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There is an apparent power deficit relative to the ΛCDM prediction of the cosmic microwave
background spectrum at large scales, which, though not yet statistically significant, persists fromWMAP to
Planck data. Proposals that invoke some form of initial condition for the inflation have been made to
address this apparent power suppression, albeit with conflicting conclusions. By studying the curvature
perturbations of a scalar field in the Friedmann-Lemaître-Robertson-Walker universe parameterized by the
equation of state parameter w, we find that the large-scale spectrum at the end of inflation reflects the
superhorizon spectrum of the initial state. The large-scale spectrum is suppressed if the universe begins
with the adiabatic vacuum in a superinflation (w < −1) or positive-pressure (w > 0) era. In the latter case,
there is however no causal mechanism to establish the initial adiabatic vacuum. On the other hand, as long
as the universe begins with the adiabatic vacuum in an era with −1 < w < 0, even if there exists an
intermediate positive-pressure era, the large-scale spectrum would be enhanced rather than suppressed. We
further calculate the spectrum of a two-stage inflation model with a two-field potential and show that the
result agrees with that obtained from the ad hoc single-field analysis.
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I. INTRODUCTION

The ΛCDM model of cosmology with an early infla-
tionary era is very successful in explaining the cosmic
microwave background (CMB) power spectrum. However,
it has been observed in the COBE data that the quadrupole
power is lower than the model prediction [1,2]. This
observation is further confirmed by WMAP, reporting
the quadrupole power lower than the theoretical expect-
ation by more than 1σ but less than 2σ [3]. Although this
stand-alone low quadrupole mode may be explained by the
cosmic variance, the Planck observation analyzed the low-l
(l < 30) and high-l (l ≥ 30) spectra separately and
showed that the best-fit amplitude for the low-l spectrum
is 10% lower than that for the high-l one at 2.5σ − 3σ
significance [4,5].1

There have been attempts to explain the low-l power
suppression of the CMB by introducing some preinflation
era that breaks the slow-roll condition at about 60 e-folds
before the end of inflation [6–15]. The basic argument
about how an era that deviates from the slow-roll dynamics

could suppress the power is that the amplitude of the
curvature perturbation,R ∼Hδϕ= _ϕ, would decrease as j _ϕj
increases. This scenario is first realized in the single-field
chaotic inflation with potential V ¼ m2ϕ2=2, where m is
the mass of the inflaton. If the inflaton ϕ starts with large
speed _ϕ2 ≫ m2ϕ2, the kinetic energy dominates the prein-
flation universe, and the power at the horizon scale is
suppressed [6]. Other scenarios of violating the slow-roll
evolution include the preinflation era filled with some
radiation [7], the primordial black hole remnants [8], or the
frustrated network of topological defects [9]. There are also
preinflation models in which the universe is dominated by
the spatial curvature as the emergent property from a
number of moduli fields in the models of solid inflation
[10,16]. All of the models above report power suppression
at the large scales.
On the other hand, the existence of the preinflation

decelerating era in models that predict multistage inflation
does not always result in power suppression [11–14,17–20].
In the presence of two fields with mass hierarchy, there are
two inflationary eras connected by a decelerating era. With
the second inflationary era identified as the last 60 e-folds of
the inflation, it is shown that the power is enhanced, rather
than suppressed, at large scales that cross the horizon during
the first inflationary era or the decelerating era [17]. Similar
evolution also occurs in the early times of the hybrid
inflation [21], in which the heavy field is played by the
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1This low-l–high-l tension is present even when the particu-

larly low quadrupole mode is excluded from the analysis [4]. In
[5] it is further pointed out that the low-l power deficit is mainly
caused by the low multipoles between l ¼ 20 and 30.
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“waterfall field”who acquires the mass through the coupling
to the inflaton field. In this case, it is however inferred that
when the coupling term dominates at the early times, the
inflaton field rolls faster due to the coupling and eventually
leads to the power suppression [6]. Among other models of
multistage inflation which commonly have a decelerating era
before the last inflationary era, some predict power sup-
pression at large scales [11,12,14], while some predict
enhancement [13,17–20]. One therefore naturally wonders:
What initial condition of inflation generated by the prein-
flation era would actually suppress the CMB power spec-
trum at large scales?
In this work, we address the question through the

following steps. We first find the spectrum of the adiabatic
vacuum in the universe with a constant equation of state
driven by a scalar field. The conditions of having the blue-
tilted, red-tilted, or scale-invariant spectra at the super-
horizon scales are found. The spectra obtained are based on
the assumption that the mode solutions approach the
Minkowski limit at small scales. We point out that in
the decelerating universe the superhorizon modes would
enter the horizon and become subhorizon, which means
that these superhorizon modes are initially causally dis-
connected. Such an assumption in an initially decelerating
universe therefore relies on the final state of the mode
evolution to govern its initial state, which reverses the cause
and effect. Later it was shown that the large-scale power
suppression in models with a preinflation decelerating
era is actually a consequence of this unnatural yet widely
adopted assumption.2

In the next step, we demonstrate that for the universe
experiencing several eras with different equations of state,
the large-scale spectrum is determined by the earliest era in
which the universe begins. Starting with a single slow-roll
era with the scale-invariant superhorizon spectrum, we find
how the spectrum changes as one incrementally stacks a
kinetic era, and yet another slow-roll era, into the early
times.3 If the universe begins with the initial adiabatic
vacuum in the kinetic era, the spectrum is suppressed at
large scales, and we find that the suppression is a direct
consequence of the blue-tilted superhorizon spectrum in the
initial kinetic era. With another slow-roll era preceding the
kinetic era, the large-scale spectrum is enhanced because
the superhorizon spectrum in the initial slow-roll era is
scale invariant with the amplitude higher than that

generated in the second slow-roll era. In this case, the
intermediate kinetic era only serves to connect the two
scale-invariant spectra of the two slow-roll eras. One sees
that the power suppression stems from the initial blue-tilted
superhorizon spectrum, and once the initial spectrum is
different, the large-scale power may not be suppressed even
if there is a preinflation kinetic phase.
We also investigate the scenario that the universe starts

with a superinflation era before the slow-roll inflation. The
superinflation era can be induced in theories of quantum
gravity [15,27–29] or by a scalar field that violates the
dominant energy condition [30,31]. Models in the latter
case generally suffer from quantum instabilities and should
only be regarded as effective theories (for related discus-
sions, see, for example, [32,33]). The interest here lies in
the fact that, opposite to the case of a single preinflation
kinetic era, it is causal to assume the initial adiabatic
vacuum in the preinflation superinflation era. We found that
in this case the large-scale power is also suppressed due to
the blue-tilted superhorizon initial spectrum in the super-
inflation era. Power suppression due to an early super-
inflation era has also been inferred in the models of loop
quantum gravity [27] or bouncing cosmology [15], while in
this work a more systematic treatment to the evolution of
perturbations is given.
After understanding the character of the spectrum in the

multistage inflation using the ad hoc single-field analysis,
we calculate the spectrum of the curvature perturbations in
a two-field model with the given potential. We consider the
chaotic potential with a coupling term to the second scalar
field, which is similar to the effective potential in the early
stage of the hybrid inflation. By numerically solving the
equations of motion and using the CAMB code [34,35], we
show that the large-scale spectra of curvature perturbations
and CMB are indeed enhanced due to the initial infla-
tionary era.4

The paper is organized as following. The superhorizon
spectrum in the universe with a constant equation of state is
derived in Sec. II. We demonstrate the transformation of the
power spectrum in three different background evolutions in
Sec. III. The curvature perturbation and CMB spectra of
the two-field inflation are found in Sec. IV. We conclude
in Sec. V.

II. SCALING RELATION

To demonstrate the differences between the accelerating
eras and the decelerating ones on the mechanism of

2Such a choice of the initial state for inflation, often referred to
as the Bunch-Davies vacuum, even if there exists a non-slow-roll
preinflation phase, has been commonly assumed in the literature
(see, for example, [6,7,9,10,13,15,18]). There also exist numer-
ous proposals of a non–Bunch-Davies vacuum as the basis of the
initial condition for a universe that does not begin with a slow-roll
phase (see, for example, [22–25]).

3The effect due to piecewise changes of the model parameter
was studied in [26], where the time-dependent effective inflaton
mass was considered.

