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This paper examines the behavior of closed “lattice universes” wherein masses are distributed in a
regular lattice on the Cauchy surfaces of closed vacuum universes. Such universes are approximated using
a form of Regge calculus originally developed by Collins and Williams to model closed Friedmann-
Lemaître-Robertson-Walker universes. We consider two types of lattice universes, one where all masses are
identical to each other and another where one mass gets perturbed in magnitude. In the unperturbed
universe, we consider the possible arrangements of the masses in the Regge Cauchy surfaces and
demonstrate that the model will only be stable if each mass lies within some spherical region of
convergence. We also briefly discuss the existence of Regge models that are dual to the ones we have
considered. We then model a perturbed lattice universe and demonstrate that the model’s evolution is well
behaved, with the expansion increasing in magnitude as the perturbation is increased.
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I. INTRODUCTION

Modern cosmology is founded upon the so-called
Copernican principle, which posits that the Universe
“looks” on average to be the same regardless of where
one is in the Universe or in which direction one looks. In
other words, every point in the Universe is identical; no
point is special. More formally, the Copernican principle
states that Cauchy surfaces of the Universe can be admitted
that are homogeneous and isotropic, and this symmetry can
be expressed mathematically by writing the Universe’s
metric in the form

ds2 ¼ −dt2 þ a2ðtÞ
�

dr2

1 − kr2
þ r2ðdθ2 þ sin2θdϕ2Þ

�
;

ð1Þ

where aðtÞ is a time-dependent function known as the
scale factor and k is a curvature constant. The sign of k
determines whether Cauchy surfaces of constant time twill
be open, flat, or closed, with k < 0 being open, k ¼ 0 being
flat, and k > 0 being closed. The metric (1) is known as
the Friedmann-Lemaître-Robertson-Walker (FLRW) met-
ric. Though the form of this FLRW metric is fixed by
consideration of symmetries alone, the function for
the scale factor aðtÞ is instead determined by general
relativity. Inserting the metric into the Einstein field
equations yields

�
_a
a

�
2

¼ 1

3
ð8πρþ ΛÞ − k

a2
; ð2Þ

ä
a
¼ −

4π

3
ðρþ 3pÞ þ Λ

3
; ð3Þ

where ρ and p are the energy density and pressure of any
perfect fluid filling the space, and where Λ is the cosmo-
logical constant. This pair of differential equations is
known as the Friedmann equations, and their solution
determines aðtÞ.
These FLRW models have had great success in explain-

ing much of the Universe’s behavior, including most
notably the Hubble expansion of the Universe, the cosmic
microwave background (CMB), and baryon acoustic oscil-
lations. Indeed, the underlying assumption of homogeneity
and isotropy appears well supported by precision measure-
ments showing the CMB to be isotropic to within one
part in 100 000 [1]. Yet in spite of this, observations also
clearly show that the late, matter-dominated Universe is not
homogeneous and isotropic except at the coarsest of scales.
Instead, matter is distributed predominantly in clusters and
superclusters of galaxies with large voids in between, and
the physical effects of such a “lumpy” universe are still not
fully understood.
Indeed, there has been intense interest recently over the

possible importance of inhomogeneities to observational
cosmology. Perhaps the area of greatest interest concerns
the possible effects of inhomogeneities on recent redshift
measurements from Type Ia supernovae (SN1a). When
fitted to perfectly homogeneous FLRW models, these
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measurements have led to the conclusion that the
Universe’s expansion is accelerating [2]; to account for
this acceleration, cosmologists have posited the existence
of some exotic matter, known generally as dark energy.
However other cosmologists have instead posited that
much, if not all, of this acceleration is as an apparent
effect, arising from fitting data from an inhomogeneous
universe onto a homogeneous model [3]. It has been argued
that this effect actually arises from the nonlinear structure
of the inhomogeneities and that such a structure could
not be adequately modeled simply by perturbing a FLRW
universe [4]. Therefore, as there has so far been no
confirmed direct observation of any exotic matter, the
relative importance of dark energy compared to inhomo-
geneities in explaining the supernovae data remains an
open question.
For this reason, there has been a resurgence of interest

