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We investigate the quantumness of primordial cosmological fluctuations and its detectability. The
quantum discord of inflationary perturbations is calculated for an arbitrary splitting of the system, and
shown to be very large on super-Hubble scales. This entails the presence of large quantum correlations,
due to the entangled production of particles with opposite momentums during inflation. To determine how
this is reflected at the observational level, we study whether quantum correlators can be reproduced by a
nondiscordant state, i.e. a state with vanishing discord that contains classical correlations only. We
demonstrate that this can be done for the power spectrum, the price to pay being twofold: first, large errors
in other two-point correlation functions that cannot however be detected since they are hidden in the
decaying mode; second, the presence of intrinsic non-Gaussianity, the detectability of which remains to be
determined but which could possibly rule out a nondiscordant description of the cosmic microwave
background. If one abandons the idea that perturbations should be modeled by quantum mechanics and
wants to use a classical stochastic formalism instead, we show that any two-point correlators on super-
Hubble scales can be exactly reproduced regardless of the squeezing of the system. The latter becomes
important only for higher order correlation functions that can be accurately reproduced only in the strong
squeezing regime.

DOI: 10.1103/PhysRevD.93.023505

I. INTRODUCTION

According to the most recent cosmological observations
[1–3], inflation [4–9] provides a mechanism for generating
large scale fluctuations [10–15] that fits the data very well
[16–20]. The scope of this mechanism is not limited to
broad phenomenological predictions but is also deeply
connected to the realm of quantum gravity, which makes it
particularly interesting from a theoretical point of view.
Indeed, according to inflation, the large scale structure in
our Universe and the cosmic microwave background
(CMB) anisotropies are nothing but quantum fluctuations
of the gravitational and inflaton fields, stretched over
cosmological distances.
However, the above claim is often taken with a grain of

salt probably because, in practice, astronomers analyze the
data with purely classical techniques and apparently never
need to rely on the quantum formalism to understand them.
This situation raises the question of the observational
signature of the quantum nature of inflationary perturba-
tions [21–51]. Is quantum mechanics really necessary in
order to explain the properties of the CMB anisotropies or

can everything be described in a classical context (in which
case doubts could be cast on the quantum origin of the
perturbations)? To put it differently, what would be wrong
and which properties would be missed if the analysis
were performed in a fully classical framework? The goal of
this article is to address this question both at the theoretical
and observational levels. The question is particularly timely
since, in quantum information theory, new tools that are
directly relevant to the problems discussed in this article
have recently been introduced, such as the quantum
discord [52,53].
This paper is organized as follows. In the next section,

Sec. II, we briefly review the theory of inflationary
cosmological perturbations of quantum mechanical origin.
We pay special attention to the quantum state in which the
fluctuations are placed, namely a two-mode squeezed state.
In Sec. III, we introduce the quantum discord [52,53],
which is a quantity that has recently received a lot of
attention in the quantum information community and which
is designed to measure the quantumness of correlations
present in a quantum state. It was first applied to cosmo-
logical fluctuations in Ref. [54], where, in the case where
decoherence of perturbations [55–63] occurs due to envi-
ronment degrees of freedom, the quantum discord of the
joint primordial perturbations-environment system was
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calculated. In this paper, we show that, even in the
absence of an environment, particles with wave numbers
k and −k are created by the same quantum event, and, as
such, are highly entangled. This gives rise to a large
quantum discord. In practice, we find that it is proportional
to the squeezing parameter which is itself proportional to
the exponential of the number of e-folds spent between the
Hubble radius exit during inflation and the end of inflation
(typically ∼50 e-folds for the scales observed in the CMB).
We conclude that the CMB is a highly nonclassical system
that is placed in an entangled quantum state. We also
consider the discord for an arbitrary splitting of the system,
showing that it is always nonvanishing except for the
case where the two subsystems correspond to the real and
imaginary parts of the Mukhanov-Sasaki variable. This
shows that a purely classical description of cosmological
perturbations necessarily fails to reproduce all its quantum
correlations. To make this statement more explicit, we then
calculate these correlators explicitly. In Sec. IV, we first
derive the predictions obtained from the quantum formal-
ism when the system is placed in a two-mode squeezed
state. We formulate the problem in the language of quantum
information theory in Sec. IVA, a new result already
interesting in itself, and then, in Sec. IV B, we establish
the expression of two-point correlation functions. Then we
ask whether these correlations can be reproduced by other
means. In Sec. IV, we derive the correlators that would be
produced by a quantum state with “classical correlations”
only (i.e. a state with vanishing quantum discord). For two-
point correlation functions, see Sec. VA, we find that, in
practice, all the nonclassical features are in fact hidden in
unobservable quantities. However, in Sec. V B, we calcu-
late the four-point correlation functions and show that, in
this situation, one expects non-Gaussianities, at a level that
remains to be established but which could possibly lead to
the indirect detection of the large CMB quantumness. In
Sec. VI, we address the same question but for a classical
stochastic distribution. We first present some general con-
siderations in Sec. VI A and then, in Sec. VI B, we study the
correlation functions in the case of a Gaussian distribution.
In this case, we find that all observable quantities are
correctly reproduced on large scales, and we highlight the
role that squeezing plays in concealing quantum correlations
from observable quantities. In particular, we argue that it
plays no role in our ability to reproduce the two-point
correlation functions. Finally, in Sec. VII, we present a few
concluding remarks, and we end the paper with several
appendixes containing various technical aspects.

II. INFLATIONARY COSMOLOGICAL
PERTURBATIONS

Inflation is an epoch of accelerated expansion, driven by
a scalar field (the inflaton field) and taking place before the
standard hot big bang phase. Introduced for the first time
nearly 35 years ago, it has gradually become the standard

paradigm for the early Universe because it offers simple
and elegant solutions to the puzzles of the big bang theory.
As already mentioned in the introduction, one of the

most interesting aspects of inflation is that it gives an
explanation for the origin of the large scale structure and
CMB anisotropies. According to inflation, they are vacuum
quantum fluctuations amplified by gravitational instability
and stretched over cosmological distances. At the technical
level, two types of perturbations are produced: gravitational
waves and scalar fluctuations. In the rest of this article,
we consider scalar fluctuations only but the present analysis
could straightforwardly be applied to tensor modes (since,
at leading order in slow roll, they have the same dynamics
as scalar perturbations). The scalar sector can be described
by a single quantity, the so-called Mukhanov-Sasaki
variable [11,64], related to the curvature perturbation
ζðη; xÞ through

vðη; xÞ ¼ aMPl

ffiffiffiffiffiffiffi
2ϵ1

p
ζðη; xÞ: ð1Þ

Here, aðηÞ is the Friedmann-Lemaître-Roberston-Walker
scale factor, η is the conformal time (related to the cosmic
time t by dt ¼ adη),MPl denotes the Planck mass and ϵ1 ≡
1 − ða0=aÞ0=ða0=aÞ2 is the first slow-roll parameter [65,66].
This last quantity controls whether inflation takes place
or not. Indeed, since ä=a ¼ ð _a=aÞ2ð1 − ϵ1Þ, where a dot
means derivative with respect to cosmic time, inflation is
equivalent to having ϵ1 < 1. Moreover, the Planck data, in
particular, the measurement [2] of the scalar spectral index
nS ¼ 0.968� 0.006 at 68% confidence level, and the
tensor-to-scalar ratio 95% constraint r < 0.11, indicate
that we not only have ϵ1 < 1 but in fact ϵ1 ≪ 1, a regime
known as slow-roll inflation [65–69].
The next step consists in deriving an equation of motion

for vðη; xÞ. Expanding the action of the system (i.e.
Einstein-Hilbert action plus the action of a scalar field)
up to second order in the perturbations, one obtains the
following expression [70]:

ð2ÞδS ¼ 1

2

Z
d4x

�
ðv0Þ2 − δij∂iv∂jvþ

ða ffiffiffiffiffi
ϵ1

p Þ00
a

ffiffiffiffiffi
ϵ1

p v2
�
: ð2Þ

Instead of working in real space, it turns out to be
convenient to go to Fourier space. We define the Fourier
transform of vðη; xÞ by

vðη; xÞ ¼ 1

ð2πÞ3=2
Z
R3

d3kvkðηÞeik·x; ð3Þ

where the vector k denotes the comoving wave vector.
Here, because vðη; xÞ is real, one has v−k ¼ v�k (where a star
denotes the complex conjugation). As will be discussed
in the following, this relation is important since it shows
that, in Fourier space, all degrees of freedoms are not
independent. This is of course expected since we now
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have a description of curvature perturbations in terms of a
complex function while we started from a real one.
Inserting Eq. (3) into Eq. (2), one obtains

ð2ÞδS ¼ 1

2

Z
R3

dηd3k

�
v0kv

�0
k −

�
k2 −

z00

z

�
vkv�k

�
; ð4Þ

where the integration is performed in the full Fourier space
and we have defined the background quantity zðηÞ by
zðηÞ≡ aMPl

ffiffiffiffiffiffiffi
2ϵ1

p
. Then, under the subtraction of the total

derivative ðvkv�kz0=zÞ0=2 in the Lagrangian, which leaves
the action unchanged, Eq. (4) becomes

ð2ÞδS ¼ 1

2

Z
R3

dηd3k

�
v0kv

�0
k −

z0

z
ðv0kv�k þ vkv�0k Þ

þ
�
z02

z2
− k2

�
vkv�k

�
: ð5Þ

From this action, the Euler-Lagrange equation reads

d
dη

�
δL
δv�0k

�
−

δL
δv�k

¼ 1

2

�
v00k þ

�
k2 −

z00

z

�
vk

�
¼ 0; ð6Þ

or v00k þ ω2ðk; ηÞvk ¼ 0 with ω2ðk; ηÞ≡ k2 − z00=z. One
recognizes the equation of motion of a parametric oscil-
lator, that is to say an oscillator with time-dependent
frequency. Here, the time dependence is due to the
interaction with a classical source, the background gravi-
tational field described by the scale factor aðηÞ. As
discussed in Ref. [71], this is very similar to the
Schwinger effect, the only difference being the nature of
the source, an Abelian gauge field for the Schwinger effect
and, here, as already mentioned, the gravitational field of
the expanding Universe. As was noticed in Refs. [72,73],
the cosmological perturbations form a system which is
also very similar to what one finds in quantum optics. In
particular, we can already anticipate that, upon quantiza-
tion, one will be led to the concept of squeezing [74–76].
Indeed, it is well known that, if quantization of harmonic
oscillators naturally leads to coherent states, quantization of
parametric oscillators leads to squeezed states.
Let us now apply the Hamiltonian formalism. Here, in

order to deal with independent variables only, we split the
integral in the action into two parts and change k into −k in
the second part. This leads to the following expression,

ð2ÞδS ¼ 1

2

Z
R3þ

dηd3k

�
v0kv

�0
k þ v�0k v

0
k − 2

z0

z
ðv0kv�k þ vkv�0k Þ

þ
�
z02

z2
− k2

�
ðvkv�k þ v�kvkÞ

�
; ð7Þ

where the integral over k is now performed in half the
Fourier space, k ∈ R3þ. Then our next move is to define the
conjugate momentum,

pk ¼
δL
δv�0k

¼ v0k −
z0

z
vk: ð8Þ

It is easy to see that if vk is a measure of the curvature
perturbation ζk ¼ vk=z, the conjugate momentum pk is a
measure of its time derivative since

ζ0kðηÞ ¼
pkðηÞ
zðηÞ : ð9Þ

On large scales (i.e. scales larger than the Hubble radius
during inflation), the solution to Eq. (6) implies that ζkðηÞ∼
Akð1þ #1k2η2 þ #2k4η4 þ � � �Þ þ Bk

R
η dτ=z2ðτÞð1þ � � �Þ

where Ak and Bk are two scale dependent constants and #1
and #2 two scale independent constants. During inflation,
the first branch (the “growing mode”) is constant while the
second one (the “decaying mode”) is decaying (hence the
claim that curvature perturbation are conserved). From
the above expansion, one has ζ0kðηÞ∼2Ak#1k2ηþBk=z2ðηÞ
and we see that, in the super-Hubble limit where kη → 0−,
the second term of the growing mode dominates over
the leading term in the decaying mode. This means that
ζ0kðηÞ ∝ 1=zðηÞ and, as a consequence, pk tends to a
constant.
Let us now calculate the Hamiltonian of the system,

defined as

H ¼
Z
R3þ

d3kðpkv�0k þ p�
kv

0
k − LÞ: ð10Þ

Notice that the terms pkv�0k and p�
kv

0
k are summed up only in

R3þ [77]. Plugging in the Lagrangian L obtained in Eq. (7),
one has

H ¼
Z
R3þ

d3k

�
pkp�

k þ
z0

z
ðp�

kvk þ pkv�kÞ þ k2vkv�k

�
:

ð11Þ

Quantization consists in introducing the creation and
annihilation operators ĉk and ĉ†p obeying the commutation
relations ½ĉk; ĉ†p� ¼ δðk − pÞ. From now on, quantum oper-
ators are denoted with a hat. The Mukhanov-Sasaki
variable and its conjugate momentum are related to these
operators through the following formulas

v̂k ¼
1ffiffiffiffiffi
2k

p ðĉk þ ĉ†−kÞ; ð12Þ

p̂k ¼ −i
ffiffiffi
k
2

r
ðĉk − ĉ†−kÞ: ð13Þ

Notice that Eqs. (12) and (13) mix creation and annihilation
operators associated to the modes k and −k. This is
different from what is usually done since the common
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practice is to work “mode by mode.” These definitions are
necessary since they ensure that v̂−k ¼ v̂†k.
The final step is to express the Hamiltonian in terms of

the creation and annihilation operators. We obtain

Ĥ ¼
Z
R3

d3k

�
k
2
ðĉkĉ†k þ ĉ−kĉ

†
−kÞ

−
i
2

z0

z
ðĉkĉ−k − ĉ†−kĉ

†
kÞ
�
: ð14Þ

In this expression, the first term represents a collection of
free oscillators with energy ω ¼ k (compatible with the fact
that we deal with massless excitations) while the second
one describes the interaction between the quantized per-
turbations and the classical source. Of course, if the scale
factor is constant (Minkowski spacetime), then z is a
constant and this term disappears. This term is responsible
for the creation of pairs of particles. We observe that the
structure ĉ†−kĉ

†
k implies that the particles are created with

opposite momenta, thus ensuring momentum conservation.
Let us now discuss the equation of motion. It is given

by the Heisenberg equation, namely dĉk=dη ¼ −i½ĉk; Ĥ�.
Using Eq. (14), this leads to

i
dĉk
dη

¼ kĉk þ i
z0

z
ĉ†−k: ð15Þ

This can be solved by mean of the Bogoliubov trans-
formation

ĉkðηÞ ¼ ukðηÞĉkðηiniÞ þ vkðηÞĉ†−kðηiniÞ; ð16Þ

where ukðηÞ and vkðηÞ (not to be confused with the
Mukhanov-Sasaki variable) are two functions depending
on the wave vector modulus only1 and obeying

i
dukðηÞ
dη

¼ kukðηÞ þ i
z0

z
v�kðηÞ; ð17Þ

i
dvkðηÞ
dη

¼ kvkðηÞ þ i
z0

z
u�kðηÞ: ð18Þ

They must moreover satisfy jukðηÞj2 − jvkðηÞj2 ¼ 1 in
order for the commutation relation between the creation
and annihilation operators to be properly normalized.
Let us also notice that the combination uk þ v�k obeys
the same equation of motion as the Mukhanov-Sasaki
variable, namely ðuk þ v�kÞ00 þ ω2ðuk þ v�kÞ ¼ 0.

From the above considerations, we see that solving the
time dependence of the system is equivalent to solving the
Bogoliubov system (17) and (18). For this purpose, let us
now introduce two operators. The first one is the two-mode
squeezing operator Ŝðrk;φkÞ defined by Ŝðrk;φkÞ ¼ eB̂k

with

B̂k ≡ rke−2iφk ĉ−kðηiniÞĉkðηiniÞ − rke2iφk ĉ†−kðηiniÞĉ†kðηiniÞ:
ð19Þ

Clearly, from the above definition, one has B̂†
k ¼ −B̂k. It is

characterized by two parameters, the squeezing parameter
rk and the squeezing angle φk. The second operator is
the rotation operator R̂kðθk;1; θk;2Þ that can be expressed as

R̂kðθk;1; θk;2Þ ¼ eD̂k with

D̂k≡−iθk;1ĉ
†
kðηiniÞĉkðηiniÞ− iθk;2ĉ

†
−kðηiniÞĉ−kðηiniÞ: ð20Þ

We notice that we also have D̂†
k ¼ −D̂k. The rotation

operator is a priori characterized by two parameters, the
rotation angles θk;1 and θk;2.
Let us now calculate the quantity R̂†

kŜ
†
kĉkðηiniÞŜkR̂k.

