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Great attention is given to the first star formation and the epoch of reionization as main targets of planned
large radio interferometries (e.g. Square Kilometre Array). Recently, it is claimed that the supersonic
relative velocity between baryons and cold dark matter can suppress the abundance of first stars and impact
the cosmological reionization process. Therefore, in order to compare observed results with theoretical
predictions it is important to examine the effect of the supersonic relative motion on the small-scale
structure formation. In this paper, we investigate this effect on the nonlinear structure formation in the
context of the spherical collapse model in order to understand the fundamental physics in a simple
configuration. We show the evolution of the dark matter sphere with the relative velocity by both using
N-body simulations and numerically calculating the equation of motion for the dark matter mass shell. The
effects of the relative motion in the spherical collapse model appear as the delay of the collapse time of dark
matter halos and the decrease of the baryon mass fraction within the dark matter sphere. Based on these
results, we provide the fitting formula of the critical density contrast for collapses with the relative motion
effect and calculate the mass function of dark matter halos in the Press-Schechter formalism. As a result, the
relative velocity decreases the abundance of dark matter halos whose mass is smaller than 108M⊙=h.
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I. INTRODUCTION

The standard cosmological model, called the ΛCDM
model, composed with two relativistic species (photons
and neutrinos), two nonrelativistic matters (baryons and
dark matter), and the energy having negative pressure (dark
energy) with a nearly scale-invariant spectrum of curvature
perturbations, has achieved great success in explaining large-
scale cosmological observations, e.g., large-scale structure
formation [1] and cosmic microwave background [2].
The theoretical description of small-scale structure for-

mation is, however, still debatable. Understanding of small-
scale structure formation at high redshifts is essential to
study first stars and the epoch of reionization (EoR). One
expects redshifted 21 cm lines from the hyperfine structure
of hydrogen atoms as the powerful probe for the EoR
and first stars [3,4] and the matter density underlying HI
distribution constrains extended parameters of the ΛCDM
model [5–7]. Currently, to probe such small-scale structure
formation, there are many planed observations including
Murchison Widefield Array [8] and Square Kilometre
Array (SKA) [9]. Therefore, nowadays, the detailed studies
on small-scale structure formation at high redshifts attract a
lot of attention.
Recently, Ref. [10] reports the importance of the super-

sonic relative motion between dark matter and baryons on
small-scale structure formation related to the EoR. This

supersonic relative motion is originated from the difference
in the motions between baryons and dark matter before
recombination. Baryons before recombination are tightly
coupled with photons by Thomson scattering. As a result,
baryons and photons act as one fluid with the sound speed
∼c=

ffiffiffi
3

p
and have the velocity field associated with the

acoustic oscillation. On the other hand, dark matter does
not suffer from Thomson scattering and dark matter density
fluctuations can grow gravitationally. Therefore, the rela-
tive motion between baryons and dark matter is induced.
After recombination, baryons are fully decoupled with
photons and the sound speed of baryons quickly drops to
∼6 km=s. Since the root mean square of the relative
velocity reaches∼30 km=s at that time, the relative velocity
is about five times larger than the sound speed of baryons.
Because the relative motion is highly supersonic, the effect
on the structure formation could be significant. In particu-
lar, the abundance of small dark matter halos (M ≲ 107M⊙
is highly suppressed due to the supersonic relative motion.
This effect has been intensively studied by many authors
with N-body/smoothed particle hydrodynamics (SPH)
simulations [11–13]. Therefore, according to the effect
on the structure formation, the scenario of the cosmic
reionization and the prediction of the 21 cm line signals
from the EoR could be modified from those predicted in the
conventional cosmological model. The recent relevant
studies are reviewed in Ref. [14].
So far the effects of the relative motion on the structure
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mainly, because these effects are complicated. However, a
study with the analytical model is useful to obtain some
insights into physics involved in complicated phenomena.
Additionally the analysis of observation data with numeri-
cal simulations generally takes enormous time and, some-
times, it seems unrealistic. Therefore, modeling in a form
which is easy to handle in analytic studies is highly
required.
In the study on the structure formation, the halo mass

function is one of the interesting quantities. In particular,
the Press-Schechter formalism with the sphere collapse
model provides the mass function in the analytical form
which relatively agrees well with the results of N-body
simulations.
In this paper, we revisit the effect of the supersonic

relative motion on small-scale structure formation in the
context of the spherical collapse model by both N-body
simulations and a semianalytical way. The effect of the
relative motion on the spherical collapse can be represented
as the modification of the critical density contrast. We
propose a fitting formula of the critical density contrast, as a
function of the amplitude of the relative motion, the halo
mass and the initial density fluctuation within dark matter
halos. We also apply this fitting formula to evaluate the
mass function of small dark matter halos based on the
Press-Schechter formalism.
This paper is organized as follows. In Sec. II we review

the effect of supersonic relative motion on the perturbation
theory by taking into account the background velocity of
baryons and construct the spherical collapse model with
two components. In Sec. III we describe the setup of our
N-body simulation, and we show the results of the N-body
simulations and check the reproducibility of the spherical
collapse in Sec. IV. Moreover we present the change of
the collapse time by supersonic relative motion and the
validity of the semi-analytical model introduced in Sec. II.
Section V is devoted to the discussion of the relative motion
effect on dark matter halos. We discuss the modification of
the baryon fraction in a dark matter halo by the relative
motion, and, providing a fitting formula of the modified
collapse time (i.e. the critical density contrast for the
collapse). We show the suppression of the dark matter
halo abundance around the EoR as an application of our
results. Finally we summarize this paper in Sec. VI.

II. ANALYTICAL FORMALISM

In this section, we show the effect of the supersonic
relative motion between baryons and dark matter on the
linear perturbation theory, and evaluate this effect on the
nonlinear growth by adopting the spherical collapse model.

