASE: NETWORK OF POINT
PARTICLES IN (3þ 1) DIMENSIONS

Let us start by considering the case of point particles (or
0-branes) in a (3þ 1)-dimensional Friedmann-Lemaitre-
Robertson-Walker (FLRW) universe, whose line element is
given by

ds2 ¼ dt2 − a2ðtÞdx · dx; ð1Þ

where a is the cosmological scale factor, t is the physical
time, and x is a three-dimensional vector whose compo-
nents are comoving coordinates. Note that Eq. (1) also
applies to FLRW universes of arbitrary dimensionality
N þ 1. However, in that case, x is a N-dimensional vector.

A. Linear momentum evolution: Thermodynamics

Consider a statistically homogeneous and isotropic
network of point particles moving with the same speed
v, while interacting minimally with each other and with all
other fields. Each particle then has an energy

E ¼ mγ; ð2Þ
where γ ≡ ð1 − v2Þ−1=2 is the Lorentz factor and m≡
mðv ¼ 0Þ is the rest mass of the particles. If one assumes
that the number of particles and particle mass are con-
served, the average particle energy density scales as

ρ̄ ∝ γa−3: ð3Þ
The average pressure of the network is given by

P̄ ¼ 1

3
ρ̄v2: ð4Þ

In a homogeneous and isotropic universe, which evolves
adiabatically, the first law of thermodynamics implies that

dU þ P̄dV ¼ 0; ð5Þ
where U ≡ ρ̄V is the internal energy and V ∝ a3 is the
physical volume. Equivalently, this implies that

_̄ρþ 3Hðρ̄þ P̄Þ ¼ 0; ð6Þ

where H ¼ _a=a is the Hubble parameter and a dot
represents a derivative with respect to the physical time.
One then finds, by substituting Eq. (4) into Eq. (6), that the
energy density of a network of point particles evolves as

_̄ρþHρ̄ð3þ v2Þ ¼ 0: ð7Þ
This equation, together with Eq. (3), allows us to obtain the
following equation of motion for the velocity of the
particles:

_vþHð1 − v2Þv ¼ 0; ð8Þ
which implies that the linear momentum of the particles is
conserved,

γv ∝ a−1: ð9Þ
The evolution of the linear momentum of a free particle in a
FLRW universe is, therefore, a direct consequence of the
adiabatic evolution of the background and of the first law of
thermodynamics.

B. Linear momentum evolution: Kinematics

The evolution of the linear momentum of free particles in
a homogeneous and isotropic universe is also a result of the
kinematic effect associated with the relative velocity
between comoving observers. Consider two comoving
observers O and O0 and assume that O0 is moving with
respect to O with relative speed δu along the positive
z-direction. Let us now consider a particle moving along
the positive z-direction with a speed v relative to O. The
velocity of this particle as measured by the observer O0 is
given by the relativistic velocity-addition formula

v0 ¼ v − δu
1 − vδu

: ð10Þ

If the two observers are infinitesimally close to each other,
then

δu ¼ du ¼ Hdr ¼ Hvdt; ð11Þ
where dr is the physical distance between the two observ-
ers at the time of the velocity measurements by the
observers O and O0 (made at the instants t and tþ dt,
respectively). Substituting Eq. (11) into Eq. (10), one
obtains

v0 ¼ v −Hvdt
1 −Hv2dt

¼ vþHvðv2 − 1Þdt; ð12Þ

up to first order in dt, which is equivalent to Eq. (8) (note
that du ¼ v0 − v).

