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The autocorrelation between two members of a galaxy population is symmetric under the interchange of
the two galaxies being correlated. The cross-correlation between two different types of galaxies, separated
by a vector r, is not necessarily the same as that for a pair separated by −r. Local anisotropies in the two-
point cross-correlation function may thus indicate a specific direction which when mapped as a function of
position trace out a vector field. This vector field can then be decomposed into longitudinal and transverse
components, and those transverse components written as positive- and negative-helicity components. A
locally asymmetric cross-correlation of the longitudinal type arises naturally in halo clustering, even with
Gaussian initial conditions, and could be enhanced with local-type non-Gaussianity. Early-Universe
scenarios that introduce a vector field may also give rise to such effects. These antisymmetric cross-
correlations also provide a new possibility to seek a preferred cosmic direction correlated with the
hemispherical power asymmetry in the cosmic microwave background and to seek a preferred location
associated with the cosmic microwave background cold spot. New ways to seek cosmic parity breaking are
also possible.
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I. INTRODUCTION

Considerable evidence has accrued for the past decade that
large-scale structure in the Universe grew via gravitational
infall from a nearly scale-invariant spectrum of very nearly
Gaussian primordial adiabatic density perturbations [1,2].
The nature of these perturbations is generally accounted for
in terms of single-field slow-roll (SFSR) inflation [3].
However, even if SFSR is the correct explanation, there
might be new physics beyond SFSR inflation, and there
remains the ever-present possibility that primordial pertur-
bations are due to something completely different.
In order to develop a clearer understanding of the new

physics responsible for primordial perturbations, we must
be vigilant in seeking new fossils from the early Universe in
the form of subtle correlations in the matter distribution.
This is the motivation for much of the work on non-
Gaussianity [4]. This paper will explore new observables
that can be sought with galaxy surveys. Such work is timely
given the advent in the forthcoming years of a new
generation of surveys [5–8] that will map the distribution
of galaxies over vast volumes in the Universe.
Recent work [9] presented a parametrization of the most

general autocorrelation function—which may depend on
the orientation of the two points being correlated as well as
their position in space—and showed that it could be
decomposed into scalar, vector, and tensor components.
Here we generalize that work to the most general two-point
cross-correlation function between two different galaxy
populations. If primordial perturbations are Gaussian, then
the two-point correlation function is statistically isotropic

and homogeneous. More generally, though, the two-point
correlation function may, at least in some small region of
space, be anisotropic. That anisotropy may also vary from
one point in the Universe to another. Reference [9] para-
metrized the most general local departure from isotropy for
an autocorrelation function. Since an autocorrelation func-
tion for two galaxies separated by a vector r must be
invariant under the inversion r → −r, the most general
departure from statistical isotropy is parametrized in terms
of a symmetric tensor, or more generally, in terms of the six
degrees of freedom that parametrize that tensor.
If, however, we consider the two-point cross-correlation

function between two distinct populations, then it is
possible that the correlation function for a galaxy pair
separated by r may differ from that with separation −r.
There is thus a possibility that the two-point correlation
function might “point” in a given direction, and this
pointing is described by a vector. Our purpose here is to
point out that evidence of the imprint of a vector field can
be sought with cross-correlations in the galaxy distribution.
Our work differs from that of Refs. [10–12], who also
considered asymmetric galaxy cross-correlations; while
they considered only those that arise from projection
effects, we consider bona fide asymmetries in the three-
dimensional distribution. Since observations are done in
redshift space, though, care must be taken to disentangle
the 3D asymmetries we consider below from the redshift-
space asymmetries discussed in Refs. [10–12] and from
the angular dependence induced by the 3D redshift space
distortions (RSD) operator [13].
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Below we describe the parametrization of the most
general two-point cross-correlation, beginning by reprising
the parameterization for the autocorrelation function. We
then discuss the decomposition of these types of local
departures from statistical isotropy in terms of two trans-
verse and one longitudinal mode. Next, we write down the
optimal quadratic estimators to be constructed from galaxy
surveys to detect these departures from statistical isotropy.
After that, we discuss several possible physical mecha-
nisms to generate these types of local departures from
statistical isotropy. We begin this discussion with an effect
that arises in biased halo clustering, even with Gaussian
initial conditions, and another that arises in halo clustering
if there is local-type primordial non-Gaussianity. We then
describe several early-Universe scenarios for such corre-
lations. We point out that a search for these anisotropic
cross-correlations may be used to seek a preferred cosmic
direction correlated with the direction indicated by the
hemispherical power asymmetry [14,15] or to seek a
preferred location associated with the cosmic microwave
background (CMB) cold spot [16]. Finally, we mention the
possibility to construct new probes of parity breaking.

