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The phenomenon of stochastic eternal inflation is studied for a chaotic inflation potential in a Bianchi
type I spacetime background. After deriving the appropriate stochastic Klein-Gordon equation, we give
details on the conditions for eternal inflation. It is shown that for eternal inflation to occur, the amount of
anisotropy must be small. In fact, it is shown that eternal inflation will only take place if the shear
anisotropy variables take on values within a small region of the interior of the Kasner circle. We then
calculate the probability of eternal inflation occurring based on techniques from stochastic calculus.
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I. INTRODUCTION

The theory of inflation arose out of trying to explain
the so-called flatness and horizon problems in cosmology
[1]. However, the vast majority of non-eternal and eternal
inflationary models assume from the outset that the
background spacetime is spatially homogeneous, flat,
and isotropic, and are therefore considered in a k ¼ 0
Friedmann-Lemaître-Robertson-Walker (FLRW) spacetime
[2]. Stochastic eternal inflation has received a considerable
amount of attention over the past few years as it is one of the
mainmotivations behind themultiverse [2]. In this paper, we
study the dynamics of stochastic eternal inflation in the
context of a Bianchi type I spacetime, which is spatially
homogeneous, but anisotropic, and hence, is more general
than the standard k ¼ 0 FLRW cosmology. It is of consid-
erable interest to consider whether stochastic eternal infla-
tion could happen in a more general background spacetime
as this would allow the possibility of the existence of a
multiverse to arise frommore generic conditions, in addition
to solving the so-called “fine-tuning” problem in a more
general sense. To the best of the authors’ knowledge, such a
study has not been presented in the scientific literature.
Non-eternal inflationary dynamics in the context of

Bianchi type I cosmological models have been studied a
number of times in the literature. Barrow and Turner [3]
showed that a universe with moderate anisotropy will
undergo inflation and will rapidly be isotropized.
Rothman and Marsden [4] analyzed in detail inflationary
dynamics in Bianchi type I cosmologies. Jensen and Stein-
Schabes [5] studied the effects of anisotropic cosmologies
on inflation in significant detail. Moss and Sahni [6] studied
the effect of anisotropies on a chaotic inflationary model
general class of Bianchi cosmologies. Rothman and Ellis
[7] showed that inflation takes place in all Bianchi models

and that anisotropy does not suppress inflation. Belinsky
and Khalatnikov [8] studied homogeneous cosmological
models of Bianchi I and Friedmann type in the presence of
a massive scalar field. They showed that the majority of
solutions undergo an inflationary stage. Grøn [9] consid-
ered inflationary Bianchi type I models with shear, bulk,
and nonlinear viscosity. Kitada and Maeda [10] proved a
cosmic no-hair theorem for Bianchi models in power-law
inflation. Parnovskij [11] analyzed the evolution of several
Bianchi type models in the presence of a scalar field. It was
shown that certain Bianchi models reduce to the Bianchi
type I model in this case. Burd and Barrow [12] considered
cosmological models with a scalar field with an exponential
potential. They investigated the inflationary nature of a
nþ 1-dimensional Friedmann universe and some 3þ 10-
dimensional cosmological models as well. Aguirregabiria,
Feinstein, and Ibáñez [13] obtained a general exact solution
of the Einstein field equations for Bianchi type I universes
filled with an exponential-potential scalar field and also
studied their dynamics. Ibáñez, van den Hoogen, and Coley
[14] studied whether homogeneous cosmological models
containing a self-interacting scalar field with an exponential
potential isotropize. Harko [15] studied the dynamics of a
Bianchi type I universe filled with a scalar field, and also
discussed conditions under which inflation can occur in
such models. Chimento [16] found the exact general
solution for cosmological models arising from the inter-
action of the gravitational field with two scalar fields in
both flat FLRW and the locally rotationally symmetric
Bianchi type I spacetimes filled with an exponential
potential. Byland and Scialom [17] studied the Einstein-
Klein-Gordon equations for a convex positive potential in a
Bianchi type I, a Bianchi type III, and a Kantowski-Sachs
universe. After analyzing the inherent properties of the
system of differential equations, they studied the asymp-
totic behaviors of the solutions and their stability for an
exponential potential. Chakraborty and Paul [18] studied
the cosmic no-hair theorem for anisotropic Bianchi models
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which admit an inflationary solution with a scalar field. It
was found that the form of the potential does not affect
the evolution in the inflationary era. Chimento [19] showed
that inflation can be obtained from nonaccelerated
scenarios by a symmetry transformation in Bianchi type
I spacetimes. Bali and Jain [20] investigated a Bianchi type
I inflationary universe in the presence of a massless scalar
field with a flat potential, and discussed the inflationary
scenario in detail. Fay and Luminet [21] studied in detail
different conditions leading to the isotropization of a
Bianchi type I model. Folomeev [22] studied the dynamics
of a Bianchi type I model with two interacting scalar fields.
Gumrukcuoglu, Contaldi, and Peloso [23] studied infla-
tionary perturbations in a Bianchi type I model and studied
their imprint on the cosmic microwave background. Pitrou,
Pereira, and Uzan [24] investigated the predictions of an
inflationary phase starting from a Bianchi type I universe.
Beyer and Escobar [25] considered the dynamics of
Bianchi A scalar field models which undergo inflation,
and in particular, studied the “graceful” exit problem.
Stochastic eternal inflation has also been studied a