Using the formula e−ÔÂeÔ ¼ Âþ ½Ô; Â� þ ½Ô; ½Ô; Â��=
2þ � � �, it is easy to show that

R̂†
kŜ

†
kĉkðηiniÞŜkR̂k ¼ eiθk;1 cosh rkĉkðηiniÞ

þ e−iθk;2þ2iφk sinh rkĉ
†
−kðηiniÞ; ð21Þ

R̂†
kŜ

†
kĉ−kðηiniÞŜkR̂k ¼ eiθk;2 cosh rkĉ−kðηiniÞ

þ e−iθ1;kþ2iφk sinh rkĉ
†
kðηiniÞ: ð22Þ

This relation coincides with the transport equation (16) for
ĉk provided that

ĉkðηÞ ¼ R̂†
kŜ

†
kĉkðηiniÞŜkR̂k; ð23Þ

with θk;1 ¼ θk;2 ≡ θ, and

ukðηÞ ¼ eiθk cosh rk; ð24Þ

vkðηÞ ¼ e−iθkþ2iφk sinh rk: ð25Þ

One checks that, indeed, jukðηÞj2 − jvkðηÞj2 ¼ 1.
We conclude from the previous analysis that the full

Hilbert space of the system E can be factorized into
independent products of Hilbert spaces for modes k and
−k: E ¼ Πk∈R3þEk ⊗ E−k. Each of these terms is a
composite or a bipartite system, and evolves from the
initial vacuum state j0k; 0−ki into a two-mode squeezed
state

Ŝðrk;φkÞR̂ðθkÞj0k; 0−ki: ð26Þ

1Indeed, one can see that the equations of motion (17) and (18)
for ukðηÞ and vkðηÞ only depend on the modulus of k. So if the
initial state is chosen to be the vacuum, rotationally invariant and
hence dependent on k only, ukðηÞ and vkðηÞ remain independent
of the orientation of k at any time.
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One can explicitly check that the vacuum state is rotation-
ally invariant, R̂ðθkÞj0k; 0−ki ¼ j0k; 0−ki, which implies
that if the initial state is the vacuum state, θk cancels out
in all physical quantities, as will be checked in what
follows. More explicitly, using operator ordering theorems
[74], one has

Ŝðrk;φkÞ ¼ exp ½e−2iφk tanh rkĉ
†
−kðηiniÞĉ†kðηiniÞ�

× expf− ln ðcosh rkÞ½ĉ†kðηiniÞĉkðηiniÞ
þ ĉ−kðηiniÞĉ†−kðηiniÞ�g
× exp ½−e2iφk tanh rkĉ−kðηiniÞĉkðηiniÞ�; ð27Þ

and straightforward calculations lead to

Ŝðrk;φkÞR̂ðθkÞj0k; 0−ki

¼ 1

cosh rk

X∞
n¼0

e−2inφk tanhnrkjnk; n−ki: ð28Þ

This is a two-mode squeezed state, well known in the
context of quantum optics as a highly entangled state.
Indeed, in a very sketchy way (restricting the sum to n ¼ 0
and n ¼ 1 and ignoring the coefficients of the expansion,
just for the purpose of illustration), it is of the form

jΨi ∼ 1ffiffiffi
2

p ðj0kij0−ki þ j1kij1−kiÞ; ð29Þ

which, indeed, is in an inseparable form since it cannot be
written as jΨki ⊗ jΨ−ki. Entangled states are considered as
the most nonclassical states and the above discussion shows
that the CMB is placed in such a state. Moreover, it is
known that in the strong squeezing limit, the state (28)
exactly tends towards an Einstein-Podolsky-Rosen [78]
quantum state. We are therefore led to conclude that the
CMB is a highly nonclassical system.
Before concluding this section, it is interesting to derive

the equations satisfied by the parameters rk, φk and θk.
From Eq. (28), we see that their time evolution controls the
time evolution of the quantum state (28). Using Eqs. (17),
(18), (24) and (25), one obtains

drk
dη

¼ z0

z
cos ð2φkÞ; ð30Þ

dφk

dη
¼ −k −

z0

z
coth ð2rkÞ sin ð2φkÞ; ð31Þ

dθk
dη

¼ −k −
z0

z
tanh rk sin ð2φkÞ: ð32Þ

The two first equations form a closed system, and θk can be
derived once rk and φk are known. This is expected since,
as already said, θk is a spurious parameter that does not play

any physical role. Exact solutions are available only in the
exact de Sitter case, for which we have

rkðηÞ ¼ − arg sinh

�
1

2kη

�
; ð33Þ

ϕkðηÞ ¼ −
π

4
−
1

2
arctan

�
1

2kη

�
; ð34Þ

θkðηÞ ¼ −kη − arctan

�
1

2kη

�
: ð35Þ

On super-Hubble scales, at the end of inflation, we have
rk → þ∞ (notice that rk is positive because conformal time
is negative during inflation), φk → 0 and θk → π=2, which
remains true for quasi–de Sitter expansions.

III. INFLATIONARY DISCORD

The discussion of the last section indicates that the
quantumness of the CMB is a priori large. Therefore, it
seems important to better quantify this property. Recently,
in the context of quantum information theory, Henderson
and Vedral [52] and Ollivier and Zurek [53] have intro-
duced the quantum discord, which aims to quantitatively
measure the quantumness of a system. The aim of this
section is to calculate the quantum discord of inflationary
perturbations.
Quantum discord is defined as follows. Let us consider a

bipartite system E ¼ Ek ⊗ E−k (we write the two systems k
and −k for obvious reasons but it should be clear that the
following considerations are in fact valid for any bipartite
system). The idea is to introduce two ways of calculating
the mutual information between the two subsystems that
coincide for classical correlations but not necessarily in
quantum systems. The difference between the two results
will then define the quantum discord. The first measure of
mutual information is provided by the von Neumann
entropy,

Iðk;−kÞ ¼ S½ρ̂ðkÞ� þ S½ρ̂ð−kÞ� − S½ρ̂ðk;−kÞ�; ð36Þ

where S is the entropy defined by S ¼ −Trðρ̂log2ρ̂Þ, ρ̂
being the density matrix of the system under consideration.
Let us recall that the density matrix of the subsystem
k (respectively −k) is obtained from the full density
matrix ρ̂ðk;−kÞ by tracing over the degrees of freedom
associated with −k (respectively k), that is to say ρ̂ðkÞ ¼
Tr−k½ρ̂ðk;−kÞ� [respectively ρ̂ð−kÞ ¼ Trk½ρ̂ðk;−kÞ�].
Then let us imagine that a measurement of an observable

of the subsystem −k is performed through a projector Π̂j

(defined on E−k). This transforms the state into ρ̂ →
ρ̂Π̂j=pj, with probability pj ≡ Tr½ρ̂ðk;−kÞΠ̂j�. If we only
access Ek, tracing over −k, the state becomes
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ρ̂ðk; Π̂jÞ ¼ Tr−k

�
ρ̂ðk;−kÞΠ̂j

pj

�
: ð37Þ

Now, if one performs a set of all possible measurements
through a complete set2 of projectors fΠ̂jg, an alternative
definition of mutual information is given by

J ðk;−kÞ ¼ S½ρ̂ðkÞ� −
X
j

pjS½ρ̂ðk; Π̂jÞ�: ð38Þ

Classically, thanks to Bayes theorem, we have J ðk;−kÞ ¼
Iðk;−kÞ. Quantum mechanically however, this need not be
true and the deviation from the previous equality therefore
represents the quantumness of the correlations contained in
a given state. This is why quantum discord is defined by

δðk;−kÞ≡min
fΠ̂jg

½Iðk;−kÞ − J ðk;−kÞ�; ð39Þ

where we minimize over all possible sets of measurements
in order to avoid dependence on the projectors. More
detailed discussions on the physical interpretation and
meaning of quantum discord can be found in
Refs. [52,53,79].
Let us now calculate the quantum discord of inflationary

perturbations. For the two-mode squeezed state (28), the
density matrix is given by

ρ̂ðk;−kÞ ¼ 1

cosh2rk

X∞
n;n0¼0

e−2iðn−n0Þφk

× tanhnþn0rkjnk; n−kihn0k; n0−kj: ð40Þ

The reduced density matrix ρ̂ðkÞ is obtained from the full
density matrix by tracing out degrees of freedom associated
to −k. One has

ρ̂ðkÞ ¼
X∞
n¼0

hn−kjρ̂ðk;−kÞjn−ki ð41Þ

¼ 1

cosh2rk

X∞
n¼0

tanh2nrkjnkihnkj; ð42Þ

which is a thermal state with inverse temperature βk ¼
− ln tanh2rk. We have of course a similar equation for
ρ̂ð−kÞ where jnkihnkj is replaced by jn−kihn−kj.
Our next move is to calculate the entropy of the different

density matrices appearing in the expression of the discord.
As can be shown explicitly, the entropy of ρ̂ðk;−kÞ
vanishes since we deal with a pure state. Since ρ̂ðkÞ

represents a thermal state, its entropy is simply given
by [80]

S½ρ̂ðkÞ� ¼ ð1þ hn̂kiÞlog2ð1þ hn̂kiÞ − hn̂kilog2hn̂ki;
ð43Þ

where hn̂ki ¼ sinh2rk is the mean occupation number.
Obviously, this formula is also valid for ρ̂ð−kÞ. Finally,
the quantity S½ρ̂ðk; Π̂jÞ� remains to be calculated. In
Appendix A, we show that ρ̂ðk; Π̂jÞ is in fact a pure state
and, consequently, its entropy is zero. Therefore, it follows
that the discord is given by

δðk;−kÞ ¼ S½ρ̂ð−kÞ� ¼ cosh2rklog2ðcosh2rkÞ
− sinh2rklog2ðsinh2rkÞ: ð44Þ

The corresponding function is displayed in Fig. 1. One can
see that except for rk ¼ 0, the discord is not zero, and,
therefore, the quantum state of the perturbations is not
classical. In fact, rk ¼ 0 corresponds to a coherent state
[81,82]. Such states are often called “quasiclassical” and
are known to be the “most classical” states since they
follow the classical trajectory in phase space, with minimal
spread. In the strong squeezing limit however, rk → ∞, we
have

δðk;−kÞ ¼ 2

ln 2
rk − 2þ 1

ln 2
þOðe−2rkÞ: ð45Þ

Let us recall that for the modes within the CMB window, at
the end of inflation, rk ∼ 50. We conclude that the CMB is

FIG. 1. Quantum discord δðk;−kÞ of cosmological scalar
perturbations during inflation, as a function of the squeezing
parameter rk. The solid blue line is the result (44) while the dotted
green line is the large squeezing expansion (45).

2More precisely, fΠ̂jg forms a positive operator valued
measure, obeying the partition of unity ΣjΠ̂j ¼ 1. They general-
ize complete sets in the sense that they do not need to be
orthogonal.
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placed in a state which is “very quantum.” This means that
it is certainly impossible to reproduce all the correlation
functions in a classical picture as we are going to
demonstrate explicitly in the following section. In fact,
the results of this section show that, strictly speaking, there
is no transition to a classical behavior since the discord only
grows. But we will also see that the situation is subtle and
that, nevertheless, a classical treatment of the perturbations
can partially be employed, in a sense that will be carefully
discussed in the following.
Let us also mention that quantum discord is always

defined relatively to a given division into two subsystems.
For example, in what precedes, the quantum discord was
shown to be large for the bipartite system E ¼ Ek ⊗ E−k.
A priori, with a different division, one would have obtained
a different result. For example, let us write the Hamiltonian
(11) in terms of the real and imaginary (or Hermitian
and anti-Hermitian) parts of vk and pk, denoted vRk , v

I
k,

pR
k , pI

k, and defined by vk ¼ ðvRk þ ivIkÞ=
ffiffiffi
2

p
and pk ¼

ðpR
k þ ipI

kÞ=
ffiffiffi
2

p
. Notice that the relation v†k ¼ v−k implies

that vRk ¼ vR−k and vIk ¼ −vI−k. One has

H ¼
Z
R3þ

d3k

�
1

2
ðpR

k Þ2 þ
k
2
ðvRk Þ2 þ

z
z0
vRkp

R
k

�
þ
Z
R3þ

d3k

�
1

2
ðpI

kÞ2 þ
k
2
ðvIkÞ2 þ

z
z0
vIkp

I
k

�
: ð46Þ

One can see that the real and imaginary sectors are in fact
independent. This suggests that the quantum discord
calculated with respect to E ¼ ER ⊗ EI should vanish. It
is therefore interesting to calculate the quantum discord
calculated with respect to an arbitrary subdivision of
our system E ¼ E1 ⊗ E2. Starting from ĉk and ĉ−k, the
most generic pair of independent ladder operators can be
written as

â1 ¼ cos αĉk þ sin αĉ−k ð47Þ

â2 ¼ e2iαðcos αĉ−k − sin αĉkÞ; ð48Þ

where α is an angle varying from 0 to π=4. This defines a
one-parameter family of subdivision such that, if α ¼ 0,
then E ¼ Ek ⊗ E−k and, if α ¼ π=4, then E ¼ ER ⊗ EI.
One can then proceed and calculate the corresponding
discord along the lines already explained before. This is
what is done in detail in Appendix B. The result is
displayed in Fig. 2 for a few values of k=ðaHÞ. As
expected, one can check that the discord always vanishes
for α ¼ π=4 (E ¼ ER ⊗ EI) while it is maximal when α ¼
0 (E ¼ Ek ⊗ E−k). It also increases with the squeezing
level, since more pairs of particles with wave numbers k
and −k are produced as time proceeds, in agreement
with Fig. 1.

The above analysis undoubtedly shows that the CMB is a
strongly discordant quantum system. In particular, it con-
tains genuine quantum correlations between the k and −k
modes (and in fact, as the previous calculation demon-
strates, between any “1” and “2”modes except if α ¼ π=4).
A priori, this makes a classical description of the CMB
impossible. Therefore, the fact that, in practice, the CMB
data are analyzed without any reference to the quantum
formalism appears to be rather paradoxical. The rest of this
paper is devoted to this question.

IV. QUANTUM PREDICTIONS FOR
THE PERTURBATIONS

In practice, the quantities of observational interest are
correlation functions. In this section, as a first step, we
derive these correlation functions for the full quantum state
(28). We make use of the quantum information formalism,
which sheds some new light on the standard calculation of
inflationary cosmological perturbations.

