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We investigate the collapse of clusters of weakly interacting massive particles (WIMPs) in the core of a
Sun-like star and the possible formation of mini-black holes and the emission of gravitational waves. When
the number of WIMPs is small, thermal pressure balances the WIMP cluster’s self gravity. If the number of
WIMPs is larger than a critical number, thermal pressure cannot balance gravity and the cluster contracts. If
WIMPs are collisionless and bosonic, the cluster collapses directly to form a mini-black hole. For fermionic
WIMPs, the cluster contracts until it is sustained by Fermi pressure, forming a small compact object. If the
fermionic WIMP mass is smaller than 4 × 102 GeV, the radius of the compact object is larger than its
Schwarzschild radius and Fermi pressure temporally sustains its self-gravity, halting the formation of a
black hole. If the fermionic WIMP mass is larger than 4 × 102 GeV, the radius is smaller than its
Schwarzschild radius and the compact object becomes a mini-black hole. If the WIMP mass is 1 TeV, the
size of the black hole will be approximately 2.5 cm and ultra high frequency gravitational waves will be
emitted during black hole formation. The central frequency fc of ringdown gravitational waves emitted
from the black hole will be approximately 2 GHz. To detect the ringdown gravitational waves, the

detector’s noise must be below
ffiffiffiffiffiffiffiffiffiffiffiffiffi
ShðfcÞ

p
≈ 10−30=

ffiffiffiffiffiffi
Hz

p
.
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I. INTRODUCTION

In the near future, it is expected that gravitational waves
(GWs) will be directly observed by the second generation
of ground-based detectors, KAGRA [1,2], Advanced LIGO
[3], Advanced Virgo [4], GEO-HF [5], and others. The GW
observations will enrich our understanding of gravity and
open a new window to understanding the Universe. The
main targets of these detectors are GWs from coalescences
of neutron stars or black holes (BHs) and supernovae of
massive stars. To detect them, ground based detectors are
sensitive in the frequency range between 10 Hz and 10 kHz.
However, there will be GWs of much higher frequency that
are not detectable by the ground-based detectors, such as
background GWs at ultra high frequencies [6–12] and GWs
from coalescences of binary primordial BHs [13,14]. To
detect such ultra high frequency GWs, tabletop-sized
detectors that are sensitive at frequencies of approximately
100 MHz have been discussed and developed [15–19]. If
another source of ultra high frequency GWs is discovered,
it will further encourage the development of tabletop-sized
detectors.
Dark matter (DM) is one of the greatest mysteries in

modern physics. DM is believed to exist in the universe but
has not been detected. An attractive solution is that DM is
composed of weakly interacting massive particles (WIMPs)
that interact only through gravity and the weak force. We
can consider that WIMPs would be captured by a star
through WIMP–nucleon scattering [20], and successive

collisions with nucleons in the star would thermalize them
to form a cluster of WIMPs. If the host star is in a region of
high DM density and the self annihilation of WIMPs is
prohibited, as is the case for asymmetric DM [21,22], a
huge number of WIMPs will be accreted. Then, a cluster of
WIMPs may become a self-gravitating system and finally
collapse to a BH [23,24], which may lead to the destruction
of the host star. This implies that the existence of old stars
in the Universe can provide constraints on the WIMP–
nucleon cross section, as studied by many researchers
[25–35]. The existence of a DM condensate in a star will
give rise to various phenomena in the star [36–42].
From DM collapse in a star, the emission of GWs with

ultra high frequency can be expected, because the size of
the BH will be very small. For example, it will be of atomic
size in a neutron star [28] and the size of a coin in a Sun-like
star [29]. Therefore, GWs from such a collapse might be a
target of tabletop-sized detectors. In this paper, we consider
accumulation of asymmetric DM which has effectively no
annihilation, and estimate GWs from such mini-BH for-
mations. For this purpose, it is necessary to evaluate the
mass of the mini-BH which is determined by the mass and
number of WIMPs, and hence we investigate the critical
number of WIMPs needed for gravitational contraction,
using a slightly different method from previous studies
[29,36,43]. As is well known, no GWs are emitted from a
spherically symmetric collapse. Rotation and deformation
are important for GW emission. Stars are usually rotating
and therefore a cluster of WIMPs in thermal equilibrium
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with the host star co-rotates with the star. Hence, we discuss
the rotational effect and find that the rotation may halt
direct BH formation from a gravitational collapse due to the
centrifugal potential. From this analysis, we obtain a typical
rotational parameter for mini-BHs and estimate GWs from
the DM collapse.
The paper is organized as follows: In the next section, we

discuss the condition for gravitational collapse using the
virial theorem. Section III is devoted to a study of the
rotational effect for the collapse. In Sec. IV, we estimate
the number of WIMPs captured by a star during the lifetime
of the star. Then in Sec. V, we discuss GWs emitted from a
collapse and obtain the typical frequency and amplitude. In
Sec. VI, we summarize our results. Appendix A gives a
brief derivation of the potential term due to self gravity,
which is used in the analysis in Sec. II. In Appendix B, we
reevaluate the probability for at least one WIMP–nucleon
collision to occur inside a star, which was originally
calculated by Press and Spergel [20].
In this paper, the speed of light and the Boltzmann

constant are set to be one, for simplicity.