A. Perturbation theory

Since the supersonic relative motion between baryons
and dark matter has been analytically studied in the

moving-background perturbation theory (MBPT) [10],
we first make a brief review of the MBPT. The MBPT
introduces the background peculiar velocity which corre-
sponds to the relative velocity between baryons and dark
matter, i.e. ~vbg ¼ ~vbc. According to the energy momentum
conservation equation with homogeneous background
densities of baryons and dark matter, the evolution of
~vbc is in reverse proportion to the scale factor due to the
cosmic expansion.
In the MBPT, the first order energy momentum con-

servation equations after recombination are given by

dδc
dt

¼−θc;

dθc
dt

¼−
3H2

2
ðΩcδcþΩbδbÞ−2Hθc;

dδb
dt

¼−
i
a
~vbc · ~kδb−θb;

dθb
dt

¼−
i
a
~vbc · ~kθb−

3H2

2
ðΩcδcþΩbδbÞ−2Hθbþ

c2sk2

a2
δb;

ð1Þ

where cs is the sound velocity of the baryon fluid, the
subscripts c and b denote cold dark matter and baryons
respectively and θ ¼ ia−1∇ · ~v represents the divergence of
the peculiar velocity. In Eq. (1) we take the frame where the
background velocity of cold dark matter is absent. In other
words, ~vbgb ¼ ~vbc and ~vbgc ¼ 0. For simplicity, we ignore
perturbations of the sound velocity although they might
affect the growth of the density fluctuation on small scales
[15–17]. Equation (1) can be rewritten to the second order
differential equations of the density fluctuations as

d2δc
dt2

¼ − 2H
dδc
dt

þ 3H2

2
ðΩcδc þ ΩbδbÞ;

d2δb
dt2

¼ −
�
2H þ 2iμvbc

k
a

�
dδb
dt

þ 3H2

2
ðΩcδc þ ΩbδbÞ

− ðc2s þ μ2v2bcÞ
k2

a2
δb; ð2Þ

where μ ¼ ~vbc · ~k=j~vbc∥~kj.
Equation (2) tells us that the relative motion prevents the

growth of density fluctuations on small scales in the same
way of the fluid pressure in the discussion of the Jeans
instability. On large scales where the relative motion does
not have the preferred direction, while the odd term of μ in
the last equation of Eq. (2) vanishes by averaging over all
random directions of the relative motion, the third term
of the right-hand side is enhanced due to the existence of
the term with v2bc. As a result, the effective Jeans scale
(the suppression scale) of Eq. (2) becomes large due to the
existence of the relative velocity. Since the relative
velocity after recombination is roughly hv2bci1=2 ∼ 5cs,
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the suppression scale for the relative motion is
kbc ¼ aH=hv2bci1=2 ∼ 40 hMpc−1. The corresponding mass
scale for the suppression is Mbc ∼ 107M⊙=h.
However, when we consider a local sufficiently small

patch, the odd term of μ cannot vanish in the patch. Instead,
the relative motion in this patch can be assumed to be a
homogeneous flow with one direction. In this case, when
the relative velocity is larger than the Hubble flow,
μvbc > k=aH, the density fluctuations inside the patch
start to grow exponentially due to the relative motion flow
as shown in Eq. (2). The perturbation theory is not valid in
this case, and we need to consider the effect of the relative
velocity on the nonlinear growth, e.g., in the spherical
collapse model.

B. Spherical collapse model

The spherical collapse model is a simple analytical
model to investigate the nonlinear evolution of an over-
density region. In this model, the evolution of the over-
density region is described as the motion of the constant
density spheres. Let us consider the collapse of a mass shell
inside which the mass is M ¼ 4πx3i ρ̄ið1þ δiÞ=3, where xi
is the initial radius and δi is the initial density contrast
within the sphere with the radius xi (hereafter the subscript i
represents the initial time value). The equation of motion
(EoM) for the proper radius x of a shell is written as

d2x
dt2

¼ −
GM
x2

: ð3Þ

Equation (3) can be solved analytically, and the solution is
given by

~t ¼ t
ti
¼ 3

4
ffiffiffiffiffiffiffiffiffiffiffiffi
1þ δi

p
�
1 −

ðvi=HixiÞ2
1þ δi

�−3=2
ðθ − sin θÞ;

~x ¼ x
xi

¼ 1

2

�
1 −

ðvi=HixiÞ2
1þ δi

�−1
ð1 − cos θÞ; ð4Þ

where ti is the initial time and vi is the initial velocity. The
solution of Eq. (4) depends only on δi and vi. In order to
keep the constant mass dM=dt ¼ 0, we give the initial
velocity of the shells

vi ¼ Hixi

�
1 −

δi
3ð1þ δiÞ

�
; ð5Þ

where we assume the matter dominated era, t ∝ a3=2. The
first term represents the Hubble flow and the second term
corresponds to the peculiar velocity. According to Eq. (5),
the solution, Eq. (4) depends on only the initial density
fluctuation, δi. Furthermore, we can obtain the critical
density contrast that is the density contrast at the collapse
time θ ¼ 2π in the linear perturbation theory,

δcrit ¼
aðθ ¼ 2πÞ

ai
δi ¼

3

5

�
3

2
π

�
2=3

; ð6Þ

where we use the fact that the growth factor of the matter
density perturbation is proportional to the scale factor in the
matter dominated era.
Next we consider the effect of the homogeneous super-

sonic relative motion on the nonlinear evolution in the
spherical collapse model. A simple extension is to intro-
duce the two kinds of mass shells for dark matter and
baryons. Taking into account the supersonic relative
motion, the baryon mass shells have the initial bulk
velocity, because we take the frame where baryons have
the homogeneous relative flow to dark matter. As a result,
the collapsing of the baryon mass shells is not spherical and
these mass shells are collapsing to the different position
from the dark matter shells. However, the collapse of dark
matter precedes the one of the baryons in a halo formation
and we are interested in a baryon fraction within a collapsed
dark matter halo. Therefore, we focus on the dark matter
mass shell and, instead of following the evolution of the
baryon mass shells, we introduce the baryon mass within
the dark matter mass shell, Mb, and rewrite Eq. (3) to

d2xc
dt2

¼ −
GðMc;i þMbÞ

x2c
;

