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It was shown recently that, without jeopardizing the success of the Λ cold dark matter model on cosmic
scales, the modified Newtonian dynamics (MOND) can be derived as an emergent phenomenon when
axionlike dark matter particles condense into superfluid on the galactic scales. We propose in this paper a
Dirac-Born-Infeld (DBI) scalar field conformally coupled to the matter components. To maintain the
success of MOND phenomenon of dark matter superfluid on the galactic scales, the fifth force introduced
by the DBI scalar should be screened on the galactic scales. It turns out that the screening effect naturally
leads to a simple explanation for a longstanding puzzle that the MOND critical acceleration coincides
with present Hubble scale. This galactic coincidence problem is solved, provided that the screened
DBI scalar also plays the role of dark energy on the cosmic scales.
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I. INTRODUCTION

Recently, a novel theory of dark matter (DM) super-
fluidity [1,2] was proposed to combine the success of
modified Newtonian dynamics (MOND) [3–5] on galactic
scales with the triumph of the Λ cold dark matter (ΛCDM)
on cosmic scales. The MOND turns out to be an emergent
phenomenon of DM itself on galactic scales due to a
MOND-like force between baryons mediated by superfluid
phonons of the axionlike particles condensed as superfluid
with a coherence length of order the galactic size and a
critical temperature of order micro-Kelvin. The ΛCDM
model is eventually recovered beyond galactic scales when
the fraction of particles in the condensate decreases with
increasing temperature due to larger velocity dispersion
and hence larger DM temperature in galaxy clusters.
It was known as the galactic coincidence [6] that a

critical acceleration scale appears in various seemingly
unrelated Kepler-like laws of galactic dynamics, which
cannot be simply explained in a common way in the context
of the cold dark matter (CDM) scenario. However, MOND
predicts such a universal acceleration scale a0≈10−10m=s2,
which should intriguingly happen to be of order the present
Hubble scale H0 ∼ a0 or more boldly the cosmological
constant scale Λ4 ∼M2

Pla
2
0. Although MOND now emerges

from DM itself on galactic scales in the context of DM
superfluidity, the galactic coincidence still manifests itself
as an input parameter in order to fix other parameters
to their preferred values. It should be in any case striking
that the dark matter and dark energy sectors have such a
common scale even though it is currently unclear whether
it is just a coincidence or smoking gun for new physics.

It was also known as the cosmic coincidence that the
energy density used to account for the late-time cosmic
acceleration happens to be the same order of magnitude as
the matter components today. Alternative to the standard
cosmological constant scenario, one might as well consider
a slowly rolling scalar field known as dynamical dark
energy (DE) with proper screening mechanisms [7] to
hide the fifth force from the local tests of gravity. To at
least alleviate the cosmic coincidence, the energy density
in the scalar field should at least track [8,9] the background
energy density and then grow to dominate the energy
budget at late times. Either the screening mechanism
or tracking behavior can be realized if general inter-
actions between dark energy and matter components are
concerned.
In this paper, we propose a very simple explanation for

the galactic coincidence problem by conformally coupling
a Dirac-Born-Infeld (DBI) scalar field with local matter
components. To effectively screen the fifth force mediated
by the DBI scalar field from the MONDian force mediated
by DM superfluid phonons on galactic scales, the galactic
coincidence a0 ¼ Λ2=2gMPl ∼H0 is derived, provided that
the DBI characteristic scale Λ4 ∼M2

PlH
2
0 ∼ ðmeVÞ4 coin-

cides with current critical energy density for conformal
coupling g ∼Oð1Þ. This allows us to interpret the DBI
scalar field as a dynamical DE in the presence of a
conformal coupling term. The equation of state (EOS) of
our DBI dark energy mimics that of Chaplygin gas.
This paper is organized as follows. In Sec. II, we

review the DM superfluidity and define the MOND
transition scale. In Sec. III, we propose a DBI-like scalar
conformally coupled with the matter component to solve
the galactic coincidence problem. In Sec. IV, the possibility
of our DBI scalar playing the role of DE is explored. The
final section is devoted to conclusions and discussions.
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II. DARK MATTER SUPERFLUID

