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We describe a method for forecasting errors in interferometric measurements of polarization of the
cosmic microwave background (CMB) radiation, based on the use of the Fisher matrix calculated from
the visibility covariance and relation matrices. In addition to noise and sample variance, the method
can account for many kinds of systematic error by calculating an augmented Fisher matrix, including
parameters that characterize the instrument along with the cosmological parameters to be estimated.
The method is illustrated with examples of gain errors and errors in polarizer orientation. The
augmented Fisher-matrix approach is applicable to a much wider range of problems beyond CMB
interferometry.
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I. INTRODUCTION

Observations of the cosmic microwave background
(CMB) are among the chief drivers of the revolutionary
advances in cosmology over the past 20 years (see, e.g.,
Refs. [1,2] and references therein), and further observa-
tions, particularly of CMB polarization, are likely to be of
major importance in the coming years. CMB polarization
can probe the early Universe in a wide variety of ways,
including possibly providing direct evidence of a stochastic
gravitational-wave background, which would give direct
evidence in support of inflation [3–6].
The key to analyzing CMB polarization data is the

separation of the signal into a scalar E component and a
pseudoscalar B component. The inflationary signal is
sought in the B component. Because this component is
predicted to be significantly weaker than the E component
(and both are much weaker than the temperature
anisotropy), detection of B modes is a daunting task.
Control of systematic errors will be vital to the success

of the quest to characterize B modes. In particular, some
errors may cause “leakage” into the B signal from the much
larger E and temperature anisotropy (T) signals. (Such
leakage occurs even in the absence of systematic errors.
See, e.g., Refs. [7–20].) In considering the design of future
instruments, methods of assessing the severity of various
sources of error are quite valuable. Detailed simulations
(e.g., Refs. [21–24]) often provide the best assessment,
but approximate analytic methods (e.g., Refs. [25,26]) can
provide valuable insight before undertaking the computa-
tional effort of a full simulation.
In this paper, we describe a Fisher-matrix method for

assessing the ability of interferometric instruments to detect
CMB polarization signals, with particular emphasis on the
effect of systematic errors. Interferometers have been

important in CMB science in the past, including making
some of the early detections of CMB polarization [27,28].
The formalism for analyzing interferometric CMB obser-
vations has been well developed [29–34]. Although most
current and planned instruments are traditional imaging
telescopes, at least one interferometer is under development
[35,36]. Interferometers and imaging telescopes have quite
different susceptibility to various sources of error, so it
would seem worthwhile to develop tools to understand both
approaches.
The method described in this paper uses Fisher matrices

to forecast the errors on cosmological parameters obtain-
able from a given instrument. After developing the general
method for calculating Fisher matrices and the resulting
error forecasts for an ideal (systematic-error-free) interfer-
ometer, we extend the method to allow consideration
of systematic effects. In particular, we calculate an
“augmented Fisher matrix,” in which we treat parameters
describing the various systematic effects as unknowns to be
estimated along with the cosmological parameters of
interest. The resulting Fisher matrices allow us to forecast
the errors expected on cosmological parameters, taking into
account our ignorance of the systematic error parameters.
Although we apply our formalism to the specific case of

CMB polarization measurements, the approach we describe
has broader applicability. In particular, upcoming efforts to
map the Universe through 21-cm tomography (see, e.g.,
Refs. [37,38] and references therein) involve the extraction
of faint signals from interferometric data sets and hence
have significant overlap with CMB polarization. It would
be of interest to explore the generalization of our approach
to this class of observations.
The remainder of this paper is organized as follows.

Section II lays out the formalism for calculating covariance
matrices and Fisher matrices for interferometers, including
systematic effects. Section III reviews the approximate*haonan.liu@richmond.edu
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analytic treatment of systematic effects in Ref. [26].
Section IV presents the results of a variety of tests of
the method, and Sec. V provides a brief discussion.

II. FORMALISM

A. Visibilities

Consider a close-packed square array with Na antennas
on each side. For antennas j and k that are separated by the
vector δr ¼ ðx; yÞ on the antenna map, the baseline u has
the form

u ¼ δrΔu ¼ ðxΔu; yΔuÞ: ð2:1Þ

Here x and y are any integers that satisfy −ðNa − 1Þ ≤ x,
y ≤ Na − 1. The baseline for two adjacent antennas is
Δu ¼ D=λ, where D is the antenna diameter. We will
assume diffraction-limited antennas, for which the
Gaussian beam width is b ¼ 0.518λ=D, so that
Δu ¼ 0.518=b.
The total number of independent baselines is

1
2
½ð2Na − 1Þ2 − 1�, where the −1 appears because we do

not include the case x ¼ y ¼ 0, and the 1
2
is included to

avoid redundancy since VðuÞ ¼ V�ð−uÞ. We include all
baselines with y > 0 and all with y ¼ 0 and x ≥ 0, labeling
them in the order shown in Fig. 1.
Now, suppose a monochromatic plane wave with angular

frequency ω ¼ 2πc=λ that approaches the center of one
antenna from the direction r̂ has the form

E ¼ ϵðr̂Þeiðωt−k·xÞ; ð2:2Þ

where k is the wave vector defined by k ¼ −ð2π=λÞr̂. Then
the 2 × 2 matrix of visibilities corresponding to a given
baseline u is [26]

VðuÞ ¼
Z

SðrÞAðrÞe2πiu·rd2r; ð2:3Þ

where the Stokes matrix S is given by

S ¼
�
SXX SXY
SYX SYY

�

¼
�

I þQ U þ iV

U − iV I −Q

�
; ð2:4Þ

and AðrÞ is the antenna pattern, which we will take to be
Gaussian,

AðrÞ ¼ e−r
2=2b2 ð2:5Þ

with b the beam size. Note that we are considering
experiments that combine linear polarization states
ðX; YÞ, not circular polarization states.
We define Stokes Q and U visibilities,