recently in the various approaches to building nonpertur-
bative, inhomogeneous models. One notable example is the
Lemaître-Tolman-Bondi (LTB) models. It has been shown
that such models can account for all known cosmological
observations, including SN1a redshifts, without requiring
any exotic matter, but the observer must sit at the center of a
Hubble-scale underdense region [5]. In other words, the
observer sits at the center of an isotropic but nonhomo-
geneous universe.
On the other hand, the “Swiss-cheese” models of

Einstein and Straus retain a FLRW background but
introduce inhomogeneities by replacing comoving spheri-
cal FLRW regions with Schwarzschild or LTB regions
[6,7]. By an appropriate fitting of these regions into the
FLRW background, the resulting space-time will still be an
exact solution to the Einstein field equations. However,
because of their FLRW background, these models will still
be dynamically identical to FLRWuniverses. And although
there is no a priori reason to believe the optical properties
should be identical as well, recent studies have shown that
they are, in fact, broadly similar [7].
In this paper, we shall consider a different class of

universes, one that is not in any way based on FLRW
universes. We shall consider the so-called lattice universes
where the matter content on each Cauchy surface consists
of identical point masses arranged into a regular lattice.
Unlike the LTB or Swiss-cheese models, the lattice uni-
verse has a truly discrete matter content and is otherwise
vacuum throughout, which is more representative of the
actual Universe’s matter distribution. Because of the regular
arrangement of the point masses, these lattice universes still
possess a high degree of symmetry, though not as great as
that of FLRW universes.
We shall focus on lattices formed by tessellating

3-spaces of constant curvature with identical regular poly-
hedral cells. The possible lattices that can be constructed
from such a tessellation have been summarized in
Appendix A, and we shall refer to these lattices as

Coxeter lattices. To “construct” a lattice universe, then,
we select one of the Coxeter lattices of Appendix A and
distribute a set of point masses in a regular manner on that
lattice, such as at the centers of the cells, at the centers of
the faces, at the midpoints of the edges, or at the vertices.
Naturally, after the masses have been arranged in this
manner, the Cauchy surfaces will no longer be surfaces of
constant curvature; however, the metric is still expected to
be invariant under the same symmetry transformations that
leave the lattice invariant, symmetries which include
discrete translation symmetries, discrete rotational sym-
metries, and reflection symmetries at the cell boundaries.
In other words, the lattice universe should have a metric of
the form

ds2 ¼ −dt2 þ γð3Þab ðt; xÞdxadxb; ð4Þ

where γð3Þðt; xÞ is the three-dimensional metric for
constant t hypersurfaces, and Latin indices a, b ¼ 1, 2,
or 3 denote spatial coordinates only; the spatial metric
γð3Þðt; xÞ at constant twould possess the lattice symmetries.
Effectively, the Copernican symmetries of FLRWuniverses
have been reduced to just these symmetries. This paper will
focus exclusively on closed lattice universes based on the
tetrahedral Coxeter lattices; these lattices consist of 5, 16,
or 600 identical, equilateral tetrahedral cells.
There has been a variety of approaches adopted to