In the nonrelativistic regime, DM superfluid [1,2] is
effectively described by the MOND Lagrangian with a
conformal coupling term to baryons,

LMONDTb
¼ 2

3
Λð2mÞ3=2X

ffiffiffiffiffiffi
jXj

p
þ αΛθ

MPl
Tb; ð1Þ

where DM particlem is of order eV to ensure the formation
of Bose-Einstein condensation and the phonon excitation

X ¼ _θ −mΦ − ð ~∇θÞ2=2m is described by the Goldstone
boson θ for a spontaneously broken global Uð1Þ symmetry
under the external gravitational potential Φ. The dimen-
sionless parameter α and dimensionful parameter Λ can be
fixed later by inputting the MOND critical acceleration a0
in order to reproduce the MONDian profile. For static
spherically symmetric profile θ ¼ μtþ φðrÞ at constant
chemical potential μ and baryons distribution Tb ¼ −ρbðrÞ,
the equation of motion (EOM)

1

r2
∂
∂r ðr

2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2mjXj

p
φ0ðrÞÞ ¼ αρbðrÞ

2MPl
ð2Þ

can be integrated for the X < 0 branch to obtain

φ0ðrÞ≃
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
αMbðrÞ
8πMPlr2

s
≡ ffiffiffi

κ
p ð3Þ

for κ ≫ μ −mΦ with MbðrÞ≡ 4π
R
r
0 r

02dr0ρbðr0Þ, which
admits a MONDian acceleration,

aφ ¼ α
Λ
MPl

φ0 ≃
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α3Λ2

MPl

GMbðrÞ
r2

s
; ð4Þ

if one identifies

α3Λ2

MPl
≡ a0; ð5Þ

hence α ∼Oð1Þ for Λ ∼meV.
The general picture of DM superfluidity is that the DM

halo core where galaxies are located is almost entirely
condensed and the dynamics is dominated by the
MONDian force mediated by the DM superfluid phonons,
whereas galaxy clusters are either in a mixed phase or
entirely in the normal phase just as those on cosmic scales.
Therefore, it is natural to define a MONDian transition
radius

rMOND ¼
ffiffiffiffiffiffiffiffi
MG
a0

s
ð6Þ

in the context of the DM superfluid core with core radius
rMOND containing the total mass of M. To see that this is a
reasonable definition, consider a DM halo with central
density ρ0 ∼Mr0=r

3
0 and core radius r0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Mr0G=a0

p
; one

obtains a constant surface density ρ0r0 ∼Mr0=r
2
0 ∼ a0=G

independent of galaxy luminosity found recently by
several astrophysical observations [10–13]. One can even
reproduce a sort of baryonic Tully-Fisher relation [14–16]
Mr0 ∼ ρ0r30 ∼ ða0=GÞr20 ∼ v4=Ga0 by using ρ0r0 ∼ a0=G
and a0 ∼ v2=r0. The MONDian transition radius thus
serves as a natural separation between the MOND regime
r < r0 with aN < a0 and the Newtonian regime r > r0 with
aN > a0 where aN ¼ GMr=r2.

III. DBIONIC SCREENING

The action of the scalar field we propose in this paper has
the form

SDBITm
¼
Z

d4x
ffiffiffiffiffiffi
−f

p �
−Λ4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − Λ−4ð∂ϕÞ2

q �

þ
Z

d4x
ffiffiffiffiffiffi
−f

p gϕ
MPl

Tm; ð7Þ

which will be referred to as the DBITm action for short. It
should be kept in mind that the same symbol Λ used in our
action (7) has nothing to do with that in the action (1),
although they actually coincide as we will see later. Here, f
is the determinant of the Friedmann-Robertson-Walker
(FRW) metric of a 3-brane moving in a five-dimensional
Minkowski space with two time dimensions,

ds25 ¼ −dw2 þ fμνdxμdxν: ð8Þ
Here, the Gaussian normal transverse coordinate wðxÞ ¼
Λ−2ϕðxÞ is written in terms of the DBI scalar field ϕðxÞ.
The first term in DBITm action (7) can thus be interpreted
as a cosmological constant term,