II. PARAMETRIZATION OF THE
CROSS-CORRELATION

We begin by reprising the parametrization of Ref. [9]
for the two-point autocorrelation function. Suppose we
have a density field δðxÞ from which we construct the
Fourier components δðkÞ. The most general two-point
correlation function for those Fourier components can be
parametrized as

hδðk1Þδðk2Þi ¼ Pðk1Þδk1;−k2
þ
X
K

X
p

fpðk1; k2; μÞ

× h�pðKÞϵpijðKÞki1kj2δDk123
; ð1Þ

where δk1;−k2
is a Kronecker delta and δDk123

is a Kronecker
delta that sets k1 þ k2 þK ¼ 0. Here p sums over the six
possible basis tensors for a symmetric tensor, and ϵpijðKÞ
are the six polarization tensors which can be written as a
trace, a longitudinal mode, two transverse-vector modes,
and two transverse traceless tensor modes. The hpðKÞ are
Fourier amplitudes of the various types of perturbations,
and fpðk1; k2; μÞ parametrizes the dependence on k1 and
k2 (where μ is the cosine of the angle between k1 and k2).
The first term in Eq. (1) indicates the statistically isotropic
correlation with power spectrum PðkÞ. It was argued in
Ref. [9], simply from symmetry considerations (and in
particular, the dependence of the correlation on the azimu-
thal angle about the direction ofK), that terms with the two
scalar, the two vector, or the two tensor polarizations can
arise in inflation if the inflaton is coupled to a new scalar,
vector, or tensor field, respectively.

Our purpose here, though, is to consider the additional
possibility that arises when we cross-correlate two different
tracers of the matter distribution. The fractional density
perturbations of these two populations will have Fourier
amplitudes δ1ðk1Þ and δ2ðk2Þ, respectively. The most
general two-point correlations of these Fourier coefficients
will satisfy a relation like Eq. (1), but the sum on pwill now
be extended from six to nine to account for the three
possibilities where ϵpijðKÞ is antisymmetric. The three new
degrees of freedom in the cross-correlation, not allowed
with autocorrelations, can be written most generally, for
k1 ≠ −k2, as

hδ1ðk1Þδ2ðk2Þi ¼
X
K;p

fpðk1;k2; μÞh�pðKÞϵ̂p

· ðk1 − k2ÞδDk123
: ð2Þ

Here, the sum on p runs over the three polarizations
p ¼ L; x; y, where ϵ̂LðKÞ ¼ K̂ and ϵx;yðKÞ are two other
unit vectors orthogonal to K̂ and to each other. Just from
symmetry considerations, we expect that correlations with
p ¼ L could arise if there is some longitudinal-vector field—
or equivalently, the scalar field from which it is derived—
coupled to whatever physics determines the galaxy
distribution. Similarly, distortions with p ¼ x; y would
require that the galaxy distribution was determined, at least
in part, by some transverse-vector field.
Equation (2) describes, in Fourier space, cross-correla-

tions between two different populations, that are antisym-
metric in the exchange of the two populations. In
configuration space, these correlations trace out a vector
field, as follows: In any small volume of the Universe, the
cross-correlation could “point” in some given direction;
i.e., there could be a mean offset between galaxies of
type 1 (e.g., more massive galaxies) and galaxies of type 2
(e.g., less massive galaxies). This thus implies a preferred
direction in that volume. The generality of the parametri-
zation in Eq. (2) allows for the possibility that this preferred
direction is spatially dependent in such a way that global
statistical isotropy is preserved on sufficiently large scales.
It also allows for the possibility, though, for a preferred
direction across the entire observable Universe. This latter
possibility clearly requires some exotic new physics, but
the imprint of a local preferred direction is not at all exotic,
as we will see.