II. CONDITION FOR GRAVITATIONAL
COLLAPSE

If a low-energy WIMP collides with a nucleon in a star,
the WIMP loses its energy and becomes bound by the
gravity of the star. After many WIMPs have accumulated
inside the star, they collide with nuclei and form a cluster
that is in thermal equilibrium with the core of the star. In
this stage, thermal pressure balances the gravity of the star
as well as the self-gravity, and the system is in virial
equilibrium. Then, the majority of WIMPs are concentrated
within the thermal radius. As further WIMPs are captured,
the DM cluster is dominated by the self-gravity, and the
thermal pressure cannot sustain the gravity and the cluster
starts to contract. We estimate the number of WIMPs
necessary for gravitational contraction below.
The law of equipartition of energy and the virial theorem

give an equation for the radius r:

3

2
T ¼ GNm2

4
ffiffiffi
2

p
r
þ GmMðrÞ

2r
; ð1Þ

where T is temperature,G is the gravitational constant,N is
the number of WIMPs, and m is the WIMP mass. MðrÞ is
the mass of the star within a radius r,

MðrÞ ¼ ρc
4πr3

3
; ð2Þ

where ρc is the core density and is assumed to be a constant.
The first term of the right hand side in Eq. (1) arises from
the potential of self gravity. We present a brief derivation in
Appendix A. Equation (1) is a cubic equation for r, and ifN
is smaller than Nc defined as

Nc ≔
2

ffiffiffi
6

p
ffiffiffiffiffiffiffi
πρc

p
�
T
G

�
3=2 1

m5=2 ; ð3Þ

it has two positive solutions. The larger positive solution
can be interpreted as the thermal radius since, in the limit
N → 0, it tends toward the thermal radius without the self-
gravity,

rth ¼
�

9T
4πGρcm

�
1=2

: ð4Þ

When N > Nc, the positive solutions disappear. This
means that there is no positive radius satisfying the virial
equilibrium between thermal pressure and gravity, which
implies that the thermal pressure cannot sustain the
gravity and the cluster starts to contract. The number
Nc is the critical number necessary for the gravitational
contraction.
Using typical values of a Sun-like star, T ¼ 1.5 × 107 K

and ρc ¼ 150 g=cm3, the critical number is estimated as

Nc ≃ 9.5 × 1048
�
150 g=cm3

ρc

�
1=2

�
T

1.5 × 107 K

�
3=2

×

�
TeV
m

�
5=2

: ð5Þ

For a neutron star, since the core density is much higher
than that of the Sun and its temperature is lower, the critical
number is much smaller and is estimated as

Nc ≃ 2 × 1039
�
1015 g=cm3

ρc

�
1=2� T

105 K

�
3=2

�
TeV
m

�
5=2

:

ð6Þ

The mass of a mini-BH after the gravitational contraction
can be estimated as M ≃mNc. Thus a mini-BH in a Sun-
like star will be much larger than that in a neutron star, and
GWs emitted from a collapse in a Sun-like star will be more
detectable. Therefore, we consider a Sun-like star as the
host star in the rest of this paper.
At N ¼ Nc, Eq. (1) has a double root, which is the final

thermal radius just before the gravitational contraction. For
example, the radius is evaluated as rth ¼ 1.7 × 108 cm for
m ¼ 1 TeV, and we consider this as a typical value of the
final thermal radius in the next section.
It should be noted that the critical number Nc for a Sun-

like star is larger than the Chandrasekhar limit for both
bosonic particles (see, e.g., Ref. [28])

NB
Cha ≃

�
mpl

m

�
2 ≃ 1.5 × 1032

�
TeV
m

�
2

; ð7Þ

and fermionic particles (see, e.g., Ref. [29])
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NF
Cha ¼

�
9π

4

�
1=2

�
mpl

m

�
3 ≃ 5 × 1048

�
TeV
m

�
3

: ð8Þ

We also note that Nc does not depend on whether WIMPs
are bosonic or fermionic. For both bosonic and fermionic
WIMPs, the number necessary for gravitational contraction
is given by Eq. (3). If WIMPs are bosonic, the DM cluster
starts to contract down to the size of a BH as N exceeds Nc,
forming a BH in the host star. On the other hand, if a WIMP
is fermionic, the Fermi pressure may stop the collapse and
sustain the cluster, forming a compact object.
While we may consider that a cluster collapses to a BH

when the number of WIMPs exceeds the Chandrasekhar
limit, it should be noted that the Chandrasekhar limit gives
an upper limit for relativistic particles (p ≫ m), not for
non-relativistic particles. In our case, whether WIMPs are
relativistic or not is not obvious and we should therefore
investigate the radius of the compact object.
In order to estimate the radius of the compact object, we

consider the virial theorem with a kinetic energy composed
of the Fermi momentum,

pF ¼
�
9π

4

�
1=3 N1=3

r
: ð9Þ

Then, the radius r should satisfy the relation:

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ p2

F

q
−m ¼ GNm2

4
ffiffiffi
2

p
r
þGmMðrÞ

2r
: ð10Þ

In the left-hand side (l.h.s.) of this equation we use the
general expression for the kinetic energy to ensure that it is
valid for both the nonrelativistic (l:h:s: ∼ p2