C. VOS model

Let us now relax the assumption that all particles have
the same speed, and assume that the network is statistically
homogeneous and isotropic on large scales. In this case,
one may obtain an evolution equation for the RMS velocity
of the network v̄, by multiplying Eq. (8) by v and
performing an average. One then has
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_̄vþHð1 − v̄2Þv̄ ¼ 0; ð13Þ

where v̄2 ≡ hv2i, with

hv2i≡
P

v2i EiP
Ei

; ð14Þ

and the sum is performed over a very large number of
particles N with different energies Ei and speeds vi in a
large comoving volume of the universe. Note that we have
assumed, in the derivation of Eq. (13), that hv4i ¼ v̄4.
Although this relation is true in the ultrarelativistic limit, in
other regimes it underestimates the value of hv4i since

hv4i ¼ v̄4 þ hðv2 − v̄2Þ2i: ð15Þ

For the extreme case of a uniform distribution of v2 in the
interval ½0; 2v̄2�, it is straightforward to show that, in the
nonrelativistic regime,

hðv2 − v̄2Þ2i ¼ 1

3
v̄4; ð16Þ

and, therefore, this approximation is always fairly good.
Note also that in this regime hv4i is necessarily very small.
Moreover, one may obtain an evolution equation for the

characteristic length of the network L, usually defined as

ρ̄ ¼ m
L3

; ð17Þ

by averaging Eq. (7). This yields

_L −
�
1þ v̄2

3

�
HL ¼ 0: ð18Þ

Equations (13) and (18) constitute the VOS model for a
statistically homogeneous and isotropic network of free
point particles in a (3þ 1)-dimensional FLRW universe.

III. DOMAIN WALL NETWORK IN (3þ 1)
DIMENSIONS

In this section, we extend the results of the previous
section for networks of noninteracting featureless planar
domain walls (2-branes) in (3þ 1) dimensions, again using
simple thermodynamic conditions associated with energy
conservation in a homogeneous and isotropic universe.

A. Energy-momentum tensor

Consider a static planar domain wall oriented along the
z-direction. If one assumes that the domain wall is
featureless, the physical velocity must be perpendicular
to the plane of the wall. Consequently, the components of
the energy-momentum tensor must be invariant under
Lorentz boosts in any direction along the wall (we shall

assume that the local perturbations to the FLRW geometry
due to the domain walls can be neglected).
Under a Lorentz boost in the x-direction—defined by

Λ00
0 ¼ Λx0

x ¼ γ; Λ00
x ¼ Λx0

0 ¼ γv; ð19Þ

Λy0
y ¼ Λz0

z ¼ 1; ð20Þ

with all other components of Λμ0
ν vanishing—the compo-

nents of the energy-momentum tensor transform as

Tμ0ν0 ¼ Λμ0
α Λν0

β T
αβ: ð21Þ

Imposing that Tμ0ν0 ¼ Tμν, one finds that

T0x ¼ T0y ¼ T0z ¼ Txy ¼ Txz ¼ 0; ð22Þ

ρ≡ T00 ¼ −Txx: ð23Þ

By performing a Lorentz boost along the y-direction, one
obtains similar conditions to Eqs. (22) and (23) with x
replaced by y. Given the fact that the energy-momentum
tensor is symmetric, the only new conditions that emerge
are Tyz ¼ 0 and ρ≡ T00 ¼ −Tyy. These conditions imply
that all off-diagonal components of the energy-momentum
tensor of a static domain wall vanish.
Let us now consider a statistically homogeneous (but

anisotropic) static planar domain wall network wherein
domain walls are oriented along the same direction (say the
z-direction). Let us also assume an anisotropic expansion
along the x-direction (or y-direction) only, so that the
physical volume grows as V ∝ a. The first law of thermo-
dynamics implies that

dU þ P̄∥dV ¼ 0; ð24Þ

where P̄∥ is the weighted volume average of Txx (or Tyy),

P̄∥ ¼
R
dVTxxR
dV

¼
R
dVTyyR
dV

; ð25Þ

and U ¼ ρ̄V with

ρ̄ ¼
R
dVT00R
dV

: ð26Þ

Using Eq. (24), one may find the following evolution
equation for the average energy density of domain walls