4As regards the treatment of the two-stage inflation, our
approach is closest to that of [18,19], in which a more compli-
cated string-motivated two-field model is considered. In [17] the
two fields have no direct coupling, and certain approximations
are used to obtain the analytical solutions in various regimes of
the model parameters. In [11,12,14,20], the single-field models
are used. In [13] the system is also modeled by a single fluid.
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generating the curvature perturbation spectrum, we analyze
the single-field models with ad hoc actions in the given
background evolutions. In this section, we first find the
single-field model that gives the background evolution with
a given w and the corresponding general solutions to the
curvature perturbations. We then discuss the common
assumption on the small-scale behavior of the solution
and its causal character. At the end we find the power
spectrum in the background with given w and its power-law
relation with respect to the wave number k.

A. Perturbations with constant equation of motion

We consider a scalar field ϕ in an expanding Friedmann-
Lemaître-Robertson-Walker (FLRW) universe with the
action

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p
PðX;ϕÞ; ð2:1Þ

where the kinetic term

X ¼ −
1

2
∂μϕ∂μϕ: ð2:2Þ

The signature of the metric is ð−;þ;þ;þÞ, and we
adopt the Planck units throughout this paper. The
energy-momentum tensor can be put into the form of
the perfect fluid,

Tμν ¼ Pgμν þ ðρþ PÞuμuν; ð2:3Þ

by identifying P as the pressure and the energy density and
the velocity as

ρ ¼ 2X
∂P
∂X − P; ð2:4Þ

uμ ¼
∂μϕffiffiffiffiffiffi
2X

p : ð2:5Þ

The background evolution with a constant equation of
motion, −1 < w ≤ 1, can be modeled by the Lagrangian

P ¼ X − VðϕÞ; ð2:6Þ

where, in the homogeneous and isotropic background,
X ¼ _ϕ2=2 ≥ 0, and assuming the potential V ≥ 0.5

The dots denote the time derivatives. If one only requires

ρ ¼ X þ V to be positive and allows V to be negative, then
one can have w > 1 when −X < V < 0.6

In the conformal Newtonian gauge, the perturbed FLRW
metric is

ds2 ¼ −ð1þ 2ΦÞdt2 þ a2ðtÞð1þ 2ΨÞdx2; ð2:7Þ

where a is the scale factor and Φ and Ψ are the metric
perturbations. The equation of motion of the curvature
perturbation,R, is given by the Mukhanov-Sasaki equation
in the Fourier space [38,39],

R00 þ 2
A0

A
R0 þ k2R ¼ 0; ð2:8Þ

where

R ¼ Ψ −
H
_ϕ
δϕ; ð2:9Þ

A ¼ a
ffiffiffiffiffiffiffiffiffiffiffiffi
ρþ P

p
H

; ð2:10Þ

k is the wave number, H ¼ _a=a is the Hubble parameter,
and δϕ is the field perturbation. The primes denote the
derivative with respect to the conformal time η, defined by
dt ¼ adη. Introducing the new variable u ¼ −AR, we can
get rid of the first-derivative term, turning (2.8) into

u00 þ
�
k2 −

A00

A

�
u ¼ 0: ð2:11Þ

If the evolution of the universe is described by a constant
w > −1, there is a simple relation A00=A ¼ a00=a since

A ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ð1þ wÞ

8π

r
a: ð2:12Þ

The scale factor evolves as

aðηÞ ¼ aið1þ αξÞ1=α; ð2:13Þ

where ξ ¼ aiHiðη − ηiÞ, ai and Hi denote the initial values
at η ¼ ηi, and

5With (2.6), the evolution of constant w > −1 and given initial
values ϕi and _ϕi can be realized by the ad hoc potential

VðϕÞ ¼
_ϕ2
i ð1 − wÞ
2ð1þ wÞ exp ½

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
24πð1þ wÞ

p
ðϕ − ϕiÞ�:

6A negative potential with w > 1 may be invoked, for
example, in the cyclic universe scenario [36]. It requires special
care to treat the perturbations in such models [37]. If we assume
the universe is not cyclic and starts from a big bang followed by a
decelerating era (which includes the case w > 1), then, as we
point out in this work, the initial adiabatic vacuum is acausal. In
the cyclic universe scenario, the density perturbations in the
postbounce expanding phase are proposed to be seeded by the
perturbations generated in the prebounce contracting phase.
However, the treatment of perturbations in the contracting phase
and across the bounce is still under investigation. See, for
example, [37] for a review.
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α ¼ 1þ 3w
2

: ð2:14Þ

Equation (2.11) then reads

d2u
dξ2

þ
�
κ2 −

β

ð1þ αξÞ2
�
u ¼ 0; ð2:15Þ

with κ ¼ k=aiHi and β ¼ ð1 − 3wÞ=2. The general solution
is

uðξÞ ¼ C1M0;μ

�
2iκ

�
ξþ 1

α

��
þ C2W0;μ

�
2iκ

�
ξþ 1

α

��
;

ð2:16Þ

in which Mν;μðzÞ and Wν;μðzÞ are the Whittaker functions,
and

μ ¼ 3

2

���� 1 − w
1þ 3w

����: ð2:17Þ

Note that w ¼ −1=3 is a singular case.7 Corresponding α
and μ for some reference values of w are listed in Table I.
If we try to model the slow-roll evolution by assigning

w ¼ −1, we will end up with A ¼ 0 and cannot proceed in
the way we did in the previous paragraph. The way around
that is to use the attractor solution of the slow-roll era. By
writing the density and pressure in terms of field, we have

A ¼ −
ϕ0

H
; ð2:18Þ

assuming ϕ0 < 0 without loss of generality. In the attractor
regime, H as well as _ϕ ¼ ϕ0=a are approximately constant,
so we can write

A ¼ −
_ϕi

H
a; ð2:19Þ

which is proportional to a as it is in (2.12). Also it can be
verified by solving the Friedmann equation with constantH
that (2.13) reproduces the scale factor in the slow-roll case,
so the equation of motion (2.15) still holds. We will refer to
the slow-roll limit as w≃ −1 in this paper.
For the superinflationary universe with w < −1, we

model it by the Lagrangian

P ¼ −X − VðϕÞ; ð2:20Þ

with the sign of the kinetic term reversed. With the require-
ment ρ ¼ −X þ V > 0, one generally has V > X > 0, and
the scale factor still evolves as (2.13). By substituting the
original definition of A with

A ¼ a
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−ρ − P

p
H

; ð2:21Þ

it turns out that the equation of motion of the curvature
perturbation can still be written in the form of the
Mukhanov-Sasaki equation (2.8), and the rest of the analysis
follows.

B. Assumption and character of the
small-scale solution

The common assumption on the initial condition is that
the mode solution approaches the Minkowski limit in the
short-wavelength limit,

uðηÞ ¼ 1

ð2πÞ3=2 ffiffiffiffiffi
2k

p e−ikη ðfor kη → ∞Þ: ð2:22Þ

The Whittaker function that matches this form when
z ≫ 1 is

W0;μð2izÞ ¼ e−iz
�
1þO

�
1

z

��
: ð2:23Þ

Therefore, the requirement of matching the adiabatic
vacuum picks out the solution

uðξÞ ¼ eiκ=α

ð2πÞ3=2 ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2aiHiκ

p W0;μ

�
2iκ

�
ξþ 1

α

��
: ð2:24Þ

If at the early times of the inflationary history, the
universe is initially accelerating and evolves with a constant
equation of state, then by assuming the adiabatic vacuum at
the subhorizon limit, we obtain the initial condition (2.24).
This subhorizon initial condition, combined with the quasi–
de Sitter expansion, predicts the observed nearly scale-
invariant superhorizon spectrum in the ΛCDM universe.