F=2m) and
relativistic (l:h:s: ∼ pF) cases. Equation (10) can be solved
numerically and is found to have one positive solution
much smaller than rth for N > Nc. This is an equilibrium
radius, req, at which the Fermi pressure sustains the self-
gravity. We might think that the existence of req implies that
the Fermi pressure stops the collapse and the cluster
becomes a compact object. Here, it is valuable to compare
req with the Schwarzschild radius1:

rg ¼ 2GmNc: ð11Þ

The result is shown in Fig. 1, and is summarized in Table I
for some typical values of m.
As shown in Fig. 1 and Table I, req is larger than rg for

m≲ 4 × 102 GeV and smaller for m≳ 4 × 102 GeV.
Therefore, a compact object supported by Fermi pressure
will occur when m≲ 4 × 102 GeV. On the other hand, for
m≳ 4 × 102 GeV, the compact object is contained in a

region with a Schwarzschild radius rg, being a BH. Thus,
whether or not the cluster collapses to a BH depends on the
WIMP mass.
For m≲ 4 × 102 GeV, collapse of the cluster does not

lead formation of a BH directly but of a DM compact
object, and therefore significant GW from the collapse of
the DM cluster cannot be expected. After the formation of
the compact object, further WIMPs continue to fall on it
and it eventually becomes so massive that it forms a BH.
This situation is similar to the gravitational collapse of a
rotating neutron star to a BH, for which Baiotti et al. [44]
performed numerical simulations and calculated the GW
emissions. They found that the amplitude of the GWs is not
large and the total energy of the emitted GW is approx-
imately 10−6 times mass of the compact object. Therefore,
significant GW emissions also from the collapse of the
compact object cannot be expected.
In this paper, we are interested in GW emissions due to

the BH formation. Therefore, we concentrate our discus-
sion in the following sections on the cases of fermionic
WIMPs with m≳ 4 × 102 GeV and bosonic WIMPs. For
m≳ 10 TeV, the size of the final BH is smaller than
10−1 cm and the frequency of the GWs will be too high to
be detectable. Also, the GWamplitude from a tiny BH will
be too small. Hence, we mainly consider the case
of m ¼ 1 TeV.

TABLE I. Critical number for gravitational contraction Nc,
equilibrium radius req and Schwarzschild radius rg for typical
values of m.

m Nc req [cm] rg [cm]

100 GeV 3.015 × 1051 194.1 78
375 GeV 1.107 × 1050 10.79 10.79
1 TeV 9.536 × 1048 1.235 2.479
10 TeV 3.015 × 1046 5.70 × 10−3 7.84 × 10−2

0.1 1 10
m [TeV]

0.001

0.01

0.1

1

10

100

1000

r 
[c

m
]

req
rg

FIG. 1. Equilibrium radius req (black solid line) and Schwarzs-
child radius rg (red dashed line) of functions of WIMP mass. The
two radii cross at around 4 × 102 GeV.

1In this comparison, we ignore the rotational effect and
consider the radius of a nonrotating BH, for simplicity.
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The detailed contraction mechanism for the cluster
strongly depends on the self-interaction between WIMPs
or the equation of state for the DM. However, we do not
have any obvious evidence of what it should be, and hence
we assume that WIMPs are collisionless or that self-
interactions between WIMPs can be negligible as the
simplest case. In this case, after the gravity of the cluster
overcomes the thermodynamic pressure, there is no force to
counteract gravity except for the Fermi pressure, and the
DM cluster contracts on a dynamical time scale. The
contraction can be thought of as a gravitational collapse.

III. ROTATIONAL EFFECT

As a star usually rotates, it is natural to think that a DM
cluster in equilibrium with the star corotates with the
angular velocity of the star. As the cluster contracts, it
rotates faster due to angular momentum conservation,
which strengthens the centrifugal force. A strong centrifu-
gal force may halt the gravitational collapse and the
formation of a BH, and therefore we should consider the
rotational effect.
The final thermal radius is approximately rth ≃ 2 ×

108 cm for m ¼ 1 TeV, and is much smaller than the
radius of the host (Sun-like) star, which is roughly 0.01R⊙.
Hence, the DM cluster exists within the core of the star and
therefore the rotational period of the core is important as the
initial condition for the collapse. Though the rotational
period of the surface layer or the convection zone of the Sun
is known to be from 25 to 35 days, that of the core is
unknown [45,46]. We assume that the period of the core is
from 20 to 40 days.

We briefly consider a particle co-rotating in a circular
orbit at the thermal radius rth just before the collapse in the
manner of classical mechanics. The typical effective
potential for such a particle is written as

UðrÞ ¼ L2

2mr2
−G

m2N
r

; ð12Þ

where L is the angular momentum of the particle. The
minimum radius rmin that the particle can reach satisfies

UðrminÞ ¼ UðrthÞ: ð13Þ

Figure 2 shows a schematic figure for UðrÞ and the
permitted region for the particle. We obtain values of
rmin for various periods, and summarize them in Table II.
For stars having a relatively short rotation period, rmin

will be larger than the Schwarzschild radius rg ≃ 2.5 cm.
Therefore, this naive analysis implies that the rotation can
halt BH formation and the cluster “bounces” at rmin due to
the centrifugal potential. After the bounce, the cluster
repeats a series of expansions and contractions for a while,
entering a radial oscillation phase. At the bounce, we
expect that the cluster has a highly deformed shape with a
fast rotation in a strong gravitational field, and hence it will
emit GWs with nonzero angular momentum, decreasing the
angular momentum of the DM cluster. For this radial
oscillation phase, successive collisions with nuclei also
diminish the angular momentum since a cluster with radius
r < rth always rotates faster than the core of the star. As the
angular momentum of the cluster decreases, the centrifugal
potential reduces in strength. At some point, the minimum
radius becomes less than rg and the DM cluster collapses to
form a mini-BH.
Therefore, there are two cases: (i) the cluster starts to

contract and collapses to a BH directly, or (ii) it collapses
after the radial oscillation phase. In both cases, a BH will
eventually be formed.
Concerning the dynamical evolution of a highly

deformed cluster, a numerical study on neutron stars by
Giacomazzo et al. [47] has shown that an artificial
reduction in the pressure causes the evolution of a non-
axisymmetric instability in a highly rotating “supra-Kerr”
model, differing from a “sub-Kerr” model where a neutron
star collapses promptly to a rotating BH. Therefore, non-
axisymmetric instability may also arise in the collapse of
highly rotating DM cluster. To clarify this, we need to
simulate the dynamical evolution of WIMP clusters. In this

r

0
U

(r
)

rth

Permitted region
><

FIG. 2. Schematic figure for the effective potential UðrÞ. The
permitted region for a particle is shown. rth denotes the thermal
radius.