A. Quantum information theory and
cosmological perturbations

A two-mode squeezed state being Gaussian, its charac-
teristic function is Gaussian as well and all correlation
functions can be calculated from the covariance matrix. To
compute this covariance matrix, we can use the techniques
of quantum information theory [80,83]. In order to do so,
we must formulate the problem such that this formalism
can be applied. This technical question actually plays an
important role in the following. The point is that the
quantum information formalism is designed mode by mode

FIG. 2. Quantum discord for different system subdivisions
(labeled by α) and different times during inflation.
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while, as already noted, Eqs. (12) and (13) mix creation
and annihilation operator associated with two different
modes, k and −k. We must therefore reformulate the
problem such that “coordinates” (“position” and “momen-
tum”) are Hermitian operators defined for a single mode.
This leads us to introduce the quantities q̂k and π̂k such that

q̂k ¼
1ffiffiffiffiffi
2k

p ðĉk þ ĉ†kÞ; ð49Þ

π̂k ¼ −i
ffiffiffi
k
2

r
ðĉk − ĉ†kÞ: ð50Þ

Here, and in the rest of this article, we work in the
Schrödinger picture where q̂k and π̂k are viewed as constant
and the state is evolving. Contrary to Eqs. (12) and (13)
defining vk and pk, Eqs. (49) and (50) do not mix different
modes. Making use of Eqs. (12) and (13), one can establish
the relation between the two sets of variables, which read

v̂k ¼
1

2

�
q̂k þ q̂−k þ

i
k
ðπ̂k − π̂−kÞ

�
; ð51Þ

p̂k ¼
1

2i
½kðq̂k − q̂−kÞ þ iðπ̂k þ π̂−kÞ�: ð52Þ

In particular, since q̂k ¼ q̂†k and π̂k ¼ π̂†k, one can check that
we indeed have v̂†k ¼ v̂−k. The quantum information
formalism provides us with all correlation functions for
combinations of q̂k and π̂k, and using Eqs. (51) and (52),
correlation functions for combinations of v̂k and p̂k can be
inferred.
Let us now introduce the characteristic function. It is a

real function defined on a four-dimensional real space,
given by

χðξÞ ¼ Tr½ρ̂ ŴðξÞ�; ð53Þ

where ŴðξÞ is the Weyl operator, namely

ŴðξÞ ¼ eiξ
TR̂; ð54Þ

with R̂¼ðk1=2q̂k;k−1=2π̂k;k1=2q̂−k;k−1=2π̂−kÞT. In the above
expressions, ρ̂ is obviously the density operator.
In Appendix C, we show that the two-mode squeezed

state has a Gaussian characteristic function given by

χðξÞ ¼ e−ξ
Tγξ=4; ð55Þ

where γ is the covariance matrix, related to the two-point
correlation functions by hR̂jR̂ki ¼ γjk=2þ iJjk=2. Here,
J is the commutator matrix, iJj;k ¼ ½R̂j; R̂k�, given by
J ¼ J1⊕J1 with

J1 ¼
�

0 1

−1 0

�
: ð56Þ

The covariance matrix of the two-mode squeezed state (28)
has been derived in Appendix C and this leads to

hv̂kv̂pi ¼
1

2k
½coshð2rkÞ þ sinhð2rkÞ cosð2φkÞ�δðkþ pÞ;

ð57Þ

hp̂kp̂pi ¼
k
2
½coshð2rkÞ − sinhð2rkÞ cosð2φkÞ�δðkþ pÞ;

ð58Þ

hv̂kp̂pi ¼
�
i
2
þ 1

2
sinhð2rkÞ sinð2φkÞ

�
δðkþ pÞ: ð59Þ

B. Two-point correlation functions

Using the above results, one can proceed and calculate
the power spectrum for the states (28). Using Eq. (3), the
correlation function of the Mukhanov-Sasaki variable is
given by

hv̂ðη; xÞv̂ðη; yÞi ¼ 1

ð2πÞ3
Z

dkdphv̂kðηÞv̂pðηÞieik·xþip·y:

ð60Þ
For the two-mode squeezed state, the only correlation
function hv̂kðηÞv̂pðηÞi that does not vanish is the one for
which p ¼ −k. From Eq. (57), it follows that

hv̂ðη; xÞv̂ðη; yÞi ¼ 1

ð2πÞ3
Z

dk
1

2k
½coshð2rkÞ

þ sinhð2rkÞ cosð2φkÞ�eik·ðx−yÞ: ð61Þ

We notice that the result only depends on jx − yj as
expected in a homogeneous and isotropic universe. As a
consequence, one can perform the angular integration and
one obtains

hv̂ðη; xÞv̂ðη; yÞi ¼ 4π

ð2πÞ3
Z

∞

0

dk
k
sinðkjx − yjÞ
kjx − yj

k3

2k

× ½coshð2rkÞ þ sinhð2rkÞ cosð2φkÞ�;
ð62Þ

or, using Eq. (1),

hζ̂ðη; xÞζ̂ðη; yÞi ¼ 4π

ð2πÞ3
1

a2M2
Pl2ϵ1

Z
∞

0

dk
k
sinðkjx − yjÞ
kjx − yj

×
k3

2k
½coshð2rkÞ þ sinhð2rkÞ cosð2φkÞ�:

ð63Þ
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To go further, one needs to specify rk and φk. In the de Sitter
limit, they are given by Eqs. (33) and (34), and on super-
Hubble scales (−kη ≪ 1), this gives rise to coshð2rkÞ≃
sinhð2rkÞ≃ 1þ 1=ð2k2η2Þ and cosð2φkÞ≃ 1 − 2k2η2.
As a consequence, the power spectrum Pv of vðη; xÞ,
defined through hv̂kv̂pi ¼ 2π3Pv=k3δðk − pÞ, becomes
Pv ¼ 1=ð2π22η2Þ and the power spectrum of curvature
perturbations can be expressed as

Pζ ¼
H2

8π2M2
Plϵ1

; ð64Þ

where we have used that in de Sitter spacetimes,
aðηÞ ¼ −1=ðHηÞ. This formula is the standard result
[20,84]. Of course, strictly speaking, we have ϵ1 ¼ 0 for
exact de Sitter spacetime (there are no density perturbations
in de Sitter spacetime) so, in fact, the above result is valid at
leading order in slow roll only.
Let us now try to evaluate other correlators, in particular,

the one involving the curvature perturbation and its time
derivative. For a two-mode squeezed state, using Eq. (9),
we have

hζ̂ðη; xÞζ̂0ðη; yÞ þ ζ̂0ðη; xÞζ̂ðη; yÞi

¼ 1

ð2πÞ3
1

z2ðηÞ
Z

dkðhv̂kp̂−ki þ hp̂kv̂−kiÞeik·ðx−yÞ: ð65Þ

The next step is to use Eq. (59) together with the fact that
½v̂k; p̂−k� ¼ i. This commutation relation ensures that the
term i=2 in Eq. (59) cancels out and that the above
correlation function is real. Then one arrives at

hζ̂ðη; xÞζ̂0ðη; yÞ þ ζ̂0ðη; xÞζ̂ðη; yÞi

¼ 4π

ð2πÞ3
1

z2ðηÞ
Z

∞

0

dk
k
sinðkjx − yjÞ
kjx − yj

× k3 sinhð2rkÞ sinð2φkÞ: ð66Þ

In the de Sitter super-Hubble limit, this gives rise to
hζ̂ζ̂0 þ ζ̂0ζ̂i ∼ 1=z ∼ η which is consistent with the fact that
ζk and pk ¼ zζ0k are constant on large scales.
Finally, it is also interesting to evaluate the two-

point correlation function hζ̂0ðη;xÞζ̂0ðη;yÞi. Straightforward
manipulations lead to

hζ̂0ðη; xÞζ̂0ðη; yÞi ¼ 1

ð2πÞ3
1

z2ðηÞ
Z

dkhp̂kp̂−kieik·ðx−yÞ

¼ 4π

ð2πÞ3
1

z2ðηÞ
Z

∞

0

dk
k
sinðkjx− yjÞ
kjx− yj

× k3
k
2
½coshð2rkÞ− sinhð2rkÞ cosð2φkÞ�:

ð67Þ

For the exact de Sitter case, we have coshð2rkÞ −
sinhð2rkÞ cosð2φkÞ ¼ 1 and this correlator is proportional
to η2 as expected.

V. CAN THE QUANTUM CORRELATION
FUNCTIONS BE OBTAINED WITH A

NONDISCORDANT STATE?

In the previous section, we have established the corre-
lation functions of the full quantum state. Given that, as
already mentioned, the CMB is usually analyzed in a
classical framework, we now study to which extent a
“classical state,” i.e. a nondiscordant quantum state, can
reproduce these results. Notice that, the discord being
nonvanishing, we already know for sure that it cannot be
the case exactly. As a consequence, here, we instead want
to study whether the difference between the exact and the
classical approaches is large enough to be seen observa-
tionally, which, if so, would be considered as a proof that
the perturbations are of quantum-mechanical origin.

A. Two-point correlation functions

The most generic expression for a bipartite system
containing classical correlations only is given by [53,85,86]

ρ̂cl ¼ ⨂
k∈R3þ

X
n;m

pnmðkÞρ̂nðkÞ ⊗ ρ̂mð−kÞ ð68Þ

¼ ⨂
k∈R3þ

X
n;m

pnmðkÞjnkihnkj ⊗ jm−kihm−kj; ð69Þ

where the pnm’s satisfy
P

n;mpnmðkÞ ¼ 1. The pnm’s
represent a joint probability distribution function that we
do not need to specify for the moment. Several comments
are in order at this point. First, the above density matrix
represents a quantum state that is a priori anisotropic.
Indeed, here, the momentum space is split into two parts,
R3þ and R3−, and the number of quantas present in each
corresponding mode a priori differs. In the following, we
denote k a vector belonging to R3þ and −p a vector
belonging to R3−. Therefore, in Eq. (69), jm−ki denotes a
state with m quanta for −k ∈ R3−, the vector −k being of
course minus the vector k. Secondly, in Appendix D, we
explicitly show that, as stated above, the quantum discord
vanishes for the state (69). Thirdly, it is also important to
remark, as demonstrated in Appendix E, that this state is
not a Gaussian state. As a consequence, one cannot define a
covariance matrix. One has to proceed directly from the
above density matrix in order to calculate the different two-
point (and higher) correlation functions. Straightforward
calculations give

hv̂kv̂picl ¼ hv̂−kv̂−picl ¼ 0; ð70Þ
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hv̂kv̂−picl ¼ hv̂−kv̂picl
¼ 1

2k

�
1þ

X
n;m

nðpnm þ pmnÞ
�
δðk − pÞ: ð71Þ

The last expression contains a Dirac function which
indicates that the result is nonvanishing only if k ¼ p,
p ∈ R3þ being the vector obtained from −p ∈ R3− by
multiplying by minus one. It is also interesting to
notice that it can be written as the correlation function
calculated in the Bunch-Davies vacuum, 1=ð2kÞ, multiplied
by 1þ hN̂i, where hN̂i is the mean of the particle
number operator N̂ ¼ c†kck þ c†−kc−k, in agreement with
Refs. [87,88]. The other autocorrelation functions read

hp̂kp̂picl ¼ hp̂−kp̂−picl ¼ 0; ð72Þ

hp̂kp̂−picl ¼ hp̂−kp̂picl
¼ k

2

�
1þ

X
n;m

nðpnm þ pmnÞ
�
δðk − pÞ: ð73Þ

In particular, for any distribution pnm, one has the follow-
ing property,

k2hv̂kv̂−kicl ¼ hp̂kp̂−kicl; ð74Þ
while one can check, see Eqs. (57) and (58), that this is not
the case for the two-mode squeezed state. We conclude that
a classical state (68) cannot reproduce all the correlation
functions of the two-mode squeezed state in accordance
with the fact that they have a different quantum discord.
Finally, the cross correlation functions can be written as

hv̂kp̂picl ¼ hv̂−kp̂−picl ¼ 0; ð75Þ

hv̂kp̂−picl ¼
i
2

�
1þ

X
n;m

nðpnm − pmnÞ
�
δðk − pÞ; ð76Þ

hv̂−kp̂picl ¼
i
2

�
1þ

X
n;m

nðpmn − pnmÞ
�
δðk − pÞ: ð77Þ

The fact that hv̂kp̂−picl ≠ hv̂−kp̂picl is a consequence of
the anisotropy of the quantum state (69). If one does not
want to violate homogeneity and isotropy, one simply has
to require the joint probability pnm to be symmetric, and the
cosmological principle is satisfied when

pnm ¼ pmn: ð78Þ
Let us now be more accurate and repeat the calculation of

the power spectrum for the classical state. Using Eqs. (70)
and (71), it is obvious that the standard power spectrum can
always be recovered provided the coefficients pnm are
chosen such that hv̂kðηÞv̂−kðηÞicl ¼ hv̂kðηÞv̂−kðηÞi, that is
to say

1þ
X
n;m

2npnm ¼ coshð2rkÞ þ sinhð2rkÞ cosð2φkÞ: ð79Þ

A possible solution is to take pnm ¼ pnδðn −mÞ
with pn being given by a thermal distribution, pn ¼
ð1 − e−βkÞe−βkn, with

βk ¼ − ln

�
coshð2rkÞ þ sinhð2rkÞ cosð2φkÞ − 1

coshð2rkÞ þ sinhð2rkÞ cosð2φkÞ þ 1

�
: ð80Þ

In the super-Hubble limit, the corresponding temperature
goes to infinity. The classical state (68) can then be written

ρ̂cl ¼ ð1 − e−βkÞ
Xþ∞

n¼0

e−βknjnk; n−kihnk; n−kj: ð81Þ

In other words, we have a thermal “gas” of pairs of particles
with momentum k and −k. At the level of the power
spectrum, this classical description leads to the same result
as the quantum one.
As was done before for the two-mode squeezed state,

let us now try to evaluate other correlators, involving the
curvature perturbation and its time derivative. Using
Eqs. (75)–(77) together with Eq. (78), we immediately
see that

hζ̂ðη; xÞζ̂0ðη; yÞ þ ζ̂0ðη; xÞζ̂ðη; yÞicl ¼ 0: ð82Þ

Several comments are in order. First, we see that the
classical correlator is not equal to the quantum one; see
Eq. (66). It is possible to ensure that the quantum and
classical power spectra coincide, but then the price to pay is
that the other correlators differ. This is of course concep-
tually very important. It means that by treating the problem
classically, rather than quantum mechanically, we are really
doing something wrong: some observables are not correctly
calculated. This is consistent with the fact that a two-mode
squeezed state has a large discord. Secondly, in practice,
the difference between the quantum and the classical results
is tiny and unobservable probably forever. Indeed, the
classical correlator is exactly zero and the quantum one is
proportional to 1=z ∼ e−N� , where N� is the number of
e-folds between the Hubble radius exit during inflation and
the end of inflation. Modes probed in the CMB typically
have N� ∼ 50 and, hence, the quantum correlator is very
small for the CMB scales. We conclude that, at the level of
the two-point function, a classical description is acceptable.
Thirdly, in any case, it should be clear that the classical
description is an effective one only. The state (68) is
introduced by hand and is not a solution of the quantum
Einstein equations.
Finally, let us repeat the calculation of the correlator

involving two derivatives of the curvature perturbations for
the classical situation. We now have
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hζ̂0ðη; xÞζ̂0ðη; yÞicl ¼
1

ð2πÞ3
1

z2ðηÞ
Z

dkhp̂kp̂−kicleik·ðx−yÞ

ð83Þ

¼ 4π

ð2πÞ3
1

z2ðηÞ
Z

∞

0

dk
k
sinðkjx − yjÞ
kjx − yj

× k3k
X
n;m

pnm

�
nþ 1

2

�
: ð84Þ

But the coefficients pnm were specified when we required
the quantum and classical power spectra to be the same.
This means that, as already discussed, the above correlator
is in fact explicitly known. From Eq. (79), indeed, one has

hζ̂0ðη;xÞζ̂0ðη;yÞicl¼
4π

ð2πÞ3
1

z2ðηÞ
Z

∞

0

dk
k
sinðkjx−yjÞ
kjx−yj

×k3
k
2
½coshð2rkÞþsinhð2rkÞcosð2φkÞ�;

ð85Þ

which is different from Eq. (68). In the de Sitter super-

Hubble limit, this gives hζ̂0ζ̂0icl ∼ η4. Therefore, we con-

clude that hζ̂0 ζ̂0i ∼ e−2N� and hζ̂0 ζ̂0icl ∼ e−4N� strongly

differ (hζ̂0ζ̂0i=hζ̂0 ζ̂0icl ∼ e2N� ≫ 1) and that, as before, the
classical description cannot reproduce the quantum results.
Similarly as before, however, since both results are expo-
nentially small, this piece of information is hidden from all
practical experiment.

B. Non-Gaussianities

We have just seen that two-point correlators for a
discordant and for a nondiscordant state differ but that
this difference is, in practice, very small. Another way to
differentiate these two states is to look at non-Gaussianities.
All three-point correlation functions vanish in both the two-
mode squeezed and classical states; hence one has to
consider four-point correlation functions. For the classical
state, making use of the same techniques as above,
one finds

hζ̂k1 ζ̂k2 ζ̂k3 ζ̂k4icl ¼ hζ̂k1 ζ̂k2iclhζ̂k3 ζ̂k4icl þ hζ̂k1 ζ̂k3iclhζ̂k2 ζ̂k4icl þ hζ̂k1 ζ̂k4iclhζ̂k2 ζ̂k3icl
þ δk1þk2þk3þk4;0

2k21z
4

�
4
X
n

n2pnðk1Þ − 4

�X
n

npnðk1Þ
�
2

−
X
n

nðnþ 1Þpnðk1Þ
�

× ðδk1;−k2δk1;k3 þ δk1;−k2δk1;−k3 þ δk1;k2δk1;−k3Þ: ð86Þ

In this expression, we have kept the coefficients pnðkÞ
unspecified so that the following generic comments can be
made. The first line of Eq. (86) corresponds to the standard
disconnected part of the four-point correlation function. For
the two-mode squeezed state, it is the only term that is
obtained, which is in agreement with Wick’s theorem given
that, as already noted, the two-mode squeezed state is
Gaussian. This means that the second and third lines of
Eq. (86) correspond to a non-Gaussian contribution. This
one is not of the local type and, in fact, corresponds to a
scale dependent gNL, notably due to the presence of the δ
terms. Therefore, it remains to generate templates corre-
sponding to this structure in order to determine whether
such a four-point function is already excluded or not. Let us
however notice that for the thermal state introduced above
Eq. (80), the term in braces is given by ðcosh βk1 − 1Þ−1. On
super-Hubble scales, βk1 → 0 and this term blows up. Let
us also remark that the non-Gaussianities studied here are
due to the intrinsic non-Gaussian character [89,90] of the
classical state and not to the nonlinearities of the theory.
But of course we expect those nonlinearities to produce
extra contributions, at the level of both the three- and four-
point correlation functions [88,91]. We conclude that
measuring the four-point correlation function would be

an important test since it has the potential (depending on
the level of classical non-Gaussianity) to rule out non-
discordant primordial states, hence indirectly proving the
large quantumness of the CMB anisotropies.