TABLE I. Corresponding values of α and μ for some reference
equation-of-state parameter w. The parameter α ¼ ð1þ 3wÞ=2 is
related to the scale factor by (2.13), and μ ¼ j3ð1 − wÞ=2ð1þ
3wÞj describes the general solution of the perturbation through
(2.16). Note that for the accelerating universe with w < −1=3,
one has α < 0, while for the decelerating universe with
w > −1=3, one has α > 0.

w −∞ −1 − 2
3

− 1
3

0 1
3

2
3

1 þ∞
α −∞ −1 − 1

2
0 1

2
1 3

2
2 þ∞

μ 1
2

3
2

5
2

þ∞ 3
2

1
2

1
6

0 1
2

7The superhorizon spectrum is asymptotically divergent for
w ¼ −1=3 (or μ ¼ 0). To understand why, first note that in this
case the universe does not accelerate or decelerate (ä ¼ 0), so the
comoving scale of Hubble horizon is constant in time. If w is
slightly smaller than −1=3, the universe accelerates but slowly. It
takes a long time for the horizon to shrink a little. At the
meantime the amplitudes of the fluctuations inside the horizon
keep decaying; therefore, the amplitude of the power spectrum
changes much within a small range of k.
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One of the reasons that make this scenario attractive is that
the quantum fluctuations we learn well in the local
Minkowski spacetime, after being stretched to the cosmic
scale by inflation, also form the seed of the cosmic structure.
When applying the limit (2.22) to a decelerating uni-

verse, this subhorizon assumption becomes acausal. In the
decelerating universe, the Hubble horizon grows faster than
the perturbations do, just like in the late-time universe
dominated by matter or radiation. The subhorizon spectrum
is therefore formed after the superhorizon modes enter the
horizon. The estimation we make to the superhorizon
spectrum is then based on that, after the modes enter the
horizon, they must fall in the vacuum state at the small-
scale limit. Through the analysis in the next section, we will
see that the large-scale power suppression caused by the
preinflation kinetic era actually originates from the super-
horizon spectrum deduced from this picture.

C. Power spectrum

The power spectrum of R is defined through the
expectation value of R̂2ðx; tÞ:

hR̂2ðx; tÞi ¼
Z

dk
k
PðkÞ: ð2:25Þ

Expanding R in terms of the creation and annihilation
operators,

Rðx; tÞ ¼
Z

d3k½akRkðtÞeik·x þ a†kR
�
kðtÞe−ik·x�; ð2:26Þ

and using the commutator

½ak; a†k0 � ¼ δ3ðk − k0Þ; ð2:27Þ
one finds that

PðkÞ ¼ 4πk3jRkj2: ð2:28Þ

Recalling that R ¼ −u=A, we find that, for w ≠ −1 (so
α ≠ −1), the power spectrum given by the solution (2.24) is

P ¼ H2
i κ

2j1þ αξj−2=α
πj1þ αj

����W0;μ

�
2iκ

�
ξþ 1

α

������
2

: ð2:29Þ

For the slow-roll case, we approximate A by the slow-roll
limit (2.19), and the mode function in that limit is then
given by (2.24) with w≃ −1. In terms of the slow-roll
parameter

ϵ≡ 1

16π

�
1

V
∂V
∂ϕ

�
2

¼ 4π _ϕ2

H2
; ð2:30Þ

the power spectrum at the slow-roll limit is given by

P ¼ H2
i κ

2j1þ αξj−2=α
πϵ

����W0;3
2

�
2iκ

�
ξþ 1

α

������
2

: ð2:31Þ

Using the small-argument expansion of the Whittaker
function [40], the superhorizon limits of the power spec-
trum are found for different ranges of w. For w < −1=3 and
w > 1 except w ¼ −1, one has

Pκ≪1 ¼
H2

iΓ2ð2μÞ
πΓ2ðμþ 1

2
Þj1þ αj

���� α2
����
2μ−1

κ−2μþ3: ð2:32Þ

For w≃ −1, the slow-roll power spectrum (2.31) recovers
the familiar scale-invariant spectrum

Pκ≪1 ¼
H2

i

πϵ
: ð2:33Þ

For −1=3 < w < 1, the superhorizon power spectrum
decays with time, given by

Pκ≪1 ¼
H2

iΓ2ð2μÞ
πΓ2ðμþ 1

2
Þj1þ αj

���� α2
����
2μ−1

κ−2μþ3TðξÞ; ð2:34Þ

with the time dependence

TðξÞ ¼ j1þ αξj−6ð1−wÞ=ð1þ3wÞ: ð2:35Þ
For w ¼ 1, the spectrum is

Pκ≪1 ¼
H2

i

3π2
κ3TðξÞ; ð2:36Þ

with

TðξÞ ¼
���� ln

�
2iκ

�
ξþ 1

α

��
þ γ − 2 ln 2

����
2

; ð2:37Þ

where γ is the Euler-Mascheroni constant.
We can summarize the power-law relations of the

superhorizon power spectrum with respect to the normal-
ized wave number κ by the scaling relation8

P ∝ κ−2μþ3; ð2:38Þ
where the correspondence between the case of w≃ −1 and
the slow-roll limit is understood. For the convenience of
reading, we also state this result in terms of the more
familiar parameter w. For w < −1=3 and w > 1,

P ∝ κ6ð1þwÞ=ð1þ3wÞ: ð2:39Þ
For −1=3 < w < 1,

P ∝ κ12w=ð1þ3wÞ: ð2:40Þ

8This relation is also derived in [41] as the approximation to
the superhorizon spectrum at the end of the multistage infla-
tionary evolution. The authors focus on the recursive matrix
formalism of the multistage preinflationary era, with the
assumption that every preinflation era is an accelerating expan-
sion (or decelerating contraction in the bounce inflation scenario).
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The superhorizon behavior of the spectrum can be divided
into three types according to the scaling relation. Some
typical cases are plotted in Fig. 1. For μ ¼ 3=2, the spectrum
is scale invariant. This is the case for w≃ −1 (slow-roll) and
w ¼ 0. When μ < 3=2, the spectrum is blue tilted and the
power is lower than the scale-invariant spectrum at super-
horizon scales. This is attainable from the positive-pressure
(w > 0) or superinflation era (w < −1). In the third case, the
superhorizon spectrum is red tilted, which is achieved when
μ > 3=2, or equivalently an era with −1 < w < 0 except
w ¼ −1=3 (Fig. 2). Here we reiterate that the spectra
obtained are based on the adiabatic vacuum (2.22), where
the corresponding initial condition for the decelerating
universe (w > −1=3) is acausal.

III. EVOLUTION OF THE POWER SPECTRUM

The character of the large-scale spectrum at the end of
inflation reflects the nature of the initial state. If at the early

times before the onset of inflation, the universe is initially
described by some adiabatic vacuum in the background
with constant equation of state, the power spectrum is given
by (2.29) during that era. As the universe evolves with time,
the power spectrum continuously transforms accordingly.
The shape of the spectrum at the long-wavelength limit is
nevertheless not affected by the evolution and is preserved
in the late-time spectrum.
We demonstrate in this section that, as a consequence of

the spectrum evolution, the spectra can be radically differ-
ent at large scales for distinct initial vacua. Particularly, if
the universe transits from a kinetic era into the inflation era,
the large-scale spectrum is suppressed because of the initial
adiabatic vacuum assumed in the kinetic era. If the initial
vacuum is different—for example, changed by an earlier
accelerating era before the kinetic era, as discussed in this
section—the large-scale spectrum may even become
enhanced.
We compare the evolution of the power spectrum

in three cases, modeled phenomenologically by the
single-field dynamics. The first one is a single slow-
roll era (denoted as era C) with Hubble parameter HC.
The second one is the slow-roll era (era C) preceded by a
kinetic era (era B). In the third case we add one more
slow-roll era (era A), with Hubble parameter HA, before
the kinetic era (era B), which is again followed by the slow-
roll era (era C). When applicable, the quantities at the
transition from era A to B are denoted by subscript 1
(so, for example, the scale factor at the transition is equal to
a1), and those at the transition from B to C are by
subscript 2.
In view of the acausal character of the adiabatic vacuum

in the initially decelerating era (the second case with only
era B and C), we also analyze the case of having a
superinflation era (era S) before the slow-roll era (era
C), which also implies power suppression at large scales
but is free from the acausal property. Analogously, the
quantities at the transition from era S to C are denoted by
subscript 2.