VQ ≡ VQðuÞ ¼
Z

QðrÞAðrÞe2πiu·rd2r; ð2:6Þ

VU ≡ VUðuÞ ¼
Z

UðrÞAðrÞe2πiu·rd2r: ð2:7Þ

As usual in CMB studies, we will express Stokes param-
eters and their associated visibilities in thermodynamic
temperature units.
By the convolution theorem,

VQ ¼ ð2πÞ2
Z Z

~QðkÞ ~A�ðkþ 2πuÞd2k; ð2:8Þ

VU ¼ ð2πÞ2
Z Z

~UðkÞ ~A�ðkþ 2πuÞd2k; ð2:9Þ

where the tilde denotes a two-dimensional Fourier trans-
form in the flat-sky approximation.
From Eq. (2.4), we can see that the Q and U visibilities

are related to the visibility matrix V by

FIG. 1. A close-packed square array and its corresponding baseline graph with Na ¼ 3.
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VQ ¼ 1

2
ðVXX − VYYÞ; ð2:10Þ

VU ¼ 1

2
ðVXY þ VYXÞ: ð2:11Þ

In practice, we do not usually use Eq. (2.10) to measure VQ,
as it involves cancellation of the large contribution from
Stokes I. Instead, we usually measure VQ by rotating the
axes for our polarization basis through 45° and then
using Eq. (2.11).
The Stokes parameters are related to the E and B modes

in the following way:

~QðkÞ ¼ ~EðkÞ cosð2ϕÞ þ ~BðkÞ sinð2ϕÞ; ð2:12Þ

~UðkÞ ¼ − ~EðkÞ sinð2ϕÞ þ ~BðkÞ cosð2ϕÞ; ð2:13Þ

where ϕ is the angle between the vector k and the x axis.
We assume that the E and B contributions are independent,
statistically isotropic random fields with the flat-sky power
spectra PE, PB, which are defined as PE;BðkÞ ¼ CE;B

l with
l ¼ k. Then

h ~Eðk1Þ ~E�ðk2Þi ¼
PEðk1Þ
ð2πÞ2 δðk1 − k2Þ; ð2:14Þ

with a similar expression for B. The extra ð2πÞ2 factor is
caused by the approximation of a flat-sky power spectrum
from a full-sky power spectrum.
We then have

h ~Qðk1Þ ~Q�ðk2Þi ¼ δðk1 − k2Þ=ð2πÞ2
× ½PEðkÞcos2ð2ϕÞ þ PBðkÞsin2ð2ϕÞ�;

ð2:15Þ

h ~Uðk1Þ ~U�ðk2Þi ¼ δðk1 − k2Þ=ð2πÞ2
× ½PEðkÞsin2ð2ϕÞ þ PBðkÞcos2ð2ϕÞ�;

ð2:16Þ

h ~Qðk1Þ ~U�ðk2Þi¼δðk1−k2Þ=ð2πÞ2

×

�
−
1

2
PEðkÞsinð4ϕÞþ

1

2
PBðkÞsin2ð2ϕÞ

�
:

ð2:17Þ
We will use these results in the next section for the
deduction of the visibility covariance matrix.
For regular arrays of the sort considered here, multiple

pairs of antennas can have the same separation vector δr
and hence correspond to the same baseline. We refer to
the visibility measured from a given antenna pair as a
“micro-visibility” and say that multiple micro-visibilities

correspond to the same “macro-visibility.” Since all micro-
visibilities corresponding to a given macro-visibility should
be equal (in the absence of noise), we average them
together to get the measured value of the macro-visibility.
To be specific, let VJ represent the Jth macro-visibility.

Let SJ be the set of all micro-visibilities corresponding to
that macro-visibility, with each micro-visibility labeled by a
pair of antennas ðabÞ. Also let NJ be the number of micro-
visibilities corresponding to that macro-visibility (i.e., the
cardinality of SJ). Then

VXJ ¼
1

NJ

X
ðabÞ∈SJ

VðabÞ
X ; ð2:18Þ

where X ∈ fQ;Ug, and VðabÞ
X labels a micro-visibility.

For instance, consider a 3 × 3 array with antennas
labeled from 1 to 9 as in Fig. 1. There are twelve
macro-visibilities. Using the numbering scheme in the
figure, J ¼ 7 corresponds to the macro-visibility (1, 0)—
that is, to antennas that are separated by one unit in the x
direction and zero units in the y direction. Then

S7 ¼ fð14Þ; ð25Þ; ð36Þ; ð47Þ; ð58Þ; ð69Þg; ð2:19Þ

and of course N7 ¼ 6.

B. Fisher information matrix

1. Real values

Although we will be working with complex data
(visibilities), we begin by reviewing the Fisher-matrix
formalism for real data.
Let ~r ¼ ðr1;…; rnÞT be a random vector drawn from a

multivariate normal distribution with mean zero and
covariance matrix Γ with elements

Γjk ¼ hrirji: ð2:20Þ

The probability density for ~r is

fð~rÞ ¼ e−
1
2
~rTΓ−1~r

ð2πÞn=2det1=2ðΓÞ : ð2:21Þ

Now suppose that Γ is a function of some set of m
parameters θ1; θ2;…; θm. These may be cosmological
parameters which we would like to estimate from the data,
but as we will see they can also be parameters character-
izing the experiment itself (e.g., the gain on an antenna or
the orientation of a polarizer).
We define the likelihood function

Lð~θÞ ¼ fð~rj~θÞ: ð2:22Þ

For convenience, define the log-likelihood function
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L¼− lnL¼1

2
~rTΓ−1~rþ1

2
lndetðΓÞþn

2
lnð2πÞ: ð2:23Þ

Then the Fisher information matrix is defined to have
elements

Fjk ¼
� ∂2L
∂θj∂θk

�
; ð2:24Þ

which can be shown to be

Fjk ¼
1

2
Tr

�
Γ−1 dΓ

dθj
Γ−1 dΓ

dθk

�
: ð2:25Þ

The Fisher matrix tells us the expected errors on the
parameters. In particular, 1=

ffiffiffiffiffiffi
Fii

p
is the expected error on θi

assuming all the other parameters are known, and
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðF−1Þii

p
is the optimal error on θi assuming all other parameters are
unknown (e.g., Ref. [39]).