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p ð−Λ4Þ ¼
Z

d4x
ffiffiffiffiffiffi
−f

p
ð−Λ4γ−1Þ; ð9Þ

in terms of the induced metric gμν ¼ fμν − Λ−4∂μϕ∂νϕ
on the brane, and the inverse of the induced metric
is just gμν ¼ fμν þ Λ−4γ2∂μϕ∂νϕ with an abbreviation
γ ≡ 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − Λ−4ð∂ϕÞ2p

.
The first term in (7) differs from the standard DBI action

SDBI ¼
Z

d4x
ffiffiffiffiffiffi
−f

p �
−Λ4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ Λ−4ð∂ϕÞ2

q �
ð10Þ

by a flipped sign in front of the derivative term, which as we
will see is essential for the so-called DBIonic screening
mechanism [17]. It is worth noting that the first term in (7)
also differs from

SDBIonic ¼
Z

d4x
ffiffiffiffiffiffi
−f

p �
Λ4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − Λ−4ð∂ϕÞ2

q �
ð11Þ

in standard DBIonic screening by an overall sign of the
action, which as we will see is also essential for the scalar
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field to mediate a repulsive fifth force and to drive the late-
time acceleration. The second term in the DBITm action (7)
describes a conformal coupling of the DBI scalar with the
trace of the energy-momentum tensor of background matter
fields with strength g ∼Oð1Þ from the stringy perspective.
Suppose the DBI scalar field ϕðrÞ with a static and

spherically symmetric profile is coupled to a static local
source Tm ¼ −ρmðrÞ; then, the EOM

1

r2
∂
∂r
�

r2ϕ0ðrÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − Λ−4ϕ0ðrÞ2

p �
¼ −

g
MPl

ρmðrÞ ð12Þ

can be integrated to give

ϕ0ðrÞ ¼ −
Λ2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ ð r
rDBI

Þ4
q ; ð13Þ

where a DBI transition radius [17]

rDBI ¼
1

Λ

�
gM

4πMPl

�
1=2

ð14Þ

is introduced to separate the DBI regime r ≫ rDBI with
repulsive force

~aϕ ¼ −
g

MPl
ϕ0ðrÞr̂≃ 2g2G

M
r2

r̂ ¼ −2g2~aN ð15Þ

from the Newtonian regime r ≪ rDBI with screened force

~aϕ ¼ −
g

MPl
ϕ0ðrÞr̂≃ −2g2

�
r

rDBI

�
2

~aN: ð16Þ

To retain the success of the MOND phenomenon of DM
superfluidity on galactic scales, the DBI force should also
be screened from the MOND force on the galactic scale,
which renders an identification of the DBI transition radius
(14) with the MOND transition radius (6),

r2DBI ¼
1

Λ2

gM
4πMPl

⇔r2MOND ¼ MG
a0

: ð17Þ

Therefore, the galactic coincidence

a0 ¼
Λ2

2gMPl
≃H0 ð18Þ

is derived, provided that

Λ4 ≃M2
PlH

2
0 ≃ ðmeVÞ4 ð19Þ

for a conformal coupling g of order unity. It turns out as a
nice surprise that Λ4 coincides with current critical energy
density and Λ in the DBITm action (7) matches that in the
MONDTb action (1). This is why we use the same symbol
for the scale Λ in both actions (1) and (7), which shares the
same scale with the cosmological constant.