III. ESTIMATORS

We now describe how to measure these vectorial cross-
correlations from a galaxy survey. We will consider the
longitudinal and transverse components separately and
begin with longitudinal distortions, supposing that
fLðk1; k2; μÞ is specified. Suppose further that the physical
model specifies that the Fourier components hLðKÞ are
selected from a Gaussian distribution with power spectrum
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PLðKÞ ¼ ALP
f
LðKÞ of amplitude AL and fiducial K

dependence Pf
LðkÞ. Following the same steps as in

Ref. [9], the optimal estimator for the amplitude AL is
given by

cAL ¼ σ2L
X
K

Pf
LðKÞ

2½Pn
LðKÞ�2

ðV−1j dhLðKÞj2−Pn
LðKÞÞ; ð3Þ

and this amplitude is determined with inverse variance:

σ−2L ¼ ð1=2Þ
X
K

½Pf
LðKÞ�2½Pn

LðKÞ�−2: ð4Þ

Here,

dhLðKÞ ¼ Pn
LðKÞ

X
k

fLðk; jK − kj; μÞK̂ · ðKþ 2kÞ
2VPtot

1 ðkÞPtot
2 ðjK − kjÞ

× δ1ðkÞδ2ðK − kÞ ð5Þ
is the estimator for the amplitude hLðKÞ, where here

μ ¼ k̂ · ðK − kÞ, and the noise power spectrum for dhLðKÞ is

Pn
LðKÞ¼

�X
k

jfLðk; jK−kj;μÞK̂ · ðKþ2kÞj2
2VPtot

1 ðkÞPtot
2 ðjK−kjÞ

�−1
: ð6Þ

In these expressions, V is the volume of the survey, the sums
are over the wave numbers k for which the density
perturbations are measured;P1ðKÞ and P2ðKÞ are the power
spectra for the two populations; and Ptot is the total power
spectrum, the sum of the signal and the shot noise. If instead
we consider distortions of the transverse-vector type, then the
optimal estimator for the amplitude AT for the power
spectrum for the transverse-vector field will be as above,
but with K̂ replaced by ϵ̂iðKÞ and an additional sum over the
two transverse polarizations.

IV. BIASED HALO CLUSTERING

We now show that asymmetric cross-correlations arise in
the standard model for biased halo clustering from Gaussian
initial conditions. Let δðxÞ be the primordial fractional mass-
density perturbation, and suppose that this density field is
populated by two different types of halos. These could be, for
example, high-mass halos (e.g., those that house giant
ellipticals, clusters, etc.) and low-mass halos (e.g., those
that house Milky-Way–type galaxies, dwarf galaxies, etc.).
Let n1ðxÞ be the fractional perturbation in the number
density, as a function of position x, of halos of type 1 and
similarly for n2ðxÞ. Since the abundance of halos in some
region is a nonlinear function of the local mass density, there
are nonlinear relations [17], n1ðxÞ ¼ b1δðxÞ þ c1½δðxÞ�2
þ � � � and n2ðxÞ ¼ b2δðxÞ þ c2½δðxÞ�2 þ � � � between the
halo andmass densities, where b1 and b2 are the usual linear-
bias parameters and c1 and c2 are nonlinear-bias parameters.
The nonlinear relation between ni and δðxÞ implies that there
will be a three-point correlation:

hn1ðk1Þn2ðk2ÞδðKÞi
¼ 2PðKÞ½b2c1Pðk2Þ þ b1c2Pðk1Þ�δDk123

: ð7Þ

If we antisymmetrize ink1 andk2, we find an antisymmetric
part, ∝ 2PðKÞðb2c1 − b1c2Þ½Pðk1Þ − Pðk2Þ� to this three-
point function. We now consider the squeezed limit, k≡
k1 ∼ −k2 and k≃ k1, k2 ≫ K, appropriate if we are
considering the small-scale clustering of halos in the
presence of a low-pass-filtered density field. The part of
the bispectrum antisymmetric in k1 and k2 is then
2ðb1c2 − b2c1ÞPðKÞ½dPðkÞ=dk�K · k̂. We thus see that in
the presence of a long-wavelength mode of δðxÞ, the high-
pass-filtered n1ðxÞ and n2ðxÞ have a Fourier-space cross-
correlation precisely of the form in Eq. (2) with
fL ¼ ½dPðkÞ=dk�ðb1c2 − b2c1ÞðK=kÞ. The longitudinal,
rather than transverse, mode is as expected in the presence
of the long-wavelength density perturbation.
Existing measurements [18–22] of nonlinear-bias param-