2. Complex values

We now consider complex vectors. Let ~z ¼ ðz1;…; znÞT
be a vector of complex Gaussian random numbers with
zero mean (e.g., a set of visibilities). One way to proceed is
to think of this n-dimensional complex vector as a 2n-
dimensional real vector. To be specific, let ~x ¼ Reð~zÞ and
~y ¼ Imð~zÞ, and define

~r ¼
�
~x

~y

�
¼

0
BBBBBBBBBB@

x1

..

.

xn
y1

..

.

yn

1
CCCCCCCCCCA
: ð2:26Þ

Then define a 2n × 2n covariance matrix

ΓðrÞ ¼
�Γxx Γxy

Γyx Γyy

�
; ð2:27Þ

where the four n × n submatrices are Γxx ¼ h~x~xTi, etc.
Then all of the results of the previous section apply.
Often, it is inconvenient to express complex vectors in

terms of the real and imaginary parts as above. Instead, we
define two new matrices: the complex covariance matrix Γ
and the complex relation matrix C with elements

Γjk ¼ hzjz�ki; ð2:28Þ

Cjk ¼ hzjzki: ð2:29Þ

It is straightforward to check that

Γ ¼ Γxx þ Γyy þ iðΓyx − ΓxyÞ; ð2:30Þ

C ¼ Γxx − Γyy þ iðΓyx þ ΓxyÞ: ð2:31Þ

These two methods of approaching the complex
Gaussian vectors are closely related. To see this relation-
ship, define another 2n-dimensional vector

~c ¼
�

~z

~z�

�
: ð2:32Þ

Then

~c ¼ B~r; ð2:33Þ
where B can be written in block form as

B ¼
�
I iI

I −iI

�
; ð2:34Þ

and I is the n-dimensional identity matrix. Then

ΓðcÞ ≡ h~c~c†i ¼
� h~z~z†i h~z~zTi
h~z~zTi� h~z~z†i�

�
¼

� Γ C

C� Γ�

�
:

ð2:35Þ

But we can also write

ΓðcÞ ¼ h~c~c†i ¼ Bh~r~rTiB†: ð2:36Þ
Setting these two expressions equal gives us

ΓðcÞ ¼ BΓðrÞB†; ð2:37Þ

ΓðrÞ ¼ B−1ΓðcÞðB†Þ−1 ¼ 1

4
B†ΓðcÞB; ð2:38Þ

using the fact that B−1 ¼ 1
2
B†. Equations (2.37) and (2.38)

provide a convenient way of converting back and forth
between the real (~x, ~y) and complex ð~z; ~z�Þ representations
of our random vector.
Equation (2.21) gives the probability density for a

2n-dimensional real vector:

fð~rÞ ¼ e−
1
2
~rTðΓðrÞÞ−1~r

ð2πÞndet1=2ðΓðrÞÞ : ð2:39Þ

We can write this in terms of the complex vector ~c using
~r ¼ B−1~c:

fð~cÞ ¼ e−
1
2
~c†ðΓðcÞÞ−1~c

πndet1=2ðΓðcÞÞ : ð2:40Þ
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The factor 2 in Eq. (2.39) is missing in Eq. (2.40) because
detðΓðcÞÞ ¼ j detðBÞj2 detðΓðrÞÞ, and detðBÞ ¼ ð−2iÞn.
The Fisher matrix elements are given by Eq. (2.25),

using ΓðrÞ as the covariance matrix. If, as is often the case,
it is easier to work with ΓðcÞ, we simply use Eq. (2.38) to
relate the two matrices. We will apply these results to the
vector of complex visibilities in the next section.

C. Visibility covariance matrix and Fisher matrix

We now apply the results of the previous section to
visibility data. Suppose that our data consists of a set of
visibilities ~c¼ðVQðu1Þ;VQðu2Þ;…;VUðu1Þ;VUðu2Þ;…Þ.
Consider an element of the upper left quadrant of the
covariance matrix Γ, which is the covariance of two Q
visibilities. According to Eqs. (2.8) and (2.15),

hVQðu1ÞV�
Qðu2Þi

¼ð2πÞ2
Z

h ~Qðk1Þ ~Q�ðk2Þi ~A�ðk1þ2πu1Þ ~Aðk2þ2πu2Þd2k

¼ð2πÞ2
Z

ðδðk1−k2Þ½PEðkÞcos2ð2ϕÞþPBðkÞsin2ð2ϕÞ�
~A�ðk1þ2πu1Þ ~Aðk2þ2πu2Þd2k

¼ð2πÞ2
Z

½PEðkÞcos2ð2ϕÞþPBðkÞsin2ð2ϕÞ�
~A�ðkþ2πu1Þ ~Aðkþ2πu2Þd2k: ð2:41Þ

As long as A is isotropic, this expression and the corre-
sponding ones for hVQV�

Ui and hVUV�
Ui can be expressed

as a single integral by writing d2k in polar coordinates and
integrating over the angular coordinate, as shown in the
Appendix.
As long as the antenna pattern A has reflection symmetry,

~A is real, and hence hVQðu1ÞV�
Qðu2Þi is real as well. By

similar reasoning, hVQðu1ÞV�
Uðu2Þi and hVUðu1ÞV�

Uðu2Þi
are also real. Hence we conclude Γ is real for visibility data.
The same is true for the relation matrix C.