Mc;i ¼
4π

3
ρ̄c;ix3c;ið1þ δc;iÞ;

Mb ¼
4π

3
ρ̄bx3cð1þ δbÞ; ð7Þ

where Mc;i is the mass within the shell with the initial
radius at xc;i, xc is the radius of the mass shell with Mc;i at
each time, and Mb is the baryon mass in the dark matter
shell at the radius xc. As a shell collapses, the baryon mass
Mb inside the shell increases with the growth of δb, namely
the baryon collapsing. Although the density fluctuation of
baryons without the relative motion catches up soon with
that of dark matter, the relative motion prevents this
process. Therefore, the effect of the relative motion is
included through the evolution of Mb. However it is
difficult to evaluate analytically Mb with the relative
motion. Thus in order to compute Eq. (7), we adopt Mb
obtained from the N-body simulation in the following
section. We also compare the result based on the spherical
collapse model with that from the full N-body simulations
in the later section.

III. N-BODY SIMULATION

Besides the analytical way mentioned in the previous
section, we evaluate the effect of the supersonic motion
between dark matter and baryons on the structure formation
at high redshifts by using N-body simulations. In this
section, we describe the setup of our N-body simulations.
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We perform N-body simulations with the public code
Gadget-2 [18]. In all N-body simulations, the cosmological
parameters are set to ðΩm;ΩΛhÞ ¼ ð0.31; 0.69; 0.68Þ with
Ωb=Ωm ∼ 1=6. The effect of the supersonic relative motion
on the structure formation works after the decoupling
between photons and baryons. Therefore, the initial redshift
for the simulations is zi ¼ 1000. Note that our results
almost do not depend on the cosmological parameters
because we are interested in the structure formation in the
matter dominated era.
For the initial distribution of the particles, we consider

the spherical top-hat overdensity region in the isolated
system. The simulation box has the uniform distribution of
the particles with a uniform overdensity sphere. We set the
box size to LBox ¼ 200 kpc=h and the radius of the over-
density sphere to ri ¼ 50 kpc=h. Note that we denote
hereafter x as the proper distance and r as the comoving
distance. In the box, the number of the uniform particles
is 3 × 106 and the initial density contrast of dark matter
in the over-dense sphere is δc;i ¼ 0.033. Thus the mass of
particles is 2 × 102M⊙=h and the mass of dark matter
within the initial over-density sphere is given by
Mc ∼ 4 × 107M⊙=h. Moreover we set the softening param-
eter to ϵ ¼ 0.1 kpc=h. We confirm that changes in these
parameters do not affect our result qualitatively.
According to the cosmological perturbation theory, the

amplitude of baryon density fluctuations is 1% of that of
dark matter density fluctuations with k ¼ 100 Mpc−1 at
z ∼ 1000. The initial fluctuations of baryons are negligible
compared with those of dark matter at zi ¼ 1000.
Therefore, we assume that Ωb=Ωmð∼1=6Þ of the uniform
distributed particles is composed of baryons and there is no
baryon fluctuation in the overdensity sphere.
Figure 1 shows the initial configuration of the particles.

The red dots represent the particle uniformly distributed in
the box and the green dots are for the particles included in

the overdense sphere. Figure 2 shows the initial density
contrast of dark matter particles as a function of the radius
from the center. In this figure, the red points indicate the
values averaged over five realizations of our simulations
and the error bars represent the shot noise caused by the
finite particle number. The black line is the analytical
prediction from our initial condition. This figure tells us
that the density is constant in the top-hat sphere. Therefore
we can convert the initial position of mass shell to the mass
contained within each shell by using the relation
Mc;i ¼ 4πρ̄ð1þ δiÞx3i =3. We set the initial velocity of dark
matter given by only the second term of Eq. (5), because
N-body simulations are performed in the comoving
coordinate.
In order to take into account the supersonic relative

motion, we give the additional velocity to all baryons. The
correlation of the supersonic relative velocity has the
significant value on larger scale than scales of our interest
that are smaller than Mpc. Therefore, we assume that all
baryons in the simulations have the constant supersonic
relative velocity vbc in one direction. In other words, in the
simulation, the additional initial velocity for baryons is
represented as ~vb;i ¼ ðvbc; 0; 0Þ.
All terms related to the relative velocity in Eq. (2) are

proportional to kvbc. This fact suggests that the effect of
relative motion on the spherical collapse of dark matter
halos also depends on a factor vbck ∝ vbc=M

1=3
c . Thus,

instead of changing both the dark matter halo massMc and
the relative velocity vbc, we perform numerical simulations
for different relative velocities (5 km, 15 km, 30 km, 50 km,
100 km, 150 km, 200 km, 300 km, 500 km) with fixing
the dark matter halo mass Mc ∼ 4 × 107M⊙=h, in order to
evaluate the dependence of the effect of the relative velocity
on Mc and vbc.

FIG. 1. The initial configuration of the particles. The green
particles are contained within the top-hat sphere and the red
points are otherwise.

FIG. 2. The initial density contrast distribution of dark matter.
The red points are the values averaged five realizations and the
error bars show the shot noise caused by the number of particles
contained within mass shells. The black line is the analytical
prediction.
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In the simulations, we use the periodic boundary con-
dition. Therefore, when the relative velocity is higher than
200 km=s, baryon particles leaving the simulation box
along the direction of the relative velocity reenter the box
from the opposite direction due to the boundary condition.
In this case, the distribution of reentering baryons is no
longer homogeneous in the perpendicular direction to the
relative velocity and, resultantly, the dependence on the
boundary condition arises in the results. In order to remove
this dependence, we make the perpendicular positions of
baryons random when the baryon particles reenter the
simulation box.