modeling such universes. Using exact methods, Wheeler
[8] as well as Clifton et al. [9] have successfully con-
structed the exact 3-metric γð3Þðt ¼ 0; xÞ for the time-
symmetric Cauchy surfaces of closed universes.
Korzyński has further generalized this work by examining
the case where there is an arbitrary number of masses, not
necessarily arranged in a lattice [10]. Clifton et al. have also
examined the dynamics of the closed universes by evolving
their initial data along certain highly symmetric curves
[11]. Bruneton and Larena have modeled the dynamics of
the flat universe using an exact but perturbative expansion
of the metric about Minkowski space-time [12]. Using
numerical approaches, Bentivegna and Korzyński have
studied the evolution of closed universes from initial data
on a hypersurface at time symmetry [13], while Yoo et al.
as well as Bentivegna and Korzyński have studied the
dynamics of the flat universe [14,15]. On the other hand,
Lindquist and Wheeler [16] have devised an approximation
to the lattice universe, generalized by Clifton and Ferreira
[17], wherein each polyhedral lattice cell gets approxi-
mated by a spherical cell with Schwarzschild geometry
inside. This has been applied to study the evolution of the
closed, flat, as well as open universes [16–18].
In this paper, we shall consider another approach to

modeling the lattice universe; we shall adopt a Regge
calculus formalism originally developed by Collins and
Williams (CW) to model closed FLRW universes [19].
Regge calculus [20] is a highly versatile formalism that can
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in principle approximate any solution of the Einstein field
equations using a piecewise linear manifold; this makes it
particularly suitable to studying systems where an exact
solution is difficult to obtain. The Regge manifold is
constructed by gluing flat blocks together such that neigh-
boring blocks share an entire face; as the blocks are flat, the
metric inside is the Minkowski metric. The Regge manifold
is generally referred to as a skeleton. The solutions of Regge
calculus are generally expected to converge at second order
in the skeletal edge lengths to the corresponding continuum
solutions of the Einstein field equations [21]. Although we
shall focus on closed lattice universes in this paper, much of
the work is readily generalizable to flat and open universes.
Collins and Williams have constructed their skeleton

from a one-parameter family of spacelike Cauchy surfaces
that foliate the entire skeleton. Each Cauchy surface
triangulates a closed FLRW Cauchy surface with equi-
lateral tetrahedra such that all vertices, edges, and faces in
the triangulation are identical. We note that closed FLRW
Cauchy surfaces of constant t can be embedded as 3-
spheres in four-dimensional Euclidean space E4. The scale
factor aðtÞ can always be rescaled so that the FLRW
curvature constant k becomes unity, in which case, aðtÞ
would equal the 3-sphere radius of the embedding. The
embedding is then given by

r ¼ sin χ;

x1 ¼ aðtÞ cos χ;
x2 ¼ aðtÞ sin χ cos θ;
x3 ¼ aðtÞ sin χ sin θ cosϕ;
x4 ¼ aðtÞ sin χ sin θ sinϕ; ð5Þ

for 0 ≤ χ, θ ≤ π and 0 ≤ ϕ < 2π. CW Cauchy surfaces
would triangulate such 3-sphere Cauchy surfaces with
identical equilateral tetrahedra, and according to Coxeter
[22], such a triangulation is only possible using 5, 16,
and 600 tetrahedra. In fact, the triangulations correspond to
the three closed tetrahedral Coxeter lattices of Appendix A;
this makes the CW skeletons particularly apposite for
modeling lattice universes, as their Cauchy surfaces nat-
urally provide suitable lattices into which the masses of the
lattice universe could be embedded. Table I tabulates the
numbers of vertices, edges, triangles, and tetrahedra for
each of the possible triangulations. The CW Cauchy
surfaces are then joined together by a series of timelike
edges called struts connecting each vertex on one surface
with its time-evolved image on the next. Because all
vertices on a surface are identical, all struts between any
two surfaces are identical as well. With this construction,
the CW Cauchy surface at discrete time parameter ti can be
characterized by just two distinct lengths, the tetrahedral
edge length lðtiÞ and the strut length mðtiÞ. Surfaces at
different ti are completely identical apart from an overall

rescaling of the lðtiÞ length scale. Therefore, Collins and
Williams interpreted lðtiÞ to be the Regge calculus ana-
logue of aðtÞ. By then solving the Regge action and then
taking the continuum time limit ðtiþ1 − tiÞ → 0, they were
able to derive an expression for the length scale as a
function lðtÞ of continuum time t. The CW skeletons were
first applied to model closed dust-filled FLRW universes
and were found to yield very accurate results, with the
models with a greater number of tetrahedra yielding higher
accuracy [19,23].
In this paper, we shall also consider a different type of