VI. CAN THE QUANTUM CORRELATION
FUNCTIONS BE OBTAINED IN A CLASSICAL

STOCHASTIC DESCRIPTION?

In Sec. V, we studied to what extent a classical state can
reproduce the quantum correlation functions. We saw that,
in principle, it cannot (even if, in practice, it remains to be
seen whether it can be detected). Although it was called
classical, the situation was still described in terms of a
quantum state. This is why here we go one step further and
even ignore the quantum formalism, working only in terms
of a stochastic probability distribution.

A. General properties

If an effective classical stochastic description is possible,
quantum averages of any operator Â should be given by an
integral of a stochastic distribution over classical phase
space, namely
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hÂi ¼ hAistocha; ð87Þ

with

hAistocha ≡
Z

AðRÞWðRÞd4R: ð88Þ

As usual, a hat denotes a physical observable Â ¼ AðR̂Þ,
while A (no hat) is an ordinary real function. The vector R,
previously defined below Eq. (54), represents the classical
variables in phase space and, obviously, R̂ denotes the
corresponding operators R̂ ¼ ðk1=2q̂k; k−1=2π̂k; k1=2q̂−k;
k−1=2π̂−kÞT. The quantity WðRÞ represents a probability
density function. The stochastic description is possible and
meaningful if three conditions are met: first, W is positive
everywhere and normalized to unity (so that it can be
interpreted as a distribution function); second, W obeys
the classical equation of motion (see below); and, third,
Eq. (87) is valid.
Let us now discuss how W can be concretely found (if it

can). For this purpose, we introduce the Weyl transform ~A
of the operator Â through the following expression,

~Aðqk; πk; q−k; π−kÞ

≡
Z

dxdye−iπkx−iπ−ky

×

	
qk þ

x
2
; q−k þ

y
2





Â



qk − x
2
; q−k −

y
2

�
; ð89Þ

which builds a real function in phase space, ~A, out of the
quantum operator Â. It is important to stress that ~A is a
function (i.e. not an operator) which, for instance, means
that ~A ~B ¼ ~B ~A. However, ~AB ≠ ~BA in general. It is also
important to notice that, a priori, ~A ≠ A. In fact, in
Appendix F, the following exact result is established,

~Ri ¼ Ri; gRjRk ¼ RjRk þ
i
2
Jjk; ð90Þ

where the matrix J is defined in Eq. (56). Moreover, since R
and V ≡ ðk1=2vk; k−1=2pk; k1=2v−k; k−1=2p−kÞT are linearly
related through Eqs. (51) and (52), this relation translates
into a similar one for V, namely

~Vi ¼ Vi; gVjVk ¼ VjVk þ
i
2
Ijk; ð91Þ

where I is the antidiagonal matrix with coefficients f−1; 1;
−1; 1g on the antidiagonal and verifies iIj;k ¼ ½V̂j; V̂k�.
Therefore, the only nonvanishing terms of the I matrix are
the ones corresponding to products of the form vkp−k. Even
more general relations are established in Appendix F.

The fundamental property of the Weyl transform is that

TrðÂ B̂Þ ¼
Z

~AðRÞ ~BðRÞd4R: ð92Þ

Given that h ~Ai ¼ Trðρ̂ ÂÞ, this immediately suggests taking
for W the Weyl transform of the density operator, W ¼
~ρ=ð2πÞ2 [the factor ð2πÞ2 originates from the fact that
we consider a system whose phase space is R4; had we
considered a system with phase space R2n, this factor
would have been ð2πÞn] namely

WðRÞ≡ 1

ð2πÞ2
Z

dxdye−iπkx−iπ−ky

×

	
qk þ

x
2
; q−k þ

y
2





ρ̂



qk − x
2
; q−k −

y
2

�
: ð93Þ

Then it follows that any expectation value of a physical
observable can be obtained through the relation

hÂi ¼
Z

~AðRÞWðRÞd4R; ð94Þ

or, in other words,

hÂi ¼ h ~Aistocha: ð95Þ
It is worth emphasizing again that this equation is exact. As
a consequence, the condition given by Eq. (87) is realized if
theWeyl transform equals its classical counterpart, that is to
say if

~A ¼ A: ð96Þ
Let us conclude this subsection by noticing that, as is

well known,WðRÞ given by Eq. (93) is the Wigner function
[92,93]. For illustrative purposes, we now give the Wigner
function of the two-mode squeezed and classical states.
With the covariance matrices calculated in Sec. IV, this
gives rise to an explicit expression for the two-mode
squeezed state Wigner function, namely (see Appendix G)

W ¼ 1

π2
exp

�
−
�
kq2k þ kq2−k þ

π2k
k
þ π2−k

k

�
coshð2rkÞ

þ 2ðqkπk þ q−kπ−kÞ sin ð2φkÞ sinh ð2rkÞ

þ 2

�
kqkq−k −

πkπ−k
k

�
cos ð2φkÞ sinh ð2rkÞ

�
: ð97Þ

It is a positive, Gaussian function. Using Eqs. (51) and (52),
the corresponding expression in terms of the vk and pk
variables can be established as well. One can notice
that due to the last term, W can neither be factorized as
W ¼ Wkðqk; πkÞW−kðq−k; π−kÞ nor as W ¼ Wkðvk; pkÞ
W−kðv−k; p−kÞ, which reflects the presence of correlations
between the modes k and −k. These correlations vanish
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in the sub-Hubble limit [where cosð2φkÞ sinhð2rkÞ ¼ 0],
but in the super-Hubble limit, the Wigner function gets
squeezed along the directions “k ¼ −k,”

W ∝ δðqk − q−kÞδðπk þ π−kÞ; ð98Þ

hence the term squeezing.
Let us now calculate the Wigner function of the classical

state (69). Combining Eqs. (G19) and (E14), one obtains
after a few manipulations

Wcl ¼
1

ð2πÞ2
Z

∞

0

xdx
Z

∞

0

ydy

× exp

�
−
cothðβk=2Þ

4
ðx2 þ y2Þ

�
I0

�
cosech

�
βk
2

�
xy
4

�
× J0

�
x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kq2k þ

π2k
k

r �
J0

�
y

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kq2−k þ

π2−k
k

r �
; ð99Þ

where βk has been defined in Eq. (80) and I0 and J0 are
Bessel functions. As already pointed out in Sec. V, one
can see that the classical state is a non-Gaussian one.3 It is
also interesting to notice that, in the sub-Hubble limit,

βk → ∞, the argument of the I0 function vanishes and the
integrals over x and y can be factorized. This means that,
in this limit, the Wigner function becomes separable,
W ¼ Wkðqk; πkÞW−kðq−k; π−kÞ. When βk decreases, this
is not the case anymore and the two modes are correlated.
This is similar to what was noted for the two-mode
squeezed state. However, these correlations are of a differ-
ent nature. Indeed, since the classical Wigner function
depends on the phase-space variables only through the two
combinations kq2k þ π2k=k and kq2−k þ π2−k=k, it is rotation-
ally invariant inside each mode. In particular, squeezing
does not take place. This is consistent with the results
obtained in the previous sections. In Fig. 3, we display the
marginalized Wigner functions Wðqk; q−kÞ for the two-
mode squeezed and classical states.

B. The case of a Gaussian state

So far, the discussion was fully generic. We now discuss
whether the three conditions for the validity of a stochastic
classical description mentioned before, namely W being
positive everywhere, W obeying the classical equation of
motion and the validity of Eq. (87) or, equivalently, of
Eq. (96), are satisfied for a Gaussian state.
Let us start with the first condition, i.e. the positivity of

the Wigner function. In Appendix G, it is shown that, for
Gaussian states, the characteristic function of which is of
the form given by Eq. (55), one has

WðRÞ ¼ 1

π2
ffiffiffiffiffiffiffiffiffi
det γ

p e−R
Tγ−1R: ð101Þ

In this case, the Wigner function is therefore a (correctly
normalized) Gaussian function with covariance matrix γ
(hence its name). This also means that it is positive at any
time and, thus, indeed satisfies our first condition. Notice
that this is a general feature of Gaussian states and is

FIG. 3. Marginalized Wigner function Wðqk; q−kÞ ¼
R
Wðqk; πk; q−k; π−kÞdπkdπ−k, for the super-Hubble mode k=ðaHÞ ¼ 0.3. The

left panel corresponds to the two-mode squeezed state while the right panel is for the classical state (81). One can see that as explained in
the text and contrary to the two-mode squeezed state, the classical state is both non-Gaussian and unsqueezed.

3Let us notice that when one of the modes is integrated out, the
classical Wigner function becomes Gaussian. For example, the
marginalized Wigner function in the plane ðqk; πkÞ, obtained by
marginalizing over q−k and π−k, can be expressed as the Fourier
transform of the restrained characteristic function χðη1; η2; 0; 0Þ,
and one obtains

Wclðqk; πkÞ ¼
1

π
tanh

�
βk
2

�
e− tanhðβk

2
Þðkq2kþ

π2
k
k Þ: ð100Þ

Therefore, the non-Gaussianity of the classical Wigner function
directly reflects the (classical) correlations between the two
modes k and −k.
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completely independent from the fact that we have squeez-
ing (large or not). For instance, a coherent state also has a
positive Wigner function.
Let us now examine the second condition. In Appendix H,

we show that, for any quadratic Hamiltonian, the Wigner
function obeys a classical equation of motion. Indeed, if one
differentiates Eq. (93) with respect to time and makes use of
the Schrödinger equation, one obtains

dW
dη

¼ fHk;WgPB; ð102Þ

where the right-hand side of this equation is the Poisson
bracket between the Hamiltonian Hk and the Wigner
function. The above equation therefore describes a
Liouville evolution. This means that if one starts from a
collection of pairs of pointlike particles [the first one living in
ðqk; πkÞ, the other one in ðq−k; π−kÞ] at time η that mimic the
distribution WðηÞ, and if one lets them all evolve according
to the classical Hamilton equations, the distribution calcu-
lated at later time η0 matches Wðη0Þ. We therefore conclude
that the second condition is also met. Again, this is
completely independent of whether we have large squeezing
or not and is true for any quadratic Hamiltonian.
Finally, we come to the third condition, namely the

equality between quantum and stochastic correlators. Using
Eqs. (90) and (95), one has

hR̂jR̂ki ¼ h gRjRkistocha ¼
	
RjRk þ

i
2
Jjk

�
stocha

ð103Þ

¼ hRjRkistocha þ
i
2
Jjk: ð104Þ

This implies that for combinations of R̂j and R̂k such
that Jjk ¼ 0, the stochastic distribution reproduces exactly
the two-point quantum correlators. The only cases where
Jjk ≠ 0 correspond to mixed terms and we find

hqkπkistocha ¼ hq−kπ−kistocha ¼ hπkqkistocha
¼ hπ−kq−kistocha ¼ 0: ð105Þ

In terms of the Mukhanov-Sasaki variable and its conjugate
momentum, this means that

hvkvpistocha¼
1

2k
½coshð2rkÞþ sinhð2rkÞcosð2φkÞ�δðkþpÞ;

ð106Þ

hpkppistocha ¼
k
2
½coshð2rkÞ − sinhð2rkÞ cosð2φkÞ�δðkþ pÞ;

ð107Þ

hvkppistocha ¼
1

2
sinhð2rkÞ sinð2φkÞδðkþ pÞ: ð108Þ

These equations should be compared to their quantum
counterparts, namely Eqs. (57)–(59). We notice that the
only correlator which is not identical is the last one:
hv̂kp̂−ki ≠ hvkp−kistocha; see Eqs. (59) and (108). There
is an additional i=2 in the quantum correlator which makes
the difference. However, contrary to the classical state
studied in Sec. V, all the correlators of ζ̂ and ζ̂0 are correctly
reproduced. This is evident for hζ̂ ζ̂i and hζ̂0 ζ̂0i since they
do not involve the two-point function hv̂kp̂−ki but it is also
true that

hζ̂ðη; xÞζ̂0ðη; yÞ þ ζ̂0ðη; xÞζ̂ðη; yÞi
¼ hζðη; xÞζ0ðη; yÞ þ ζ0ðη; xÞζðη; yÞistocha: ð109Þ

The reason is that the above operator is Hermitian and,
therefore, the complex term i=2 cancels out. This means
that, as far as the two-point correlators are concerned, the
quantum and stochastic descriptions cannot be observatio-
nally distinguished. Notice that this conclusion is indepen-
dent of the value of rk and is valid for any value of the
squeezing parameter.
Actually, squeezing only plays a role when computing

higher order observable quantities involving the momen-

tum. For example, in Appendix F, it is shown that gq2kπ2k ¼
q2kπ

2
k þ 2iqkπk − 1=2 and ~π2kq

2
k ¼ π2kq

2
k − 2iπkqk − 1=2.

Making use of Eq. (95), this means that

hq2kπ2k þ π2kq
2
kistocha ¼ hq2kπ2k þ π2kq

2
ki − 1; ð110Þ

so that the difference between the quantum and stochastic
correlators is still present for Hermitian operators.
However, from the results of Sec. IVA, one has
hq2kπ2k þ π2kq

2
ki ¼ cosh2ð2rkÞ=2 which is exponentially

large when rk ≫ 1. Therefore, in the large squeezing limit,
the stochastic description gives accurate results for these
correlators too.
As mentioned before, a difference between the quantum

and stochastic cases arises only if the corresponding
correlators contain q̂k and the momentum. In particular,
we show in Appendix F that ~qnk ¼ qnk . However, this does
not mean that higher order terms, such as hζ̂4ki, will also be
correctly and automatically reproduced since ζ̂k ¼ v̂k=z is
expressed in terms of q̂k but also in terms of π̂k; see
Eq. (51). In other words, higher order correlators of ζ̂k will
precisely involve terms with various powers of q̂k and π̂k
for which the squeezing plays a role.
It is usually said that a stochastic classical distribution

successfully reproduces the quantum correlators of cosmo-
logical fluctuations in the large squeezing limit. The results
of this section shed some light on this statement. The fact
that the Wigner function is positive and evolves under the
classical equations of motion is independent of the squeez-
ing level and is just a consequence of having a quadratic
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Hamiltonian and a Gaussian state. For observable (i.e.
Hermitian) operators, two-point correlators are also cor-
rectly reproduced by the Wigner function regardless of the
squeezing level, and it is only when considering higher
order correlators that squeezing comes into play.4

Therefore, our ability to calculate exactly the power
spectrum in the stochastic approach has nothing to do
with the large squeezing limit but is in fact due to the
property that the Hamiltonian is quadratic.

VII. DISCUSSION AND CONCLUSION

Let us now summarize ourmain findings. The presence of
quantum correlations in a quantum state can be character-
ized by the recently proposed quantum discord [52,53].
Cosmological perturbations produced during inflation are
placed in a two-mode squeezed state, for which we have
calculated the quantum discord and showed that it is very
large at the end of inflation. This means that primordial
perturbations represent a highly nonclassical system.
We have also computed the discord for a general splitting

of the system and shown that, except for the specific case
where the two subsystems correspond to the real and
imaginary parts of the Mukhanov-Sasaki variable, the
quantum discord is always very large on super-Hubble
scales. In an ordinary situation, such as a Bell-type experi-
ment where the spin states of two remote systems are
measured, the splitting is unambiguous, and the two sub-
systems are obviously the two particles that have travelled
far away from each other. But the situation is less clear when
a measurement of a “continuous” system is performed.
A priori, a measurement corresponds to a realization which
provides us with all the values of the qk’s, i.e. a map of the
CMB. How should we split this system into two subsys-
tems? These tricky questions are in fact connected to deeper
issues related to the status of the measurement problem in a
cosmological context; see Refs. [35,95].
In order to determine how the large quantum discord is

reflected at the observational level, we have compared the

correlation functions of the two-mode squeezed states with
the ones that would be obtained (i) from a classical state,
that is to say a state with vanishing quantum disc ord, that
contains classical correlations only; and (ii) from a classical
stochastic distribution. The results are summarized in
Table I. One can design a classical state that reproduces
the observed primordial power spectrum. Large differences
with the two-mode squeezed state correlators then appear in
other two-point functions but they are typically hidden in
the decaying mode, and are hence unobservable. However,
such classical states are intrinsically non-Gaussian, at a
level that remains to be estimated but which could possibly
lead to the indirect detection of the large CMB quantum-
ness. This is a very important conclusion of this work.
Then, if one is ready to abandon the idea that perturbations
should be described in the framework of quantum mechan-
ics and wants to use a classical stochastic distribution
instead, we have seen that because the Hamiltonian is
quadratic and the two-mode squeezed state is Gaussian, the
Wigner function provides such a distribution, evolving
under the classical equation of motion and allowing us to
reproduce all observable (i.e. Hermitian) two-point corre-
lators. It is important to stress that the squeezing plays no
role at this level. The large squeezing is important only if
one wants to correctly reproduce non-Hermitian or higher
order correlators.
Let us conclude with a few remarks. First, the fact that a

classical stochastic distribution succeeds in reproducing the
two-mode squeezed state late time correlators is due to
most phase information being contained in the decaying
mode, which is not observable in the large squeezing limit
in the minimal setup we considered here. More complicated
situations, such as multifield inflation [96] where entropic
perturbations can source the decaying mode on large scales,
or models where features in the potential [97–99] give rise
to transient violations of slow roll (hence modified squeez-
ing histories), may therefore lead to different conclusions.
Second, in light of the results of this paper, the presence of
large quantum correlations in primordial perturbations can
be seen as a remarkable feature of inflation. It would be
interesting to see whether this property is also present in
alternative scenarios [100] to inflation, such as bouncing
cosmologies [101] or ekpyrotic setups [102].