IV. RESULT

In this section, we present the results of our N-body
simulations. First we show the result of the reference model
that is the case without the relative velocity. Figure 3 shows
the time evolutions of the radii of mass shells from the
center. In our simulation, we determined the center of the
collapsing shells by using the mean position of the particles
contained initially within the top-hat over-density sphere
at each time step. In this figure, the red line represents
the mass shell containing 0.6Mcðri ¼ 42 kpc=hÞ,
and the green and blue lines are for that containing
0.8Mcðri ¼ 46 kpc=hÞ and Mcðri ¼ 50 kpc=hÞ, respec-
tively. Additionally the black line corresponds to the
analytical solution of the spherical collapse model,
Eq. (4), with δm;i ¼ ðρ̄c;iδc;i þ ρ̄b;iδb;iÞ=ðρ̄c;i þ ρ̄b;iÞ ¼
0.028 and the velocity vi given by Eq. (5). Note that the
shell evolution of the spherical collapse model depends
on δm;i only. Therefore, in our initial condition where the
overdensity sphere has the homogeneous density profile,
the spherical collapse model predicts that all mass shells
inside the over-density sphere trace the black dashed line

and collapse at the same time, independently on the mass
contained by the mass shells.
The evolutions of radii of the mass shells from N-body

simulations agree with the analytic solution of the spherical
collapse model before the turnaround time when the radius
reaches the maximum. However, after the turnaround time,
the results from N-body simulations deviate from the
analytic solution. One of the reasons for this deviation is
that the particles cannot be concentrated on the infinitesi-
mal point in N-body simulations. Therefore, the particles in
the simulations begin to be relaxed with each other after the
turnaround time and the collapse is prevented. Furthermore
the shot noise induces the substructures inside the collaps-
ing sphere and the ejection of the particles from the mass
shells, and resultantly causes the dispersion of the collapse
time as discussed in Ref. [19]. These effects of relaxation
and shot noise lead the delay of the collapse and cause
the deviation from the analytical solution after the
turnaround time.
Figure 3 also shows that the outer mass shells collapse

later than the inner ones, although the theoretical spherical
collapse model claims that all mass shells collapse at the
same time. The reason is the effect of the periodic boundary
condition. In order to evaluate this effect simply, we
consider the motion of a particle along the x-axis direction
with the periodic boundary condition. Since we should take
into account the gravitational force from the overdensity
region in the other boxes due to the boundary condition, the
EoM, Eq. (3), along the x-axis is corrected to

d2 ~x
d~t2

¼ −
2ð1þ δiÞ

9~x2
þ
X∞
n¼1

�
2δi

9ðna ~B − ~xÞ2 −
2δi

9ðna ~Bþ ~xÞ2
�
;

ð8Þ

where ~B ¼ aiLBox=xi. When the position of the shell is
close to the center of the simulation box at the initial time,
~B becomes small and vice versa. Namely, the smaller ~B is,
the more efficient the boundary effect is. In our calculation,
the most outer shell that contains the mass Mc inside has
~B ¼ 4. The evolution for ~B ¼ 4 is plotted in the black
dashed line in Fig. 3.
Figure 4 shows the turnaround time (upper panel) and

the reference collapse time (lower panel) in the reference
model as functions of the initial radius of the mass shell.
Here, the turnaround time and the reference collapse time
are defined as the times when the radius of the mass shell
becomes maximum and minimum, respectively. In this
figure, the red points with the error bars represent the
averages and the standard errors obtained from the five
realizations of N-body simulations, and the black line
corresponds to the theoretical predictions in the spherical
collapse model. Moreover the dashed line shows the
turnaround time obtained from Eq. (8) which includes
the effect of the boundary condition. One can find that the

FIG. 3. The evolutions of radii of mass shells containing 0.6Mc
(red), 0.8Mc (green), and Mc (blue). The solid black line is the
analytical solution of spherical collapse model with δm;i ¼ 0.028.
The dashed black line is the analytical solution corrected in
consideration of the periodic boundary condition with ~B ¼ 4.
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turnaround time is consistent with the theoretical prediction
within ri ¼ 40 kpc=h. The one of the reasons why the outer
mass shells turn around later is the effect of the periodic
boundary condition discussed above. In the case where we
take the boundary condition into account, the turnaround
time matches the theoretical prediction within ri ¼
43 kpc=h that corresponds with M ¼ 0.65Mc. The differ-
ence between the turnaround time estimated from the outer
shells than ri ¼ 43 kpc=h and theoretical one is due to the
ejections of particles. As we have mentioned, the reference
collapse time in N-body simulations delays for all ri,
compared with the theoretical prediction. Additionally,
similarly to the turnaround time, the deviation becomes
large as ri increases.
Next we show how the supersonic relative motion affects

the collapse in N-body simulations. Performing five real-
izations for different vbc, we obtain the typical evolution of
mass shells by averaging each realization. Figure 5 repre-
sents the evolutions of the mass shells containing 0.6Mc
with four different supersonic relative velocities, vbc ¼
30 km=s (in red), vbc ¼ 50 km=s (in green), vbc ¼
100 km=s (in blue), and vbc ¼ 150 km=s (in magenta).
We can convert the results for different velocities with a
fixed mass into those for different masses with a fixed
velocity through the dependence of the relative velocity
effect on vbc=M

1=3
c as mentioned above.