A. Slow-roll

In the slow-roll era (era C), the general solution to the
mode function at the slow-roll limit w≃ −1 is

uC ¼ Cþ

�
1 − i

~aC
~kC

�
e−i~kC= ~aC

þ C−

�
1þ i

~aC
~kC

�
ei~kC= ~aC; ð3:1Þ

where ~kC ¼ k=a2H2 and ~aC¼ a=a2 ¼ ½1−a2H2ðη−η2Þ�−1.
Here a2 and H2 can be viewed as quantities at some
reference time η2. The notations are chosen for the
convenience of later comparison and should not cause
confusion. Note that in the slow-roll era, one can
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approximateHC ≈H2 as a constant. The normalized power
spectrum is given by

~PC ¼
~k3C
~a2C

���� ~Cþ

�
1 − i

~aC
~kC

�
e−i~kC= ~aC

þ ~C−

�
1þ i

~aC
~kC

�
ei~kC= ~aC

����
2

; ð3:2Þ

where ~C� ¼ ffiffiffiffiffiffiffiffiffiffiffi
a2H2

p
C�, and

~PC ¼ ϵP
16π2H2

C
; ð3:3Þ

ϵ ¼ 4π _ϕ2

H2

����
C

ð3:4Þ

are the normalized power spectrum and the slow-roll
parameter evaluated in era C, respectively.
In the adiabatic vacuum (2.22), only the second term in

(3.1) remains, and the mode function reduces to

uC ¼ 1

ð2πÞ3=2 ffiffiffiffiffi
2k

p
�
1þ i

~aC
~kC

�
ei~kC= ~aC: ð3:5Þ

The power spectrum is

~PC ¼ 1

16π3

�
1þ

~k2C
~a2C

�
; ð3:6Þ

which recovers the well-known form in the superhorizon
limit,

P ¼ 1

π

�
H2

C

ϵ

�
ð~kC ≪ 1 at ~aC ¼ 1Þ: ð3:7Þ

The comoving horizon size decreases with time, moving
toward the right to the small scales in Fig. 3. After the mode
exits the horizon, lying on the left-hand side of the horizon
scale, the power stays scale invariant.

B. Kinetic–slow-roll
In the second case, the energy density is dominated by

the kinetic energy at η < η2, with

H ≈ −
ffiffiffiffiffiffi
4π

3

r
ϕ0

a
; ð3:8Þ

assuming ϕ0 ≤ 0 without loss of generality. In the kinetic
era, w ¼ 1 and the mode function can be written in terms of
the Hankel functions,

uB ¼ Bþ ~aBH
ð1Þ
0

�
1

2
~kB ~a2B

�

þ B− ~aBH
ð2Þ
0

�
1

2
~kB ~a2B

�
; ð3:9Þ

where we denote ~kB ¼ k=a1H1 and ~aB ¼ a=a1 ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2a1H1ðη − η1Þ

p
. Similarly, for later convenience,

we choose η1 < η2 to be some reference time for era B.
The power spectrum in the kinetic era is given by

~PB ¼ ~k3B

���� ~BþH
ð1Þ
0

�
1

2
~kB ~a2B

�

þ ~B−H
ð2Þ
0

�
1

2
~kB ~a2B

�����
2

; ð3:10Þ

where ~B� ¼ ffiffiffiffiffiffiffiffiffiffiffi
a1H1

p
B� and

~PB ¼ 3P
16π2H2

1

: ð3:11Þ

At η > η2, the universe shifts into the slow-roll stage, and
the solution is given by (3.1). To match the boundary
between the eras, we fix the coefficients Cþ and C− by the
continuity of R and R0. One finds

~Cþ ¼ ei~kC

2~kC
f½~kCHð1Þ

0;C − ð1 − i~kCÞHð1Þ
1;C� ~Bþ

þ½~kCHð2Þ
0;C − ð1 − i~kCÞHð2Þ

1;C� ~B−g; ð3:12Þ

~C− ¼ e−i~kC

2~kC
f½~kCHð1Þ

0;C − ð1þ i~kCÞHð1Þ
1;C� ~Bþ

þ½~kCHð2Þ
0;C − ð1þ i~kCÞHð2Þ

1;C� ~B−g; ð3:13Þ
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FIG. 3. Time evolution of the power spectrum in era C in the
case of single-stage evolution (only era C). The solid curves are
the spectra of R from early time to late time (from light to dark).
The vertical dashed lines denote the comoving horizon size at the
corresponding instants (also from light to dark).
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where Hð1Þ
0;C is the shorthand of Hð1Þ

0 ð~kC=2Þ and so on. The
power spectrum in era C is given by (3.2) with ~Cþ and ~C−
substituted by (3.12) and (3.13), respectively.
If the universe is in the adiabatic vacuum in era B, only

the second term in (3.9) presents in the mode function,

uB ¼ 1

8π
~aBH

ð2Þ
0

�
1

2
~kB ~a2B

�
; ð3:14Þ

where the normalization is chosen to recover the small-
scale limit (2.22). In the kinetic era, the comoving horizon
size increases with time, moving toward the left to the large
scale (Fig. 4). The power drops after the mode enters the
horizon, as in the slow-roll era, but it also decreases at the
superhorizon scales before the horizon entry. This is
actually a salient feature of the adiabatic vacuum in the
decelerating era with −1=3 < w < 1.
The evolution in the following slow-roll era (era C)

demonstrates how the imprint of the initial vacuum is left at
the large scales of the power spectrum at the end of inflation
(modeled by era C). In the slow-roll era, the comoving
horizon size decreases, going toward the right, and the
modes exit the horizon (Fig. 5). The superhorizon modes
have two different types of history. The ones with longest
wavelengths have not entered the horizon yet at the end of
era B and stay outside the horizon in era C. These modes
preserve the blue-tilted spectrum and account for the power
suppression induced by the kinetic era (cf. [6]). The other
modes with shorter wavelengths enter the horizon in era B
and exit the horizon in era C. They are scale invariant
outside the horizon, as in the case of the single slow-roll
scenario. This is because the adiabatic vacua approach the
same short-wavelength limit (2.22) in either the kinetic era
or the slow-roll era. Therefore, although the spectrum has a
scale-invariant segment due to the slow-roll era, the largest

scales of the spectrum reveal the initial vacuum stemming
from the kinetic era.
The results we obtain crucially depend on the assumption

about the initial vacuum of the universe. The prediction of
power suppression is challenged by the fact that it originates
from the blue-tilted superhorizon initial spectrum in the
preinflation decelerating era, in which the superhorizon
modes have not been in causal contact throughout the history.
We demonstrate this point by an illustration showing the
evolution of the Fourier wavelengths and the Hubble horizon
(Fig. 6). In the decelerating universe, such as the initial
kinetic era, the Hubble horizon grows faster than the Fourier
wavelengths do. At the end of the initial decelerating era and
the beginning of the accelerating inflation, the modes that are
about to enter the horizon—those who are the origin of the
suppressed large-scale modes today—will soon be expanded
and kept outside the horizon by inflation. If the universe starts
with the decelerating era before inflation, these mode are then
insulated from any subhorizon dynamics throughout the
history. Therefore, the spectrum of the perturbations beyond
the horizon size at the end of the decelerating era is not the
consequence of causal physics, and the common approach of
deducing the initial conditions through requiring the spec-
trum recover the Minkowski limit at the subhorizon scale is
therefore a posteriori. This is of the same footing as the
“horizon problem” the big bang cosmology faced before the
picture of inflation was introduced.