IV. DBI DARK ENERGY

The repulsive feature of the DBI force and the unex-
pected match of Λ4 with the current critical energy density
inspire us to explore the possibility of our DBI scalar field
playing the role of dark energy.
We start with the total Lagrangianffiffiffiffiffiffi

−f
p

L ¼
ffiffiffiffiffiffi
−f

p
Lϕ þ

ffiffiffiffiffiffi
−f

p
LϕT þ

ffiffiffiffiffiffi
−f

p
Lm; ð20Þ

where

Lϕ ¼ −Λ4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − Λ−4ð∂ϕÞ2

q
; ð21Þ

LϕT ¼ gϕ
MPl

Tm; ð22Þ

Lm ¼ Lmðfμν;ψÞ: ð23Þ

A. Backreaction on matter

In the absence of the conformal coupling term, the matter
component is supposed to behave as a pressureless fluid
with the trace Tm ¼ −ρm of the energy-momentum tensor
Tm
μν ¼ ð2= ffiffiffiffiffiffi

−f
p Þδð ffiffiffiffiffiffi

−f
p

LmÞ=δfμν. In the presence of the
conformal coupling term, the matter field could exchange
momentum by interacting with the DBI scalar field.
Therefore, the conformal coupling term would necessarily
introduce an effective pressure in the matter fluid, and
the effective EOS parameter of matter could in principle
deviate from zero. We will show below that such a
deviation from pressureless fluid can be made arbitrarily
small for a sub-Planckian DBI scalar.
The EOM of the DBI scalar field for a spatial homog-

enous profile ϕðtÞ is simply

ϕ̈þ 3H _ϕγ−2 þ gTm

MPlγ
3
¼ 0; ð24Þ

according to the Euler-Lagrange equation

∂ð ffiffiffiffiffiffi
−f

p
Lϕ þ

ffiffiffiffiffiffi
−f

p
LϕTÞ

∂ϕ ¼ ∂μ
∂ð ffiffiffiffiffiffi

−f
p

Lϕ þ
ffiffiffiffiffiffi
−f

p
LϕTÞ

∂ð∂μϕÞ
:

ð25Þ
In the absence of the conformal coupling term, the

energy-momentum tensor of the DBI scalar field can be
computed as

Tϕ
μν ¼ fμνLϕ −

∂Lϕ

∂ð∂μϕÞ ∂νϕ; ð26Þ

with its energy density and pressure of the form

ρϕ ¼ Λ4γ ð27Þ
pϕ ¼ −Λ4γ−1: ð28Þ
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In the presence of the conformal coupling term, the
conservation equation of the above energy-momentum
tensor should be written as

∇μTϕ
μν ¼ −

gTm

MPl
∂νϕ; ð29Þ

where the temporal component of the above equation reads

_ρϕ þ 3Hðρϕ þ pϕÞ ¼ −
gρm
MPl

_ϕ; ð30Þ

which is consistent with the EOM (24).
In the absence of the conformal coupling term, the EOM

(24) has a trivial solution _ϕ ¼ 0, and the EOS parameter

wϕ ¼ pϕ

ρϕ
¼ −γ−2 ≡ −1 − Λ−4 _ϕ2 ð31Þ

would simply imply a cosmological constant with
wϕ ¼ −1. In the presence of the conformal coupling term,

the EOM (24) cannot admit such a trivial solution _ϕ ¼ 0
unless ϕ is always equal to zero, which is of less physical
interest. Therefore, our DBI scalar should generally behave
as a dynamical Chaplygin gas [18] pϕ ¼ −Λ8=ρϕ with
phantomlike EOS parameter and superluminal sound speed
[19] c2s ¼ _p=_ρ ¼ γ−2, where the closed timelike curves
are argued to be evaded within the regime of validity of
the effective field theory (EFT) due to chronology protec-
tion [20,21]. With slow-roll condition _ϕ ≪ Λ2, our DBI
scalar could serve as a candidate for the DE sector. We will
show below that such a slow-roll condition can be satisfied
for a sub-Planckian DBI scalar as well.
To derive the conservation equation for the matter

component, we start with an alternative definition of the
energy-momentum tensor for the DBI scalar,