TABLE II. The minimum radius rmin that a particle can reach, for various periods of the core.

Period of the core (Tcore) 20 days 25 days 30 days 35 days 40 days

(Angular velocity)/2π 579 nHz 463 nHz 386 nHz 331 nHz 289 nHz
rmin 4.94 cm 3.16 cm 2.19 cm 1.61 cm 1.23 cm
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paper, we have assumed that a WIMP is collisionless, and
the numerical results obtained by Shibata [48] (and
references therein) are useful for understanding BH for-
mation from collisionless particles.

IV. ACCRETION OF WIMPS ONTO A STAR

For a self-gravitating DM cluster to form, it is necessary
for more than Nc WIMPs to assemble. This raises the
question as to whether it is possible to gather such a huge
number of particles. In this section, we briefly estimate the
number of WIMPs that can be accumulated during the
lifetime of the host star. In order for a huge number of
particles to accumulate, regions of extremely high DM
density are required. For this reason, we consider a Sun-like
star in the vicinity of the Galactic center as the host star.
Though the estimation given in this section is based on the
analysis of Press and Spergel [20], the result will be slightly
different.
Following Press and Spergel [20] and Kouvaris [37], the

accretion rate of WIMPs in a star is written as

dNacc

dt
¼ 8π2

ρdm
m

�
3

2πv̄2

�
3=2

GMRmin

�
1

3
v̄2; E0

�
f;

ð14Þ

where ρdm is the local DM mass density, v̄ is the average
WIMP velocity, M and R are the mass and radius of the
host star, respectively, E0 is the maximum energy per unit
mass of a WIMP that can be captured, min(A,B) is the
minimum value between A and B, and f is the probability
for at least one WIMP–nucleon scattering event to occur
inside the star. E0 is expressed by the escape velocity of the
star vesc ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 GM=R

p
as

E0 ¼
α

2
v2esc; ð15Þ

where α is a constant determined by the condition that E0

is equal to the mean energy loss in a scattering event,
denoted by ΔE. Assuming isotropic scattering, ΔE is
calculated as [49]

ΔE ¼ 2
mmp

ðmþmpÞ2
E; ð16Þ

where mp is the proton mass and E is the WIMP unit mass
kinetic energy before the collision. Then, the condition for
α is

2
mmp

ðmþmpÞ2
E ¼ α

2
v2esc: ð17Þ

If the collision occurs at a radius r inside the star, E equals
the sum of the kinetic energy at infinity and the decrease in
the potential energy,

E ¼ α

2
v2esc þ

GMðrÞ
r

: ð18Þ

Here, we introduce a parameter β that satisfies

GMðrÞ
r

¼ β
v2esc
2

: ð19Þ

β ¼ 1 at the surface of the star and increases for collision
points deeper inside the star. Equation (17) is written using
β as

2
mmp

ðmþmpÞ2
�
α

2
v2esc þ

β

2
v2esc

�
¼ α

2
v2esc: ð20Þ

The solution to Eq. (20) is

α ¼ 2
mmp

m2 þm2
p
β; ð21Þ

and when m ≫ mp, α is approximately given by

α≃ 2
mp

m
β: ð22Þ

As a typical scattering location, we take half the mass
radius of the host star. From the BP04 solar model [50],
this radius is r≃ 0.25R. Hence, from the following
relation

GM=2
0.25R

¼ β
v2esc
2

¼ β
GM
R

; ð23Þ

we obtain β ¼ 2, and α is determined as

α≃ 4
mp

m
∼ 3.8 × 10−3

�
TeV
m

�
: ð24Þ

In order to evaluate the minimum in Eq. (14), we
assume that the average velocity is approximately
v̄≃ 102 km=s. The escape velocity of a Sun-like star
can be evaluated as

vesc ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2GM⊙
R⊙

s
≃ 6.1 × 102 km=s; ð25Þ

and therefore

min

�
1

3
v̄2;

α

2
v2esc

�
¼ α

2
v2esc ≃ β

mp

m
v2esc ≃ 4

mp

m
GM
R

:

ð26Þ

Now, we can write the accretion rate as
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dNacc

dt
¼ ρdm

�
3

2πv̄2

�
3=2

32π2G2M2
mp

m2
f: ð27Þ

Next, we calculate the probability f, which was given by
Press and Spergel [20] as

fPS ¼ 0.89
σ

σcrit
; ð28Þ

where σ is the WIMP–nucleon scattering cross section and
σcrit is defined by

σcrit ≔ mp
R2

M
¼ 4.0 × 10−36

�
R2

R2⊙

��
M⊙
M

�
cm2: ð29Þ

We evaluate f again using the BP04 solar model and obtain
a different result from Press and Spergel [20], as

f ¼ 2.6
σ

σcrit
: ð30Þ

The calculation of f is given in Appendix B.
The cross section σ should satisfy the constraint given

by DM search experiments such as XENON100 [51],
COUPP [52], SIMPLE [53], PICASSO [54], LUX [55],
SuperCDMS [56], and XMASS [57]. For a recent review,
see Ref. [58]. The constraint on the spin-independent cross
section is very strict, and it would not be realistic for the
critical number of WIMPs given by (5) to accumulate
during the lifetime of the host star for WIMPs with spin-
independent interactions. On the other hand, the constraint
on spin-dependent interactions is not so strict, and hence we
consider asymmetric DM with spin-dependent interactions.
When spin-dependent interactions are considered, the
WIMP–He4 interaction is suppressed since it has spin
zero. Hence, He4 in the host star does not contribute to the
scattering probability f. Therefore, we may consider only
WIMP–proton scattering. Assuming that the proton mass
ratio in the host star is 75%, we obtain

f ¼ 2.0
σ

σcrit
: ð31Þ

The constraint on spin-dependent WIMP-proton scattering
is currently understood to be as [58]