TABLE I. Reproducibility of the two-mode squeezed state correlation functions by a classical state (see Sec. IV) and a classical
stochastic distribution (see Sec. VI).

Classical state Stochastic distribution

Correlation function Generic Super-Hubble Generic
Super-Hubble
(squeezed)

Pζ ∝ hζkζ−ki Succeeds Succeeds

Other non-Hermitian two-point correlators
Fails

Strongly fails but
nonobservable

Fails Succeeds

Other Hermitian two-point correlators Succeeds

Higher order Hermitian correlators Fails Strongly fails Fails Succeeds

4A remaining nontrivial question is whether a stochastic
classical description is valid to describe (even approximately)
correlators of nonanalytical functions in v and p (or q and π) [94].
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The answer to the question raised in the title of this paper
is, at the level of two-point correlators, yes in principle,
but no in practice. However, other observations, such as
the non-Gaussian patterns derived in Sec. V B or Bell-type
experiments, may be capable of proving the existence of
large quantum correlations in the CMB. We plan to
investigate these issues in future publications [103].
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APPENDIX A: THE PROJECTED STATE
IS A PURE STATE

In this appendix, we show that the projected state defined
in Eq. (37) is a pure state, and that, as a consequence, its
entropy vanishes. Let us start from a general bipartite state
which can always be written as

jψi ¼
X
n;m

cnmjnk; m−ki: ðA1Þ

Then the corresponding density matrix reads

ρ̂ðk;−kÞ ¼
X
n;m

X
p;q

cnmc�pqjnkihpkj ⊗ jm−kihq−kj: ðA2Þ

The next step, as was discussed around Eq. (37), is to
consider the following projector which corresponds to the
measurement of an observable of the subsystem −k:

Π̂j ¼ Îdk ⊗ jj−kihj−kj: ðA3Þ
From this expression, it is easy to show that

ρ̂ðk;−kÞΠ̂j ¼
X
n;m

X
p

cnmc�pjjnkihpkj ⊗ jm−kihj−kj;

ðA4Þ
from which we deduce that

Tr−k½ρ̂ðk;−kÞΠ̂j� ¼
X
i

hi−kjρ̂Π̂jji−ki

¼
X
n

X
p

cnjc�pjjnkihpkj: ðA5Þ

We also have Tr½ρ̂ðk;−kÞΠ̂j� ¼
P

ncnjc
�
nj where, here, the

trace is taken over the full state space. Therefore, the state
defined in Eq. (37) can be expressed as

ρ̂ðk; Π̂jÞ ¼
1P

ncnjc
�
nj

X
n

X
p

cnjc�pjjnkihpkj: ðA6Þ

From this expression, it is straightforward to show that
ρ̂2ðk; Π̂jÞ ¼ ρ̂ðk; Π̂jÞ. Indeed, using the above explicit
expression, one has

ρ̂2ðk; Π̂jÞ ¼
1P

ncnjc
�
nj

1P
mcmjc�mj

X
pq

cpjc�qjjpkihqkj

×
X
rs

crjc�sjjrkihskj ðA7Þ

¼ 1P
ncnjc

�
nj

1P
mcmjc�mj

X
pq

X
rs

cpjc�qjcrjc
�
sjjpki

× hqkjrkihskj ðA8Þ

¼ 1P
ncnjc

�
nj

1P
mcmjc�mj

X
p

X
rs

cpjc�rjcrjc
�
sj

× jpkihskj ðA9Þ

¼ 1P
ncnjc

�
nj

1P
mcmjc�mj

X
r

crjc�rj

×
X
p

X
s

cpjc�sjjpkihskj ðA10Þ

¼ 1P
ncnjc

�
nj

X
p

X
s

cpjc�sjjpkihskj

¼ ρ̂ðk; Π̂jÞ: ðA11Þ

It is therefore a pure state and, consequently, as noticed in
the main text, its entropy vanishes.

APPENDIX B: QUANTUM DISCORD FOR A
GENERAL SPLITTING OF THE SYSTEM

In this appendix, we calculate the discord for a general
splitting of the quantum system as discussed in Sec. III. The
calculations presented here lead to Fig. 2. The state of the
system is given by Eq. (28) and can be written as

ρ̂¼ 1

cosh2ðrkÞ
X∞
n;n0¼0

e−2iðn−n0Þφk tanhnþn0 ðrkÞjnk;n−kihn0k;n0−kj

¼
X∞
n;n0¼0

an;n0 jnk;n−kihn0k;n0−kj; ðB1Þ

which defines the coefficients an;n0 . Here, the density
matrix is expanded over the states jnk; n−ki, which is
especially convenient when the system is split according
to E ¼ Ek ⊗ E−k. In this appendix, however, we consider
the case where E ¼ E1 ⊗ E2, the corresponding ladder
operators being given by Eqs. (47) and (48). It is therefore
more convenient to use the states

jn1; m2i ¼
ðâ†1Þnffiffiffiffiffi

n!
p ðâ†2Þmffiffiffiffiffiffi

m!
p j01; 02i; ðB2Þ

containing n quantas in the mode 1 and m quantas in
the mode 2. As a consequence, one must first write
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jnk; n−ki ¼
P

m;phm1; p2jnk; n−kijm1; p2i and calculate
hm1; p2jnk; n−ki. This quantity can be written as

hm1; p2jnk; n−ki ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m!p!n!n!
p

× h01;02jðâ1Þmðâ2Þpðĉ†kÞnðĉ†−kÞnj01;02i;
ðB3Þ

where we used Eq. (B2) and that j0k; 0−ki ¼ j01; 02i. Then
the idea of the calculation is to permutate the operators such
that ðâ1Þn1 and ðâ2Þn2 directly act on j01; 02i. In order to do
so, we use the fact [104] that, for two operators X̂ and Ŷ
such that ½X̂; Ŷ� ¼ dÎ, one has

½X̂n; Ŷm� ¼
Xminðn;mÞ

l¼1

dll!
�
n

l

��
m

l

�
Ŷm−lX̂n−l; ðB4Þ

where the coefficient ðnlÞ ¼ n!=½ðn − lÞ!l!�. This immedi-
ately implies that

X̂nŶm ¼
Xminðn;mÞ

l¼0

dll!
�
n

l

��
m

l

�
Ŷm−lX̂n−l: ðB5Þ

Let us make use of this relation. Since ½â1; ĉ†k� ¼ cos α, see
Eq. (47), one has

âm1 ðĉ†kÞn ¼
Xminðm;nÞ

l1¼0

ðcos αÞl1l1!

�
m

l1

��
n

l1

�
ðĉ†kÞn−l1 âm−l1

1 :

ðB6Þ

Moreover, since â1 and â2 commute, one can first permute
them and then use the relation we have just established. In
that case Eq. (B3) can be written as

hm1; p2jnk; n−ki ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m!p!n!n!
p

Xminðm;nÞ

l1¼0

ðcos αÞl1l1!

�
m

l1

��
n

l1

�
h01; 02jðâ2Þpðĉ†kÞn−l1 âm−l1

1 ðĉ†−kÞnj01; 02i: ðB7Þ

In order for â1 to act on the vacuum, we see that one more permutation is needed. It can be obtained by using again the same
trick. Since ½â1; ĉ†−k� ¼ sin α, see Eq. (47), one has

âm−l1
1 ðĉ†−kÞn ¼

Xminðm−l1;nÞ

l2¼0

ðsin αÞl2l2!

�
m − l1

l2

��
n

l2

�
ðĉ†−kÞn−l2 âm−l1−l2

1 ; ðB8Þ

and, therefore, one can write

hm1; p2jnk; n−ki ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m!p!n!n!
p

Xminðm;nÞ

l1¼0

Xminðm−l1;nÞ

l2¼0

ðcos αÞl1l1!

�
m

l1

��
n

l1

�
ðsin αÞl2l2!

�
m − l1

l2

��
n

l2

�
× h01; 02jðâ2Þpðĉ†kÞn−l1ðĉ†−kÞn−l2 âm−l1−l2

1 j01; 02i: ðB9Þ

This expression vanishes unless m−l1−l2¼0 or l2¼m−l1. Moreover, clearly, if n<m−l1, then minðm − l1; nÞ ¼ n,
the sum over l2 runs from 0 to n, and l2 can never reachm − l1. In that case, the above expression is zero. On the contrary,
if n > m − l1, then minðm − l1; nÞ ¼ m − l1 and the sum over l2 runs from 0 tom − l1. But if n > m − l1, it also means
that l1 > m − n and, if this quantity is positive, the sum over l1 must start from this value rather than from zero. In other
words, it must start from maxð0; m − nÞ. Therefore, one obtains

hm1; p2jnk; n−ki ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m!p!n!n!
p

Xminðm;nÞ

l1¼maxð0;m−nÞ
ðcos αÞl1l1!

�
m

l1

��
n

l1

�
ðsin αÞm−l1ðm − l1Þ!

�
n

m − l1

�
× h01; 02jðâ2Þpðĉ†kÞn−l1ðĉ†−kÞn−mþl1 j01; 02i: ðB10Þ

The next step is now to bring the operator â2 to the left and the same method we have just described can be applied. After
straightforward manipulations, the final expression reads

hm1;p2jnk;n−ki¼
ffiffiffiffiffiffiffiffiffiffi
m!p!
n!n!

r Xminðm;nÞ

l1¼maxð0;m−nÞ
ðcosαÞ2l1þn−mðsinαÞmþn−2l1ð−1Þn−l1e2ipα

�
n

m−l1

��
n

l1

�
δðmþp;2nÞ: ðB11Þ
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The appearance of the δ function makes sense since it means that the same total number of particles must be contained in
both states. In particular, one can check that, in the specific case α ¼ 0, the previous expression gives δðm − nÞδðp − nÞ, as
it should.
Using the expression previously established, one can then write

jnk; n−ki ¼
Xþ∞

m¼0

Xþ∞

p¼0

hm1; p2jnk; n−kijm1; p2i ¼
X2n
m¼0

hm1; ð2n −mÞ2jnk; n−kijm1; ð2n −mÞ2i ðB12Þ

¼ ½−ðcos αÞðsin αÞ�n
X2n
m¼0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m!ð2n −mÞ!p

n!
e2ið2n−mÞαðtan αÞm

×
Xminðm;nÞ

l¼maxð0;m−nÞ
ðtan αÞ−2lð−1Þ−l

�
n

m − l

��
n

l

�
jm1; ð2n −mÞ2i: ðB13Þ

This expressioncanbe further simplified as the secondsumcanbecalculated in termsof ahypergeometric function. Indeed, the
sum over m can be split into a sum from m ¼ 0 to m ¼ n, in which case one has m ≤ n and a sum from m ¼ nþ 1
tom ¼ 2n, inwhichcaseonehasm > n.But in these twocases, thecorrespondingsumoverl isknownsince form ≤ n, onehas

Xm
l¼0

�
−

1

tan2α

�
l
�

n

m − l

��
n

l

�
¼

�
n

m

�
2F1

�
−m;−n; 1 −mþ n;−

1

tan2α

�
; ðB14Þ

while, for m ≥ n, one can write

Xn
l¼m−n

�
−

1

tan2ðαÞ
�
l
�

n

m − l

��
n

l

�
¼

�
−

1

tan2ðαÞ
�
m−n

�
n

m − n

�
2F1

�
m − 2n;−n; 1þm − n;−

1

tan2α

�
: ðB15Þ

As a consequence, the state jnk; n−ki can be expressed as

jnk; n−ki ¼
½− cosðαÞ sinðαÞ�n

n!
e4inα

�Xn
m¼0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðmÞ!ð2n −mÞ!

p
e−2imαðtan αÞm

×

�
n

m

�
2F1

�
−m;−n; 1 −mþ n;−

1

tan2α

�
jm1; ð2n −mÞ2i þ

X2n
m¼nþ1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðmÞ!ð2n −mÞ!

p
e−2imα

× ð−1Þm−nðtan αÞ2n−m
�

n

m − n

�
2F1

�
m − 2n;−n; 1þm − n;−

1

tan2α

�
jm1; ð2n −mÞ2i

�
ðB16Þ

¼
X2n
m¼0

bnmjm1; ð2n −mÞ2i; ðB17Þ

which defines the coefficients bnm. Combining Eqs. (B1)
and (B17), one can write the expression of the density
matrix as

ρ̂12 ¼
X∞
n;n0¼0

X2n
m¼0

X2n0
m0¼0

ann0bnmb�n0m0 jm; 2n −mihm0; 2n0 −m0j:

ðB18Þ

We are now in a position to calculate the discord along
the lines of Sec. III. The quantity I12 is defined by

I12 ¼ Sðρ̂1Þ þ Sðρ̂2Þ − Sðρ̂12Þ, where ρ̂1 (ρ̂2) is obtained
from ρ̂12 by tracing out the degrees of freedom of
the subsystem 2 (1). Then let us imagine that we make
a measurement on the subsystem 1 corresponding to
an operator Π̂j. This defines ρ̂2ðΠ̂jÞ ¼ Tr1ðρ̂12Π̂j=pjÞ
where pj¼Trðρ̂12Π̂Þ and J 12 ¼ Sðρ̂2Þ −

P
jpjS½ρ̂2ðΠ̂jÞ�.