TϕþϕT
μν ¼ fμνðLϕ þ LϕTÞ −

∂ðLϕ þ LϕTÞ
∂ð∂μϕÞ ∂νϕ; ð32Þ

with its energy density and pressure of the form

ρϕT ¼ Λ4γ þ gϕ
MPl

ρm; ð33Þ

pϕT ¼ −Λ4γ−1 −
gϕ
MPl

ρm: ð34Þ

In the presence of the conformal coupling term, the
conservation equation of the above energy-momentum
tensor should be written as

∇μTϕþϕT
μν ¼ gϕ

MPl
∂νTm; ð35Þ

where the temporal component of the above equation reads

_ρϕT þ 3HðρϕT þ pϕTÞ ¼
gϕ
MPl

_ρm; ð36Þ

which is also consistent with the EOM (24).

Since the total energy-momentum tensor is conserved,
the conservation equation of the energy-momentum tensor
of the matter component is thus

∇μTm
μν ¼ −

gϕ
MPl

∂νTm; ð37Þ

where the temporal component of the above equation reads

_ρm þ 3Hρm ¼ −
gϕ
MPl

_ρm: ð38Þ

The source term on the right-hand side of the above
equation can be accounted for by recognizing the effective
EOS parameter of the matter component as

wm ¼ 1

1þ gϕ
MPl

− 1: ð39Þ

Therefore, the backreaction of the DBI field on the matter
component due to the conformal coupling term can be
safely neglected in the field region ϕ ≪ MPl of the DBI
scalar for conformal coupling of order unity. From now on,
we will take a fiducial value g ¼ 1 for the conformal
coupling in order to solve the galactic coincidence problem.

B. Steady flow assumption

In the rest of this section, we will work with the
assumption, called the steady flow assumption, that the
energy flow from the DBI scalar to the matter component
is conserved. We define the energy flow as the energy-
momentum tensor associated with the conformal coupling
term

TϕT
μν ¼ TϕþϕT

μν − Tϕ
μν ¼ fμνLϕT ; ð40Þ

then, steady flow assumption is expressed as

∇μTϕT
μν ¼ g

MPl
∂νðϕTmÞ ¼ 0; ð41Þ

where the temporal component of the above equation reads

_ϕρm þ ϕ_ρm ¼ 0: ð42Þ
The steady flow assumption simply states that, although the
energy-momentum tensors of the DBI field and matter field
are not separately conserved as indicated in Eqs. (29) and
(37), there is no loss during the energy transfer from the
DBI scalar to the matter component and the total energy-
momentum tensor of the DBI field and the matter field is
conserved, namely, ∇μTϕ

μν þ∇μTm
μν ¼ −∇μTϕT

μν ¼ 0. We
will justify numerically the steady flow assumption below.
With the steady flow assumption, one can solve the DBI

field

ϕðaÞ ¼ MPl

g
W

�
gϕ0

MPl
e

gϕ0
MPl

�
a
a0

�
3
�

ð43Þ
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analytically by combining Eq. (38) with Eq. (42),
where ϕ0 ≡ ϕða ¼ a0Þ with present-day scale factor
a0 ≡ 1 and WðzÞ is the Lambert W function defined by
z ¼ WðzÞ exp½WðzÞ�. Hence, the evolution equation (38) of
the matter component can be directly integrated to give

ρmðaÞ ¼ ρm0 exp

 
−3
Z

a

a0

d ln a0

1þWðgϕ0

MPl
e

gϕ0
MPlða0a0Þ

3Þ

!
: ð44Þ

The evolutions of DBI field, the effective EOS parameter
of matter component, the matter energy density, and the
conformal coupling term are presented in Fig. 1 The
backreaction of the DBI field on the matter component
is negligible during the matter dominated era as long as a
sub-Planckian field value for the DBI field at present is
specified. However, the effective EOS parameter of the
matter component will eventually approach −1 in the
future, causing an unavoidable vacuum decay to matter,
saving us from big rip singularity as we will see. The steady
flow assumption is justified by a constant conformal coup-
ling term. At small scale factor a ≪ 1, the evolution of the
Lambert W function Wða3Þ ∼ a3 compensates the evolu-
tion of the matter component ρm ∼ a−3 to render a constant
conformal coupling term ϕTm ∼Wða3Þρm ∼ const. At a
large scale factor, the constant nature of the conformal
coupling term is nontrivial.