Since Γxx, Γyy, Γyx and Γxy are all real, Eqs. (2.30)
and (2.31) imply that Γyx − Γxy ¼ Γyx þ Γxy ¼ 0, and
hence that

Γyx ¼ Γxy ¼ 0; ð2:42Þ

Γxx ¼ ðΓþ CÞ=2; ð2:43Þ

Γyy ¼ ðΓ −CÞ=2: ð2:44Þ

Therefore, from the definition of ΓðrÞ [Eq. (2.27)], we see
that ΓðrÞ is a block matrix

ΓðrÞ ¼
�Γxx 0

0 Γyy

�
¼

� ðΓþ CÞ=2 0

0 ðΓ −CÞ=2

�
:

ð2:45Þ

An example of Γ and C can be found in Fig. 2.
Now we attain the final form for the visibility Fisher

matrix

Fjk ¼
1

2
Tr

�
ðΓxxÞ−1

dΓxx

dθj
ðΓxxÞ−1

dΓxx

dθk

�

þ 1

2
Tr

�
ðΓyyÞ−1

dΓyy

dθj
ðΓyyÞ−1

dΓyy

dθk

�
: ð2:46Þ

D. The augmented Fisher matrix

The Fisher matrix allows us to compute the expected
errors on cosmological parameters for an ideal experiment.
We now want to introduce the possibility of sources of
systematic error. Suppose that there is some imperfectly
known aspect of the experimental setup that can be
characterized by a parameter p. The experimenter has
measured p with some uncertainty, so that the probability
density is sharply peaked around some measured value p̂.
Often, we are willing to assume that the probability density
fðpjp̂Þ is Gaussian with mean p̂ and known variance σ2p.

FIG. 2. Covariance and relation matrices Γ and C for an array with Na ¼ 10, b ¼ 0.0873 rad, noise n ¼ 0.01 μK. The sizes of both
matrices are 360 × 360 and the unit of the vertical axis is μK2. Notice that noise only affects the Γ matrix.
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Let us include the experimental parameter p along with

the cosmological parameters ~θ in the likelihood function:

Lð~θ; pÞ≡ fð~r; pj~θ; p̂Þ ¼ fð~rj~θ; pÞfðpjp̂Þ

¼
�
exp ð− 1

2
~rTΓ−1~rÞ

ð2πÞn=2det1=2ðΓÞ
��

expð−ðp − p̂Þ2=2σ2pÞffiffiffiffiffiffi
2π

p
σp

�
:

ð2:47Þ

In this expression, the covariance matrix Γ depends on

both the cosmological parameters ~θ and the experimental
parameter p.
We want to determine the effect that our ignorance of p

has on our attempt to measure ~θ. We can do this by treating

p along with ~θ as unknowns to be estimated simulta-
neously and calculating an “augmented” Fisher matrix
whose rows and columns correspond to the parameters
~θðaÞ ¼ ðθ1; θ2;…; θm; pÞ.
The log-likelihood is given by

L≡ − lnL

¼ 1

2

�
~rTΓ−1~rþ ln detΓþ ðp − p̂Þ2

σ2p

�
þ const: ð2:48Þ

In calculating the Fisher matrix elements Fjk ¼
−h∂2L=∂θðaÞj ∂θðaÞk i, the ensemble average in principle
includes an average over all possible values of p̂ as well
as over all possible values of ~r. However, it happens that

all second derivatives of L with respect to ~θ and p are
independent of p̂, so the averaging over p̂ has no effect.
Thus, the upper left m ×m block of the augmented Fisher
matrix is still given by Eq. (2.46). All that remains is to
determine the final row and column.
For j ≤ m we have

Fj;mþ1 ¼
1

2
Tr

�
ðΓðrÞÞ−1 ∂Γ

ðrÞ

∂θj ðΓðrÞÞ−1 ∂Γ
ðrÞ

∂p
�
: ð2:49Þ

Note that this is just the usual Fisher matrix element,
treating p as a normal cosmological parameter. The very
last term, in the lower right corner has an extra 1=σ2p in it

Fmþ1;mþ1 ¼
1

2
Tr

�
ðΓðrÞÞ−1 ∂Γ

ðrÞ

∂p ðΓðrÞÞ−1 ∂Γ
ðrÞ

∂p
�
þ 1

σ2p
;

ð2:50Þ

arising from the term ðp − p̂Þ2=σ2p in Eq. (2.48).
In the formulas above we have assumed that we only have

one systematic parameter. The generalization to n parameters
is straightforward, leading to an ðmþ nÞ × ðmþ nÞ aug-
mented Fisher matrix.