C. Slow-roll–kinetic–slow-roll
With the additional slow-roll era (era A) prepending the

kinetic era (era B), we simply apply solution (3.1) at η < η1:

uA ¼ Aþ

�
1 − i

~aA
~kA

�
e−i~kA= ~aA þ A−

�
1þ i

~aA
~kA

�
ei~kA= ~aA ;

ð3:15Þ
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FIG. 4. Time evolution of the power spectrum in era B in the
case of two-stage evolution (era B and C). The solid curves are
the spectra of R from early time to late time (from light to dark).
The vertical dashed lines denote the comoving horizon size at the
corresponding instants (also from light to dark).
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FIG. 5. Time evolution of the power spectrum in era C in the
case of two-stage evolution (era B and C). The solid curves are
the spectra of R from early time to late time (from light to dark).
The vertical dashed lines denote the comoving horizon size at the
corresponding instants (also from light to dark).
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where ~kA ¼ k=a1H1 and ~aA¼ a=a1 ¼ ½1−a1H1ðη−η1Þ�−1.
The mode function of the adiabatic vacuum in era A is

uA ¼ 1

ð2πÞ3=2 ffiffiffiffiffi
2k

p
�
1þ i

~aA
~kA

�
ei~kA= ~aA : ð3:16Þ

Matching the boundary between eras A and B, one finds the
adiabatic vacuum in era A excites both modes of (3.9) in era
B with coefficients

~Bþ ¼ −
ei~kB

32

ffiffiffiffiffiffiffiffi
π ~kB

q ½~kBHð2Þ
0;B − ð1 − i~kBÞHð2Þ

1;B�; ð3:17Þ

~B− ¼ ei~kB

32

ffiffiffiffiffiffiffiffi
π ~kB

q ½~kBHð1Þ
0;B − ð1 − i~kBÞHð1Þ

1;B�: ð3:18Þ

These results can be fed into (3.12) and (3.13), identifying
H1 ¼ HA as the Hubble constant in era A, and obtain the
initial coefficients ~C� in era C. The power spectrum in era C
is again given by (3.2) with the ~C� found.
With the initial vacuum in the slow-roll era (era A), in

which the spectrum evolves in the same way as it does in
Fig. 3, the superhorizon spectrum in era B is scale invariant

(Fig. 7), different from the blue-tilted spectrum of the
adiabatic vacuum in era B (Fig. 4). Moreover, after
the modes enter the horizon, the power decreases and
the spectrum becomes red tilted (Fig. 7), opposite to the
blue-tilted spectrum in era B without era A (Fig. 4).
In era C, there are three different types of history

inherited by the superhorizon modes (Fig. 8). The modes
with the longest wavelengths do not enter the horizon in era
B and are kept outside of the horizon in era C. They
preserve the scale-invariant spectrum as the proof of the
existence of the initial vacuum in a slow-roll era (era A).
For the modes with shorter wavelengths that enter the
horizon in era B and exit the horizon in era C, the red-tilted
shape of the spectrum persists, denting more as the power
decreases inside the horizon. The superhorizon modes with
shortest wavelengths exit the horizon for the first time in
era C. These modes behave like the ones in era A, leaving
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FIG. 6. Illustration of the evolution of the physical wavelengths
of the modes and the Hubble radius with respect to the number of
e-folds, N. The three parallel straight lines denote the modes with
three different wavelengths, long to short from top to bottom. The
corresponding features they generate in the power spectrum,
Fig. 5, are labeled in the legends (top to bottom corresponding to
long to short wavelengths). The black piecewise-connected lines
denote the Hubble radius evolving from the kinetic era to the
slow-roll era and finally into the ΛCDM era. The shaded region
denotes the scales within which are causally connected.

8 6 4 2 0 2 4

10

5

0

5

log10kB

lo
g 1

0
P

B

FIG. 7. Time evolution of the power spectrum in era B in the
case of three-stage evolution (eras A, B, and C). The solid curves
are the spectra of R from early time to late time (from light to
dark). The vertical dashed lines denote the comoving horizon size
at the corresponding instants (also from light to dark).
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FIG. 8. Time evolution of the power spectrum in era C in the
case of three-stage evolution (eras A, B, and C). The solid curves
are the spectra of R from early time to late time (from light to
dark). The vertical dashed lines denote the comoving horizon size
at the corresponding instants (also from light to dark).
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the power scale invariant as they exit the horizon. Note the
magnitude of the scale-invariant spectrum generated in era
C is lower than that generated in era A, since according to
(3.7) the mode exiting the horizon from the adiabatic
vacuum acquires the power that is proportional to the
Hubble expansion rate, which is lower in era C.
With the accelerating era A before the kinetic era B, all the

modes are initially subhorizon at the early times and are
causal connected (Fig. 9). However, although this scenario is
free from the acausal initial conditions, the intermediate
kinetic era no longer leads to power suppression at the large
scales. The accelerating era preceding the kinetic era changes
the initial conditions, generating the scale-invariant spectrum
at the large scales. The power spectrum now has two scale-
invariant segments: one generated in era Awith larger power
at the larger scales, and the other generated in era C with
lower power at the smaller scales. The intermediate kinetic
era in this case generates the spectrum that connects the two
scale-invariant segments (Fig. 8).
We obtain three different large-scale behaviors from

three different initial vacua and intermediate evolutions.
Matching them with the inflation scenarios, we have the
following interpretations. In the first case, with a single
era C, the superhorizon spectrum is scale invariant. This
corresponds to the picture of inflation with large e-folding

numbers (much larger than 60 e-folds). In the second case,
the spectrum is suppressed at the large scales if the universe
is in the adiabatic vacuum of era B before the onset of era C.
This is the scenario of having a fast-roll era before the “just
enough” inflation (with about 50–60 e-folds). In the third
case, if before the fast-roll era (era B) the universe is in
another slow-roll era (era A) at the early times, the spectrum
is enhanced at the large scales. This corresponds to many
supersymmetry or string-motivated models that manifest
the fast-roll era as a transient between two slow-roll eras
[11,12,20].

D. Superinflation–slow-roll
Consider the case when η < η2 the universe is in the

superinflation era (era S), which is modeled by the
Lagrangian (2.20). With w < −1, the mode function is

uS ¼ SþM0;μ

�
2i~kS
α

~aαS

�
þ S−W0;μ

�
2i~kS
α

~aαS

�
; ð3:19Þ

where ~kS¼ k=a1H1, ~aS ¼ a=a1 ¼ ½1þ αa1H1ðη − η1Þ�1=α,
and α and μ are given by (2.14) and (2.17), respectively.
Here η1 < η2 also denotes the reference time for era S.
The normalized power spectrum is

~PS ¼
~k3S
~a2S

���� ~SþM0;μ

�
2i~kS
α

~aαS

�
þ ~S−W0;μ

�
2i~kS
α

~aαS

�����
2

; ð3:20Þ

where ~S� ¼ ffiffiffiffiffiffiffiffiffiffiffi
a1H1

p
S� and

~PS ¼
−ð1þ αÞPS

16π2H2
1

: ð3:21Þ

The universe goes into the slow-roll era (era C) at η2,
with the mode function given by (3.1). Using the same
matching conditions, the coefficients ~C� are found to be

~Cþ ¼
ffiffiffi
ϵ

p
e−

1
2
αNSei~kC

4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−ð1þ αÞp

~k2C
f2½2~k2C þ 2i~kC − 1� ~SþM0;μ

þ 2½2~k2C þ 2i~kC − 1� ~S−W0;μ

þ αð1 − i~kCÞð2μþ 1Þ ~SþM1;μ

−2αð1 − i~kCÞ ~S−W1;μg; ð3:22Þ

~C− ¼
ffiffiffi
ϵ

p
e−

1
2
αNSe−i~kC

4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−ð1þ αÞp

~k2C

× f−2~SþM0;μ − 2~S−W0;μ

þ αð2μþ 1Þð1þ i~kCÞ ~SþM1;μ

−2αð1þ i~kCÞ ~S−W1;μg; ð3:23Þ
with all Whittaker functions evaluated at 2i~kC=α. The slow-
roll parameter in era C is still given by ϵ, and NS is the
number of e-folds from η1 to η2.
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FIG. 9. Illustration of the evolution of the physical wavelengths
of the modes and the Hubble radius with respect to the number of
e-folds, N. The five parallel straight lines denote the modes with
different wavelengths, long to short from top to bottom. The
corresponding features they generate in the power spectrum,
Fig. 8, are labeled in the legends (top to bottom corresponding to
long to short wavelengths). The black piecewise-connected lines
denote the Hubble radius evolving from the first slow-roll era to
the kinetic era, then to the second slow-roll era, and finally into
the ΛCDM era. The shaded region denotes the scales within
which are causally connected.
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The adiabatic vacuum (2.24) in era S corresponds to the
coefficients

~Sþ ¼ 0; ð3:24Þ

~S− ¼ exp ði~kCα e−αNSÞ
ð2πÞ3=2

ffiffiffiffiffiffiffiffi
2~kC

q
e−αNS=2

; ð3:25Þ

where we have used the relation ~kS ¼ ~kCe−αNS . The power
spectrum in era S is plotted in Fig. 10, taking w ¼ −1.2 as
an example. Similar to the case of the kinetic era (era B),
the superhorizon spectrum is blue tilted, but in the super-
inflation era the comoving Hubble radius decreases, and the
superhorizon spectrum remains constant in time.
As the universe enters the slow-roll era (era C), the

superhorizon modes have two different types of history

(Fig. 11). The modes with longer wavelengths exit the
horizon in era S, retaining the blue-tilted superhorizon
spectrum and staying constant in era C. The modes with
shorter wavelengths exit the horizon in era C, acquiring the
scale-invariant spectrum at the horizon crossing.