lattice universe. We shall consider a closed lattice universe
where a single mass gets perturbed in magnitude. However
as a prelude to this investigation, we shall first explore the
properties of the completely unperturbed lattice universe.
Thus, this paper is organized as follows. We shall begin,
in the second section, with a brief exposition of Regge
calculus with CW skeletons. In the third section, we then
explore the behavior of the unperturbed lattice universe. We
shall show that the universe’s behavior depends on where
the masses are located: the universe becomes uncondition-
ally divergent if the masses are placed at the vertices of the
Cauchy surface but is unconditionally convergent if the
masses are placed anywhere in a spherical region around
the centers of the tetrahedra. Thereafter, we shall work only
with models where the masses are at the tetrahedral centers.
We also make this choice for the following reason: in
FLRW universes, a test particle that is comoving with the
universe would be following a geodesic as well, and we
suspect this to also be the case in the lattice universe; thus if
we want particles in our model also to be both comoving
and following geodesics across the entire Regge space-
time, then we must place the particles at the centers of the
tetrahedra. At any other location, comoving particles will
not follow global geodesics. In the fourth section, we shall
perturb one of these masses, construct the corresponding
perturbed Regge model, and derive the relevant equations
governing the model’s evolution. We shall focus exclu-
sively on the 5-tetrahedra model: this model would involve
only two sets of perturbed edges whereas the other two
models would require many more, with each set having
its own independent length. In the fifth section, we shall
consider the application of the initial value equation at the

TABLE I. The number of simplices in each of the three
triangulations of the 3-sphere with equilateral tetrahedra as well
as the number of triangles meeting at any edge. We introduce N3,
N2, N1, and N0 to denote the number of tetrahedra, triangles,
edges, and vertices in the Cauchy surface.

Tetrahedra
(N3)

Triangles
(N2)

Edges
(N1)

Vertices
(N0)

Triangles per
edge

5 10 10 5 3
16 32 24 8 4
600 1200 720 120 5
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moment of time symmetry to this model: we shall derive
certain conditions that the initial conditions of the Regge
equations must satisfy in order to be consistent with this
equation. In the final section, we shall examine the behavior
of the model for various perturbations and compare it
against that of the unperturbed model; we shall then close
with a brief discussion of certain assumptions inherent in
our model.
In this paper, we shall use geometric units where

G ¼ c ¼ 1.

II. REGGE CALCULUS WITH CW SKELETONS

As mentioned above, Regge calculus approximates any
continuous space-time using a piecewise linear manifold
composed of flat blocks glued together at their faces. Regge
calculus customarily uses 4-simplices as the blocks, though
as we shall soon see with the CW skeleton, this is not
always the case.
Curvature in the skeleton manifests itself as conical

singularities concentrated on the subfaces of codimension
2; these subfaces are known as hinges. Each block will have
two subfaces of codimension 1 meeting at any of its hinges;
we shall refer to such subfaces simply as the faces of the
block. If a hinge were flat, then the dihedral angles between
all faces meeting at the hinge would sum to 2π; any
deviation from 2π provides a measure of the curvature and
is known as the deficit angle. The deficit angle δi at a hinge
labeled i is given by

δi ¼ 2π −
X
j

θðiÞj ; ð6Þ

where θðiÞj is the dihedral angle at the hinge formed by the
faces of the block labeled j and the summation is over all
blocks meeting at the hinge.
If the skeleton consists solely of 4-simplices, then to

completely specify the skeletal geometry, one need only
specify the lengths of all edges. This follows because the
internal geometry of any n-simplex, including its angles
and the areas of its subsimplices, is completely determined
when the lengths of its Cðnþ 1; 2Þ edges are specified.
Thus the skeletal edge lengths serve as the Regge analogue
of the metric; in analogy to how the metric is determined by
the Einstein field equations in general relativity, the edge
lengths are determined by the Regge field equations, the
Regge analogue to the Einstein field equations.
The Regge field equations are obtained by following

a variational approach similar to how the Einstein field
equations are obtained from the Einstein-Hilbert action.
In general relativity, the Einstein field equations can be
derived by varying the Einstein-Hilbert action