For comparison, the corresponding evolution of the mass
shell with 0.6Mc in the reference model (vbc ¼ 0 km=s) is
plotted as the black solid line. As the relative velocity
becomes large, the start of the collapse delays and the
maximum radius increases. Therefore, we can conclude
that the supersonic relative motion prevents the collapse.
Additionally we show the solutions of Eq. (7) as the dashed
lines in Fig. 5. Solving Eq. (7) numerically, we use the

baryon fluctuation δb obtained from the particle data of the
N-body simulations within ri ≤ 42 kpc=h corresponding
to 0.6Mc. We find that the semianalytical model agrees
with the results of N-body simulations before the turn-
around time.
To illustrate the delay of the collapse due to the

supersonic relative motion we plot the turnaround time
and the reference collapse time in Fig. 6 for the different
supersonic relative velocities. In this figure, both the
turnaround and the reference collapse time are represented
as the functions of the initial radius of the mass shell. We
show additionally the turnaround times obtained from the
solutions of Eq. (7) as the dashed lines in the top panel of
Fig. 6. The evaluations of the turnaround time from the
semianalytical solutions are consistent with the turnaround
times fromN-body simulations within ri ∼ 40 kpc=h that is
same as the reference case. In the following discussions,
we use twice the turnaround time as the collapse time. In
this case, the scale factor at the collapse time is given
by acol ¼ ð2~ttaÞ2=3ai.

V. DISCUSSION

In this section, we show the baryon fraction within the
dark matter overdensity sphere. We also discuss the delay
of the collapse time and provide the fitting formula of the
critical density contrast with the relative motion between
dark matter and baryons. Furthermore we present the
modification of the halo mass function by taking account
of the relative motion.

A. Baryon fraction

First we consider the baryon fraction which represents
the mass ratio between baryons and total matter

FIG. 4. The turnaround time (upper panel) and the reference
collapse time (lower panel). The red points are the results of N-
body simulations with the standard error measured five realiza-
tions, and the black lines are the analytical predictions. In the
upper panel the shaded region shows the error caused from shot
noise shown in Fig. 2. The dashed line shows the prediction from
the solutions of Eq. (8) with ~B converted from ri.

FIG. 5. The evolutions of mass shell containing 0.6Mc with
supersonic relative velocities vbc ¼ 30 km (red), vbc ¼ 50 km
(green), vbc ¼ 100 km (blue), vbc ¼ 150 km=s (magenta) and
reference model (black). Each dashed line is the solution of
Eq. (7) with the baryon density fluctuation derived from N-body
simulations.
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(fb ¼ Mb=Mm) within the dark matter overdensity sphere.
The baryon fraction is important not only to estimate the
effect of the supersonic relative motion on the collapse of
dark matter spheres, but also to discuss the first star
formation or observables related with baryons. We calcu-
late the baryon fraction by counting baryon particles within
the dark matter collapsing overdensity sphere.
Figure 7 shows the time evolutions of the baryon

fraction. As the relative velocity increases, the baryon
fraction becomes smaller. In the case with the nonzero
relative velocity, the baryon overdensity region is no longer
spherically symmetric and the peak position of baryon
density is different from that of dark matter, depending on
the amplitude of the relative velocity. However, such
asymmetry of the baryon distribution does not affect the

dark matter collapse well. As shown in Fig. 5, the dark
matter collapse in the N-body simulations is consistent with
the spherical collapse model until the turnaround time.
Therefore, we can infer that, in spite of the asymmetric
distribution for baryons, the dark matter collapse remains
spherical. Around the reference collapse time of the dark
matter shells, the baryon fraction estimated within ri ¼
42 kpc=h starts to oscillate. This is mainly due to the
difference of the density peak positions between baryons
and dark matter. The baryon overdensity region is attracted
by that of dark matter gravitationally and oscillates around.
As time goes, the difference of the peak positions will be
relaxed and the peak position of baryons is expected to
overlap that of dark matter. Note that this result is based on
the spherical collapse model which is an ideal isolated
system. However, the actual collapse happens with many
surrounding effects as shown in cosmological simulations.
Therefore, to evaluate the baryon fraction properly, these
effects could be not negligible.

B. Delay of the halo formation

The supersonic relative motion delays the collapse time
of dark matter halos as shown in Fig. 6. In the spherical
collapse model without the relative velocity, the collapse
time is dependent on only the initial density fluctuation.
However, in the case of the nonzero relative velocity, the
collapse time depends on the halo mass Mc and the
amplitude of the relative velocity. Additionally, the effect
of the relative motion cumulatively becomes large for the
small initial density contrast, because the small initial
density contrast takes longer time to the collapse.
Therefore, the change of the collapse time with the relative
velocity is represented as a function of Mc, vbc and δc;i
We define the correction of the scale factor at the collapse
time related with the modification of the critical density
contrast, as

AðMc; vbc; δc;iÞ≡ acolðMc; vbc; δc;iÞ − a0ðδc;iÞ
a0ðδc;iÞ

; ð9Þ

where a0ðδc;iÞ is the scale factor at the collapse time
without the relative velocity between baryons and dark
matter.
Figure 8 shows the relative difference A as a function of

the relative velocity with a fixed massMc ∼ 4 × 107M⊙=h.
We plot A for different three initial density contrasts
estimated from the N-body simulations with our boundary
condition (shaded regions) or the usual periodic boundary
condition (dashed lines). We find that the effect of the
supersonic relative velocity is negligible for velocities
smaller than 50 km=s. The relative velocity is small so
that baryons are captured gravitationally by the dark matter
halo and accrete to the halo. Therefore, we can roughly
estimate the threshold velocity as the circular velocity of
the dark matter halo at the initial redshift,

FIG. 6. The turnaround time (upper panel) and the reference
collapse time (lower panel) as the function of the initial radius of
the mass shell with the supersonic relative velocity vbc ¼ 30 km
(red), vbc ¼ 50 km (green), vbc ¼ 100 km (blue), vbc ¼
150 km=s (magenta) and the reference model (black). In the
upper panel the dashed lines are the turnaround time estimated
from the solution of the semianalytical model.