IV. TWO-FIELD CASCADE INFLATION

After establishing the understanding of the spectrum
evolution in multistage inflation using the ad hoc single-
field analysis, in this section we calculate the spectrum
generated by a two-stage inflation model from the given
potential. The purposes are to show that the evolution
pattern we obtain in the single-field analysis is also
reflected in the two-field dynamics and to check whether
the large-scale power is suppressed due to the coupling
between the two fields.
We investigate a simple two-field cascade inflation,

which is driven by a heavy scalar field ψ and a light scalar
field ϕ with the action

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
−
1

2
∂αϕ∂αϕ −

1

2
∂αψ∂αψ − Vðϕ;ψÞ

�
:

ð4:1Þ

In large-field inflation, the field operates at the super-
Planckian scale when the coefficient of the kinetic term is
normalized to 1=2. If the field value is of the order of the
Planck mass, MP ¼ 1=

ffiffiffiffi
G

p
, the energy scale of inflation is

determined by the mass of the field. The typical evolution
can therefore be divided into four stages. The first stage is
the inflationary era driven by the heavy field, with fields
starting far away from the potential minimum and rolling
down alone the hillside of the potential. At the second stage
the heavy field falls into the potential minimum and
oscillates with damping amplitude. As the energy drops
to the scale of the light-field mass, the universe enters the
third stage in which the light field initiates the other
inflation era. Finally at the fourth stage the light field
decays, ending the inflation, and the standard ΛCDM
evolution begins.
Consider the cascade inflation realized by the potential

Vðϕ;ψÞ ¼ λ0

2
ϕ2ψ2 þ 1

2
m2ϕ2: ð4:2Þ

The heavy-field inflation is driven by the coupling term
λ0ϕ2ψ2=2, and the light-field inflation is driven by the mass
term m2ϕ2=2. At the stage of heavy-field inflation, the
fields follow the attractor solutions, which can be obtained
through expressing the equations of motion in terms of the
number of e-folds, N ≡ lnða=aiÞ, where ai is some initial
scale factor. The Friedmann equation is
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FIG. 10. Time evolution of the power spectrum in era S in the
case of two-stage evolution (eras S and C), with w ¼ −1.2. The
solid curves are the spectra of R from early time to late time
(from light to dark). The vertical dashed lines denote the
comoving horizon size at the corresponding instants (also from
light to dark).
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FIG. 11. Time evolution of the power spectrum in era C in the
case of two-stage evolution (eras S and C), with w ¼ −1.2,
NS ¼ 6, and ϵ ¼ 0.1. The solid curves are the spectra of R from
early time to late time (from light to dark). The vertical dashed
lines denote the comoving horizon size at the corresponding
instants (also from light to dark).
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H2 ¼
8π
3
V

1 − 4π
3
½ðdϕdNÞ2 þ ðdψdNÞ2�

; ð4:3Þ

where H ¼ _a=a. The dots denote the derivatives with
respect to t. The equations of motion can be cast into
the form

d2ϕ
dN2

− 4π

��
dϕ
dN

�
2

þ
�
dψ
dN

�
2

−
3

4π

�

×

�
dϕ
dN

þ 1

8πV
∂V
∂ϕ

�
¼ 0; ð4:4Þ

d2ψ
dN2

− 4π

��
dϕ
dN

�
2

þ
�
dψ
dN

�
2

−
3

4π

�

×

�
dψ
dN

þ 1

8πV
∂V
∂ψ

�
¼ 0: ð4:5Þ

It can be shown that the attractor solutions satisfy

dϕ
dN

¼ −
1

8πV
∂V
∂ϕ ; ð4:6Þ

dψ
dN

¼ −
1

8πV
∂V
∂ψ ; ð4:7Þ

provided ðdϕ=dNÞ2 þ ðdψ=dNÞ2 − 3=4π < 0 as con-
strained by (4.3). With the potential dominated by
λ0ϕ2ψ2=2, the attractor solutions are

ϕðNÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϕ2
i −

1

2π
ðN − NiÞ

r
; ð4:8Þ

ψðNÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ψ2
i −

1

2π
ðN − NiÞ

r
; ð4:9Þ

where the subscripts i denote the initial values.
At the second stage, ψ exits the slow-roll regime and

oscillates at the minimum of the potential with its amplitude
damped with time. The potential is still dominated by the
coupling term before the next inflation begins. During the
oscillatory stage, ϕ remains slow roll, while ψ acquires a
large kinetic energy that is of the same order of the potential
energy, _ψ2 ∼ λ0ϕ2ψ2 ∼H2, and the energy density evolves
effectively according to w ¼ 0 (zero pressure). Ignoring the
kinetic energy of ϕ in the Friedmann equation, we have

�
dψ
dN

�
2

þ λ0ϕ2

H2
ψ2 ¼ 3

4π
: ð4:10Þ

With A≡H=
ffiffiffiffi
λ0

p
ϕ, we parametrize ψ and dψ=dN by the

amplitude A and the phase θ:

dψ
dN

¼
ffiffiffiffiffiffi
3

4π

r
cos θ; ð4:11Þ

ψ ¼
ffiffiffiffiffiffi
3

4π

r
A sin θ: ð4:12Þ

Combining (4.5) and (4.10), we obtain a set of differential
equations of A and θ:

dA
dN

¼ − Acos2θ

�
3þ 1

ϕ

dϕ
dN

�
; ð4:13Þ

dθ
dN

¼ 1

A
þ cos θ sin θ

�
3þ 1

ϕ

dϕ
dN

�
: ð4:14Þ

Among the two terms contributing to the frequency dθ=dN,
the first term 1=A is of the order of 1=ψ , since
A ¼ H=

ffiffiffiffi
λ0

p
ϕ ≈

ffiffiffiffi
λ0

p
ϕψ=

ffiffiffiffi
λ0

p
ϕ ¼ ψ . The second term is

of order unity as ϕ slow rolls. After ψ drops below the
Planck mass, 1=A dominates and θ oscillates rapidly, so we
can approximate cos2 θ in (4.13) by 1=2. With ϕ given by
the slow-roll solution (4.8), A and θ can then be integrated
to yield

AðNÞ ¼ Ai

�
1 −

N − Ni

2πϕ2
i

�
−1=4

e−
3
2
ðN−NiÞ; ð4:15Þ

θðNÞ ¼ θi þ
N − Ni

Ai
−
ðN − NiÞ2
16πϕ2

i Ai
: ð4:16Þ

As the field ψ attenuates, gradually the energy density
from the coupling term is taken over by the m2ϕ2=2 term.
The universe enters the third stage, in which the other
inflation driven by the light field begins. This stage is
effectively described by the single-field inflation, with the
same attractor solution (4.8) for ϕ.
Here we consider the perturbation to the homogeneous

background in the conformal Newtonian gauge. The field
perturbations are

ϕðx; tÞ ¼ ϕ̄ðtÞ þ δϕðx; tÞ; ð4:17Þ

ψðx; tÞ ¼ ψ̄ðtÞ þ δψðx; tÞ; ð4:18Þ

where ϕ̄ðtÞ and ψ̄ðtÞ denote the background solutions. The
equations of motion of the perturbations in the Fourier
space are

δϕ̈þ 3Hδ _ϕþ
�
k2

a2
þ ∂2V

∂ϕ2

�
δϕ

¼ −
∂2V
∂ϕ∂ψ δψ − 2

∂V
∂ϕΨþ 4 _̄ϕ _Ψ; ð4:19Þ

PISIN CHEN and YU-HSIANG LIN PHYSICAL REVIEW D 93, 023503 (2016)