However, we have shown in Appendix A that S½ρ̂2ðΠ̂jÞ� ¼
0 since ρ̂12 is still a pure state. As a result, J 12 ¼ Sðρ̂2Þ and,
hence, the discord is just given by δ12 ¼ Sðρ̂1Þ. We see that
we only need to calculate the entropy of ρ̂1. In order to
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obtain this reduced density matrix, we trace out the second
set of degrees of freedom. Using Eq. (B18), this leads to the
following expression:

ρ̂1 ¼
X∞
p¼0

hp2jρ̂jp2i

¼
X∞
p¼0

X∞
n;n0¼0

X2n
m¼0

X2n0
m0¼0

ann0bnmb�n0m0 hp2jm; 2n −mi

× hm0; 2n0 −m0jp2i; ðB19Þ

¼
X∞
n;n0¼0

X2n
m¼0

an;n0bn;mb�n0;mþ2ðn0−nÞjmihmþ 2ðn0 − nÞj:

ðB20Þ

Since ρ̂1 is a priori not a thermal state, one cannot
directly apply Eq. (43). In an analogy with Eqs. (49)
and (50), let us therefore introduce the quantities q̂1;2
and π̂1;2 defined by q̂1;2 ¼ ð ffiffiffiffiffi

2k
p Þ−1ða1;2 þ a†1;2Þ and π̂1;2 ¼

−i
ffiffiffiffiffiffiffiffi
k=2

p ða1;2 − a†1;2Þ. This defines the vector P̂j ¼
ðk1=2q̂1; k−1=2π̂1; k1=2q̂2; k1=2π̂2Þ which is the equivalent
of R̂j defined after Eq. (54). Then the covariance matrix

γjk is defined by hP̂jP̂ki ¼ γjk=2þ iJjk=2; see below
Eq. (55) in the text and the definition of the matrix Jjk
given by Eq. (56). In fact, since we want to calculate the
entropy of subsystem 1 only, it is sufficient to consider the
covariance matrix in this subsystem. Straightforward cal-
culations lead to

γ11 ¼ khq̂21i ¼ hâ21 þ ðâ†1Þ2 þ 2â1â
†
1i − 1

¼ Trfρ̂1½â21 þ ðâ†1Þ2 þ 2â1â
†
1�g − 1; ðB21Þ

γ12 ¼ γ21 ¼ ihðâ†1Þ2 − â21i ¼ iTrfρ̂1½ðâ†1Þ2 − â21�g; ðB22Þ

γ22 ¼ −hâ21 þ ðâ†1Þ2 − 2â1â
†
1i − 1

¼ −Trfρ̂1½â21 þ ðâ†1Þ2 − 2â1â
†
1�g − 1; ðB23Þ

which is explicitly known since we have determined the
density matrix ρ̂1; see Eq. (B18). As is evident from the
above expressions, in order to find γjk, it is sufficient to
determine the three following quantities, hâ21i, hðâ†1Þ2i and
hâ1â†1i. For the sake of illustration, let us calculate the first
one. One has

hâ21i ¼ Trðρ̂1â21Þ ¼
X∞
p¼0

X∞
n;n0¼0

X2n
m¼0

an;n0bn;mb�n0;mþ2ðn0−nÞhpjmihmþ 2ðn0 − nÞjâ21jpi; ðB24Þ

¼
X∞
p¼2

X∞
n;n0¼0

X2n
m¼0

an;n0bn;mb�n0;mþ2ðn0−nÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pðp − 1Þ

p
hpjmihmþ 2ðn0 − nÞjp − 2i; ðB25Þ

¼
X∞
n¼1

X2n
m¼2

an;n−1bn;mb�n−1;m−2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mðm − 1Þ

p
: ðB26Þ

The two other quantities are given by similar calculations.
Then it is sufficient to calculate the eigenvalues κ of the
matrix ðγ=2ÞJ1 to directly obtain the symplectic spectrum,
thanks to Williamson’s theorem [105]. One obtains

κ ¼ �i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
hâ1â†1i −

1

2

�
2

− hâ21ihðâ†1Þ2i
s

≡�iσ; ðB27Þ

which defines σ. Finally, the von Neumann entropy,
and therefore the discord δ12, is given by the following
expression:

δ12 ¼ Sðρ̂1Þ ¼ −Trðρ̂1 log ρ̂1Þ

¼
�
σ þ 1

2

�
log2

�
σ þ 1

2

�
−
�
σ −

1

2

�
log2

�
σ −

1

2

�
:

ðB28Þ

We have evaluated this expression numerically. It is
displayed as a function of the parameter α in Fig. 2. The
dependence in kη is hidden in the coefficients ann0 which
depend on the squeezing parameters, these ones being
explicit time-dependent quantities.

APPENDIX C: COVARIANCE MATRIX OF A
TWO-MODE SQUEEZED STATE

In this appendix, we calculate the covariance matrix of a
two-mode squeezed quantum state. The characteristic
function χ has been introduced in Eq. (53) and the Weyl
operator W defined in Eq. (54). Using the form (26) for
the density matrix, and, as below Eq. (54), defining R̂ ¼
ðk1=2q̂k; k−1=2π̂k; k1=2q̂−k; k−1=2π̂−kÞT ≡ ðR̂1; R̂2; R̂3; R̂4ÞT,
the characteristic function χðξÞ (where the components of ξ
are denoted as ξ1, ξ2, ξ3 and ξ4) can be written as
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χðξÞ ¼ Tr½Ŝðrk;φkÞR̂ðθkÞj0k; 0−kih0k; 0−kjR̂†ðθkÞŜ†ðrk;φkÞeiξ1R̂1þiξ2R̂2þiξ3R̂3þiξ4R̂4 � ðC1Þ

¼ Tr½j0k; 0−kih0k; 0−kjR̂†ðθkÞŜ†ðrk;φkÞeiξ1R̂1þiξ2R̂2þiξ3R̂3þiξ4R̂4 Ŝðrk;φkÞR̂ðθkÞ� ðC2Þ

¼
X∞
n¼0

X∞
n0¼0

hnk; n0−kj0k; 0−kih0k; 0−kjR̂†ðθkÞŜ†ðrk;φkÞeiξ1R̂1þiξ2R̂2þiξ3R̂3þiξ4R̂4 Ŝðrk;φkÞR̂ðθkÞjnk; n0−ki ðC3Þ

¼ h0k; 0−kjR̂†ðθkÞŜ†ðrk;φkÞeiξ1R̂1þiξ2R̂2þiξ3R̂3þiξ4R̂4 Ŝðrk;φkÞR̂ðθkÞj0k; 0−ki ðC4Þ

¼ h0k; 0−kjR̂†ðθkÞŜ†ðrk;φkÞeiξ1R̂1þiξ2R̂2eþiξ3R̂3þiξ4R̂4 Ŝðrk;φkÞR̂ðθkÞj0k; 0−ki ðC5Þ

¼ eiξ1ξ2=2þiξ3ξ4=2h0k; 0−kjR̂†ðθkÞŜ†ðrk;φkÞeiξ1R̂1eiξ2R̂2eiξ3R̂3eiξ4R̂4 Ŝðrk;φkÞR̂ðθkÞj0k; 0−ki; ðC6Þ

where we have made use of the Baker-Campbell-Hausdorff formula eÂþB̂ ¼ e−½Â;B̂�=2eÂeB̂, valid if the operators Â and B̂
commute with their commutator ½Â; B̂�, which is the case here; see below. The next step consists in introducing the operator
Ŝ R̂ðŜ R̂Þ† (which is unity) between each exponential factor. This means that we must now calculate

R̂†ðθkÞŜ†ðrk;φkÞeiξ1R̂1 Ŝðrk;φkÞR̂ðθkÞ ¼ R̂†ðθkÞŜ†ðrk;φkÞ
X∞
n¼0

1

n!
inξn1R̂

n
1Ŝðrk;φkÞR̂ðθkÞ ðC7Þ

¼
X∞
n¼0

1

n!
inξn1R̂

†ðθkÞŜ†ðrk;φkÞR̂n
1Ŝðrk;φkÞR̂ðθkÞ: ðC8Þ

But one has (in order to avoid cumbersome notation, in this equation, we do not write the dependence in the squeezing
parameters)

R̂†Ŝ†R̂n
1Ŝ R̂ ¼ R̂†Ŝ†R̂1Ŝ R̂ R̂†Ŝ†R̂n−1

1 Ŝ R̂ ¼ R̂†Ŝ†R̂1Ŝ R̂ R̂†Ŝ†R̂1Ŝ R̂ R̂†Ŝ†R̂n−2
1 Ŝ R̂ ¼ ðR̂†Ŝ†R̂1Ŝ R̂Þn: ðC9Þ

As a consequence, one can rewrite the series as

R̂†ðθkÞŜ†ðrk;φkÞeiξ1R̂1 Ŝðrk;φkÞR̂ðθkÞ ¼
X∞
n¼0

1

n!
inξn1½R̂†ðθkÞŜ†ðrk;φkÞR̂1Ŝðrk;φkÞR̂ðθkÞ�n ðC10Þ

¼ eiξ1R̂
†ðθkÞŜ†ðrk;φkÞR̂1Ŝðrk;φkÞR̂ðθkÞ: ðC11Þ

Using this result in the expression of the characteristic function, not only for the first exponential term but for the four terms,
we arrive at the following expression:

χðξÞ ¼ eiξ1ξ2=2þiξ3ξ4=2h0k; 0−kjeiξ1R̂†Ŝ†R̂1Ŝ R̂eiξ2R̂
†Ŝ†R̂2Ŝ R̂eiξ3R̂

†Ŝ†R̂3Ŝ R̂eiξ4R̂
†Ŝ†R̂4Ŝ R̂j0k; 0−ki: ðC12Þ

To proceed, one has to evaluate the four terms R̂†Ŝ†R̂iŜ R̂. Using Eqs. (21) and (22), it is easy to show that

Ω̂1 ≡ R̂†ðθkÞŜ†ðrk;φkÞR̂1Ŝðrk;φkÞR̂ðθkÞ ¼ R̂1 cosh rk cos θk − R̂2 cosh rk sin θk

þ R̂3 sinh rk cos ðθk − 2φkÞ þ R̂4 sinh rk sin ð2φk − θkÞ; ðC13Þ
Ω̂2 ≡ R̂†ðθkÞŜ†ðrk;φkÞR̂2Ŝðrk;φkÞR̂ðθkÞ ¼ R̂1 cosh rk sin θk þ R̂2 cosh rk cos θk

þ R̂3 sinh rk sin ð2φk − θkÞ − R̂4 sinh rk cos ð2φk − θkÞ; ðC14Þ
Ω̂3 ≡ R̂†ðθkÞŜ†ðrk;φkÞR̂3Ŝðrk;φkÞR̂ðθkÞ

¼ R̂1 sinh rk cos ð2φk − θkÞ þ R̂2 sinh rk sin ð2φk − θkÞ þ R̂3 cosh rk cos θk − R̂4 cosh rk sin θk; ðC15Þ
Ω̂4 ≡ R̂†ðθkÞŜ†ðrk;φkÞR̂4Ŝðrk;φkÞR̂ðθkÞ ¼ R̂1 sinh rk sin ð2φk − θkÞ − R̂2 sinh rk cos ð2φk − θkÞ

þ R̂3 cosh rk sin θk þ R̂4 cosh rk cos θk: ðC16Þ
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The final step is to express the product of four exponentials in Eq. (C12) in terms of a single exponential. For this purpose, it
is interesting to calculate the commutators of the operators ½Ω̂i; Ω̂j� in order to use (again) the Baker-Campbell-Hausdorff
formula. One finds

½Ω̂1; Ω̂3� ¼ ½Ω̂1; Ω̂4� ¼ ½Ω̂2; Ω̂3� ¼ ½Ω̂2; Ω̂4� ¼ 0; ½Ω̂1; Ω̂2� ¼ ½Ω̂3; Ω̂4� ¼ i: ðC17Þ

As a consequence, the characteristic function (C12) now takes the form

χðξÞ ¼ eiξ1ξ2=2þiξ3ξ4=2h0k; 0−kje−iξ1ξ2=2eiξ1Ω̂1þiξ2Ω̂2e−iξ3ξ4=2eiξ3Ω̂3þiξ4Ω̂4 j0k; 0−ki ðC18Þ

¼ h0k; 0−kjeiξ1Ω̂1þiξ2Ω̂2þiξ3Ω̂3þiξ4Ω̂4 j0k; 0−ki ðC19Þ

¼ h0k; 0−kjeiη1R̂1þiη2R̂2þiη3R̂3þiη4R̂4 j0k; 0−ki≡ χvacðη1; η2; η3; η4Þ; ðC20Þ

where the coefficients ηi can be expressed as

η1 ¼ ξ1 cosh rk cos θk þ ξ2 sinh rk sin θk þ ξ3 sinh rk cos ð2φk − θkÞ þ ξ4 sinh rk sin ð2φk − θkÞ; ðC21Þ

η2 ¼ −ξ1 cosh rk sin θk þ ξ2 cosh rk cos θk þ ξ3 sinh rk sin ð2φk − θkÞ − ξ4 sinh rk cos ð2φk − θkÞ; ðC22Þ

η3 ¼ ξ1 sinh rk cos ð2φk − θkÞ þ ξ2 sinh rk sin ð2φk − θkÞ þ ξ3 cosh rk cos θk þ ξ4 cosh rk sin θk; ðC23Þ

η4 ¼ ξ1 sinh rk sin ð2φk − θkÞ − ξ2 sinh rk cos ð2φk − θkÞ − ξ3 cosh rk sin θk þ ξ4 cosh rk cos θk: ðC24Þ

In Eq. (C20), χvacðη1; η2; η3; η4Þ represents the characteristic function of the vacuum. But this function is well known and
easy to calculate. The vacuum state is a Gaussian state and one has, see for instance Eq. (33) of Ref. [83],

χvacðη1; η2; η3; η4Þ ¼ e−η
TId4η=4; ðC25Þ

where Id4 is the identity matrix in four dimensions. Since the definition of the covariance matrix γ is given by the expression

χðξ1; ξ2; ξ3; ξ4Þ ¼ e−ξ
Tγξ=4; ðC26Þ

this implies that

X4
i¼1

η2i ¼
X4
i¼1

X4
j¼1

γijξiξj; ðC27Þ

which allows us to infer the components of the covariance matrix. Then lengthy but straightforward calculations lead to the
following covariance matrix for the two-mode squeezed state:

γ ¼

0BBB@
cosh ð2rkÞ 0 sinh ð2rkÞ cos ð2φkÞ sinh ð2rkÞ sin ð2φkÞ

0 cosh ð2rkÞ sinh ð2rkÞ sin ð2φkÞ − sinh ð2rkÞ cos ð2φkÞ
sinh ð2rkÞ cos ð2φkÞ sinh ð2rkÞ sin ð2φkÞ cosh ð2rkÞ 0

sinh ð2rkÞ sin ð2φkÞ − sinh ð2rkÞ cos ð2φkÞ 0 cosh ð2rkÞ

1CCCA: ðC28Þ

We notice that γ does not depend on the rotation angle θk.
Once we have the covariance matrix, we can determine the
two-point correlation functions by means of the relation
hRjRki ¼ γjk=2þ iJjk=2 derived in Appendix F. As men-
tioned in the main text, the matrix J is defined by

J ¼

0BBB@
0 1 0 0

−1 0 0 0

0 0 0 1

0 0 −1 0

1CCCA: ðC29Þ
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Using the above expression of the correlation matrix, the
explicit form of the two-point correlators is given by

hq̂kq̂ki ¼ hq̂−kq̂−ki ¼
1

2k
coshð2rkÞ;

hπ̂kπ̂ki ¼ hπ̂−kπ̂−ki ¼
k
2
coshð2rkÞ; ðC30Þ

hq̂kq̂−ki ¼
1

2k
sinhð2rkÞ cosð2φkÞ;

hπ̂kπ̂−ki ¼ −
k
2
sinhð2rkÞ cosð2φkÞ; ðC31Þ

hq̂kπ̂−ki ¼ hπ̂kq̂−ki ¼
1

2
sinhð2rkÞ sinð2φkÞ;

hq̂kπ̂ki ¼ hq̂−kπ̂−ki ¼ −hπ̂kq̂ki ¼ −hπ̂−kq̂−ki ¼
i
2
:

ðC32Þ

These results are used in the main text in order to calculate
the two-point correlation functions of v̂k and p̂k; see
Eqs. (57)–(59), related to q̂k and π̂k through Eqs. (51)
and (52).