σ < 3 × 10−38
�

m
TeV

�
cm2: ð32Þ

At the Galactic center, the DM density can be considered
to be extremely high, as in the Navarro–Frenk–White DM
model [59],

ρNFLðrÞ ¼ ρ0

�
r
rs

�
−α
�
1þ r

rs

�
−3þα

; ð33Þ

where α is the inner slope for the DM density profile near
the Galactic center, rs is the scaling radius and ρ0 is the
scale density. With α ¼ 1.3, ρ0 ¼ 0.4 GeV=cm3 and
rs ¼ 20 kpc, the DM density is more than 107 GeV within
0.06 pc of the Galactic center, and we assume
ρdm ¼ 107 GeV=cm3. One might think that constraints
from gamma ray emission produced via WIMPs annihila-
tion exclude such extremely high DM density. However, in
this paper, we consider DM candidates of asymmetric
nature, which have effectively no annihilation, and there-
fore gamma ray production via WIMPs annihilation does
not apply in our case. The velocity distribution of DM in the
galaxy has not been established yet and, especially, the
average velocity near the Galactic center is not known. Mao
et al. [60] has suggested that it might be slower than
220 km/s in the inner region of the Galaxy. Hence, we
simply assume v̄≃ 1 × 102 km=s.
Finally, the number of WIMPs accreted in a Sun-like

star near the Galactic center during 10 billion years is
estimated as

Nacc ¼ 2.5 × 1049
�

ρdm
107 GeV=cm3

��
100 km=s

v̄

�
3
�

M
M⊙

�
3

×

�
R⊙
R

�
2
�
TeV
m

�
2
�

σ

10−38 cm2

�
; ð34Þ

which is sufficiently beyond the critical number given in
Eq. (3). Therefore, under some convenient assumptions, it
is possible to accumulate more than Nc particles in the host
star, provoking the gravitational collapse.
After the accretion of WIMPs, successive collisions with

protons make WIMPs thermalize. In order that the DM
cluster can actually collapse, the time scale of thermal-
ization should be shorter than the lifetime of the host star.
The time scale depends on the WIMP-proton cross section,
and it should be checked. As discussed in Ref. [29], the
thermalization of captured WIMPs can be characterized by
two stages. At the first stage, the trapped WIMPs oscillate
in the star’s gravitational potential and their orbits go
beyond the size of the star. When the WIMP crosses the
star, it may collide with protons and lose some energy,
making the size of WIMP’s orbit smaller. At the second
stage, the orbit of the WIMP is inside of the star, and
successive collisions make it shrink to the thermal radius.
The time scale of these two stage was evaluated in
Ref. [29]. The duration of the first stage is

t1 ¼ 3 × 103 yr

�
m
TeV

�
3=2

�
σ

10−38 cm2

�
−1
; ð35Þ

and the time scale of the second stage is

t2 ¼ 1.5 × 102 yr

�
m
TeV

��
σ

10−38 cm2

�
−1
: ð36Þ
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These time scales are very short compared with those of
stellar evolution and WIMP accretion.

V. GRAVITATIONAL WAVES

In this section, we briefly discuss GWs emitted from
the collapse of a DM cluster. We extrapolate and apply the
results for gravitational collapses of ordinary stars to
clusters of WIMPs in the radial oscillation phase, based
on Ref. [61]. We also estimate the GWs of the quasinormal
modes associated with BH formation. For numerical
estimations in this section, we always consider the
case m ¼ 1 TeV.
First, if there is any asymmetry in the radial oscillation

phase, bursts of GWs are emitted at the bounces. Using
Eq. (3) of Ref. [61], which is a simple quadrupole formula,
and considering only the velocity term, we estimate the GW
amplitude as

h ≈
ffiffiffi
8

3

r
Gmm

d
v2m; ð37Þ

where d is the distance to the GW source location and vm
and mm denote the velocity and mass of the asymmetric
component of the collapsing matter, respectively. Adopting
the case with rmin ¼ 3.16 cm in Table II, the maximum
velocity becomes v ≈ 0.44 at r ¼ 6.33 cm. Assuming that
1% of the mass of the cluster of WIMPs, i.e., mm ¼
0.01mNc, contributes to the GW emission, together with
vm ≈ 0.44, the GW amplitude is obtained as

h ≈ 1.6 × 10−25
�

d
8 kpc

�
−1
: ð38Þ

The characteristic GW frequency is calculated as fol-
lows. We assume that the GW burst is emitted around the
maximum velocity. Approximating the effective potential
in Eq. (12) as

UðrÞ ¼ −
G2m5N2

2L2
þG4m11N4

2L6
ðr − r0Þ2; ð39Þ

where r0 ¼ L2=ðGm3NÞ is the location of the potential
minimum, i.e., the maximum velocity, we derive the period
of the oscillation. The inverse of the period gives the
characteristic frequency,

f ≈ 3.3 × 108 Hz: ð40Þ

Although this looks reasonable compared with the fre-
quency of the quasinormal mode discussed later, a detailed
study will be required to obtain a more precise GW
frequency and amplitude. Also, we should note that the
assumption on the mass contributed to the GW emission is
a conservative one and leads to the radiated GW energy

E ≈ 2 × 10−6 % by using Eq. (44) below for one bounce
with the characteristic frequency, but we need numerical
simulations to remove this ambiguous assumption.
Next, we consider GWs emitted due to BH formation.