023503-12



δψ̈ þ 3Hδ _ψ þ
�
k2

a2
þ ∂2V

∂ψ2

�
δψ

¼ −
∂2V
∂ϕ∂ψ δϕ − 2

∂V
∂ψ Ψþ 4 _̄ψ _Ψ; ð4:20Þ

_ΨþHΨ ¼ 4πð _̄ϕδϕþ _̄ψδψÞ: ð4:21Þ

Note that the energy-momentum tensor of action (4.1) has
no velocity perturbations either anisotropic inertia, so the
Einstein equation gives Φ ¼ Ψ. The curvature perturbation
in the two-field system is

R ¼ −Ψ −H
_̄ϕδϕþ _̄ψδψ
_̄ϕ
2 þ _̄ψ2

: ð4:22Þ

The initial conditions for the subhorizon modes are set in
the era of the heavy-field inflation by the method of
iteration. We first neglect the metric perturbations Ψ and
find the solutions to δϕ and δψ at the short-wavelength
limit. The initial conditions for the subhorizon field
perturbations are set as the normalized positive-frequency
solutions. We then feed the initial δϕ and δψ back into the
Einstein equations and obtain the initial conditions ofΨ. At
the end we perform the consistency check to see whether
the initial Ψ obtained are indeed much smaller than δϕ and
δψ at the short-wavelength limit.
To solve the field perturbations, first note that the equations

of motion (4.19) and (4.20) can be put into a simpler form by
substituting t by the conformal time η and introducing the
new variables w ¼ aδϕ and q ¼ aδψ . Neglecting the metric
perturbation, the equations for w and q are

w00 þ
�
k2 þ ∂2V

∂ϕ2
−
a00

a

�
w ¼ −

∂2V
∂ϕ∂ψ a2q; ð4:23Þ

q00 þ
�
k2 þ ∂2V

∂ψ2
−
a00

a

�
q ¼ −

∂2V
∂ϕ∂ψ a2w; ð4:24Þ

where the primes denote the derivatives with respect to the
conformal time η. For k ≫ aH the two equations decouple
and reduce to the equations of harmonic oscillators

w00 þ k2w ¼ 0; ð4:25Þ

q00 þ k2q ¼ 0: ð4:26Þ

After the quantization, the normalized positive-frequency
mode functions are

δϕðηÞ ¼ e−ikη

ð2πÞ3=2 ffiffiffiffiffi
2k

p
a
; ð4:27Þ

δψðηÞ ¼ e−ikη

ð2πÞ3=2 ffiffiffiffiffi
2k

p
a
; ð4:28Þ

which are the initial conditions for the subhorizon field
perturbations. Feeding (4.27) and (4.28) into the Einstein
equation

Ψ ¼ 1

_̄ϕ
2 þ _̄ψ2 − k2

4πa2

�
_̄ϕδ _ϕþ _̄ψδ _ψ

þ
�
3H _̄ϕþ ∂V

∂ϕ
�
δϕþ

�
3H _̄ψ þ ∂V

∂ψ
�
δψ

�
; ð4:29Þ

one obtains the initial conditions for the subhorizon metric
perturbations.
To justify that the metric perturbations are negligible

when finding solutions to the field perturbations, in
this paragraph we are going to show that Ψ obtained by
(4.29) is much smaller than δϕ and δψ at the short-
wavelength limit in the era of heavy-field inflation. The
following discussion in this paragraph assumes k ≫ aH.

First note that from (4.8) and (4.9) one has _̄ϕ ∼H=ϕ̄ and
_̄ψ ∼H=ψ̄ . The metric perturbation (4.29) therefore goes
like

Ψ ∼
1

ð k
aHÞ2

�
δ _ϕ

Hϕ̄
þ δ _ψ

Hψ̄

þ
�
1

ϕ̄
þ λ0ϕ̄ψ̄2

H2

�
δϕþ

�
1

ψ̄
þ λ0ϕ̄2ψ̄

H2

�
δψ

�
; ð4:30Þ

where we have omitted all the constant coefficients and
used the fact that the potential is dominated by λ0ϕ2ψ2=2
during the heavy-field inflation. From solutions (4.27) and
(4.28) one has

δ _ϕ ¼ −Hδϕ

�
1þ ik

aH

�
∼
k
a
δϕ ð4:31Þ

and similarly for δ _ψ. The first two terms in the bracket of
(4.30) then go like ðk=aHÞ · ðδϕ=ϕ̄Þ and ðk=aHÞ · ðδψ=ψ̄Þ.
Using the Friedmann equation we know that λ0ϕ̄ψ̄2=H2 ∼
1=ϕ̄ and λ0ϕ̄2ψ̄=H2 ∼ 1=ψ̄ ; therefore, the last two terms in
the bracket of (4.30) go like δϕ=ϕ̄ and δψ=ψ̄ . Since during
the heavy-field inflation ϕ̄ and ψ̄ is of orderOð1Þ in Planck
units, one has

Ψ ∼
1

ð k
aHÞ

�
δϕ

ϕ̄
þ δψ

ψ̄

�
: ð4:32Þ

Therefore the initial Ψ is indeed much smaller than the
initial δϕ and δψ at the limit of k ≫ aH in the era of
heavy-field inflation.
The CMB spectrum is found by three steps of numerical

calculations. We first obtain the background dynamics by
solving (4.4) and (4.5). The reheating energy scale is
assumed to be 7.19 × 10−4MP ∼ 1016 GeV. The evolution
of perturbations is then solved by integrating (4.19)–(4.21),
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with the initial conditions set by (4.27)–(4.29). The
spectrum of the curvature perturbations is found by
evolving each Fourier mode until it reaches the steady
value after the horizon exit. The resulting spectrum is then
fed into CAMB [34,35], which is modified to accept
arbitrary initial spectrum represented by an interpolating
function, to calculate the spectrum of the CMB temperature
fluctuations.
There are two parameters and four initial conditions in

our model. The two parameters are the coupling constant λ0
and the mass of the light field,m. The four initial conditions
are the initial values and derivatives of the fields ϕ and ψ .
We assume that the light field drives about the last 60
e-folds of inflation, so the mass m is determined by the
Hubble scale during inflation deduced by the observation.
The initial derivatives of ϕ and ψ are set to zero, leaving the
system released from rest and evolving into the attractor
solutions.
The initial value of the light field ϕ determines the

behavior of the system in two ways. First, it determines the
energy scale of the heavy-field inflation as well as that of
the oscillatory period, since at the beginning of the
oscillatory stage ψ ∼MP and H ∼

ffiffiffiffi
λ0

p
ϕ. Second, it deter-

mines the number of e-folds of the light-field inflation.
With larger initial ϕ, the light-field inflation begins at a
higher energy scale and lasts longer. In this case, only those
modes with larger wavelengths are affected by the heavy-
field inflation and the oscillatory stage (Fig. 12). Therefore,
less deviations are manifested in the present-day CMB
spectrum since those large modes have not entered the
Hubble horizon today (Fig. 13).
Raising the value of initial ψ affects the spectrum by

making the heavy-field inflation longer and, while holding
the initial ϕ fixed, the light-field inflation shorter, without
changing the duration of the transition era. The larger the
initial ψ is, the more visible k modes and l modes are
affected (Fig. 14).

The coupling λ0 determines the strength of the interaction
between the two fields. With stronger interactions, it takes
longer for the transient oscillation to settle, and therefore
more modes with short wavelengths are affected while
other conditions held fixed (Fig. 15).
We see from both the spectra of the curvature perturba-

tions (Fig. 12) and CMB (Fig. 13) that the large-scale
spectrum is determined by the initial era with which the
universe begins: The large-scale spectrum reflects the scale-
invariant shape of the superhorizon spectrum in the initial
slow-roll (heavy-field inflation) era. Although the oscil-
latory stage behaves like w ¼ 0, the spectrum evolution is
qualitatively similar to that shown in Sec. III C. A quanti-
tative analysis of the spectrum evolution involving the zero-
pressure (w ¼ 0) era is given in the Appendix, showing that
the ad hoc single-field analysis does capture the pattern of
the spectrum evolution and is in agreement with the
numerical results.
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FIG. 12. The spectra of the curvature perturbations with
ϕi ¼ 3.63MP, 3.65MP, and 3.67MP. The other parameters are
held fixed as λ0 ¼ 10−9, ψ i ¼ 1.60MP, and m ¼ 1.22 × 10−6MP.
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FIG. 14. The CMB TT spectra with ψ i ¼ 1.50MP, 1.60MP,
and 1.64MP. The dots with error bars are the Planck 2013 data.
The other parameters are held fixed as λ0 ¼ 10−9, ϕi ¼ 3.65MP,
and m ¼ 1.22 × 10−6MP.
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FIG. 13. The CMB temperature-temperature correlation (TT)
spectra with ϕi ¼ 3.63MP, 3.65MP, and 3.67MP. The dots with
error bars are the Planck 2013 data. The other parameters are held
fixed as λ0 ¼ 10−9, ψ i ¼ 1.60MP, and m ¼ 1.22 × 10−6MP.
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V. CONCLUSIONS