APPENDIX D: DISCORD OF A
CLASSICAL STATE

In this appendix, we show that classical states given by
Eq. (69) have vanishing quantum discord. Let us first
calculate the reduced density matrix ρ̂classðkÞ obtained by
tracing out Eq. (69) over degrees of freedom belonging to
space −k. One obtains

ρ̂classðkÞ ¼
X
m

hm−kj
X∞
i¼0

X∞
j¼0

pijjikihikj ⊗ jj−kihj−kjm−ki

¼
X
ij

pijjikihikj: ðD1Þ

In the same manner, one obtains a similar expression for
ρ̂classð−kÞ where ik is replaced by j−k in the above formula.
It is easy to show that these matrices are diagonal in the
basis jnki. Indeed,

hnkjρ̂classðkÞjmki ¼ δnm
X
j

pnj: ðD2Þ

Of course, one has a similar relation (but not identical if the
probabilities are not symmetric) in the other half space,
namely

hn−kjρ̂classðkÞjm−ki ¼ δnm
X
i

pin: ðD3Þ

Therefore, it is straightforward to calculate the correspond-
ing entropy. Indeed, the calculation of the entropy

requires in general estimating the logarithm of a matrix,
which is a nontrivial task. But when the matrix is diagonal,
its logarithm is just a diagonal matrix whose entries are
given by the logarithm of the entries of the original matrix.
As a consequence, one immediately deduces that

S½ρ̂classðkÞ� ¼
X
i

��X
l

pil

�
log

�X
j

pij

��
;

S½ρ̂classð−kÞ� ¼
X
i

��X
l

pli

�
log

�X
j

pji

��
: ðD4Þ

On the other hand, since the full density matrix ρ̂classðk;−kÞ
satisfies

hnkm−kjρ̂classðk;−kÞjnk0m−k
0i ¼ pnmδnn0δmm0 ; ðD5Þ

one can write its entropy as

S½ρ̂classðk;−kÞ� ¼
X
ij

pij logpij: ðD6Þ

It follows that the mutual information Iðk;−kÞ is
given by

Iðk;−kÞ ¼
X
i

��X
l

pil

�
log

�X
j

pij

��

þ
X
i

��X
l

pli

�
log

�X
j

pji

��
−
X
ij

pij logpij: ðD7Þ

This completes the first step in the calculation of the
discord.
Let us now calculate the quantity J ðk;−kÞ. We consider

again the projector Π̂j introduced in Eq. (A3). It is easy to
show that

ρ̂classðk;−kÞΠ̂j ¼
X
n

pnjjnkihnkj ⊗ jj−kihj−kj: ðD8Þ

Moreover, using this expression, one can also establish
that

Tr½ρ̂classðk;−kÞΠ̂j� ¼
X
n

pnj: ðD9Þ

Then, in order to derive a formula for ρ̂classðk; Π̂jÞ, one
has to trace out the degrees of freedom contained in −k in
Eq. (D8), see also Eq. (37), and it comes to

ρ̂classðk; Π̂jÞ ¼
1P
lplj

X
n

pnjjnkihnkj: ðD10Þ
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This density matrix is diagonal with elements pnj=
P

lplj on the diagonal. Consequently, the conditional entropy Scond
which, as before, requires the calculation of the logarithm of the above mentioned matrix, can be easily estimated and reads

Scond ≡
X
j

�X
l

plj

�
S½ρ̂classðk; Π̂jÞ� ¼

X
j

�X
l

plj

�X
n

pnjP
mpmj

log

�
pnjP
ipij

�
ðD11Þ

¼
X
nj

pnj log

�
pnjP
ipij

�
¼

X
nj

pnj logðpnjÞ −
X
nj

pnj log

�X
i

pij

�
ðD12Þ

¼
X
nj

pnj logðpnjÞ −
X
j

��X
n

pnj

�
log

�X
i

pij

��
: ðD13Þ

It follows that the quantity J ðk;−kÞ can be expressed as

J ðk;−kÞ≡ S½ρ̂classðkÞ� − Scond ¼
X
i

��X
l

pil

�
log

�X
j

pij

��
−
X
nj

pnj logðpnjÞ þ
X
j

��X
n

pnj

�
log

�X
i

pij

��
¼ Iðk;−kÞ: ðD14Þ

Therefore, we see that, for the choice of Π̂j made above, the difference betweenJ ðk;−kÞ and Iðk;−kÞ vanishes. In order to
obtain the discord, one must minimize this quantity over the set of projectors; see Eq. (39). However, the discord is a
positive definite quantity [86] and, as a consequence, if for one specific choice of Π̂j one proves it is zero, then it obviously
means that the minimum is also zero. Therefore, as announced in the main text, we conclude that the quantum discord of the
classical state vanishes.

APPENDIX E: CHARACTERISTIC FUNCTION OF A CLASSICAL STATE

In this appendix, we calculate the characteristic function of the classical state (69). Let us recall that the characteristic
function χ is defined in Eq. (53) [and the Weyl operator in Eq. (54)]. As a consequence, we have

χðξÞ ¼ Tr½ρ̂classðk;−kÞeiξ1R̂1þiξ2R̂2þiξ3R̂3þiξ4R̂4 � ðE1Þ

¼
X
n;m

hnk; m−kj
X
i;j

pijjikihikj ⊗ jj−kihj−kjeiξ1R̂1þiξ2R̂2þiξ3R̂3þiξ4R̂4 jnk; m−ki ðE2Þ

¼ eiξ1ξ2=2þiξ3ξ4=2
X
n;m

pnmhnk; m−kjeiξ1R̂1eiξ2R̂2eiξ3R̂3eiξ4R̂4 jnk; m−ki ðE3Þ

¼ eiξ1ξ2=2þiξ3ξ4=2
X
n;m

pnm

Z
dðk1=2xkÞdðk1=2x−kÞdðk1=2ykÞdðk1=2y−kÞhnk; m−kjeiξ1R̂1eiξ2R̂2 jxk; x−ki

× hxk; x−kjeiξ3R̂3eiξ4R̂4 jyk; y−kihyk; y−kjnk; m−ki; ðE4Þ

where, in the last equality, we have introduced the closure relation twice. In this expression, jxki represents the eigenstate of
the “position operator” q̂k. This is especially convenient because the action of an operator of the form eiξiR̂i on this state is
particular simple. Indeed, one has

eiξ3R̂3eiξ4R̂4 jyk; y−ki ¼ eiξ3k
1=2q̂−keiξ4k

−1=2π̂−k jyk; y−ki ¼ eiξ3k
1=2q̂−k jyk; y−k − ξ4k−1=2i ðE5Þ

¼ eiξ3k
1=2ðy−k−ξ4k−1=2Þjyk; y−k − ξ4k−1=2i: ðE6Þ

In the same way, one can also write

eiξ1R̂1eiξ2R̂2 jxk; x−ki ¼ eiξ1k
1=2ðxk−ξ2k−1=2Þjxk − ξ2k−1=2; x−ki: ðE7Þ
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As a consequence, using these two last relations, Eq. (E4) now takes the following form:

χðξÞ ¼ eiξ1ξ2=2þiξ3ξ4=2
X
n;m

k2pnm

Z
dxkdx−kdykdy−keiξ1k

1=2xke−iξ1ξ2eiξ3k
1=2y−ke−iξ3ξ4hnk; m−kjxk − ξ2k−1=2; x−ki

× hxk; x−kjyk; y−k − ξ4k−1=2ihyk; y−kjnk; m−ki ðE8Þ

¼ e−iξ1ξ2=2þiξ3ξ4=2
X
n;m

kpnm

Z
dxkdx−keiξ1k

1=2xkeiξ3k
1=2x−khnkjxk − ξ2k−1=2ihm−kjx−kihxkjnkihx−k þ ξ4k−1=2jm−ki:

ðE9Þ

Then, in order to proceed, one has to calculate scalar products of the form hxkjnki. But this is nothing but the wave function
of a state containing n particles and, as is well known, it can be expressed in terms of Hermite polynomials Hn. As a
consequence, one obtains

χðξÞ ¼ e−iξ1ξ2=2þiξ3ξ4=2
X
n;m

kpnm

Z
dxkdx−keiξ1k

1=2xkeiξ3k
1=2x−k

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
π

p
2nn!

p e−ðk1=2xk−ξ2Þ2=2Hnðk1=2xk − ξ2Þ

×
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
π

p
2mm!

p e−kðx−kÞ2=2Hmðk1=2x−kÞ
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
π

p
2nn!

p e−kðxkÞ2=2Hnðk1=2xkÞ

×
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
π

p
2mm!

p e−ðk1=2x−kþξ4Þ2=2Hmðk1=2x−k þ ξ4Þ ðE10Þ

¼ 1

π
e−iξ1ξ2=2þiξ3ξ4=2e−ξ

2
1
=4þiξ1ξ2=2−ξ22=2e−ξ

2
3
=4−iξ3ξ4=2−ξ24=4

X
n;m

pnm

2nþmn!m!

Z
due−u

2

Hn

�
u −

ξ2
2
þ iξ1

2

�
Hn

�
uþ ξ2

2
þ iξ1

2

�
×
Z

dve−v
2

Hm

�
v −

ξ4
2
þ iξ3

2

�
Hm

�
vþ ξ4

2
þ iξ3

2

�
: ðE11Þ

Thanks to Eq. (7.377) of Ref. [106], the two integrals involving an exponential function and the product of two Hermite
polynomials can be performed exactly. As a result, one obtains

χðξÞ ¼ e−ðξ21þξ2
2
þξ2

3
þξ2

4
Þ=4X

n;m

pnmLn

�
ξ21
2
þ ξ22

2

�
Lm

�
ξ23
2
þ ξ24

2

�
; ðE12Þ

where L0
n ≡ Ln is a Laguerre polynomial; see Eq. (8.970.2) of Ref. [106]. Of course, to go further, one needs to specify

the distribution pnm. But the last equation has the advantage of showing that, in general, the characteristic function of
the classical state has no reason to be Gaussian. If one makes the choice pnm ¼ ð1 − e−βkÞe−βknδðn −mÞ, see the discussion
around Eq. (80), then the characteristic function reduces to

χðξÞ ¼ e−ðξ21þξ2
2
þξ2

3
þξ2

4
Þ=4ð1 − e−βkÞ

X∞
n¼0

e−βknLn

�
ξ21
2
þ ξ22

2

�
Ln

�
ξ23
2
þ ξ24

2

�
: ðE13Þ

This series can be calculated explicitly by means of Eq. (8.976.1) of Ref. [106]. The result reads

χðξÞ ¼ e−tanh
−1ðβk

2
Þξ
2
1
þξ2

2
þξ2

3
þξ2

4
4 I0

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðξ21 þ ξ22Þðξ23 þ ξ24Þ

p
2 sinhðβk=2Þ

�
; ðE14Þ

where I0 is a modified Bessel function of order zero [106]. The virtue of this expression is twofold. First, since the argument
of the Bessel function is always positive and I0 is also always positive, the characteristic function is positive everywhere.
Second, even with the simple choice of pnm made before, one can see that the characteristic function is not Gaussian (note
that in the sub-Hubble limit where βk → ∞, the argument of the Bessel function vanishes and the Bessel function becomes
1; hence the characteristic function is Gaussian in this limit).
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APPENDIX F: QUANTUM CORRELATORS AND WEYL TRANSFORMS

In this appendix we show howmean values of quantum operators can be calculated by means of theWigner function [93].
Using the definition of the Weyl transform given in Eq. (89) and that of the Wigner function, see Eq. (93), let us first
calculate the following integral

R
~AW. One hasZ

~AWdqkdπkdq−kdπ−k ¼
1

ð2πÞ2
Z 	

qk þ
x
2
; q−k þ

y
2





Â



qk − x
2
; q−k −

y
2

�
e−iπkðxþx0Þ−iπ−kðyþy0Þ

×

	
qk þ

x0

2
; q−k þ

y0

2





ρ̂



qk − x0

2
; q−k −

y0

2

�
dqkdπkdq−kdπ−kdxdydx0dy0: ðF1Þ

The integration over πk and π−k gives rise to Dirac delta functions, which can then be used to perform the integrals over x0
and y0. As a consequence, one obtainsZ

~AWdqkdπkdq−kdπ−k ¼
Z 	

qk þ
x
2
; q−k þ

y
2





Â



qk − x
2
; q−k −

y
2

�	
qk −

x
2
; q−k −

y
2





ρ̂



qk þ x
2
; q−k þ

y
2

�
dqkdq−kdxdy:

ðF2Þ

The next step consists in performing a change of variables. Instead of working in terms of qk, x and q−k, y, we define the
quantities u�k and w�k such that uk ¼ qk − x=2, wk ¼ qk þ x=2, u−k ¼ q−k − y=2 and w−k ¼ q−k þ y=2. The determinant
of the Jacobian of these transformations being one, one has dqkdx ¼ dukdvk and dq−kdy ¼ du−kdv−k; henceZ

~AWdqkdπkdq−kdπ−k ¼
Z

hwk; w−kjÂjuk; u−kihuk; u−kjρ̂jwk; w−kidukdwkdu−kdw−k

¼
Z

hwk; w−kjÂ ρ̂ jwk; w−kidwkdw−k ðF3Þ

¼ TrðÂ ρ̂Þ ¼ hÂi: ðF4Þ

As a consequence, the expectation value of Â can be obtained by something which is the average of the physical quantity
represented by ~A over phase space with probability density W characterizing the state. Therefore, as explained in the main
text, the quantum problem can be replaced by a stochastic approach in ~A. It is thus interesting to study under which
conditions A and ~A can be identified. A general expression for any analytic operator Â is provided by its Taylor series in
terms of the operators q̂k, π̂k, q̂−k and π̂−k. Making use of the canonical commutation relations, this can always be written as

Â ¼
X
n1;n2

an1n2 q̂
n1
k π̂n2k þ

X
n1;n2

bn1n2 q̂
n1
−kπ̂

n2
−k þ

X
n1;n2

cn1n2 q̂
n1
k q̂n2−k þ

X
n1;n2

dn1n2 π̂
n1
k π̂n2−k þ

X
n1;n2

en1n2 q̂
n1
k π̂n2−k þ

X
n1;n2

fn1n2 π̂
n1
k q̂n2−k; ðF5Þ

where an1n2 ;…; fn1n2 are numerical coefficients. Let us calculate the Weyl transform of each of these terms. From the
definition (89), one can write that

gqn1k πn2k ¼
Z

dxdye−iπkx−iπ−ky
	
qk þ

x
2
; q−k þ

y
2





q̂n1k π̂n2k





qk − x
2
; q−k −

y
2

�
ðF6Þ

¼
Z

dxdye−iπkx−iπ−ky
�
qk þ

x
2

�
n1
	
qk þ

x
2
; q−k þ

y
2





π̂n2k 



qk − x
2
; q−k −

y
2

�
ðF7Þ

¼
Z

dxdydπ0kdπ
00
kdπ

0
−kdπ

00
−ke

−iπkx−iπ−ky
�
qk þ

x
2

�
n1
	
qk þ

x
2
; q−k þ

y
2





π0k; π0−k�
× hπ0k; π0−kjπ̂n2k jπ00k; π00−ki

	
π00k; π

00
−k





qk − x
2
; q−k −

y
2

�
; ðF8Þ
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where we have inserted the identity operator twice. Making use of the relation hqkjπki ¼ expðiqkπkÞ=
ffiffiffiffiffiffi
2π

p
, the previous

expression can be simplified and one obtains

gqn1k πn2k ¼ 1

ð2πÞ2
Z

dxdydπ0kdπ
00
kdπ

0
−kdπ

00
−ke

−iπkx−iπ−ky
�
qk þ

x
2

�
n1hπ0k; π0−kjπ̂n2k jπ00k; π00−ki

× exp

�
i

�
qk þ

x
2

�
π0k þ i

�
q−k þ

y
2

�
π0−k − i

�
qk −

x
2

�
π00k − i

�
q−k −

y
2

�
π00−k

�
ðF9Þ

¼ 1

ð2πÞ2
Z

dxdydπ0kdπ
00
kdπ

0
−kdπ

00
−ke

−iπkx−iπ−ky
�
qk þ

x
2

�
n1ðπ00kÞn2δðπ0k − π00kÞ

× δðπ0−k − π00−kÞ exp
�
i
�
qk þ

x
2

�
π0k þ i

�
q−k þ

y
2

�
π0−k − i

�
qk −

x
2

�
π00k − i

�
q−k −

y
2

�
π00−k

�
ðF10Þ

¼ 1

ð2πÞ2
Z

dxdydπ0kdπ
0
−ke

ixðπ0k−πkÞþiyðπ0−k−π−kÞ
�
qk þ

x
2

�
n1ðπ0kÞn2 ðF11Þ

¼ 1

2π

Z
dxdπ0ke

ixðπ0k−πkÞ
�
qk þ

x
2

�
n1ðπ0kÞn2 ðF12Þ

¼ 1

2π

Z
dxe−ixπk

�
qk þ

x
2

�
n1
Z

dπ0ke
ixπ0kðπ0kÞn2 : ðF13Þ

This expression can be further simplified since the second integral is the Fourier transform of a monomial function. This
leads to

gqn1k πn2k ¼ ð−iÞn2
Z

dxe−ixπk
�
qk þ

x
2

�
n1
δðn2ÞðxÞ; ðF14Þ

where δðn2Þ stands for the n2th derivative of the delta function. After integrating by parts n2 times, one obtains the following
formula:

gqn1k πn2k ¼ in2
Z

dx
∂n2

∂xn2
�
e−ixπk

�
qk þ

x
2

�
n1
�
δðxÞ: ðF15Þ

The derivative can be calculated by making use of the binomial formula and this leads to

∂n2

∂xn2
�
e−ixπk

�
qk þ

x
2

�
n1
�
¼

Xn2
j¼0

�
n2
j

� ∂j

∂xj ðe
−ixπkÞ ∂n2−j

∂xn2−j
��

qk þ
x
2

�
n1
�

ðF16Þ

¼
Xn2
j¼0

�
n2
j

�
ð−iπkÞje−ixπk

n1!
2n2−jðn1 − n2 þ jÞ!

�
qk þ

x
2

�
n1−n2þj

θðjþ n1 − n2Þ; ðF17Þ

where θðjþ n1 − n2Þ ¼ 1 if j ≥ n2 − n1 and 0 otherwise.
Inserting this expression into Eq. (F15), one obtains, after
integrating out the δðxÞ function,

gqn1k πn2k ¼ qn1−n2k

ð−2iÞn2
Xn2
j¼0

�
n2
j

�
n1!ð−2iπkqkÞj
ðn1 − n2 þ jÞ! θðjþ n1 − n2Þ:

ðF18Þ

Obviously, one finds a similar expression for gqn1−kπn2−k. For
n1 ¼ 0, this immediately leads to ~πnk ¼ πnk while for n2 ¼ 0,
one obtains ~qnk ¼ qnk . This means that any analytic function
of q̂k only or of π̂k only has a trivial Weyl transform,
namely ~fðqkÞ ¼ fðqkÞ and ~fðπkÞ ¼ fðπkÞ. However, this
is not true for mixed terms containing both q̂k and π̂k. For
example, when n1 ¼ n2 ¼ 1, one finds gqkπk ¼ qkπk þ i=2.