number of times in different contexts. Mijić [26] analyzed
the boundary conditions of the dynamics of inflation as a
relaxation random process and gave a simple proof for the
existence of eternal inflation. Salopek and Bond [27]
studied nonlinear effects of the metric and scalar fields
in the context of stochastic inflation. Linde, Linde, and
Mezhlumian [28] considered chaotic inflation in theories
with effective potentials that behave either as ϕn or as eαϕ.
They also performed computer simulations of stochastic
processes in the inflationary universe. Linde and Linde [29]
investigated the global structure of an inflationary universe
both by analytical methods and by computer simulations of
stochastic processes in the early universe. Susperregi
and Mazumdar [30] considered an exponential inflation
potential and showed that this theory predicts a uniform
distribution for the Planck mass at the end of inflation, for
the entire ensemble of universes that undergo stochastic
inflation. Vanchurin, Vilenkin, and Winitzki [31] inves-
tigated methods of inflationary cosmology based on
the Fokker-Planck equation of stochastic inflation and
direct simulation of inflationary spacetime. Winitzki [32]
explored the fractal geometry of spacetime that results from
stochastic eternal inflation. Kunze [33] considered chaotic
inflation on the brane in the context of stochastic inflation.
Winitzki [34] described some issues regarding the time-
parametrization dependence in stochastic descriptions of
eternal inflation. Gratton and Turok [35] investigated a
simple model of λϕ4 inflation with the goal of analyzing the
continuous revitalization of the inflationary process in
some regions. Li and Wang [36] used a stochastic approach
to investigate a measure for slow-roll eternal inflation.
Ghersi, Geshnizjani, Piazza, and Shandera [37] used
stochastic eternal inflation to analyze the connection
between the Einstein equations and the thermodynamic

equations. Qiu and Saridakis [38] used stochastic quantum
fluctuations through a phenomenological, Langevin analysis
studying whether they can affect entropic inflation eternality.
Harlow, Shenker, Stanford, and Susskind [39] described a
discrete stochastic model of eternal inflation that shares
many of the most important features of the corresponding
continuum theory. Vanchurin [40] developed a dynamical
systems approach to model inflation dynamics. Feng, Li, and
Saridakis [41] investigated conditions under which phantom
inflation is prevented from being eternal. Recently, Kohli and
Haslam [42] showed that the stochastic eternal inflation
scenario in the context of a spatially flat FLRW cosmology
leads to strong singularities, thus eliminating the possibility
of inflation being eternal in such models.
In this paper, we consider the effects of adding a stochastic

forcing term in the form of Gaussian white noise to the right-
hand side of the Klein-Gordon equation as was done in
Refs. [35] and [42]. Following Ref. [2], we note that the
classical dynamics of the inflaton dictates that the inflaton
always rolls down its potential. However, quantum fluctua-
tions can also drive the inflaton uphill, which causes inflation
to last longer in some regions, which, in turn, enlarges the
volume of the region. In some regions, the inflaton will
remain high enough up the potential hill to maintain
acceleration. This is a stochastic scenario that is typically
described as eternal inflation which is one of the main
motivating ideas behind the multiverse concept. As dis-
cussed in Ref. [35], the purpose of this stochastic term is to
describe the scalar field fluctuations.
Note that, throughout, we assume geometrized units,

c ¼ 8πG ¼ 1, so that all dynamical quantities have units of
powers of length.