In the nonlinear and dynamical era of BH formation, strong
bursts of GWs will be emitted, and numerical relativistic
simulations are required to estimate them. However, this is
outside of the scope of this paper. We focus only on
ringdown GWs due to the excitation of quasinormal modes
in the final phase of BH formation. When the period of the
core satisfies Tcore ≲ 28 days, the collapse undergoes a
radial oscillation phase. After a sufficient decrease in angular
momentum, rmin will be smaller than the BH’s horizon
radius (for simplicity, we consider the Schwarzschild radius,
i.e., rg ¼ 2MBH ≈ 2.5 cm, instead of the radius of the Kerr
BH). When the angular momentum decreases to that
corresponding to the case of Tcore ≈ 28 days, the cluster
will collapse to form a BH. However, in the case of Tcore ≳
28 days, a BH will directly form from the DM cluster
without a radial oscillation phase. For the above situations,
we calculate the amplitude and frequency of the ring-
down GWs.
As a rough estimation, we treat the cluster of WIMPs as a

rigidly rotating ball in classical mechanics. Considering the
angular momentum conservation during the shrinking
phase, we obtain the angular velocity of the BH,

ωBH ¼
�
rth
rg

�
2

ωf; ð41Þ

where ωf is defined as follows: when the period of the core
is Tcore ≳ 28 days, ωf is the angular velocity of the core and
when Tcore ≲ 28 days, ωf ¼ 2π=ð28 daysÞ, which is the
angular velocity of the core with Tcore ≈ 28 days. Here,
we introduce a nondimensional spin parameter χBH ¼
GMBHωBH. Then, the BH spin is related to the angular
velocity of the star’s core as

χBH ≈
�
rth
rg

�
2

GMBHωf: ð42Þ

We consider the above χBH as the spin parameter of the BH
formed by the gravitational collapse. Here, ðrth=rgÞ2 ≈
4.7 × 1015 is a huge number. Thus, we obtain the BH spin
parameter,

χBH ≈ 0.5

�
Tcore

28 days

�
−1
: ð43Þ

In the case of Tcore ≲ 28 days, we assign Tcore ¼ 28 days in
the above evaluation.
Based on Ref. [62], we estimate the amplitude of the

ringdown GWs as
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A ≈

ffiffiffiffiffiffiffiffiffiffi
8GE
fcQ

s
; ð44Þ

where the central frequency fc and quality factor Q are
given as fitting functions,

fc ¼
1

2πGMBH
½1.5251 − 1.1568ð1 − χBHÞ0.1292�

≈ 3.9 × 109½1.5251 − 1.1568ð1 − χBHÞ0.1292� Hz;
Q ¼ 0.7000þ 1.4187ð1 − χBHÞ−0.4990: ð45Þ

These parameters are related to the real (fR) and imaginary
(fI) parts of the quasinormal modes satisfying fR ¼ fc
and fI ¼ −fc=ð2QÞ.
Concerning the estimation of the radiated energy E,

numerical simulations are helpful. Detailed investigation of
GWs from the collapse of neutron stars was given by
Baiotti et al. [63], showing that E is approximately 10−4%
of the BH mass for χBH ¼ 0.5. However, the collapse of the
DM cluster would not be similar to that of neutron stars.
The reason is as follows: Before the collapse, the DM
cluster is in thermal equilibrium with the baryonic fluid by
successive collisions between protons and WIMPs. As the
thermalization time which is estimated as 103 years (see
e.g., [29]) is much longer than the dynamical time scale, the
WIMP-proton interaction becomes negligible after the
cluster starts to contract. Therefore, the thermal pressure
which supports the cluster will also be ineffective, which is
much different from the case of the neutron stars. Our setup
would be similar to the collapses of rotating stars via
sudden pressure depletion considered by Stark and Piran
[64]. According to the numerical simulation given by Stark
and Piran [64], which preserves an axisymmetric configu-
ration, we assume that the radiated energy, E, is 0.01% of
the BH mass for χBH ¼ 0.5. Now, the GW amplitude is
calculated as

h ¼ A
d
≈ 3.2 × 10−24

�
d

8 kpc

�
−1
; ð46Þ

where we have set χBH ¼ 0.5 as the characteristic spin
value. The parameters of the ringdown GWs are fc ≈ 1.8 ×
109 Hz and Q ≈ 2.7. In this evaluation, only a small
fraction of the BH mass contributes to the radiated GW
energy due to the axisymmetry. We may expect larger GW
amplitudes if there is any break of the axisymmetry.
This is not the end of the story however. In practical GW

observations, we need to consider the signal-to-noise ratio
(SNR). Using Ref. [62] (see also, Ref. [65]), the SNR for
the above ringdown GWs is evaluated by

ðSNRÞ ≈
ffiffiffi
5

p

10π

A
d

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q

fcShðfcÞ

s
≈ 8.9 × 10−8

�
d

8 kpc

�
−1

×

� ffiffiffiffiffiffiffiffiffiffiffiffiffi
ShðfcÞ

p
10−22=

ffiffiffiffiffiffi
Hz

p
�−1

; ð47Þ

where ShðfcÞ is the noise spectral density of the GW
detector at the central frequency, for which we have used
the value given in Ref. [19]. This means that to detect
ringdown GWs, the detector’s noise must be belowffiffiffiffiffiffiffiffiffiffiffiffiffi
ShðfcÞ

p
≈ 10−30=

ffiffiffiffiffiffi
Hz

p
.