_̄ρþHðρ̄þ P̄∥Þ ¼ 0; ð27Þ

in a background with anisotropic expansion along the x- or
y-direction. Since the distance between the domain walls
would remain unchanged by an expansion parallel to the
domain walls, the average density of the domain wall
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network would remain a constant. Therefore we should
have that P̄∥ ¼ −ρ̄. This is to be expected since we have
previously demonstrated that ρ≡ T00 ¼ −Txx ¼ −Tyy.
Consider now an anisotropic expansion along the z-

direction only. In this case, it follows from entropy
conservation that

dU þ P̄⊥dV ¼ 0; ð28Þ
where P̄⊥ is the weighted volume average of Tzz,

P̄⊥ ¼
R
dVTzzR
dV

: ð29Þ

In this situation, the distance between the domain walls
would increase proportionally to the scale factor.
Consequently, the average density of the domain wall
network would evolve as ρ̄ ∝ a−1, and thus P̄⊥ ¼ 0.
This condition is consistent with the one derived in [39]
(Tzz ¼ 0), assuming energy-momentum conservation, for a
single static planar domain wall.

B. Linear momentum evolution

Under a Lorentz boost with velocity v along the
z-direction, characterized by

Λ00
0 ¼ Λz0

z ¼ γ; Λ00
z ¼ Λz0

0 ¼ γv; ð30Þ

Λy0
y ¼ Λx0

x ¼ 1; ð31Þ

the diagonal components of the energy-momentum tensor
of a static planar domain wall oriented perpendicularly to
the z-direction become

T0000 ¼ γ2T00; ð32Þ

Tz0z0 ¼ v2γ2T00 ¼ v2T0000 ; ð33Þ

Tx0x0 ¼ Txx ¼ −T00 ¼ ðv2 − 1ÞT0000 ; ð34Þ

Ty0y0 ¼ Tyy ¼ −T00 ¼ ðv2 − 1ÞT0000 : ð35Þ
Let us again consider a statistically homogeneous (but

anisotropic) planar domain wall network with all domain
walls oriented along the z-direction and assume that all
domain walls move with the same speed v. Let us also
assume an homogeneous and isotropic expansion (here we
are implicitly neglecting the domain wall contribution to
the cosmic energy budget). The first law of thermodynam-
ics may, in this case, be written as

dU þ P̄∥
∂V
∂x dxþ P̄∥

∂V
∂y dyþ P̄⊥

∂V
∂z dz ¼ 0; ð36Þ

by separating the pressure contributions along each of the
spatial directions. Equation (36) implies that

_̄ρþHð3ρ̄þ 2P̄∥ þ P̄⊥Þ ¼ 0; ð37Þ

where P̄∥ ¼ ðv2 − 1Þρ̄ and P̄⊥ ¼ v2ρ̄ [as indicated by
Eqs. (32)–(35)]. Therefore, one has that

_̄ρþHρ̄ð1þ 3v2Þ ¼ 0: ð38Þ

If one assumes that the domain wall mass per unit area and
the number of walls are conserved, the average domain wall
energy density is given by

ρ̄ ∝ γa−1: ð39Þ

Using Eqs. (38) and (39), one obtains the following
evolution equation for the velocity of a domain wall:

_vþ 3Hð1 − v2Þv ¼ 0; ð40Þ

which in turn implies that

γv ∝ a−3: ð41Þ

The linear momentum of the domain walls in a fixed
comoving volume is therefore conserved. Unlike in the
case of the free particle, the evolution of the linear
momentum of planar domain walls is not a purely kin-
ematic effect. The dynamical stretching of the domain walls
due to the expansion of the universe causes a damping of
their velocity that is significantly stronger than the (purely
kinematic) damping experienced by point particles.

C. VOS model

Similar to the free particle case, the evolution equation of
the RMS velocity may be obtained by averaging Eq. (40). It
takes the form