We show that if the universe begins in the super-
inflation era (w < −1) or that with positive pressure
(w > 0), the large-scale curvature perturbation spectrum
is suppressed due to the blue-tilted superhorizon spec-
trum in the initial era. We first find the scaling relation
of the superhorizon spectrum for a scalar field in the
FLRW background with a constant equation of state. At
the large scales, the spectrum is blue tilted for a
positive-pressure (w > 0) or superinflation (w < −1)
era and red tilted for the era with −1 < w < 0, except
the singular case with w ¼ −1=3. In the slow-roll
(w≃ −1) and zero-pressure (w ¼ 0) background, the
superhorizon spectrum is scale invariant. We also point
out that the conclusions are drawn from assuming the
mode function approaches the Minkowski limit at small
scales. Although being natural in the accelerating uni-
verse, this assumption becomes a posteriori in the
decelerating universe since the subhorizon modes are
evolved from the superhorizon modes, which are ini-
tially across causally disconnected regions before
entering the horizon.
By analyzing three scenarios: a single slow-roll era, a

slow-roll era preceded by a kinetic era, and two succes-
sive slow-roll eras connected by a kinetic era, we show
the following two facts. First, the large-scale power
suppression in the model with a single preinflation
kinetic era stems from the blue-tilted superhorizon
spectrum of the initial kinetic era. Second, the additional
slow-roll era preceding the kinetic era changes the
superhorizon initial spectrum, so the large-scale power
is enhanced rather than suppressed. These results show
that the large-scale spectrum depends sensitively on
the initial vacuum. In the universe beginning with the
positive-pressure era, as we pointed out earlier, the
superhorizon modes are initially across causally discon-
nected regions, and the well-motivated assumption on the

initial state is still lacking. Some investigations about the
effect of the different initial vacuum on the spectrum
have been carried out in the literature [22–25]. We
also explore the case that is free from the acausal
issue, a superinflation era preceding the slow-roll era,
and show that the large-scale spectrum is suppressed due
to the initially blue-tilted spectrum in the superinfla-
tion era.
We calculate the curvature perturbation and CMB

spectra of a two-stage inflation model from the given
two-field potential. We show that the large-scale power is
enhanced due to the initial spectrum set in the first
accelerating era, and the effect of the intermediate decel-
erating era on the spectrum is connecting the two plateaus
generated in the two accelerating eras, which agrees with
the picture obtained through the ad hoc single-field
analysis.
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APPENDIX: SPECTRUM EVOLUTION
INVOLVING A ZERO-PRESSURE ERA

Consider the universe consists of three successive
eras: a first slow-roll era (era A), an intermediate zero-
pressure (w ¼ 0) era (era B), and a second slow-roll era
(era C). Much parallel to the discussion in Sec. III C,
we denote the quantities at the transitions from era A
to B and from era B to C by subscripts 1 and 2,
respectively.
In era A, the mode function of the initial adiabatic

vacuum is given by (3.16). In era B, we first keep the
discussion general for w > −1. The mode function u is
given by (2.16):

uB ¼ BþM0;μ

�
2i~kB
α

~aαB

�
þ B−W0;μ

�
2i~kB
α

~aαB

�
; ðA1Þ

where ~kB¼k=a1H1 and ~aB¼a=a1¼½1þαa1H1ðη−η1Þ�1=α.
Parameters α and μ are given by (2.14) and (2.17),
respectively. The normalized power spectrum is
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FIG. 15. The CMB TT spectra with λ0 ¼ 10−10, 10−9, and
3 × 10−9. The dots with error bars are the Planck 2013 data. The
other parameters are held fixed as ϕi ¼ 3.65MP, ψ i ¼ 1.60MP,
and m ¼ 1.22 × 10−6MP.
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~PB ¼
~k3B
~a2B

���� ~BþM0;μ

�
2i~kB
α

~aαB

�

þ ~B−W0;μ

�
2i~kB
α

~aαB

�����
2

; ðA2Þ

where ~B� ¼ ffiffiffiffiffiffiffiffiffiffiffi
a1H1

p
B� and

~PB ¼ ð1þ αÞPB

16π2H2
1

: ðA3Þ

In era C, the mode function is (3.1), and the normalized
power spectrum is (3.2). For simplicity, we assume that the
slow-roll parameter ϵ in eras A and C has the same value.
By matching at the boundary η ¼ η1, we obtain

~Bþ ¼ ΔB½ð−2i~k2B þ 2~kB þ iÞW0;μ

þ αð~kB þ iÞW1;μ�; ðA4Þ

~B− ¼ ΔB

�
−ð−2i~k2B þ 2~kB þ iÞM0;μ

þ 2μþ 1

2
αð~kB þ iÞM1;μ

�
; ðA5Þ

where

ΔB ¼
ffiffiffiffiffiffiffiffiffiffiffi
αþ 1

p
ei~kB

2ðπ ~kBÞ3=2α
ffiffiffi
ϵ

p

×
1

ð2μþ 1ÞM1;μW0;μ þ 2M0;μW1;μ
; ðA6Þ

and the Whittaker functions are evaluated at 2i~kB=α.
Matching at η ¼ η2 gives

~Cþ ¼
ffiffiffi
ϵ

p
e−

1
2
αNBei~kC

4
ffiffiffiffiffiffiffiffiffiffiffi
1þ α

p
~k2C

× f2½2~k2C þ 2i~kC − 1� ~BþM0;μ

þ 2½2~k2C þ 2i~kC − 1� ~B−W0;μ

þ αð1 − i~kCÞð2μþ 1Þ ~BþM1;μ

− 2αð1 − i~kCÞ ~B−W1;μg; ðA7Þ

~C− ¼
ffiffiffi
ϵ

p
e−

1
2
αNBe−i~kC

4
ffiffiffiffiffiffiffiffiffiffiffi
1þ α

p
~k2C

f−2 ~BþM0;μ − 2 ~B−W0;μ

þ αð2μþ 1Þð1þ i~kCÞ ~BþM1;μ

− 2αð1þ i~kCÞ ~B−W1;μg; ðA8Þ

with the Whittaker functions evaluated at 2i~kC=α. One also
has the relation ~kB ¼ ~kCe−αNB .

Setting w ¼ 0 in era B, we find the spectrum evolution as
Fig. 16. Similar to the case of the intermediate kinetic era in
Sec. III C, the superhorizon modes inherits the scale-
invariant spectrum in the initial slow-roll era (era A),
and the modes that enter the horizon during the zero-
pressure era (era B) have the red-tilted spectrum. Entering
into the second slow-roll era (era C), as shown in Fig. 17,
the modes that enter the horizon in era B are expelled out of
the horizon again, leading to the steep red-tilted spectrum
connecting the two plateaus. The right plateau is formed by
the modes that are subhorizon during eras A and B and then
exit the horizon in era C. Comparing to the spectrum of the
two-field model (Fig. 12), which also has a zero-pressure
era between two inflationary eras, we see that the ad hoc
single-field analysis agrees with the numerical result and
largely captures the physics of the spectrum formation.
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FIG. 16. Time evolution of the power spectrum in era B in the
case of three-stage evolution (eras A, B, and C), in which w ¼ 0
in era B. The solid curves are the spectra of R from early time to
late time (from light to dark). The vertical dashed lines denote the
comoving horizon size at the corresponding instants (also from
light to dark).
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FIG. 17. Time evolution of the power spectrum in era C in the
case of three-stage evolution (eras A, B, and C), in which w ¼ 0
in era B. The solid curves are the spectra of R from early time to
late time (from light to dark). The vertical dashed lines denote the
comoving horizon size at the corresponding instants (also from
light to dark).
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