SEH ¼ 1

16π

Z
R

ffiffiffiffiffiffi
−g

p
d4x −

X
i∈fparticlesg

Mi

Z
dsi ð7Þ

with respect to the metric tensor gμν, where R is the Ricci
scalar, g ¼ detðgμνÞ, Mi is the mass of particle i, and dsi is
its line element; the summation is over all particles in the
space-time. When applied to a Regge skeleton, this reduces
to the Regge action [20]

SRegge ¼
1

8π

X
i∈fhingesg

Aiδi −
X

i∈fparticlesg
j∈fblocksg

Misij; ð8Þ

where Ai is the area of a hinge in the Regge skeleton, δi its
corresponding deficit angle, and sij the length of particle i’s
path through block j; the first summation is over all hinges
in the skeleton while the second is over all particles and all
blocks of the skeleton. Note that if particle i never passes
through block j, then sij will accordingly be zero.
Since the skeletal edge lengths are the Regge analogue of

the metric, the Regge action is varied with respect to an
edge length lj to get the Regge field equations

0 ¼
X

i∈fhingesg
δi
∂Ai

∂lj
− 8π

X
i∈fparticlesg
j∈fblocksg

Mi
∂sij
∂lj

; ð9Þ

where the variation of the deficit angles has canceled out
owing to the well-known Schläfli identity [20],

X
i

Ai
∂θðiÞk
∂lj

¼ 0;

this identity holds for any individual block k, with the

summation being over all hinges in the block and θðiÞk being
the block’s dihedral angle at hinge Ai.

1

Collins and Williams originally constructed their
skeleton not out of 4-simplices but out of 4-blocks;
each 4-block corresponds to the truncated world tube of
a tetrahedron as it evolves from one Cauchy surface to the
next. If we denote the Cauchy surface at time ti by Σi and
the surface at time tiþ1 by Σiþ1, then a 4-block between Σi
and Σiþ1 consists of a tetrahedron in Σi with edges of length
li ¼ lðtiÞ, a tetrahedron in Σiþ1 with edges of length
liþ1 ¼ lðtiþ1Þ, and four equal-length struts connecting each
tetrahedral vertex in Σi to its time-evolved counterpart in
Σiþ1. Figure 1 depicts a typical 4-block; for simplicity, we
shall sometimes refer to the tetrahedron in Σiþ1 as the upper

1In the standard formulation of Regge calculus, one actually
uses a simplicial manifold where every block is a 4-simplex, and
the Schläfli identity is usually formulated in terms of simplices
rather than arbitrary blocks. However, any block can always be
triangulated into simplices, and one can then apply the simplicial
form of the Schläfli identity to the triangulated block to obtain the
form of the identity we have above, using the chain rule if
necessary to satisfy any constraints on the block’s geometry.
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tetrahedron and the tetrahedron in Σi as the lower tetrahe-
dron, as that is how they appear in the figure.
Since we are no longer using 4-simplices as the skeletal

building block, specification of the edge lengths will in
general not be sufficient to determine the entire skeletal
geometry. There are two approaches one could take to
completing the geometry. The first is to fully triangulate
each 4-block into 4-simplices by introducing extra
edges; one would then have to specify the lengths of these
new edges. The second, which was taken by Collins and
Williams, is to specify the 4-block’s internal geometry.
Regardless of which approach is taken, the 4-block’s
geometry would be determined by two requirements: (i) that
all struts have the same length, and (ii) that there be no twist
or shear along the 4-block. These requirements would
manifest themselves either as a specification of the new
edge lengths in the first approach or as a specification of
the 4-block’s internal geometry in the second. Brewin has
likened the requirements to a choice of lapse and shift
function in the ADM formalism. Indeed, the standard
form of the FLRW metric (1) also implies a certain
foliation of FLRW space-time, and Collins and
Williams’ choice seems closest to the lapse and shift
implicit in this foliation.
These constraints imply that the lower tetrahedron would