Note that in Ref. [66] various possibilities are sug-
gested for the emission of GWs from the system.
Especially, GWs from bar-mode and fragmentation insta-
bilities have been estimated for massive stars. In our
situation, these GWs will be radiated in the case of m≲
4 × 102 GeV where the gravitational collapse does not
lead directly to BH formation and the cluster of WIMPs
is supported by Fermi pressure. A study in this direction
is left for future work since it is necessary to discuss the
growth of these instabilities numerically. Also, there is
ambiguity in the radiated energy of ringdown GWs. Since
the ringdown efficiency is sensitive to the collapsing
mechanism [67], this will require in-depth numerical
simulations.

VI. SUMMARY AND DISCUSSION

We have calculated the critical number of WIMPs
necessary for gravitational collapse. We found that the
mass of a BH increases when the host star has a lower
baryonic density and higher temperature. This means
that a BH formed in a Sun-like star is larger than one in a
neutron star, and GWs emitted from the former BH are
more detectable. Hence, we have considered a Sun-like
star as the host star. One of the main results is that if
WIMPs are fermions and their mass is smaller than
4 × 102 GeV, a gravitational collapse leads to a compact
object supported by Fermi pressure, and otherwise a BH
is formed.
Taking into account the rotational effect, we have found

that the centrifugal force may halt BH formation for a
while. Form ¼ 1 TeV, if the core of the star rotates slowly,
the DM cluster collapses to a BH directly. On the other
hand, if it rotates with a period of Tcore ≲ 28 days, the
centrifugal potential prevents BH formation and the cluster
gives way to a radial oscillation phase. At each bounce of
the oscillation, a fraction of the angular momentum of the
cluster is extracted by GWemission, and it finally collapses
to a BH.
For a sufficient number of WIMPs to accumulate for

self-gravitating in a Sun-like star, WIMPs exhibiting spin-
dependent interactions should be considered. Furthermore,
since an extremely high DM density is required, the host
star should be in the vicinity of the Galactic center.
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Therefore, we have set the distance from the GW source to
be 8 kpc, which is used in our estimation of GW
amplitudes.
For WIMPs with m ¼ 1 TeV, two types of GWs from

the collapse have been estimated. At each bounce, GWs
with a characteristic frequency of 3 × 108 Hz will be
emitted. After BH formation, quasinormal ringing GWs
will be produced with the central frequency estimated to be
2 × 109 Hz, while the amplitude has been estimated to be
h ≈ 3 × 10−24. To detect ringing GWs, the detector’s noise
level should be lower than

ffiffiffiffiffiffiffiffiffiffiffiffiffi
ShðfcÞ

p
≈ 10−30=

ffiffiffiffiffiffi
Hz

p
. This

makes the detection of GWs from DM collapses quite
challenging.
We have assumed that WIMPs are collisionless and the

gravitational contraction occurs in a dynamical way.
However, self-interactions between WIMPs will affect
the gravitational contraction and therefore also the GW
emission. Conversely, if GWs from the DM collapse
are detected, the details of the self-interaction can be
investigated by ultrahigh-frequency GW observations.
Therefore, GW observation might be able to be a tool to
investigate these interactions.
In the analysis of GWs, we have evaluated the radiated

energy of ringdown GWs by adopting the result for an
axisymmetric collapse [64] in which only 0.01% of the BH
mass is converted to GW energy. However, in actual cases,
complete preservation of the axisymmetric configuration
cannot be expected, as in the case of neutron stars [47], and
it was shown that a much larger fraction of energy is
emitted as GWs in nonaxisymmetric collapses (see, e.g.,
[68,69] for binary BH mergers). Therefore, the amplitude
of ringdown GWs is expected to be larger than that given
in Eq. (46).
Recently, Brito, Carodoso, and Okawa [70] showed by

solving field equations numerically that a DM cluster
may stop growing due to gravitational cooling, if the DM
is composed of light massive bosonic fields. Their DM
configurations seem to be coherent, like Bose–Einstein
condensates, which is not applicable to our case.
However, their simulation clearly shows the importance
of numerical investigation for constructing solutions. As
the authors stated, other more detailed simulations will be
needed.
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APPENDIX A: VIRIAL THEOREM FOR
SELF-GRAVITY

Let us consider a system including N particles and the
following time derivative:

d
dt

XN
a¼1

mava · xa ¼
XN
a¼1

ma _va · xa þ
XN
a¼1

mava · _xa

¼
XN
a¼1

� XN
b¼1;b≠a

Gmambðxb − xaÞ
r3ab

�
· xa

þ
XN
a¼1

mav2a

¼ −
1

2

XN
a¼1

XN
b¼1;b≠a

Gmamb

rab
þ
XN
a¼1

mav2a;

ðA1Þ

where rab¼jxb−xaj1=2 and va ¼ dxa=dt ¼ _xa. Assuming
that N particles have the same mass m and taking the
average of this derivative over a long time, the left-hand
side of the above equation vanishes and we obtain

0 ¼ −
�
1

2

XN
a¼1

XN
b¼1;b≠a

Gm
rab

�
þ
�XN

a¼1

v2a

�
: ðA2Þ

Averaging over all particles and considering one typical
particle, this equation can be written as

0¼ −
1

2
Gm

1

N

XN
a¼1

XN
b¼1;b≠a

�
1

rab

�
part: ave:

þ 1

N

XN
a¼1

hv2aipart:ave:

ðA3Þ

Now, we consider an approximation,

hrabipart: ave: ¼
D ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2b − 2xb · xa þ r2a

q E
part: ave:

≈
ffiffiffi
2

p
hraipart: ave: ≕

ffiffiffi
2

p
r; ðA4Þ

where we have defined the particle averaged radius r in the
previous equation. We introduce the root mean square
velocity v̄, defined as

1

N

XN
a¼1

hv2ai ¼ v̄2; ðA5Þ

Eq. (A3) leads to

1

2
mv̄2 ¼ GNm2

4
ffiffiffi
2

p
r
: ðA6Þ
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Adding a contribution from the gravitational potential of
the host star, we have

1

2
mv̄2 ¼ GNm2

4
ffiffiffi
2

p
r
þGmMðrÞ

2r
; ðA7Þ

which gives Eq. (1).