_̄vþ 3Hð1 − v̄2Þv̄ ¼ 0: ð42Þ

The equation of state of a statistically homogeneous and
isotropic domain wall network can be obtained by perform-
ing a Lorentz boost to the energy-momentum tensor of a
single static planar domain wall and, then, averaging over
domain wall speeds and all possible orientations of the
domain walls [40]. The resulting equation-of-state param-
eter is given by

w≡ P̄
ρ̄
¼ −

2

3
þ v̄2: ð43Þ

This equation has two important limits: the ultrarelativistic
limit, with w ∼ 1=3, in which domain walls behave effec-
tively as radiation, and the nonrelativistic limit, with
w ∼ −2=3, in which the network has a negative average
pressure. Note that by substituting Eq. (43) into Eq. (6), one
would recover the weighted volume average of Eq. (38),
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_̄ρþHρ̄ð1þ 3v̄2Þ ¼ 0: ð44Þ
For a statistically homogeneous and isotropic network,

the characteristic length of the network is defined as

ρ̄ ¼ σ

L
; ð45Þ

where σ is the domain wall mass per unit area. One may use
Eqs. (44) and (45) to obtain the following equation for the
evolution of the characteristic length scale of a homo-
geneous and isotropic network of noninteracting planar
domain walls

_L − ð1þ 3v̄2ÞHL ¼ 0: ð46Þ
Notice that, except for the difference in the numeric

coefficients in the Hubble damping terms that results from
the fact that domain walls are extended objects and thus
stretched by expansion, the VOS equations for point
masses and domain walls have the same structure.

IV. p-BRANE NETWORKS IN (N þ 1) DIMENSIONS

In this section, we apply the method used in the previous
sections to the case of defects of arbitrary dimensionality p
in (N þ 1)-dimensional FLRW backgrounds. We then
provide a derivation of the generalized VOS model for
p-dimensional cosmic defect networks, including the
variation of the defect mass per unit p-dimensional area
as a new degree of freedom, and compute the correspond-
ing scaling solutions.

A. Energy-momentum tensor

Consider a static curvatureless p-dimensional topologi-
cal defect (or p-brane) in a (N þ 1)-dimensional homo-
geneous and isotropic spacetime, and let us assume that it is
oriented in such a way that the î ¼ 1;…; p spatial
directions are parallel to the brane and the ~i ¼
pþ 1;…; N spatial directions are perpendicular to it (the
p-brane is assumed to be planar along all the parallel î
directions). Let us also assume the defect is featureless, so
that the physical velocity is perpendicular to it (i.e., v only
has components along the perpendicular ~i directions).
The energy-momentum tensor of the p-brane should be

invariant under Lorentz boosts in the ĵ directions parallel to
the brane. Therefore, the only nondiagonal components of
the energy-momentum tensor that can be nonvanishing are
T~i ~j. On the other hand, the diagonal components should be
such that

ρ≡ T00 ¼ −Tî î: ð47Þ
In the particular case of point particles, we shall require that
the T0i components of the energy-momentum tensor are
equal to zero. Note, however, that this condition may not be

a good approximation in the case of fast rotating masses.
Note also that this requirement is automatically satisfied
for p ≥ 1.
Let us now consider a statistically homogeneous p-brane

network and assume that the p-branes are static, non-
interacting, and oriented along the same direction. As in the
case of domain walls, the distance between the p-branes is
unaffected by expansion along the parallel directions. This
implies that

P̄∥ ≡
R
dVTî îR
dV

¼ −ρ̄: ð48Þ

On the other hand, expansion along the perpendicular
directions dilutes the network. One then has that

P̄⊥ ≡
R
dVT~i ~iR
dV

¼ 0: ð49Þ

Note that Eq. (48) is also a direct consequence of Eq. (47).

B. Linear momentum evolution

If one performs a Lorentz boost with speed v along the ~j
direction, the diagonal components of the energy-momen-
tum tensor of a static curvatureless p-brane transform as

T0000 ¼ γ2T00; ð50Þ

T ~j0 ~j0 ¼ v2γ2T00 ¼ v2T0000 ; ð51Þ

T~i0~i0 ¼ T~i0~i0 ¼ 0; ð52Þ

Tî0 î0 ¼ Tî î ¼ ðv2 − 1ÞT0000 ; ð53Þ

for ~i ≠ ~j.
Let us again consider a homogeneous topological defect

network in an homogeneous and isotropic expanding
background, and assume that all the defects have the same
velocity along a fixed direction x~j. Again, we are implicitly
neglecting the p-brane contribution to the cosmic energy
budget. Note that, as indicated by Eqs. (50)–(53), the only
diagonal pressure component of the energy-momentum
tensor along the perpendicular directions is that along the
velocity direction x~j. All other components vanish.
Let us define P̄⊥� ¼ T ~j ~j and dx� ¼ dx~j. It follows from