E. Rotation errors

In Sec. IV, we consider two examples of systematic
errors: gain errors and rotation errors. In order to assess the
effect of these errors on power spectrum estimates, we need
to know their effects on the visibility covariance matrix.
The case of gain errors is trivial: a gain error g on a given
antenna multiplies all of the micro-visibilities involving
that antenna by 1þ g. The case of rotation errors requires
more attention.
Suppose that each antenna j has its polarizers rotated

by some unknown angle pj, with corresponding rotation
matrix Rj ¼ RðpjÞ. Consider a measurement of a micro-
visibility pair ðVQ;ðabÞ; VU;ðabÞÞ, where ðabÞ labels an
antenna pair. Then the observed Stokes matrix S of
Eq. (2.4) is related to the true (error-free) matrix Ŝ as

S ¼ RaŜR
†
b: ð2:51Þ

Because the visibilities are linearly related to the matrix S,
they obey a similar rule:

V ¼ RaV̂R
†
b: ð2:52Þ

Applying the rotation matrices to the Stokes visibility
matrix, we find that

VQðabÞ ¼ V̂QðabÞ cosðpa þ pbÞ þ V̂UðabÞ sinðpa þ pbÞ;
ð2:53Þ

VUðabÞ ¼ −V̂QðabÞ sinðpa þ pbÞ þ V̂UðabÞ cosðpa þ pbÞ:
ð2:54Þ

That is, the visibilities

�
VQðabÞ
VUðabÞ

�
are simply multiplied by

the rotation matrix corresponding to ðpa þ pbÞ.
Now consider the covariance between two pairs of

macro-visibilities VXJ and VXK , where X ∈ fQ;Ug and
J, K label the visibilities. We can express their covariances
as a 2 × 2 submatrix of the full covariance matrix:

C ¼ hvJv†Ki; ð2:55Þ

where

vJ ¼
�
VQJ

VUJ

�
: ð2:56Þ

In the absence of systematic errors, the covariance
matrix is
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C0 ¼
1

NJNK

X
ðabÞ∈SJ

X
ðcdÞ∈SK

hvðabÞv†ðcdÞi: ð2:57Þ

As we saw above, each micro-visibility is modified as
follows:

vðabÞ → RaRbvðabÞ: ð2:58Þ

The 2 × 2 covariance matrix corresponding to macro-
visibilities J, K is therefore

C ¼ 1

NJNK

X
ðabÞ∈SJ

X
ðcdÞ∈SK

hvðabÞv†ðcdÞi

¼ 1

NJNK

X
ðabÞ∈SJ

X
ðcdÞ∈SK

RaRbC0R
†
dR

†
c

¼
�

1

NJ

X
ðabÞ∈SJ

RaRb

�
C0

�
1

NK

X
ðcdÞ∈SK

RcRd

�†

¼ RJC0R
†
K; ð2:59Þ

where the matrices R are defined by the last line.
We can apply this rule to each pair of macro-visibilities

to determine the effect of the rotation errors on the entire
visibility covariance matrix.

III. APPROXIMATE ANALYTIC TREATMENT

Bunn [26] gave an approximate analytic treatment of
various sources of systematic errors in CMB interferom-
etry. We will compare the full Fisher-matrix calculation
described above to this treatment. In this section, we briefly
review and extend the methods outlined in that paper.

A. Statistical errors on power spectrum estimates

Before introducing systematic errors, we present a
simple method for estimating purely statistical errors on
power spectrum estimates.
Following Ref. [26], we begin by imagining an experi-

ment that measures only a single visibility pair ðVQ; VUÞ.
According to Eq. (4.8b) of Ref. [26], for a single visibility
pair, we can find an unbiased estimator of CB

l in a band
centered on l ¼ 2πu,

ĈB;single ¼ ðπb2Þ−1γðc̄2jVUj2 − s̄2jVQj2Þ; ð3:1Þ

where b is the beam size,

γ ¼ ½ðc̄2Þ2 − ðs̄2Þ2�−1; ð3:2Þ

and

c̄2 ¼
R jfA2ðkþ 2πuÞj2cos2ðϕÞd2kR jfA2ðkþ 2πuÞj2d2k

; ð3:3Þ

s̄2 ¼
R jfA2ðkþ 2πuÞj2sin2ðϕÞd2kR jfA2ðkþ 2πuÞj2d2k

¼ 1 − c̄2: ð3:4Þ

We have defined θB as the ratio of measured to true
power, so the estimator of this quantity is θ̂B;single ¼
ĈB=CB. After some algebra, we find that the variance of
θB;single is

σ2B;single ¼ hθ̂2B;singlei − hθ̂B;singlei2

¼ γ2
�
2ðc̄2Þ2ðs̄2Þ2

�
CE

CB

�
2

þ ððc̄2Þ4 þ ðs̄2Þ4Þ

þ ð2ðc̄2Þ3s̄2 þ 2ðs̄2Þ3c̄2Þ
�
CE

CB

��
: ð3:5Þ

We now consider an experiment with many measured
macro-visibilities, and regard each macro-visibility pair as
an independent measurement of θB. Then the minimum-
variance estimator from the entire data set is the usual
weighted average, with weights given by the inverse
variance, and the variance of this estimator is

σ2B;final ¼
�X

J
σ−2BJ

�
−1
; ð3:6Þ

where σ2BJ is given by Eq. (3.5) for baseline J.
In Sec. IV, we will compare the results of this simple

approximation with the full Fisher-matrix calculation, as
well as with the approximation in which we calculate the
Fisher matrix while keeping only diagonal elements of the
(real) covariance matrix.

B. Systematic errors

We now summarize the key results of Ref. [26]. Once
again, we begin by imagining measurements of the inten-
sity and polarization visibilities, v≡ ðVI; VQ; VUÞT for a
single baseline. In many cases, the leading-order effect of a
systematic error is to “mix” the visibilities, inducing errors
δv ¼ E · v for some mixing matrix E.
If the experimenter then uses the data set v to optimally

estimate the E and B power spectra, without accounting
for the effect of the systematic error, then the resulting
estimates will have errors given by

ðδĈK
rmsÞ2 ¼ p2

X
I;J

κ2K;IJC
ICJ; ð3:7Þ

where I; J; K ∈ fT; X; E; Bg label the power spectra (tem-
perature, TE correlation, E polarization, B polarization), p
is the rms amplitude of the error under consideration, and
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the coefficients κK;IJ can be calculated from the error
mixing matrix E. Because there is a hierarchy in power
spectrum amplitudes, with T > X > E > B, one can gen-
erally keep only the dominant term in this sum.
For example, for gain errors, the dominant term in the B

power spectrum error is the one that corresponds to
contamination by E power, with