II. THE DYNAMICAL EQUATIONS

In this paper, we are considering a Bianchi type I
universe. We will in this section, employ the orthonormal
frame formalism [43] to the Einstein field equations to
obtain a dynamical system of equations. Following
Ref. [44], we consider a group-invariant orthonormal frame
fn; eαg, where n is the unit normal to the group orbits.
Further, since n is tangent to a hypersurface-orthogonal
congruence of geodesics, all dynamical variables depend
only on time, t. The Einstein field equations take the form

_H ¼ −H2 −
2

3
σ2 −

1

6
ðμþ 3pÞ; ð1Þ

_σαβ ¼ −3Hσαβ; ð2Þ

μ ¼ 3H2 − σ2; ð3Þ

where H is the Hubble parameter, σαβ is the shear tensor,
and μ and p are the energy density and pressure of the
matter content in the cosmological model respectively.
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As mentioned in the Introduction, our universe model
contains a scalar field, which is minimally coupled and has
the Lagrangian density

L ¼ −
ffiffiffi
g

p �
1

2
∇aϕ∇aϕþ VðϕÞ

�
; ð4Þ

which implies that the energy-momentum tensor takes the
form

Tab ¼ ∇aϕ∇bϕ −
�
1

2
∇cϕ∇cϕþ VðϕÞ

�
gab: ð5Þ

Following Ref. [2], since we are working within a 3þ 1
formalism, such that we assume that∇aϕ is timelike, and is
normal to the spacelike surfaces ϕðxaÞ ¼ const, the energy-
momentum tensor has the algebraic form of a perfect fluid,
with

μ ¼ 1

2
_ϕ2 þ VðϕÞ; p ¼ 1

2
_ϕ2 − VðϕÞ: ð6Þ

The Klein-Gordon equation which is implied from the
divergence-free property of Tab above then becomes

ϕ̈þ 3H _ϕþ V 0ðϕÞ ¼ 0: ð7Þ

To model the quantum fluctuations in the eternal inflation
scenario, we add a stochastic noise forcing term ηðtÞ on the
right-hand side of this equation, so that it takes the form

ϕ̈þ 3H _ϕþ V 0ðϕÞ ¼ H5=2ηðtÞ: ð8Þ

Further, we also note that since the shear tensor σαβ is
diagonal and trace-free, we define

σþ ¼ 1

2
ðσ22 þ σ33Þ; σ− ¼ 1

2
ffiffiffi
3

p ðσ22 − σ33Þ; ð9Þ

such that

σ2 ≡ 1

2
σαβσ

αβ ¼ 2σ2þ − 3σ2−: ð10Þ

In this paper, we will specifically consider the case of a
chaotic inflation potential, VðϕÞ ¼ 1

2
m2ϕ2, and will also

make the slow-roll approximation, where VðϕÞ > _ϕ2.
Within the slow-roll approximation, the Friedmann equa-
tion (3), takes the form

VðϕÞ ¼ 3H2 − σ2: ð11Þ

We will also employ expansion-normalized variables,
defining,

Σ2 ≡ σ2

3H2
; X ≡

ffiffiffiffiffiffiffiffiffiffiffi
VðϕÞ
3

r
1

H
; ð12Þ

such that

X2 þ Σ2 ¼ 1: ð13Þ
Under the slow-roll approximation, the Klein-Gordon

equation (8) becomes

3H _ϕþ V 0ðϕÞ ¼ H5=2ηðtÞ: ð14Þ

Letting VðϕÞ ¼ 1
2
m2ϕ2, and employing the expansion-

normalized variables in Eq. (12), one obtains

X0 − ð1þ qÞX þm2
0X ¼ N ðτÞ; ð15Þ

where we have defined

N ðτÞ ¼ η

3
ffiffiffiffiffiffiffi
6H

p ; m0 ¼
mffiffiffi
3

p
H
: ð16Þ

Note that m0 is the expansion-normalized dimensionless
inflaton mass, which in our units has dimensions ofH [45].
Further, q is the deceleration parameter which is found