FIG. 7. The baryon fractions within the dark matter overdensity
sphere whose initial radius are 50 kpc=h (solid lines) and
42 kpc=h (dashed lines). The arrows show the reference collapse
times.
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vcir ¼
ffiffiffiffiffiffiffiffiffiffi
GMc

xi

s
≃ 57

�
Mc

3.85 × 107M⊙

�
1=3

km=s: ð10Þ

This criterion can be also obtained from the condition that
the third term related to the relative velocity, μ2k2,
dominates in the right-hand side in the second equation
of Eq. (2). Therefore, when the relative velocity is larger
than the criterion velocity, the relative motion prevents the
collapse by the third term in Eq. (2). Similarly, when the
relative velocity is larger than vcir, the effect of the relative
motion on the structure formation arises. The upper
horizontal axis represents the corresponding mass in the
case of a fixed velocity vbc ¼ 30 km=s, which is converted
through the vbc=M

1=3
c -dependence of the relative motion

effect. Thus one can find that the supersonic relative motion
does not affect the formation of dark matter halos with mass
larger than Mc ≳ 107M⊙=h for vbc ¼ 30 km=s which
corresponds to the effective Jeans scale discussed in
Sec. II A.
In the N-body simulation results with the usual periodic

boundary condition, the modification becomes independent
of the amplitude of the relative velocity in the case with
vbc ≳ 200 km=s shown in Fig. 8. However this independ-
ence is due to the artificial condition of the simulations.
When vbc ≳ 200 km=s, all baryons can travel a distance
larger than the simulation box size LBox until ~t ∼ 100 and
are attracted gravitationally twice by the collapsing dark
matter sphere. Therefore, the effect of the relative velocity

seems to be saturated in this relative velocity region. On the
other hand, the results of the N-body simulations with our
boundary condition shown as the shaded region in Fig. 8
are not saturated. In order to verify the validity of the result
of our N-body simulations, we show the collapse time and
the baryon fraction in the limit of the large homogeneous
relative velocity. One can easily imagine that, when the
relative velocity is enough high (vbc ¼ 500 km=s),
which corresponds to very small dark matter halos
(Mc ∼ 104M⊙=h) in the case of vbc ¼ 30 km=s, baryons
do not collapse along the relative velocity direction. In this
limit, we can ignore the gravitational force from the dark
matter halo on the baryon motion along the relative velocity
direction. In other words, the gravitational collapsing of
baryons occurs perpendicular to the relative velocity
direction and does not along the parallel direction.
Therefore, to evaluate the evolution of the density fluctua-
tions, it is useful to consider the motion of baryons with the
relative velocity in the comoving cylindrical coordinate
system whose axis is parallel to the relative velocity
motion. In this case, the EoM of baryons particles with
the initial velocity ðvb∥; v⊥Þ ¼ ðvbc; 0Þ is given as

d2~rb
dt2

¼ −2H~vb −
GδMc

a3r3b
~rb;

δMc ¼
4

3
πρ̄c½r3c;ið1þ δc;iÞ − r3c�

× max½1; ðrb=rcÞ3�; ð11Þ

where rb is the radial component of ~rb from the center of
the dark matter sphere and rc is the radius of the over-
density sphere of dark matter. Note that we ignore the
gravitational force of the baryon fluctuation in Eq. (11),
because δMb ≪ δMc. We solve Eqs. (7) and (11) numeri-
cally with different initial positions ~rb;i chosen randomly.
We calculate the resultant baryon density contrast in a
collapsing spherical shell of dark matter by taking the
average of δb ¼ ðrbi⊥=rb⊥Þ2 − 1 for baryons inside the
shell of dark matter, because the collapse of baryons is
cylindrical.
Figure 9 shows the evolution of the baryon fractions with

Mc ∼ 4 × 107M⊙=h and vbc ¼ 500 km=s. The red solid
line represents the solution obtained with the periodic
boundary condition. In order to take into account the
periodic boundary condition, we solve Eqs. (7) and (11)
with the assumption that the position of baryons, ~rb, is
limited within the box size and baryons return into the box
from the opposite side when they exit from one side of the
box. For comparison, we also solve the equations without
the boundary condition and plot the solution in the blue
solid line. Baryons with the periodic boundary condition
feel gravitational force stronger than without the boundary
condition. Therefore, the collapse is faster with the boun-
dary condition than without the boundary condition.

FIG. 8. The relative time difference for the collapse as a
function of relative velocity vbc with the halo mass fixed toMc ∼
4 × 107M⊙=h and three initial density fluctuations δc;i ¼ 0.016
(black), δc;i ¼ 0.033 (rad), and δc;i ¼ 0.066 (blue) evaluated from
turnaround time. The shaded regions show the standard error
region from the N-body simulation. The solid lines are the fitting
formula Eq. (12). The dashed line are results from the N-body
simulations with the usual periodic boundary condition. The
upper horizontal axis shows the mass converted with
vbc ¼ 30 km=s.
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Moreover, in Fig. 9, we show the results from N-body
simulations. The red shaded region represents the standard
error region from the N-body simulations with the periodic
boundary condition, while the blue shaded region gives the
standard error region for the N-body simulations with our
boundary condition which is the periodic boundary con-
dition with the position shuffling of the baryon particles
reentering into the box. In Fig. 9, N-body simulations with
our boundary condition is consistent with the numerically
solution without the periodic boundary condition, while
N-body simulations with the periodic boundary condition
agrees with the solution with the periodic boundary
condition. We find that, in the both boundary condition
cases, the differences between the numerical solutions and
N-body simulations arise around ~t≃ 100. This is because,
as the collapse proceeds, the baryon density in the N-body
simulations grows as the spherical collapse rather than the
cylindrical one. Therefore, the baryon fraction is larger in
N-body simulations than in the numerical calculations.
In addition, we plot A as functions of the initial density