κ2B;EE ¼ 2γ2ðs̄2 c̄2Þ2: ð3:8Þ

As in the case of statistical errors above, we can crudely
estimate the expected effect of a systematic error in a many-
baseline experiment by assuming that each baseline
provides an independent power spectrum estimate and
performing an appropriate average. See Sec. V of
Ref. [26] for details.
Equation (3.6) gives the analytic approximation for σB in

the absence of systematic errors. In generalizing it to the
case where a systematic error is included, we assume that,
for each antenna, the error caused by the systematic error p
is independent of the statistical error, so that

σ2Bj ¼ σ2Bj;0 þ σ2Bj;p: ð3:9Þ

Here σBj is the error on the B power spectrum estimate
corresponding to the jth micro-visibility. The quantity σ2Bj;0
is the noise variance for that visibility in the absence of
systematic errors, given by Eq. (3.5), and σ2Bj;p ¼
ðδĈB

rmsÞ2=CB
l is the additional variance induced by the

systematic error. (Here l ¼ 2πu for the given visibility.)
Because each macro-visibility is estimated via an average
of the corresponding micro-visibilities, we can compute the
expected error in our B power spectrum estimate for each
macro-visibility. The final error on the B power is then
given by Eq. (3.6).

IV. RESULTS

We have calculated Fisher matrix errors for Na × Na
square arrays of close-packed antennas with Gaussian
beam width b ¼ 5° ¼ 0.0873 rad, as in Ref. [22]. We
assume that the input power spectra are given by the
standard LCDM model [40] with tensor-to-scalar ratio
r ¼ 0.1, and that the experimenter’s goal is to estimate
the amplitudes of the E and B power spectra. To be specific,
letCE,CB be the true power spectra. Then the parameters to
be estimated are θE, θB such that the estimated power
spectra are

ĈE ¼ θECE; ð4:1Þ

ĈB ¼ θBCB: ð4:2Þ

Since θE, θB are defined as relative amplitudes, their true
value is one. The errors computed for these quantities

will therefore be relative errors on the amplitude of the E
and B signals. It would be straightforward to generalize
these results to the estimation of multiple band powers
in E and B.
We are particularly interested in the detectability of the

faint B signal. As a result, we will focus on the quantity
σB ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðF−1ÞBB

p
, which is the standard deviation of θB if

none of the other parameters are known.

A. Exact Fisher matrix with different noise levels

We begin by ignoring all systematic errors and focusing
on the effect of noise levels on the Fisher matrix. Assuming
that all visibilities are subjected to white noise with
standard deviation n, the visibility covariance matrix is

Γnoise ¼ Γþ n2I; ð4:3Þ
where I is the identity matrix.
Figure 3 shows the relationship between σB and Na for

noise levels n ¼ 0, 0.0001, and 0.001 μK.1 For noise-free
experiments, σB gradually decreases as Na increases.
However, when some noise is present, there is a limit
forNa at which σB cannot be attenuated even if we continue
to increase the number of antennas.
For further analysis, we set n ¼ 0.0002 μK, a value

which allows for a detection of B modes but for which
noise contributions are still significant.

B. Comparison of calculation methods

In this section, we compare errors calculated using the
full Fisher-matrix formalism with those based on two
approximate methods. One is the analytic approximations
described in Sec. III. The other is a Fisher-matrix

FIG. 3. The relation between σB and Na for noise levels 0,
0.0001 μK, and 0.001 μK. The beam size b ¼ 0.0873 rad.

1If these values seem surprisingly small, note that, with our
Fourier transform and antenna pattern normalization conventions,
the variance of a visibility is ∼πb2CE

l .
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calculation, with the approximation that off-diagonal cor-
relations between visibilities can be neglected—that is, that

ΓðrÞ
jk ¼ 0 for all ðj; kÞ corresponding to macro-visibilities

with distinct baselines uj ≠ uk.
We begin by considering purely statistical errors and

then introduce systematic errors.

1. Statistical errors

We do not consider systematic errors in this section,
meaning that our Fisher matrix will only be a 2 × 2 matrix,
corresponding to the two cosmological parameters θE, θB
to be estimated. One example of a typical Fisher matrix is

F ¼
�

179 4.23

4.23 3.08

�
ð4:4Þ

with inverse

F−1 ¼
�

0.00577 −0.00792
−0.00792 0.33586797

�
ð4:5Þ

with the parameters Na ¼ 10, beam size b ¼ 0.0873 rad,
and n ¼ 0.0002 μK. (We give extra significant figures for
the σB term for comparison with later results.) This matrix
indicates, for instance, that with the given parameters the
least possible variance for measuring θB is 0.336, relative to
its mean value 1.
Figure 4 compares the values of σB calculated via the

three methods. In these calculations, b ¼ 0.0873 as usual,
but the noise level is set to zero. The left panel shows σB ≡ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðF−1Þ22

p
for all three methods. For each of the two

approximate methods, the right panel shows the fractional
difference between the approximate and full Fisher
calculations:

δσB
σB

¼ σðapproxÞB − σðFisherÞB

σðFisherÞB

: ð4:6Þ

2. Systematic errors

Suppose that there is a systematic error, such as a gain
error or a rotation error, in one of the antennas of our
interferometer. As described in Sec. II D, we assume that this
error can be characterized by an unknown parameter p. For
instance, in the case of a gain error, the unknown true gain is
(1þ p) times the nominal gain, and for a rotation error p is
the angle by which the polarizers are misaligned. We treat p
as an additional parameter to be estimated, leading to a 3 × 3
augmented Fisher matrix, whose rows and columns corre-
spond to θE, θB, p. For example, if we introduce a 10% gain
error (p ¼ 0.1) to the sixth antenna of the array, the Fisher
matrix (4.4) and its inverse (4.5) are replaced by