from Raychaudhuri’s equation (1) to be

q ¼ 2Σ2 − X2: ð17Þ
Finally, the expansion-normalized shear propagation

equations take the form

Σ0
� ¼ Σ�ðq − 2Þ: ð18Þ

Note that, in the expansion-normalized variables, differ-
entiation is denoted by a primed symbol, and is with respect
to a dimensionless time variable τ, which is defined as
[44] dt=dτ ¼ 1=H.
The Gaussian noise term N ðτÞ deserves some explan-

ation, which we now provide and is based on arguments
given in Ref. [42]. Wewill actually make use of the fact that
the noise term is formally defined as the time derivative of
the Wiener process WðτÞ, that is,

W0ðτÞ≡N ðτÞ; Wð0Þ ¼ 0: ð19Þ
It should be noted that this definition defines the Gaussian
noise term as the formal derivative of the Wiener process.
As we show below, the Wiener process is actually nowhere
differentiable, so one has a set of stochastic differential
equations as opposed to ordinary differential equations. As
noted in Ref. [35], N ðτÞ also satisfies the autocorrelation
relation

hN ðτÞN ðτ0Þi ¼ δðτ − τ0Þ: ð20Þ

Further, it is important to realize that W is nowhere
differentiable. In fact, for completeness, following Ref. [46]
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we now state some properties of W based on the so-called
Lévy characterization:
(1) The path of W is continuous and starts at 0.
(2) W is a martingale and ½dWðτÞ�2 ¼ dτ.
(3) The increment of W over the time period ½s; τ� is

normally distributed, with mean 0 and vari-
ance ðτ − sÞ.

(4) The increments of W over nonoverlapping time
periods are independent.

Note that, we will not go into extensive detail about
martingales. The interested reader is asked to consult
Ref. [47] for more details on martingales and their proper-
ties. Based on the arguments provided in Ref. [46], we will
now show thatW is not anywhere differentiable, that is, not
C1 anywhere. Consider a time interval of length Δτ ¼ 1=n
starting at τ. We will define the rate of change over an
infinitesimal time interval ½τ; τ þ Δτ� as

Xn ≡Wðτ þ ΔτÞ −WðτÞ
Δτ

¼ Wðτ þ 1
n −WðτÞ
1
n

¼ n

�
W

�
τ þ 1

n

�
−WðτÞ

�
: ð21Þ

Therefore, Xn is normally distributed with expectation
value 0, variance n, and of course, standard deviation,ffiffiffi
n

p
. It is clear then that Xn has the same probability

distribution as
ffiffiffi
n

p
Z, where Z is the standard normal

distribution. To analyze the C1 properties, we must see
what happens to Xn as Δτ → 0, in other words as n → ∞.
For any k > 0, let Xn ¼

ffiffiffi
n

p
Z, then

P½∥Xn∥ > k� ¼ P

�
∥Z∥ >

kffiffiffi
n

p
�
: ð22Þ

Clearly, as n → ∞, k=
ffiffiffi
n

p
→ 0, so we have that

P

�
∥Z∥ >

kffiffiffi
n

p
�
→ P½∥Z∥ > 0� ¼ 1: ð23Þ

The point is that we can choose k to be arbitrarily large, so
that the rate of change at time τ is not finite, and therefore,
W is not differentiable at τ. Since τ is arbitrary, one
concludes that W is nowhere differentiable.
In summary, the dynamical system describing the

dynamics of our cosmological model is given by the
following set of equations:

X0 ¼ N ðτÞ þ Xð1þ q −m2
0Þ; ð24Þ

Σ0
� ¼ Σ�ðq − 2Þ; ð25Þ

where q ¼ 2Σ2 − X2, such that

Σ2 þ X2 ¼ 1; ð26Þ

where Σ2 ¼ Σ2þ þ Σ2
−.