the first law of thermodynamics and from entropy con-
servation in an adiabatically expanding background that

dU þ
�
pP̄∥

∂V
∂xî dx

î þ P̄⊥�
∂V
∂x� dx

�
�

¼ 0; ð54Þ

with U ¼ ρ̄V and V ∝ aN , and where P̄∥ ¼ ðv2 − 1Þρ̄ and
P̄⊥� ¼ v2ρ̄ [see Eqs. (50)–(53)]. Hence, one has that
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_̄ρþHðNρ̄þ pP̄∥ þ P̄⊥�Þ ¼ 0; ð55Þ

or, equivalently,

_̄ρþHρ̄½N − pþ ðpþ 1Þv2� ¼ 0: ð56Þ
Taking into account that the average p-brane energy
density scales as

ρ̄ ∝
σpγ

aD
ð57Þ

(where D ¼ N − p is the brane co-dimension) and sub-
stituting Eq. (57) into Eq. (55), one obtains

_vþ ðpþ 1ÞHð1 − v2Þv ¼ 0: ð58Þ
Therefore, the linear momentum of the p-branes in a fixed
comoving volume is conserved,

γv ∝ a−ðpþ1Þ: ð59Þ

Let us now relax the assumption that all the defects have
the same velocity. The characteristic length scale of a
p-brane network L is usually defined as

ρ̄ ¼ σp
LD ; ð60Þ

where σp is the defect mass per unit p-dimensional area.
The evolution equation for the characteristic length scale of
an homogeneous and isotropic network of noninteracting
p-branes may then be written as

_L −HL −
L

Dld
v̄2 ¼ 0; ð61Þ

where l−1
d ¼ ðpþ 1ÞH is the damping length scale.

Following the procedure described in the previous sections,
one may find the following evolution equation for the RMS
velocity of the p-brane network:

_̄vþ ð1 − v̄2Þ v̄
ld

¼ 0: ð62Þ

The frictional force caused by the interaction of the
topological defects with ultrarelativistic particles or other
frictional sources—characterized by a homogeneous fric-
tion length scale lf—may be included in the VOS
equations of motion [Eqs. (61) and (62)] by redefining
the damping length scale as l−1

d ¼ ðpþ 1ÞH þ l−1
f .

C. Topological defects with varying σp
Here, we shall consider a new dynamical degree of

freedom in the evolution of defect networks: σp. Although
the value of σp is usually assumed to be a constant when
considering a specific topological defect network, its
evolution may be coupled to that of a background scalar

field ϕ. Here, we shall assume the scalar field ϕ to be
homogeneous, thus neglecting fifth forces associated with
the gradients of the field and small-scale backreaction
effects [41]. In the absence of friction, conservation of the
linear momentum of a curvatureless p-brane with mass per
unit p-dimensional area σpðϕÞ implies that

σpγv ∝ a−ðpþ1Þ: ð63Þ
The equation of motion for the velocity of the p-brane is
thus of the form

_vþ ð1 − v2Þ v
ld

¼ 0; ð64Þ

with a modified damping scale

l−1
d ¼ ðpþ 1þ χÞH; ð65Þ

where we have introduced χ ¼ _σp=ðσpHÞ. The effect of
friction may also be included in the definition of χ by
rewriting it as

χ ¼ 1

H

�
_σp
σp

þ l−1
f

�
: ð66Þ

By averaging over all defect orientations and speeds, and
assuming statistical homogeneity and isotropy, one recov-
ers the macroscopic equation for the evolution of the RMS
velocity [Eq. (62)], but now with ld given by Eqs. (65)
and (66).
In order to compute an evolution equation for ρ̄, let us

again consider an homogeneous and isotropic network of
noninteracting curvatureless p-branes, wherein all branes
have the same speed v. In this case, the average density is
given by Eq. (57) and, consequently,