APPENDIX B: EVALUATION OF f

In this appendix, we calculate the probability f in
Eq. (14), based on the derivation given by Press and
Spergel [20]. Since the WIMP–nucleon cross section is
very small, f can be approximated as

f ≈
�Z

ρpσ

mp
dl

�
¼ σ

σcrit

R3

M

�Z
ρp

dl
R

�
; ðB1Þ

where mp and ρp are the proton mass and mass density,
respectively. The brackets mean an average over capturable
orbits. dl denotes an infinitesimal arc length along an orbit,
which is written as

dl ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
dr
dθ

�
2

þ r2

s
dθ; ðB2Þ

where θ is the angular variable of the orbit and we set θ ¼ 0
at the surface r ¼ R.
We introduce the dimensionless variables

Ĵ2 ¼ J2

GMR
; û ¼ R

r
; M̂ðrÞ ¼ MðrÞ

M
; ðB3Þ

where J denotes the specific angular momentum of the
WIMP. Considering only a low-energy particle (E ≈ 0),
which will be captured by the star, the law of energy
conservation per unit mass is approximately given as�

dû
dθ

�
2

þ û2 −
2

Ĵ2

Z
û

0

M̂ðrÞdû ≈ 0: ðB4Þ

Then, we obtain

dl
R

¼ 1

û2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
dû
dθ

�
2

þ û2

s
dθ ¼ 1

û2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

Ĵ2

Z
û

0

M̂ðrÞdû
s

dθ:

ðB5Þ

Since M̂ðrÞ ¼ 1 outside the star (0 ≤ û ≤ 1), we haveR
1
0 M̂ðrÞdû ¼ 1. The orbit ûðθÞ inside the star is determined
by the equation of motion,

d2û
dθ2

þ û −
M̂ðrÞ
Ĵ2

¼ 0; ðB6Þ

with the initial conditions

ûð0Þ ¼ 1;
dû
dθ

����
θ¼0

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2

Ĵ2
− 1

r
: ðB7Þ

To solve Eq. (B6), we need an expression for the mass
fraction M̂ðrÞ in units of solar mass. In Fig. 3, we show the
mass fraction given by the BP04 solar model Ref. [50] and
a function,

ˆMðrÞ ¼ 1 − exp

�
−9.5

�
r
R

�
2
	
¼ 1 − exp

�
−
9.5
û2

	
: ðB8Þ

As shown in Fig. 3, the function (B8) approximately fits the
mass fraction, and we adopt it as the fitting function below.
We calculate the integration of M̂ðrÞ with respect to û as

0 0.2 0.4 0.6 0.8 1
r/R

0

0.2

0.4

0.6

0.8

1

M
(r

)/
M

Data
Fitting

FIG. 3. Mass fraction of the BP04 solar model [50], showing
the data (“þ” symbols, which run together to form the thick black
line) and the fit using Eq. (B8) (thin red thin line).

0 0.2 0.4 0.6 0.8 1
r/R

0

50

100

150

200

ρ 
[g

/c
m

3 ]
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Fitting

FIG. 4. Solar density, showing the data (“þ” symbols) and the
fit using Eq. (B10) (thin red line).
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Z
û

0

M̂ðrÞdû ¼
Z

1

0

dûþ
Z

û

1

M̂ðrÞdû ¼ 1þ
Z

û

1

M̂ðrÞdû

¼ û − û exp

�
−
9.5
û2

�
−

ffiffiffiffiffiffiffiffiffi
9.5π

p
Erf

� ffiffiffiffiffiffiffi
9.5

p

û

�

þ ðe−9.5 þ
ffiffiffiffiffiffiffiffiffi
9.5π

p
Erfð

ffiffiffiffiffiffiffi
9.5

p
ÞÞ: ðB9Þ

We also need the density of the solar model, which can be
fitted by the following function,

ρpðr̂Þ ¼
200ðr̂þ 1.75Þ3

exp½11.5r̂þ 1.6� − 1
tanhð18ðr̂þ 0.03ÞÞ; ðB10Þ

as shown in Fig. 4.
Using these fitting functions and solving the equation of

motion in Eq. (B6), we perform the integration

R3

M

Z
ρp

dl
R

¼ R3

M

Z
dθρp

1

û2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

Ĵ2

Z
û

0

M̂ðrÞdû
s

; ðB11Þ

for several values of Ĵ numerically. The results are shown in
Fig. 5 and can be fitted by a function,

~fðĴÞ ¼ 0.73ð10Ĵ þ 4.8Þ4ðexpð7.3Ĵ þ 4Þ − 1Þ−1: ðB12Þ

Averaging over the orbits with E ≈ 0 and 0 < J2 < 2GM,
the integration of ~f with respect to Ĵ gives

1ffiffiffi
2

p
Z ffiffi

2
p

0

~fðĴÞdĴ ¼ 2.6418: ðB13Þ

Finally, we obtain

f ¼ 2.6
σ

σcrit
: ðB14Þ
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