Faug ¼

0
B@

179 4.23 8.08

4.23 3.08 0.294

8.08 0.294 101

1
CA; ð4:7Þ

F−1
aug ¼

0
B@

0.00579 −0.00791 −0.000439
−0.00791 0.33588000 −0.000346
−0.000439 −0.000346 0.00993

1
CA:

ð4:8Þ

We see that the existence of this gain error increases the
variance σ2B for about 0.0036%.
Figure 5 shows the effect of a 10% gain error in the sixth

antenna, according to the three methods. The quantity
plotted is ðδσ2B=σ2BÞ1=2, where δσ2B ¼ ðσ2BÞsys − ðσ2BÞno sys is
the difference in the variances of the estimates of B power
with and without the systematic error.

FIG. 4. The relationship between σB and Na in the absence of systematic errors, calculated via the full Fisher matrix, the Fisher matrix
with correlations between distinct baselines neglected, and the analytic estimator θ̂B of Sec. III. The left panel shows the errors
calculated by the three methods, and the right shows the difference (4.6) between the approximations and the full Fisher calculations.
Noise is set to zero in these calculations.
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C. Gain and rotation errors

Figure 6 shows sample results of the systematic error
calculations based on the full Fisher-matrix calculation.
The left panel shows the additional error induced by a gain

error in the sixth antenna as a function of array size Na, for
four different values of the rms gain error σp. The right
panel shows the same results for a rotation error in the third
antenna. In this case, the error parameter p is the angle
through which the polarizer has been rotated in radians. In
both cases, the noise level is set to 0.0002 μK.
In these sample results, we assumed an error that affected

a single antenna, but in a realistic experiment, we would
expect all antennas to be affected. The rigorous way to deal
with this is to parametrize each of the systematic errors,
build a large augmented Fisher matrix, and calculate σB
from the resulting matrix. However, it is more convenient if
we can treat each systematic error separately and add up the
resulting σB’s. The validity of this approach, of course,
depends on the accuracy of treating the individual errors as
independent.
Figure 7 shows the results of tests of this independence

assumption. For an array with Na ¼ 5 and n ¼ 0.0002 μK,
we calculated the effects of a 10% gain error in each of the
25 antennas. We also calculated the effect of simultaneous
gain errors in each antenna pair. The quantity plotted is the
difference between the simultaneous treatment and the
quadrature sum of the individual errors, specifically

FIG. 5. The effect of a 10% gain error on antenna 6, calculated
via the three methods listed in the previous figure. The quantity
δσ2B is the difference in variances of the error estimates with and
without the gain error. Noise is set to zero in these calculations.

FIG. 7. The inaccuracy caused by treating simultaneous errors in two antennas as if they were independent. The horizontal axes are the
antennas of a 5 × 5 array. The vertical axis is the quantity Δij of Eq. (4.9).

FIG. 6. The additional error caused by a gain error in the sixth antenna (left) and a rotation error in the third antenna (right). From
bottom to top, the curves correspond to error levels σp ¼ 0.01, 0.1, 1, 10.
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Δij ≡ ðδσ2BÞij − ððδσ2BÞi þ ðδσ2BÞjÞ
ðδσ2BÞi þ ðδσ2BÞj

; ð4:9Þ

where i, j label antennas and δσ2B is the additional variance
induced by the given error.
The right panel shows the equivalent results for a rotation

error of 0.1 rad.
In both cases, the smallness of Δij indicates that treating

the errors as independent is a good approximation,
although the case of rotation errors is not as good as that
of gain errors.

V. DISCUSSION

We have presented a Fisher-matrix formalism for assess-
ing the errors on power spectrum estimates from inter-
eferometric measurements of CMB polarization, including
the effects of systematic errors. This method occupies an
intermediate position between crude analytic approxima-
tions [26] and more accurate but far more computationally
intensive end-to-end simulations [21–23]. Although
detailed simulations are necessary in the end, a fast semi-
analytic approach such as ours is likely to be useful during
the early, exploratory phase of instrument design and
optimization.
We have tested our method in a variety of ways, focusing

particularly on systematic errors in antenna gain and in the
orientation of polarizers of an antenna. Other sources of
error can be treated in a similar way. In the absence
of systematic errors, our calculations agree with those of
simple analytic approximations. The agreement is less good
when systematic errors are included (see Fig. 5), which is
not surprising given the crudeness of the approximations in
the analytic method.
Most of our test results involve errors in a single antenna.

Assuming different sources of error are independent, one
expects the errors to add in quadrature. We verified for gain
and rotation errors that this is a good assumption. In any
case, it is not difficult to apply our formalism to the
treatment of multiple errors simultaneously.
Because our tests were designed to illustrate the for-

malism, several idealizations were made. We considered a
single pointing of the instrument, without including sky
rotation or mosaicing [34]. In addition, we assumed a single
band power was to be estimated in each of the E and B
power spectra. Finally, the errors we considered all involve
only E-B mixing, without contamination from the temper-
ature anisotropy. There is no reason that our method cannot
be extended to include these and other effects.
Although we developed the method for interferometric

CMB polarimetry, the formalism developed herein can
be applied to a variety of experiments. In particular, it
would be very interesting to consider application to 21-cm
tomography, which similarly involves extraction of small
fluctuation signals from interferometric visibilities.