_̄ρ

ρ̄
−
_σp
σp

¼ _γ

γ
−D

_a
a
¼ −

v2

ld
−DH: ð67Þ

Relaxing the assumption that all the defects have the
same velocity, so that each defect has its own arbitrary
velocity, one recovers Eq. (61), with ld given by Eqs. (65)
and (66) [after averaging over all speeds and using the
definition of L in Eq. (60)]. Note that the energy transferred
from the scalar field to the p-brane network per unit of time
is given by

�
_̄ρ

ρ̄

�
ϕ

¼ _σp
σp

ð1 − v̄2Þ: ð68Þ

D. Generalized VOS model for p-brane
network evolution

According to the generalized VOS model for p-branes,
the cosmological evolution of a statistically homogeneous
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and isotropic p-brane network is described by the follow-
ing equations:

dv̄
dt

þ ð1 − v̄2Þ v̄
ld

¼ ð1 − v̄2Þ k
L
; ð69Þ

dL
dt

−HL −
L

Dld
v̄2 ¼ ~c

D
v̄; ð70Þ

where kðv̄Þ and ~c are the curvature and (phenomenological)
energy loss parameters, respectively. The curvature param-
eter kðv̄Þ, rigorously defined in [34,35], describes the
conversion of rest mass energy into kinetic energy (and
vice versa) by the network, thus describing the acceleration
of the p-branes due to their curvature. Note that Eqs. (69)
and (70) are identical to Eqs. (62) and (61), apart from the
curvature term on the right hand side of Eq. (69), and the
energy loss term associated with p-brane reconnection on
the right hand side of Eq. (70). Therefore, the simple
derivation based on thermodynamic considerations we have
considered here captures the essential aspects driving
topological defect dynamics.

E. Scaling regimes

The scaling regimes of p-brane networks in FLRW
backgrounds with constant σp have been studied in detail in
Refs. [34,35]. Note, however, that, if one allows for a time
variation of σp, the characteristics of these regimes may be
altered and their existence may depend on the specific
evolution of χ as a function of time. Here, we shall revisit
these regimes to determine the effect that allowing for the
coupling of σp to a background scalar field has on them.
Let us start by assuming that frictional forces are

negligible (i.e., lf ¼ þ∞) and by studying the different
scaling regimes that may arise throughout the cosmological
evolution of frictionless networks. In a FLRW universe
with a decelerating power-law expansion—a ∝ tβ with
0 ≤ β < 1—Eqs. (69) and (70) are known to admit linear
attractor solutions of the form

L ¼ ξt and v̄ ¼ const; ð71Þ
for χ ¼ 0. If one allows for a time variation of σp, solutions
of this kind are attainable only if χ is constant or,
equivalently, if σp is of the form σp ∝ aχ . In this case,
the linear scaling regime would be characterized by

ξ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi���� kðkþ ~cÞ
βð1 − βÞDðpþ 1þ χÞ

����
s

; ð72Þ

v̄ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð1 − βÞkD
βðkþ ~cÞðpþ 1þ χÞ

s
: ð73Þ

The effect of allowing for variations of σp of this form on
the value of the scaling coefficients is significant and

varied. For positive values, χ hinders defect growth, leading
to a larger number density of defects. Note, however, that
this effect does not seem to be dramatic enough to frustrate
the networks for reasonable values of χ. For negative values
of χ, variations of σp create an additional source of
acceleration of the branes, leading to the dilution of the
network. This scaling solution is not attainable for all
values of χ. Defect growth is necessarily constrained by
causality and, therefore, the characteristic length scale
should be smaller than the particle horizon at any given
time. Moreover, the RMS velocity must be smaller than
unity (v̄ < 1). These conditions prevent the attainment of
this regime for large negative values of χ. Note, however,
that a detailed study of the effect of time variations of σp on
the mean curvature and on the efficiency of the energy-loss
mechanism would be necessary to precisely quantify the
minimum value of χ.
If initially the characteristic length scale is sufficiently

large [with HL ≪ v̄2L=ðDldÞ and HL ≪ ~c v̄ =D], the
network may experience a transient regime during which
it is conformally stretched with