III. THE CONDITIONS FOR ETERNAL
INFLATION

We will now derive conditions for the Bianchi type I
model considered in this paper to exhibit eternal inflation.
In the non-eternal, slow-roll inflation scenario, one defines
a slow-roll parameter, ϵ as

ϵ≡ −
H0

H
: ð27Þ

Comparing with the general definition for the deceleration
parameter q [44],

H0 ¼ −ð1þ qÞH; ð28Þ

we see that slow-roll inflation will take place whenever

ϵ < 1 ⇒ q < 0: ð29Þ

However, because we are seeking conditions for eternal
inflation, this condition may not be sufficient. As discussed
in Refs. [48] and [49], for inflation to be eternal, the
background spacetime requires frequent violations of the
null energy condition. One can typically take fluctuations
of the energy-momentum tensor of the scalar field as a
possible source of such violations. In the situation where
quantum fluctuations dominate slow-roll evolution, the
energy-momentum tensor fluctuations are large enough
to create null energy condition violations. Thus, in this
section, we shall derive conditions where the quantum
fluctuations dominate the slow-roll evolution.
To derive the conditions for eternal inflation, we first

note that a stochastic differential equation has the general
form

dX ¼ aðX; tÞdtþ bðX; tÞdW; ð30Þ

where aðX; tÞ is known as the drift coefficient which effects
the deterministic evolution of the system, while bðX; tÞ is
known as the dispersion coefficient which introduces
random/stochastic fluctuations into the system. Using
Eq. (19), we can write Eq. (24) as

dX ¼ ½ð1þ q −m2
0ÞX�dτ þ dW: ð31Þ

Comparing these two equations, we see that the dispersion
coefficient is unity, while the drift coefficient is given by
ð1þ q −m2

0ÞX. For eternal inflation to occur, the quantum
fluctuations which are represented by the stochastic forcing
term in Eq. (31) must dominate over the deterministic slow-
roll term [49]. In a stochastic differential equation of the
form (30), the dynamics of X will be dominated by
stochastic “jumps” if bðX; tÞ > aðX; tÞ. Therefore, to have
eternal inflation, we require that

IKJYOT SINGH KOHLI and MICHAEL C. HASLAM PHYSICAL REVIEW D 93, 023514 (2016)

023514-4



ð1þ q −m2
0ÞX < 1; ð32Þ

where because of the Friedmann equation (26), we have
that −1 ≤ X ≤ 1. The restriction given by Eq. (32) will
further constrain Eq. (29) as we will now see. The only way
to satisfy Eq. (32) is to take

−2 < q < 0; −1 ≤ X < 0; 0 < m0 <

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−1þ X þ qX

X

r
;

ð33Þ

or

−2 < q < 0; 0 ≤ X ≤ 1; ð34Þ

where, of course, m0 > 0. Therefore, as can be seen from
Eqs. (33) and (34), the condition (29) is not sufficient for
eternal inflation. Taking −2 < q < 0 in combination with
the conditions in Eqs. (33) and (34) will ensure that eternal
inflation takes place.
One can also go a step further by writing according to

Eq. (26) X2 ¼ 1 − Σ2 ¼ 1 − Σ2þ − Σ2
−. Making this sub-

stitution in Eqs. (33) and (34), we obtain the following
restrictions on the anisotropy of the model:

−
1ffiffiffi
3

p < Σþ <
1ffiffiffi
3

p ; −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − Σ2þ

p
ffiffiffi
3

p < Σ− <

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − Σ2þ

p
ffiffiffi
3

p :

ð35Þ

An equivalent expression can also be obtained by inter-
changing Σþ and Σ− in Eq. (35).
One sees that the anisotropy required for eternal inflation

to take place must be contained in a small region within the
Kasner circle, Σ2þ þ Σ2

− ¼ 1. We have displayed the regions
of anisotropy that allow for eternal inflation in Fig. 1,
based on the conditions (35). These conditions support the
claim made in Ref. [7], where inflation will only occur if
there is not a significant amount of anisotropy to begin with.
However, we believe this is the first proof using expansion-
normalized variables based on an orthonormal frame
approach.

IV. THE PROBABILITY OF ETERNAL INFLATION

We now wish to calculate the probability of eternal
inflation occurring. We first note that Eqs. (24) and (25)
upon using the definition in Eq. (19) take the form

dX ¼ ½ð1þ q −m2
0ÞX�dτ þ dW; ð36Þ

dΣ� ¼ Σ�ðq − 2Þdτ; ð37Þ

where q ¼ 2Σ2 − X2, such that

Σ2 þ X2 ¼ 1; ð38Þ

where Σ2 ¼ Σ2þ þ Σ2
−.