JÉRÔME MARTIN and VINCENT VENNIN PHYSICAL REVIEW D 93, 023505 (2016)

023505-26



This is actually due to the fact that q̂k and π̂k do not

commute. When n1 ¼ n2 ¼ 2, one finds gq2kπ2k ¼ q2kπ
2
k þ

2iqkπk − 1=2 and gπ2kq2k ¼ π2kq
2
k − 2iπkqk − 1=2, and so

forth. For all other terms in Eq. (F5), the operators commute
and the Weyl transform is trivial. For example, let us work

out gqn1k πn2−k (the other terms proceed in exactly the same
way). One has

gqn1k πn2−k ¼
Z

dxdye−iπkx−iπ−ky

×

	
qk þ

x
2
; q−k þ

y
2





q̂n1k π̂n2−k





qk − x
2
; q−k −

y
2

�
ðF19Þ

¼
Z

dxdye−iπkx−iπ−ky
�
qk þ

x
2

�
n1

×

	
qk þ

x
2
; q−k þ

y
2





π̂n2−k



qk − x
2
; q−k −

y
2

�
:

ðF20Þ

At this stage, one can proceed exactly as before (namely,
again introduce twice the identity operator and integrate out
the delta Dirac functions) and obtain an equation resem-
bling Eq. (F11). It reads

gqn1k πn2−k ¼
1

ð2πÞ2
Z

dxdydπ0kdπ
0
−ke

ixðπ0k−πkÞþiyðπ0−k−π−kÞ

×

�
qk þ

x
2

�
n1ðπ0−kÞn2 ðF21Þ

¼ 1

2π

Z
dxdπ0ke

ixðπ0k−πkÞ
�
qk þ

x
2

�
n1ðπ−kÞn2 ðF22Þ

¼ qn1k πn2−k; ðF23Þ

that is to say the announced result. For similar reasons,

one also has gqn1k qn2−k ¼ qn1k qn2−k,
gπn1k πn2−k ¼ πn1k πn2−k andgπn1k qn2−k ¼ πn1k qn2−k. In fact, combining these results, the Weyl

transform of terms for which n1 þ n2 ¼ 1 can be written in
a compact manner, namely

~RjRk ¼ RjRk þ
1

2
½R̂j; R̂k�; ðF24Þ

where the commutator ½R̂j; R̂k� is given by the matrix J; see
Eqs. (56) and (90).

APPENDIX G: WIGNER FUNCTION
OF A GAUSSIAN STATE

In this section, we want to write the Wigner function in
terms of the characteristic function and the correlation
matrix. In order to do so, let us first derive an explicit
expression of the characteristic function in terms of the
density matrix elements. As already noticed in the text, a
first remark is that, if two operators Â and B̂ commute with
their commutator (½Â; ½Â; B̂�� ¼ ½B̂; ½Â; B̂�� ¼ 0), the Baker-
Campbell-Haussdorf formula reads eÂþB̂ ¼ e−½Â;B̂�=2eÂeB̂.
Recalling once more that R̂≡ ðk1=2q̂k; k−1=2π̂k; k1=2q̂−k;
k−1=2π̂−kÞT ≡ ðR̂1; R̂2; R̂3; R̂4ÞT, we see that each R̂i sat-
isfies this property. As a consequence, the Weyl operator
defined in Eq. (54) can be written as

ŴðξÞ≡ expðiξ1k1=2q̂k þ iξ2k−1=2π̂k þ iξ3k1=2q̂−k

þ iξ4k−1=2q̂−kÞ ðG1Þ

¼ eiðξ1ξ2þξ3ξ4Þ=2eiξ1k1=2q̂keiξ2k−1=2π̂keiξ3k1=2q̂−keiξ4k−1=2q̂−k :

ðG2Þ

Using the above expression, one can express the character-
istic function χðξÞ [defined in Eq. (53)] as

χðξÞ ¼ Tr½ρ̂ ŴðξÞ� ðG3Þ

¼
Z

dqkdq−khqk; q−kjρ̂ ŴðξÞjqk; q−ki ðG4Þ

¼ eiðξ1ξ2þξ3ξ4Þ=2
Z

dqkdq−khqk; q−kjρ̂eiξ1k1=2q̂keiξ2k−1=2π̂keiξ3k1=2q̂−keiξ4k−1=2q̂−k jqk; q−ki ðG5Þ

¼ eiðξ1ξ2þξ3ξ4Þ=2
Z

dqkdq−kdq0kdq0−khqk; q−kjρ̂jq0k; q0−kihq0k; q0−kjeiξ1k
1=2q̂keiξ2k

−1=2π̂keiξ3k
1=2q̂−keiξ4k

−1=2q̂−k jqk; q−ki ðG6Þ

¼ eiðξ1ξ2þξ3ξ4Þ=2
Z

dqkdq−kdq0kdq
0
−khqk; q−kjρ̂jq0k; q0−kihq0kjeiξ1k

1=2q̂keiξ2k
−1=2π̂k jqkihq0−kjeiξ3k

1=2q̂−keiξ4k
−1=2q̂−k jq−ki; ðG7Þ
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where we have utilized the closure relation in order to simplify the above expression. We see that the characteristic function
has indeed been written in terms of the density matrix elements. However, we still need to calculate the two other terms
which remain in the integral (G7). Recalling that hqkjπki ¼ expðiqkπkÞ=

ffiffiffiffiffiffi
2π

p
, one arrives at

hq0kjeiξ1k
1=2q̂keiξ2k

−1=2π̂k jqki ¼
Z

dq̄kdπ̄khq0kjeiξ1k
1=2q̂k jq̄kihq̄kjeiξ2k−1=2π̂k jπ̄kihπ̄kjqki ðG8Þ

¼ 1

2π
eiξ1k

1=2q0k

Z
dq̄kdπ̄kδðq0k − q̄kÞeiξ2k−1=2π̄keiq̄kπ̄ke−iπ̄kqk ðG9Þ

¼ 1

2π
eiξ1k

1=2q0k

Z
dπ̄ke

iπ̄kðk−1=2ξ2þq0k−qkÞ ðG10Þ

¼ eiξ1k
1=2q0kδðk−1=2ξ2 þ q0k − qkÞ: ðG11Þ

Of course, one has a similar expression for the last term in Eq. (G7). As a consequence, the expression of the characteristic
function takes the following form:

χðξÞ ¼ eiðξ1ξ2þξ3ξ4Þ=2
Z

dqkdq−kdq0kdq
0
−khqk; q−kjρ̂jq0k; q0−kieiξ1k

1=2q0kδðk−1=2ξ2 þ q0k − qkÞeiξ3k1=2q0−kδðk−1=2ξ4 þ q0−k − q−kÞ

ðG12Þ

¼ e−iðξ1ξ2þξ3ξ4Þ=2
Z

dqkdq−khqk; q−kjρ̂jqk − k−1=2ξ2; q−k − k−1=2ξ4ieiðξ1k1=2qkþξ3k1=2q−kÞ: ðG13Þ

Let us now introduce the quantity AðξÞ defined by

AðξÞ≡ 1

ð2πÞ4
Z

d4ηe−iξ
TηχðηÞdη; ðG14Þ

and express this phase-space function in terms of the density matrix elements. Using the expression of the characteristic
function derived above, one has

AðξÞ ¼ 1

ð2πÞ4
Z

d4ηdqkdq−ke−iξ
Tηe−iðη1η2þη3η4Þ=2eiðη1k1=2qkþη3k1=2q−kÞhqk; q−kjρ̂jqk − k−1=2η2; q−k − k−1=2η4i: ðG15Þ

The integral over η1 (respectively η3) can be easily performed and gives rise to a δðk1=2qk − η2=2 − ξ1Þ [respectively
δðk1=2q−k − η4=2 − ξ3Þ] function. Then this allows us to integrate over η2 and η4 and it follows that

AðξÞ ¼ 4

ð2πÞ2
Z

dqkdq−k exp ½2iðξ1ξ2 þ ξ3ξ4 − k1=2qkξ2 − k1=2q−kξ4Þ�hqk; q−kjρ̂j2k−1=2ξ1 − qk; 2k−1=2ξ3 − q−ki: ðG16Þ

Let us now perform the change of integration variable qk ¼ k−1=2ξ1 þ x=2 and q−k ¼ k−1=2ξ3 þ y=2. Then one obtains that
AðξÞ is given by

AðξÞ ¼ 1

ð2πÞ2
Z

dxdy exp ½−ik1=2ðξ2xþ ξ4yÞ�
	
k−1=2ξ1 þ

x
2
; k−1=2ξ3 þ

y
2





ρ̂



k−1=2ξ1 − x
2
; k−1=2ξ3 −

y
2

�
: ðG17Þ

Finally, inserting ρ̂ ¼ jΨihΨj in the above expression yields

AðξÞ ¼ 1

ð2πÞ2
Z

dxdy exp ½−ik1=2ðξ2xþ ξ4yÞ�Ψ
�
k−1=2ξ1 þ

x
2
; k−1=2ξ3 þ

y
2

�
Ψ�

�
k−1=2ξ1 −

x
2
; k−1=2ξ3 −

y
2

�
; ðG18Þ
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which exactly coincides with Eq. (93). Therefore, we have
shown that

WðξÞ ¼ 1

ð2πÞ4
Z

d4ηe−iξ
TηχðηÞ; ðG19Þ

which is the standard expression of the Wigner function in
terms of the characteristic one.
From here, an expression of W in terms of γ can be

obtained. Indeed, as written in Eq. (C26), for a Gaussian
state, one has χðηÞ ¼ exp ð−ηTγη=4Þ, where γ is, by
definition, the covariance matrix. Inserting this last expres-
sion in Eq. (G19), one obtains

WðξÞ ¼ 1

ð2πÞ4
Z

d4η exp

�
−iξTη −

1

4
ηTγη

�
dη ðG20Þ

¼ 1

ð2πÞ4expð−ξ
Tγ−1ξÞ

×
Z

d4ηexp

�
−
1

4
ðηþ2iγ−1ξÞTγðηþ2iγ−1ξÞ

�
;

ðG21Þ

where we have used the fact that the covariance matrix is
symmetric, γT ¼ γ, and the fact that ξ and η are real vectors;
hence ηTξ ¼ ξTη. After performing the change of integra-
tion variable η → ηþ 2iγ−1ξ, the Gaussian integration
finally leads to

WðξÞ ¼ 1

π2
ffiffiffiffiffiffiffiffiffi
det γ

p e−ξ
Tγ−1ξ; ðG22Þ

which is exactly the formula used in the text, in particular,
in Sec. VI.

APPENDIX H: EVOLUTION EQUATION
FOR THE WIGNER FUNCTION

In this appendix, we derive the equation controlling
the time evolution of the Wigner function. The time
derivative of W can be obtained from Eq. (93). Explicitly,
one has

d
dη

W ¼ 1

ð2πÞ2
Z

dxdy

�
d
dη

Ψ�
�
qk −

x
2
; q−k −

y
2

��
e−iπkx−iπ−kyΨ

�
qk þ

x
2
; q−k þ

y
2

�
þ 1

ð2πÞ2
Z

dxdyΨ�
�
qk −

x
2
; q−k −

y
2

�
e−iπkx−iπ−ky

d
dη

Ψ

�
qk þ

x
2
; q−k þ

y
2

�
ðH1Þ

¼ i
ð2πÞ2

Z
dxdy

	
qk þ

x
2
; q−k þ

y
2





ĤjΨ
��

e−iπkx−iπ−kyΨ

�
qk þ

x
2
; q−k þ

y
2

�
−

i
ð2πÞ2

Z
dxdyΨ�

�
qk −

x
2
; q−k −

y
2

�
e−iπkx−iπ−ky

	
qk þ

x
2
; q−k þ

y
2





ĤjΨ
�
; ðH2Þ

where in the second equality we have used the Schrödinger
equation ∂Ψ=∂η ¼ −iĤΨ and the fact that the Hamiltonian
is Hermitian. In order to proceed, one needs to express the
Hamiltonian density in terms of the Gaussian operators q̂k,
π̂k, q̂−k and π̂−k. Inserting Eqs. (51) and (52) into Eq. (11),
one obtains the following expression:

Ĥk ¼
k2

2
ðq̂2k þ q̂2−kÞ þ

π̂2k þ π̂2−k
2

þ z0

z
ðq̂kπ̂−k þ q̂−kπ̂kÞ:

ðH3Þ
The three terms in the above Hamiltonian give rise to
three terms for the time evolution of W which, in the
following, we denote by dWq2=dη, dWπ2=dη and dWqπ=dη.
Let us work them out one by one. The first term can be
expressed as

dWq2

dη
¼ −i

�
k
2π

�
2
Z

dxdyΨ�
�
qk −

x
2
; q−k −

y
2

�
× e−iπkx−iπ−kyðxqk þ yq−kÞΨ

�
qk þ

x
2
; q−k þ

y
2

�
:

ðH4Þ

Noticing that differentiating Eq. (93) with respect to πk and
π−k precisely produces factors x and y, it is easy to check
that the above expression can also be written as

dWq2

dη
¼ k2

�
qk

d
dπk

þ q−k
d

dπ−k

�
W: ðH5Þ

Then, recalling that the momentum is represented by
π̂k ¼ −i∂=∂qk, the second term reads
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dWπ2

dη
¼ i=2

ð2πÞ2
Z

dxdy

� ∂2

∂q2k
þ ∂2

∂q2−k
�
Ψ�

�
qk −

x
2
; q−k −

y
2

�
e−iπkx−iπ−kyΨ

�
qk þ

x
2
; q−k þ

y
2

�
−

i=2
ð2πÞ2

Z
dxdyΨ�

�
qk −

x
2
; q−k −

y
2

�
e−iπkx−iπ−ky

� ∂2

∂q2k
þ ∂2

∂q2−k
�
Ψ

�
qk þ

x
2
; q−k þ

y
2

�
: ðH6Þ

In this expression, derivatives with respect to qk and q−k can be written as derivatives with respect to x and y by noticing
that, for example,

∂2

∂q2kΨ
�
�
qk −

x
2
; q−k −

y
2

�
¼ −2

∂2

∂qk∂xΨ
�
�
qk −

x
2
; q−k −

y
2

�
; ðH7Þ

and similar expressions for the three other double derivatives. Then integrating by part the obtained expression yields the
formula

dWπ2

dη
¼ −

�
πk

∂
∂qk þ π−k

∂
∂q−k

�
W: ðH8Þ

Finally, the third term remains to be calculated. It is given by

dWqπ

dη
¼ −

z0=z
ð2πÞ2

Z
dxdye−iπkx−iπ−kyΨ

��
qk −

x
2

� ∂
∂q−k þ

�
q−k −

y
2

� ∂
∂qk

�
Ψ�

−
z0=z
ð2πÞ2

Z
dxdye−iπkx−iπ−kyΨ�

��
qk þ

x
2

� ∂
∂q−k þ

�
q−k þ

y
2

� ∂
∂qk

�
Ψ; ðH9Þ

where, for simplicity, we have omitted the wave function arguments. Using the same manipulations as for the other terms,
one obtains the following expression:

dWqπ

dη
¼ z0

z

�
π−k

∂
∂πk þ πk

∂
∂π−k − qk

∂
∂q−k − q−k

∂
∂qk

�
W: ðH10Þ

Combining Eqs. (H5), (H8) and (H10), one finally obtains

dW
dη

¼
�
k2
�
qk

∂
∂πk þ q−k

∂
∂π−k

�
− πk

∂
∂qk − π−k

∂
∂q−k þ

z0

z

�
π−k

∂
∂πk þ πk

∂
∂π−k − qk

∂
∂q−k − q−k

∂
∂qk

��
W: ðH11Þ

It turns out that this last equation is nothing but the classical Liouville equation for the distribution W. Indeed, if one
introduces the Poisson bracket fgPB defined by

ff; ggPB ¼ ∂f
∂qk

∂g
∂πk −

∂f
∂πk

∂g
∂qk þ ðk↔ − kÞ; ðH12Þ

then it is straightforward to write Eq. (H11) as

dW
dη

¼ fHk;WgPB; ðH13Þ

where we have used Eq. (H3). Let us mention that although we have established this result for the Hamiltonian of
cosmological perturbations, it can in fact be generalized to any quadratic Hamiltonian.
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