L ∝ a: ð74Þ

However, for a decelerating background expansion, HL is
necessarily a decreasing function of time. Therefore, the
energy loss caused by interactions between the defects
eventually plays a significant role in the dynamics, bringing
the regime to an end. Note, however, that this is no longer
necessarily true if the universe enters an inflationary stage,
with ä > 0.
Other scaling solutions are also possible. For instance, if

the p-branes are nonrelativistic and _̄v ≪ v̄=ld, the char-
acteristic velocity of the network is given by

v̄ ∝
ld

L
: ð75Þ

In this case, if ld ¼ const, the RMS velocity and the
characteristic length of the network will be inversely
proportional. This regime is particularly important in
various condensed matter and biological systems wherein
the network dynamics is curvature driven and the back-
ground expansion can be neglected [37,38].
Let us now consider the case in which friction plays a

relevant role in network dynamics. If the network density is
initially low, its characteristic length scale would be such
that L ≪ lf and, as a consequence, the network experi-
ences a stretching regime of the form of Eq. (74), during
which v̄ ¼ lf=L. However, as the network evolves, it
starts to experience a considerable energy loss due to self-
interaction HL ∼ ~c v̄ =D. As a result, p-brane network
experiences a different scaling regime—the Kibble
regime—characterized by
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L ∝

ffiffiffiffiffiffiffi
lf

jHj

s
; and v̄ ∝

ffiffiffiffiffiffiffiffiffiffiffiffi
lfjHj

q
: ð76Þ

Note that if, at the moment of formation of the branes, the
density of the network is high enough, the Kibble regime
may occur immediately.
The evolution of both v̄ and L in these friction-domi-

nated regimes is also sensitive to the variation of σp. The
interaction of p-branes with the ultrarelativistic particles in
a radiation fluid with density ρrad results in a friction length
lf ∝ σpλ

pþ1−N=ρrad, where λ is the typical wavelength of
the particles. Therefore, if σp varies with time, the evolution
of lf—which would otherwise scale as lf ∝ apþ2—is
linearly affected.
Therefore, the evolution of L and v̄ throughout cosmo-

logical history is sensitive to time variations of σp. Finally,
even for a fixed evolution of v̄ and L the average
topological defect energy density ρ̄ would vary propor-
tionally σp. Hence, a variation of σp with cosmic time is
expected to have a significant impact on the observational
signatures of cosmic defects, independently of their
dimensionality.

V. CONCLUSIONS

In this paper, we have shown that the equation of state
and some of the essential aspects of the dynamics of cosmic
defects of arbitrary dimensionality are determined by
simple thermodynamic conditions. We have taken advan-
tage of this fact to derive the dependence of the VOS model
for the macroscopic dynamics of topological defect net-
works in homogeneous and isotropic universes on the
dimensionality of the defects and on the number of space-
time dimensions. We incorporated a parametrization of the

changes to the VOS equations of motion associated with
the interaction of the defects with other fields, including, in
particular, a new dynamical degree of freedom associated
with the variation of the mass per unit p-area of the defects.
This approach provides a more direct and illuminating
derivation of the VOS equations of motion describing the
evolution of the RMS velocity and the characteristic
(macroscopic) length of the network. Moreover, it may
be useful for pedagogical purposes as a fairly intuitive way
of addressing the complex subject of defect evolution.
We have shown that both frictional effects as well as the

new dynamical degree of freedom associated with the
variation of the defect mass per unit p-area may signifi-
cantly affect the network dynamics and the corresponding
scaling solutions. Apart from the changes to the VOS
equations of motion (which can be incorporated in a
redefinition of the damping scale), a variation of the defect
mass per unit p-dimensional area has a direct impact on the
evolution of the network energy density. Therefore, such a
variation, if it occurs, is expected to leave observational
imprints, for instance, in the shape of the power spectra of
the cosmic microwave and stochastic gravitational wave
backgrounds generated by cosmic defects.
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