Because of the symmetry of the Bianchi type I model,
from the Friedmann equation, we will write Σ2 ¼ 1 − X2,
which implies that q ¼ 2 − 3X2. So, the inflaton dynamics
is governed by a single stochastic differential equation

dX ¼ ½ð1þ q −m2
0ÞX�dτ þ dW; ð39Þ

where

q ¼ 2 − 3X2: ð40Þ

In fact, it is convenient to substitute q into Eq. (39), and
write

dX ¼ ½Xð3 −m2
oÞ − 3X3�dτ þ dW: ð41Þ

Because of the highly nonlinear drift term in Eq. (41), there
is no closed-form solution to Eq. (41) [50]. In fact, what is
often of interest in applications of stochastic differential
equations is the expected value of the process X, which in
this case, also has no closed-form expression. Another
interesting thing to note is that the deceleration parameter q
is now a random variable, as can be seen from Eq. (40),
where XðτÞ is given by Eq. (41) as

FIG. 1. A plot of the Kasner circle Σ2þ þ Σ2
− ¼ 1. For eternal

inflation to occur, the anisotropy variables must take on values
ðΣþ;Σ−Þ within the shaded region.
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XðτÞ ¼ Xð0Þþ
Z

τ

0

½XðsÞð3−m2
oÞ− 3XðsÞ3�dsþ

Z
τ

0

dWðsÞ

¼ Xð0Þþ
Z

τ

0

½XðsÞð3−m2
oÞ− 3XðsÞ3�dsþWðτÞ:

ð42Þ

Further, recall from the previous section that the con-
dition for inflation to take place is given by the conditions
(33) and (34). From Eq. (40), we see that inflation will
occur when

ffiffiffi
2

3

r
< X ≤ 1 ⇒

ffiffiffi
2

3

r
<

�
Xð0Þ þ

Z
τ

0

½XðsÞð3 −m2
oÞ

− 3XðsÞ3�dsþWðτÞ
�
≤ 1; ð43Þ

or

−1 ≤ X < −
ffiffiffi
2

3

r
⇒ −1 ≤

�
Xð0Þ þ

Z
τ

0

½XðsÞð3 −m2
oÞ

− 3XðsÞ3�dsþWðτÞ
�
< −

ffiffiffi
2

3

r
; ð44Þ

where in this latter equation, we have the condition on m0

as described in Eq. (33).
We are now in a position to calculate the stationary

probability distribution. The stationary distribution is of
great interest with respect to eternal inflation, since the
stationary distribution describes the distribution of XðτÞ
over a long period of time. In addition, it is well known that
inflation should last for more than 60 e-folds [2]. We
proceed as follows. Following Ref. [50], we first compute
the scale measure, sðXÞ, as

sðXÞ¼exp

�
−2

Z
X

X0

yð3−m2
oÞ−3y3dy

�

¼exp

�
−2

�
3X2

2
−
m2

oX2

2
−
3X4

4
−
3X2

0

2
þm2

0X
2
0

2
þ3X4

0

4

��
:

ð45Þ

The speed measure, mðXÞ, is then computed as

mðXÞ¼ 1

sðXÞ

¼exp

�
2

�
3X2

2
−
m2

oX2

2
−
3X4

4
−
3X2

0

2
þm2

0X
2
0

2
þ3X4

0

4

��
:

ð46Þ

The stationary density, πðXÞ, is then given by

πðXÞ ¼ mðXÞR
−1
−1 mðXÞdX

¼ e−
1
2
X2ð2m2

0
þ3X2−6ÞR

−1
−1 e

−1
2
X2ð2m2

0
þ3X2−6ÞdX

: ð47Þ

The motivation behind choosing the limits of integration as
equal to plus or minus unity for the stationary density
calculation in Eq. (47) is the Friedmann equation, Eq. (38),
which tells us that X ¼ 0 when Σ2 ¼ 1, and X ¼ �1

when Σ2 ¼ 0.
It is perhaps of some interest to calculate this probability

of eternal inflation occurring using some values for m0.
Following Refs. [51,52], and [53], one can take H ≈
1012 GeV (10−7 in natural units), and m ≈ 1012–1013 GeV
(10−7–10−6 in natural units). We shall therefore calculate
the probability of eternal inflation occurring for two values
of m0. Recalling the definition of m0 from Eq. (16), we
see that m0 ¼ 1ffiffi