fluctuations δc;i with Mc ∼ 4 × 107M⊙=h and vbc ¼
500 km=s in Fig. 10. The red and blue solid lines are
obtained from the numerical calculations with and without
the periodic boundary condition, respectively. In the case
with the periodic boundary condition, we overestimate the
gravitational force to collapse as mentioned above and,
therefore, the delay of the collapse is not larger than in the
case without the boundary condition. For comparison, we
plot the black solid line which represents the results with
the assumption that baryons cannot collapse. The differ-
ence from the black solid line represents the contribution
due the collapse of the baryon component. When the
relative velocity is large enough, baryons cannot collapse
to the dark matter mass shell. Accordingly, as the relative

velocity becomes large, the blue solid line shifts to the
black line. We also plot the results of N-body simulations
with the periodic boundary condition and our boundary
condition as red and blue points with the standard error bars
in Fig. 10, respectively. As shown in Fig. 9, the numerical
calculation with the periodic boundary condition agrees
with N-body simulations with the periodic boundary
condition, while the numerical calculation without the
boundary condition is consistent with N-body simulations
with our boundary condition. We remind you that our
boundary condition is introduced to remove the artificial
distribution of the reentering baryon particles due to the
periodic boundary condition in N-body simulations. We
conclude that the saturation in A from N-body simulations
with the periodic boundary condition is caused by this
artifact. The results from N-body simulations with our
boundary condition present realistic phenomena.
Based on the results of our N-body simulations, we find

the fitting formula of A represented as the solid lines in
Fig. 8. The fitting formula is given by

AðMc; vbc; δc;iÞ ¼ Aδb¼0ðδc;iÞ
BνðMc; vbc; δc;iÞ

BνðMc; vbc; δc;iÞ þ 1
;

BðMc; vbc; δc;iÞ ¼
vbc

vnormðδc;iÞ
�

Mc

3.85 × 107M⊙=h

�
−1=3

;

vnormðδc;iÞ ¼ av − bvδc;i; ð12Þ

whereAδb¼0 is the solution of Eq. (7) with δb ¼ 0 shown in
Fig. 10, and ν, av and bv > 0 are the fitting parameters. The
velocity vnorm is the critical velocity for the collapse of
baryons along the direction of the relative velocity. When

FIG. 9. The baryon fractions within the dark matter halo
(ri ¼ 42 kpc=h) with Mc ∼ 4 × 107M⊙=h and vbc ¼ 500 km=s
and solution of Eqs. (7) and (11) with or without the periodic
boundary condition (red or blue line). The each color shaded
region show the 1σ dispersion of the baryon fractions estimated
from five realizations of N-body simulations. The vertical dashed
lines show the turnaround times from N-body simulations.

FIG. 10. The collapse time withMc ∼ 4 × 107M⊙=h and vbc ¼
500 km=s estimated by solving Eqs. (7) and (11) with boundary
condition (red) and without boundary condition (blue). The black
solid line is corresponded the solution of Eqs. (7) with δb ¼ 0 at
any time. Points represent estimations from N-body simulations
with vbc ¼ 500 km=s. The upper axis presents the collapse
time from Eq. (4) with the total matter density fluctuation
δm;i ¼ ρ̄cδc;i=ðρ̄c þ ρ̄bÞ.
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vbc ≫ vnorm, the relative velocity is much larger than vcirc
even at the collapse time and baryons does not collapse
along the direction of the relative velocity as mentioned
above. Since the collapse time becomes long with decreas-
ing δi and vbc is inversely proportional to the scale factor,
vnorm increases as δi decreases. Thus we conclude that the
delay is controlled by two critical velocity vcirc and vnorm.
Nevertheless it can be calculated numerically, we use the
approximated function of Aδb¼0,

Aδb¼0ðδc;iÞ ¼
δ−0.146c;i − 1.06

4.12 × δ0.648c;i þ 1.93
: ð13Þ

We estimate the parameters by fitting simultaneously
Eq. (12) to A with using three different initial density
fluctuations. Furthermore we perform a Fisher analysis and
obtain the parameters as

ν ¼ 2.02� 0.07; av ¼ 205� 16; bv ¼ 877� 253;

ð14Þ

where the standard errors are estimated after marginalizing
over other parameters. Since we sample the data for three
different initial conditions, the parameter bv has a large
error. However, we find that the form in Eq. (12) fits well
with the N-body simulation results.

C. Mass function

The delay of the halo formation due to the relative
velocity modifies the abundance of dark matter halos. In
this section, we evaluate the modification based on the
Press-Schechter formalism. In the Press-Schechter formal-
ism, the delay of the collapse is represented as the increase
of the critical density contrast. Using the relative time
difference A, we can write the modified critical density
contrast during the matter dominated era as

~δcritðMc; vbc; δc;iÞ ¼ δcrit½1þAðMc; vbc; δc;iÞ�: ð15Þ

The critical density contrast depends on the relative
velocity in the region where the collapses happens.
Therefore, the modified halo mass distribution can be
written with the probability distribution function of
the amplitude of the relative velocity at the initial time
fðvbcÞ as

~nðMc; zÞ ¼
Z

dvbcfðvbcÞ
ffiffiffi
2

π

r
ρ̄ðzÞ
Mc

~δcritðMc; vbc; δc;iÞ
σðMc; zÞ

×

�
d ln ~δcritðMc; vbc; δc;iÞ

dMc
−
d ln σðMc; zÞ

dMc

�

× exp

�
−
~δ2critðMc; vbc; δc;iÞ

2σ2ðMc; zÞ
�
: ð16Þ

Note that, because of the existence of the relative motion,
the redshift of the collapse time depends not only on the
initial density fluctuation of cold dark matter, but also on
the halo massMc and the amplitude of relative velocity vbc.
Therefore, in Eq. (16), the mass derivative term of the
critical density additionally arises because the mass
dependence of the critical density contrast affects the
hierarchical structure formation.
We assume that the probability distribution fðvbcÞ

follows the Maxwell-Boltzmann distribution because the
each component of relative velocity is independent and
obey the same Gaussian distribution whose mean value is
zero and the dispersion is σv;