The evolution of the energy density of the DBI field can
be solved numerically by rewriting Eq. (30) as

ρ0ϕðaÞ þ
3

a

�
ρϕðaÞ −

Λ8

ρϕðaÞ
�

¼ −
gρmðaÞ
MPl

ϕ0ðaÞ: ð45Þ

With numerical solution ρϕðaÞ, one can evaluate all other
quantities like

wϕðaÞ ¼ −ðΛ−4ρϕðaÞÞ−2; ð46Þ

weff
ϕ ðaÞ ¼ wϕðaÞ þ

ga
3MPl

ϕ0ðaÞ ρmðaÞ
ρϕðaÞ

; ð47Þ

ρϕTðaÞ ¼ ρϕðaÞ þ
g

MPl
ϕðaÞρmðaÞ; ð48Þ

wϕTðaÞ ¼
− Λ8

ρϕðaÞ −
g

MPl
ϕðaÞρmðaÞ

ρϕðaÞ þ g
MPl

ϕðaÞρmðaÞ
; ð49Þ

weff
ϕTðaÞ ¼ wϕTðaÞ −

ga
3MPl

ϕðaÞ ρ
0
mðaÞ

ρϕTðaÞ
; ð50Þ

where the effective EOS parameters weff
ϕ ðaÞ and weff

ϕTðaÞ of
the DBI scalar field are defined by rewriting Eqs. (30) and
(36) in a form without the interacting term,

FIG. 1. The evolutions of the DBI field, the effective EOS parameter of the matter component, the matter energy density, and the
conformal coupling term with respect to the scale factor for initial conditions ϕ0=MPl ¼ 10−1, 10−2, 10−3.
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FIG. 2. The evolutions of the energy density of the DBI field and their effective EOS parameters with respect to the scale factor for
initial conditions ϕ0=MPl ¼ 10−1, 10−2, 10−3.

FIG. 3. The evolutions of the Hubble parameter and fractions of energy density with respect to the scale factor for initial conditions
ϕ0=MPl ¼ 10−1, 10−2, 10−3.
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_ρϕ þ 3Hð1þ weff
ϕ Þρϕ ¼ 0; ð51Þ

_ρϕT þ 3Hð1þ weff
ϕTÞρϕT ¼ 0: ð52Þ

The evolutions of the above quantities are plotted in Fig. 2.
The division of DBI fluid from matter fluid is somewhat
artificial since the DBI scalar and matter component are
coupled together. However, the difference between defi-
nitions (26) and (32) of the energy-momentum tensor of the
DBI scalar are shown to be negligible in Fig. 2; therefore,
we will just stick to Eq. (26) for the sake of simplicity. We
also compute the evolution of the Hubble parameter by
3M2

PlHðaÞ2 ¼ ρϕTðaÞ þ ρmðaÞ þ ρrðaÞ and the fractions of
energy density byΩiðaÞ ¼ ρiðaÞ=3M2

PlHðaÞ2 in Fig. 3. It is
worth noting that the DBI scalar relaxes its phantom nature
by vacuum decaying to matter, preventing the matter
component from being diluted away and leading to a
constant Hubble parameter in the asymptotic future free
of big rip singularity.