eters from galaxy bispectra [23–25] have relied entirely on
measurement of autocorrelations. Cross-correlations have
also been used to infer bias parameters [26–29], but those
works considered only the linear bias. If a galaxy sample is
broken up into two different populations, the linear- and
nonlinear-bias parameters for the two populations can be
measured with the bispectra for the two different popula-
tions. The symmetric part of the cross-correlation between
these two populations then provides a measurement of the
combination b1c2 þ b2c1, and the antisymmetric part of
this cross-correlation provides b2c1 − b1c2. The latter
provides some incremental improvement in statistical
power, and it can also complement other measurements
of the bias parameters and be used to check the validity
of the biasing-model assumptions behind the analyses.
Indeed, from Eq. (7) and what follows, we see that
for a power-law PðkÞ, the ratio between the symmetric
and asymmetric signals is ∝ ðb2c1 − b1c2ÞK=2ðb1c2þ
b2c1Þk, which is generically small in the squeezed limit
k ≫ K. However, for populations with negative nonlinear
bias on certain scales (see, e.g., [30]), it is certainly possible
that the bias parameters contrive to yield b1c2 þ b2c1 ≈ 0,
in which case the asymmetric information becomes par-
ticularly beneficial.

V. PRIMORDIAL NON-GAUSSIANITY

Asymmetry may arise even with linear biasing if there
is primordial non-Gaussianity of the local type. In
this case, the linear-bias parameters for the two halo pop-
ulations may be scale dependent: n1ðk1Þ ¼ b1ðk1Þδðk1Þ
and n2ðk2Þ ¼ b2ðk2Þδðk2Þ. Here biðkÞ≈biþ2ðbi−1Þ×
δcfnlΩm3ðaH=kÞ2=2 with the standard scale-independent
bias bi and some collapse threshold δc [31–33]. On the
other hand, the matter-density perturbation is expected to
develop a nonzero bispectrum Bðk1; k2; KÞ due to nonlinear
gravitational growth [34–36] (this should not be confused
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with the primordial bispectrum). The three-point function
hn1ðk1Þn2ðk2ÞδðKÞi ∝ b1ðk1Þb2ðk2ÞBðk1; k2; KÞ is thus
noninvariant if we exchange k1 and k2, and we again
recover an antisymmetric correlation ∝ ½b1ðk1Þb2ðk2Þ−
b1ðk2Þb2ðk1Þ�Bðk1; k2; KÞ=PðKÞ, with

fL ¼ 3ðb1 − b2ÞδcfnlΩm
ðaHÞ2K
k21k

2
2

Bðk1; k2; KÞ
PðKÞ : ð8Þ

VI. PRIMORDIAL LONGITUDINAL
VECTOR FIELD

We now describe an exotic scenario that could give rise
to an anisotropic two-point correlation. Consider a curva-
tonlike inflation model in which primordial density per-
turbations are due not to fluctuations in the inflaton but to
fluctuations in some spectator field. Suppose further that
this curvatonlike field is complex and coupled to a new
Uð1Þ gauge field. There will then be charge-density
fluctuations that arise during inflation, and if the Uð1Þ
symmetry is broken after inflation, those charge-density
fluctuations may survive. It is then conceivable that dark

matter may be like baryonic matter in our Universe, in
which there are light electronlike dark-matter particles and
heavier protonlike dark-matter particles of opposite charge.
If so, then galaxies that form in regions with a positive
charge-density fluctuation may be different than those that
form in regions with negative charge-density fluctuations.
The cross-correlations between these two different types of
galaxies—which for example may appear to us as brighter
or fainter galaxies—should then trace out the large-scale
electric-type field associated with the early-Universe Uð1Þ
gauge field (see Fig. 1). Such a longitudinal-type cross-
correlation could in principle be distinguished from that
due to halo clustering from the different dependences on k.
Unlike the halo-biasing case, in which small-scale direc-
tionality indicated by anisotropic cross-correlations are
correlated with the long-wavelength density field, these
anisotropic correlations would have no cross-correlation
with the large-scale density field.