3
p , for m ¼ 1012 GeV, and m0 ¼ 10ffiffi

3
p , for

m ¼ 1013 GeV.
First, for m0 ¼ 1ffiffi

3
p , we calculate

PðXÞ ¼
Z

−
ffiffiffiffiffiffi
2=3

p

−1
0.253641e−

1
2
X2ð3X2−16

3
ÞdX

þ
Z

1ffiffiffiffiffiffi
2=3

p 0.253641e−
1
2
X2ð3X2−16

3
ÞdX

¼ 0.299: ð48Þ

Second, for m0 ¼ 10ffiffi
3

p , we calculate

PðXÞ ¼
Z

1ffiffiffiffiffiffi
2=3

p 3.11109e−
1
2
X2ð3X2þ182

3
ÞdX

¼ 4.87 × 10−11: ð49Þ

The BICEP2 experiment recently determined that H ≈
1014 GeV (10−5 in natural units) during inflation [54].
Using this value, we now try calculating the eternal
inflation probability with m0 ¼ 1

100
ffiffi
3

p and m0 ¼ 1

10
ffiffi
3

p . We

obtain that for m0 ¼ 1

100
ffiffi
3

p ,

PðXÞ ¼
Z

−
ffiffiffiffiffiffi
2=3

p

−1
0.21677e−

1
2
X2ð3X2−89999

15000
ÞdX

þ
Z

1ffiffiffiffiffiffi
2=3

p 0.21677e−
1
2
X2ð3X2−89999

15000
ÞdX

¼ 0.3367; ð50Þ

while for m0 ¼ 1

10
ffiffi
3

p , we see that
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PðXÞ ¼
Z

−
ffiffiffiffiffiffi
2=3

p

−1
0.217118e−

1
2
X2ð3X2−899

150
ÞdX

þ
Z

1ffiffiffiffiffiffi
2=3

p 0.217118e−
1
2
X2ð3X2−899

150
ÞdX

¼ 0.3363: ð51Þ

We thus see that the highest probability of eternal
inflation occurring, about 33.67% occurs for m0 ¼
1=ð100 ffiffiffi

3
p Þ, which corresponds to m ¼ 10−7, and H ¼

10−5. The second-highest probability of eternal inflation
occurring was 33.63% for m0 ¼ 1=ð10 ffiffiffi

3
p Þ, which corre-

sponds to m ¼ 10−6 and H ¼ 10−5. We also see that
the probability of eternal inflation is infinitesimally small
when m0 ¼ 10=

ffiffiffi
3

p
, which corresponds to m ¼ 10−6

and H ¼ 10−7.

V. CONCLUSIONS

In this paper, we studied the phenomenon of stochastic
eternal inflation for a chaotic inflation potential in a Bianchi
type I spacetime background. After deriving the appropri-
ate stochastic Klein-Gordon equation, we derived the
conditions for eternal inflation to occur. We showed that
for eternal inflation to occur, the amount of anisotropy had

to be very small. In fact, we showed that eternal inflation
would only take place if the shear anisotropy variables took
on values within a small region of the interior of the Kasner
circle. We then calculated the probability of eternal
inflation occurring based on techniques from stochastic
calculus.
We found that the highest probability of eternal inflation

occurring, about 33.67% occurred for m0 ¼ 1=ð100 ffiffiffi
3

p Þ,
which corresponds to m ¼ 10−7, and H ¼ 10−5. The
second-highest probability of eternal inflation occurring
was 33.63% for m0 ¼ 1=ð10 ffiffiffi

3
p Þ, which corresponds to

m ¼ 10−6 and H ¼ 10−5. We saw that the probability of
eternal inflation was infinitesimally small when m0 ¼
10=

ffiffiffi
3

p
, which corresponds to m ¼ 10−6 and H ¼ 10−7.
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