C. Slow-roll conditions

Last but not least, it is the slow-roll condition

_ϕ2

Λ4
≪ 1 ð53Þ

that allows us to interpret our DBI scalar as a candidate for
the dark energy sector. To evaluate analytically the EOS
parameter of our DBI DE, we propose a second slow-roll
condition,

���� ϕ̈

3H _ϕγ−2

����≪ 1;

���� ϕ̈
gρm
MPlγ

3

����≪ 1; ð54Þ

on the EOM (24) and find that

_ϕ2 ≃ g2T2
m

9M2
PlH

2γ2
: ð55Þ

Recalling that the factor γ ≡ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ Λ−4 _ϕ2

q
and the matter

component Tm ¼ −ρm ¼ −3M2
PlH

2Ωm and the galactic
coincidence Λ4 ¼ 4g2M2

PlH
2
0, one can immediately derive

from the above equation the EOS parameter

wϕ ¼ −γ−2 ≃ 1

−1þ E2Ω2
m=4

; ð56Þ

where the reduced Hubble parameter E ¼ H=H0 is under-
stood and the conformal coupling g is surprisingly canceled
out. Testing Eq. (56) with the present value of matter
fraction Ωm0 ≈ 0.3, one finds the present value of the EOS
of our DBI DE,

wϕ0 ≃ 1

−1þ Ω2
m0=4

≈ −1.023; ð57Þ

perfectly matching the Planck 2015 constraints [22]. A
distinct feature of our DBI DE is that wϕ0 and Ωm0 are
strongly correlated without other free parameters encoun-
tered. Although behaving mildly like the phantom at
present, our DBI DE will relax its phantom nature by
vacuum decaying to matter, preventing matter from being
diluted away, resulting in a constant Hubble parameter and
leading to a de Sitter future free of big rip singularity.
The validity of the first and second slow-roll conditions
(53) and (54) is presented in Fig. 4.

FIG. 4. The evolutions of the first slow-roll condition _ϕ2 ≪ Λ4

and the second slow-roll condition jϕ̈j ≪ 3H _ϕγ−2, jϕ̈j ≪ gρm
MPlγ

3,

with respect to the scale factor for initial conditions
ϕ0=MPl ¼ 10−1, 10−2, 10−3.
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V. CONCLUSIONS AND DISCUSSIONS

It was recently claimed that the axionlike dark matter
particles can condense on galactic scales as a superfluid, the
phonons of which mediate the MONDian force between
baryons, and thus MOND arises as an emergent phenome-
non of dark matter itself. The standard ΛCDM model is
recovered on cosmic scales in the presence of dark matter
particles in the normal phase instead of the condensed
phase. We have proposed to study the possible origin of the
MOND critical acceleration scale in the context of dark
matter superfluidity. We have introduced a DBI-like scalar
field conformally coupled to the matter components. It
turns out that the MOND critical acceleration is roughly at
the same magnitude with the present Hubble scale, pro-
vided that the conformally coupled DBI scalar plays the
role of dark energy.
However, one might be concerned with the possible

ghost problem of our proposal. In canonical quantum field
theory, a Lagrangian with a wrong-sign kinetic term, after
canonical quantization, usually admits the negative norm
states with negative energy, namely, the ghost states. If
there are no other fields directly coupled to the ghost field,
it would not cause us any trouble. However, if there are
other fields with a correct-sign kinetic term directly coupled
to the ghost field, the vacuum would be unstable because
it could generate a pair of ghost particles with negative
energy and a pair of normal particles with positive energy.

We argue that the possible ghost problem might not be as
pronounced as it appears to be due to the following three
features encountered in our model. First, the Hamiltonian
density turns out to be positive and bounded below, which
suggests that there might be a stable vacuum where ghost
particles can condense. Second, the equation of motion is
second order in the time derivative, which might evade the
ghost problem from the view point of Ostrogradsky’s
theorem. Third, even if the ghosts indeed exist, they are
indirectly coupled to the matter fields via the trace of the
energy-momentum tensor. Since the matter fields act as a
source term, there are simply no sources for ghosts to be
generated when DBI-like scalar field come to dominate.
This might explain why the equation of state of our DBI
dark energy approaches −1 in the end. Therefore, our
model should be treated as a phenomenological model
which requires further study in the future.
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