VII. PRIMORDIAL TRANSVERSE VECTOR FIELD

What about anisotropic cross-correlations of the trans-
verse variety? As we have seen above, modulation of small-
scale galaxy-density fluctuations by a long-wavelength
density mode arise naturally, but those are of the longi-
tudinal variety. Any small-scale anisotropic cross-correla-
tion that traced out a transverse-vector field would thus
provide clear indication of new physics. There are indeed a
number of inflationary scenarios that involve new vector
fields [37] and models of gravity in which the vector
degrees of freedom in the metric are brought to life [38],
and it is reasonable to surmise that one of these provide an
imprint of the type we consider. To see how this may work,
suppose the inflaton (or curvaton) ϕ is coupled to a vector
field Aμ through a term ∂ðμAνÞð∂μϕÞð∂νϕÞ, where the
parentheses in the superscripts indicate symmetrization
(antisymmetrization would make this term vanish).
Although the coupling of a mode of wave number K of
the vector field to two scalar-field modes of wave vectors
k1 and k2 would be symmetric under k1↔k2, one could
again construct a model with two dark-matter components,
sourcing two different galaxy populations in the respective
dark-matter halos made up from each component, in a way
that makes the cross-correlation in one of the transverse
directions asymmetric (see illustration in Fig. 1). These
transverse-vector cross-correlations will be straightforward
to measure with a galaxy survey and any non-null result
would be extraordinarily interesting. The measurement will
also be useful as a unique null test for systematic effects.

VIII. THE CMB POWER ASYMMETRY
AND COLD SPOT

There is evidence for a hemispherical power asymmetry
in the cosmic microwave background [14,15] and it is
important to investigate whether this preferred direction

FIG. 1. We consider models with two components of dark
matter with some dipole interaction. Top: An “electric field” in
the longitudinal direction leads to the arrangement in the pattern
shown above. Then at the separation scale corresponding to the
distance between “−” and “þ” there is an asymmetric cross-
correlation between the − and þ populations, along this longi-
tudinal direction. The estimators derived in this work are
designed to detect such a transverse vector asymmetry. Bottom:
A different setup, for which the asymmetry has a sinusoidal
modulation in the transverse direction, leading to a transverse
asymmetric cross-correlation.
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shows up anywhere else. If the CMB power asymmetry is
due to the long-wavelength modulation of primordial
perturbations [39–44], then anisotropic cross-correlation
of the type discussed above for biased halo clustering
should exist, but with just one long-wavelength mode
hLðKÞ of wave number K → 0 in the direction of the
CMB power asymmetry. In simple terms, this Fourier
amplitude hLðKÞ seeks whether a less massive galaxy is
more likely to be found on one side of a more massive
galaxy than on the other side.
Measurements from Planck [15,45] also confirm the

existence of a cold spot in the CMB [16]. An asymmetric
cross-correlation that traces out a hedgehog configuration
surrounding the cold spot could conceivably arise either
from a large void [46] or from exotic physics [47] that may
be responsible for the cold spot. A template for such a
configuration could be constructed from the estimatorsdhLðKÞ discussed above.

IX. PARITY BREAKING?

There are also novel probes of cosmic parity breaking
that can be constructed. Estimators for the two transverse
modes hpðKÞ for each wave vector K can be constructed
analogously to Eq. (5) by replacing the vector K that
appears in the dot product with one of the two transverse
polarization vectors. Those two linear polarization vectors
ϵ̂x and ϵ̂y can be replaced by circular polarizations
ϵ̂�ðKÞ ¼ 2−1=2½ϵxðKÞ � iϵyðKÞ�. Estimators for the
Fourier amplitudes of these helicity states are then given by

dh�ðKÞ ¼ Pn
LðKÞ

X
k

fLðk; jK − kj; μÞϵ̂� · ðKþ 2kÞ
2VPtot

1 ðkÞPtot
2 ðjK − kjÞ

× δ1ðkÞδ2ðK − kÞ: ð9Þ

It is then straightforward, following the power-spectrum-
amplitude estimators discussed above, to construct estima-
tors to check for an asymmetry between the power in right

and left circularly polarized modes. Again, while a null
result would not be too surprising, a positive result, if
found, would be revolutionary.

X. CONCLUSIONS

We have shown that cross-correlations between different
galaxy populations may point in a given direction. The
vector field from this pointing can be reconstructed from
galaxy clustering, and it can be decomposed into longi-
tudinal and transverse components, and also into compo-
nents of positive and negative helicity. We discussed
several physical mechanisms that may give rise to these
departures from local statistical isotropy. These include
nonlinear halo biasing, an effect that should arise in the
standard model of halo clustering, and local-type non-
Gaussian primordial perturbations. Other possibilities
include couplings of the primordial field responsible for
primordial perturbations to a new vector field, as well as a
coupling to some field that might account for the hemi-
spherical power asymmetry or cold spot in the CMB. The
clustering effects from halo biasing constitute concrete
predictions of the standard halo-clustering model that can
be measured and used to test that standard model. Although
the exotic possibilities we discussed are long shots, they
will be easily sought in forthcoming surveys and would, if
discovered, be quite remarkable.
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