Computationally expensive simulations are often done to
assess the sensitivity of such instruments (e.g., Ref. [41]),
but a faster semianalytic approach may be valuable as well.
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APPENDIX: THE DETAILED FORM OF THE
VISIBILITY COVARIANCE MATRIX

We assume a Gaussian antenna pattern as in Eq. (2.5),

AðrÞ ¼ e−r
2=2b2 ð2.5Þ

whose Fourier transform is

~AðkÞ ¼ ~A�ðkÞ ¼ b2

2π
e−b

2k2=2: ðA1Þ

Substituting this into Eq. (2.41), we find

hVQðu1ÞV�
Qðu2Þi

¼ ð2πÞ2
Z

½PEðkÞcos2ð2ϕÞ þPBðkÞsin2ð2ϕÞ�
~A�ðkþ 2πu1Þ ~Aðkþ 2πu2Þd2k ð2.41Þ

Then

hVQðu1ÞV�
Qðu2Þi

¼ b4
Z

½PEðkÞcos2ð2ϕÞ þPBðkÞsin2ð2ϕÞ�

exp ½−1

2
b2½ðkþ 2πu1Þ2 þ ðkþ 2πu2Þ2��d2k

¼ b4
Z

½PEðkÞcos2ð2ϕÞ þPBðkÞsin2ð2ϕÞ�

exp½−b2½2π2ðu21 þ u22Þ þ k2�− 2πb2

½ðu1x þ u2xÞk cosϕþ ðu1y þ u2yÞk sinϕ��kdkdϕ:
ðA2Þ

For convenience, we make the following definitions:

S1ðkÞ ¼
Z

2π

0

cos2ð2ϕÞ exp½−2πb2½ðu1x þ u2xÞk cosϕ

þ ðu1y þ u2yÞk sinϕ��dϕ; ðA3Þ

S2ðkÞ ¼
Z

2π

0

sin2ð2ϕÞ exp½−2πb2½ðu1x þ u2xÞk cosϕ

þ ðu1y þ u2yÞk sinϕ��dϕ; ðA4Þ
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S3ðkÞ ¼
Z

2π

0

sinð4ϕÞ exp½−2πb2½ðu1x þ u2xÞk cosϕ

þ ðu1y þ u2yÞk sinϕ��dϕ; ðA5Þ

and

qðxÞ ¼ exp ½−b2½2π2ðu21 þ u22Þ þ k2��: ðA6Þ

Then one can check that

hVQðu1ÞV�
Qðu2Þi ¼ b4

Z
∞

0

PEðkÞqðkÞS1ðkÞkdk

þ b4
Z

∞

0

PBðkÞqðkÞS2ðkÞkdk: ðA7Þ

Similarly, for the U-U and Q-U covariance matrix
elements,

hVUðu1ÞV�
Uðu2Þi ¼ b4

Z
∞

0

PBðkÞqðkÞS1ðkÞkdk

þ b4
Z

∞

0

PEðkÞqðkÞS2ðkÞkdk; ðA8Þ

hVQðu1ÞV�
Uðu2Þi ¼−

1

2
b4

Z
∞

0

PEðkÞqðkÞS3ðkÞkdk

þ 1

2
b4

Z
∞

0

PBðkÞqðkÞS3ðkÞkdk: ðA9Þ

Equations (A7), (A8), and (A9), combined with
Eqs. (A3), (A4), (A5), and (A6), are sufficient to present
a workable algorithm to calculate the visibility covariance
matrix. We now provide the analytic forms of the integrals
S1, S2, and S3 as the ending of this section. We will take S1
as an example and directly give S2 and S3.
Let

a ¼ ðu1x þ u2xÞk; ðA10Þ

b ¼ ðu1y þ u2yÞk: ðA11Þ

Then

S1ðkÞ ¼
Z

cos2ð2ϕÞ exp ½−2πb2ða cosϕþ b sinϕÞ�dϕ:
ðA12Þ

Now let

t ¼ arctan
b
a
; ðA13Þ

θ ¼ ϕþ t; ðA14Þ

l ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ b2

p
: ðA15Þ

Then

S1ðkÞ ¼
Z

cos2ð2θ − 2tÞ exp ½−2πb2l sin θ�dθ

¼
Z

cos2ð2θÞcos2ð2tÞ expð−2πb2l sin θÞdθ

þ
Z

sin2ð2θÞsin2ð2tÞ expð−2πb2l sin θÞdθ:

ðA16Þ

Define

S11ðkÞ ¼
Z

cos2ð2θÞ expð−2πb2l sin θÞdθ; ðA17Þ

S12ðkÞ ¼
Z

sin2ð2θÞ expð−2πb2l sin θÞdθ: ðA18Þ

Then

S1ðkÞ ¼ S11ðkÞ cos2ð2tÞ þ S12ðkÞ sin2ð2tÞ: ðA19Þ
The integrals S11 and S12 can be written analytically

using the modified Bessel function of the first kind InðxÞ:

S11ðkÞ ¼
2

l3π2b6
½lπb2ð3þ l2π2b4ÞI0ð2lπb2Þ

− ð3þ 2l2π2b4ÞI1ð2lπb2Þ�; ðA20Þ

and

S12ðkÞ ¼
2

l2πb4
½2lπb2I1ð2lπb2Þ − 3I2ð2lπb2Þ�: ðA21Þ

We can follow the similar reasoning to calculate S2 and
S3. The results are

S2ðkÞ ¼ S11ðkÞ sin2ð2tÞ þ S12ðkÞ cos2ð2tÞ; ðA22Þ

and

S3ðkÞ ¼ −
2 sinð4tÞ
l3π2b6

½lπb2ð6þ l2π2b4ÞI0ð2lπb2Þ
− 2ð3þ 2l2π2b4ÞI1ð2lπb2Þ�: ðA23Þ
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