fðvbcÞdvbc ¼ 4πv2bc

�
3

2πσ2v

�
3=2

exp

�
−
3v2bc
2σ2v

�
dvbc; ð17Þ

where we use σv ¼ 28.8 km=s according to the latest
cosmological parameters from PLANCK paper [20] and
we use CAMB [21] to calculate σðMc; zÞ.
Figure 11 shows the ratio between the mass function

with and without the relative velocity. Here we plot the ratio
at four different redshifts, z ¼ 10, 15, 20, and 30. These
lines are evaluated by using the fitting formula Eqs. (12)
for A in Eq. (15). The suppression of the mass function
due to the relative motion is more significant for
smaller masses region and at higher redshifts. At z ¼ 30,
although the modification A is very small around
107M⊙=h≲Mc ≲ 109M⊙=h, the suppression of the mass
function is not negligible. This is because such massive
halos at high redshifts are rare objects which satisfy ~δcrit ≫
σðMcÞ in the Press-Schechter formalism. Therefore, the
effect of the modification A appears exponentially in
the Press-Schechter formalism, even if A is small. The
ratio of the mass functions reaches the minimum at
Mc ∼ 105M⊙=h. On smaller scales than Mc ∼ 105M⊙=h,
the suppression of the mass function decreases because the

FIG. 11. The ratio of mass function of the dark matter halo
between with and without relative motion at four redshifts z ¼ 10
(red), z ¼ 15 (green), z ¼ 20 (blue), and z ¼ 30 (magenta).
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mass derivative term of the critical density in Eq. (16)
increases around Mc ∼ 105M⊙=h as shown in Fig. 8.
Figure 11 also shows that the mass function is sup-

pressed even around the EoR (z ∼ 10). This is because the
redshift dependence of the derivative terms in Eq. (16) is
weak. Although the suppression scales are consistent, the
suppression of mass function around EoR is stronger than
in other previous works. Especially Ref. [12] reported that
the suppression disappears at z ∼ 10 in their SPH simu-
lations. Of course, unlike the SPH simulations, we only
simulate the gravitational force, ignoring the baryon phys-
ics. However, it is worth mentioning reasons of the
difference between our calculation of the mass function
and previous work in term of the gravitational growth. The
first reason for this difference is that we do not include the
environmental effects of the structure formation, e.g., an
accretion of other density peaks of baryons neighboring the
dark matter halo. These effects increase the baryon fraction
within a dark matter halo and promotes the halo formation.
The second reason is that the relative motion produces
halos derived from offsetting baryon peaks [22]. This effect
increases simply the number of halos. It is difficult to
include this effect in the Press-Schechter formalism. We
will be able to estimate a number of halos originated from
the baryon peaks by applying the our simulations or our
semianalytical model of Eq. (7). Finally, the initial con-
dition for matter density and velocity fields is still debatable
in the numerical simulations with the relative velocity. In
our simulation, we use the initial condition that leads to the
maximum delay of the collapse time. Thus the halo mass
function in Fig. 11 is calculated on the basis of the
optimistic case where the baryons can escape most efficient
from the dark matter halo.

VI. SUMMARY

The relative motion between baryons and dark matter
plays an important role, particularly, in small-scale struc-
ture formation at high redshifts. We have studied their
effect on the dark mater halo formation.
We have evaluated the delay of the dark matter halo

collapse due to the supersonic relative motion by using the
cosmological N-body simulation. We have found that the
delay of the collapse becomes large for a dark matter halo
with Mc ∼ 4 × 107M⊙=h, when the relative velocity is
larger than vcir ¼ 57 km=s. In other words, the delay of the
collapse happens when the relative velocity is larger than
the typical circular velocity of the dark matter halo.
Moreover, we have shown that the supersonic relative
motion delays the fall of baryons into the potential well of
the dark matter halo in the context of the spherical collapse
model. We have also evaluated the baryon fractionMb=Mm

of the dark matter halos with the supersonic relative motion
by the N-body simulation. The baryon fraction becomes
smaller as the amplitude of the relative motion increases.
We have pointed out that, when the relative velocity is large
enough to escape from the potential of dark matter halos,
baryons can collapse only along the perpendicular direction
of the relative velocity, like the cylindrical collapse.
Furthermore we show the delay of the collapse time for
dark matter halo by the relative motion depends on the
initial density fluctuation within dark matter spheres, which
determines the collapse time of the dark matter halo without
relative motion. The smaller initial density fluctuation leads
to longer time during which the supersonic relative motions
affect the halo collapse. In consequence, the effect of the
relative motion is more efficient on dark matter halos
formed at later time.
Finally we have estimated the suppression of the

abundance of dark matter halos by supersonic relative
motion in the context of the spherical collapse model. In
the Press-Schechter formalism, the delay of the collapse
increases the critical density contrast for the collapse. We
have found the fitting formula of the critical density
contrast depending on the halo mass, the initial density
fluctuations, and the relative velocity. Using the fitting
formula, we have calculated the mass function of dark
matter halos. The relative motion decreases the mass
function with mass smaller than 108M⊙=h before EoR.
In particular, the abundance of halos with Mc ¼ 105M⊙=h
is suppressed by 80% at z ¼ 30 and a half at z ¼ 10.
The delay of the dark matter halo collapse and the

decrease of the baryon fraction in dark matter halos due to
the relative motion can give the effect on first star formation
and the reionization history [23–25]. Such effect could
impact the cosmological signals of the EoR including the
CMB polarization [26], the redshifted 21 cm lines [27,28]
and these cross-correlation [29]. Moreover, the relative
motion between dark matter and baryons influences the
large scale structure, e.g., baryon acoustic oscillation
[30–32], and there is the challenging work detecting this
effect by using the results of galaxy distribution from two
independent galaxy spectroscopic survey [33]. Based on
the results of this paper, we will investigate the effect of the
relative motion on the cosmological signals probed by
ongoing or planned observations.
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