simply expand or contract uniformly about its center when
evolving to the upper tetrahedron. The geometry can best
be understood by introducing a coordinate system for the
4-block. As depicted in Fig. 1, we label the vertices of the
lower tetrahedron by A, B, C, D, and their counterparts in
the upper tetrahedron by A0, B0, C0, D0, respectively. The
lower vertices’ coordinates are then

A ¼
�
−
li
2
;−

li
2

ffiffiffi
3

p ;−
li

2
ffiffiffi
6

p ; ιti

�
;

B ¼
�
li
2
;−

li
2

ffiffiffi
3

p ;−
li

2
ffiffiffi
6

p ; ιti

�
;

C ¼
�
0;

liffiffiffi
3

p ;−
li

2
ffiffiffi
6

p ; ιti

�
;

D ¼
�
0; 0;

ffiffiffi
3

p
li

2
ffiffiffi
2

p ; ιti

�
: ð10Þ

The coordinates of their upper counterparts are given by an
analogous expression where each letter becomes primed
and each subscript changes from i to iþ 1. Although a
Euclidean metric is being used, the imaginary unit ι has
been introduced to the time coordinate so that inner
products would effectively yield a signature of
ðþ;þ;þ;−Þ. In Collins and Williams’ approach, the 4-
block’s internal geometry is constrained to be that repre-
sented by these coordinates for given edge lengths li, liþ1,
and mi, that is, where the tetrahedron simply expands or
contracts uniformly about its center.
If we choose to fully triangulate the skeleton instead,

then we shall introduce diagonals of type AD0, BD0, CD0,
AC0, BC0, and AB0 in each 4-block; this corresponds to one
diagonal above each of the tetrahedral edges, as illustrated
in Fig. 2, and these diagonals divide the 4-block into four
distinct 4-simplices, ABCDD0, ABCC0D0, ABB0C0D0, and
AA0B0C0D0. Each 4-block in the skeleton will get triangu-
lated in this manner, and it can be shown that this will
lead to a consistent triangulation of the entire skeleton.
To be consistent with the geometry described by (10),
the diagonals would then be constrained to have a length
given by

d2i ¼
1

3
l2i þ

1

24
ð3liþ1 þ liÞ2 − δt2i ; ð11Þ

where δti denotes the quantity δti ≔ tiþ1 − ti.

FIG. 1. An equilateral tetrahedron of edge length li at time ti
evolves to a tetrahedron of edge length liþ1 at time tiþ1, tracing
out a four-dimensional world tube. The struts are all of equal
length.

FIG. 2. The world sheets generated by the six tetrahedral edges
and their triangulation into triangular timelike hinges.
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When it comes to varying the Regge action, the standard
approach would be to regard each edge as being indepen-
dent of all others; the action would then be varied one edge
length at a time, keeping all other lengths constant, and
each edge would generally lead to an independent Regge
equation. We shall refer to this approach as local variation.
Local variation is always performed on a fully triangulated
skeleton so as to avoid ambiguities in the varied skeleton’s
geometry. Consider for instance varying the edge AB in
quadrilateral ABA0B0 from length lABi to ~lABi : without any
constraints on the quadrilateral’s internal geometry, there
would be a wide range of possibilities that the varied
quadrilateral could be, all possibilities having struts of length
mi and tetrahedral edges of lengths ~lABi and lABiþ1. Thus
constraints on the varied geometry are needed to determine a
unique possibility. Under local variation, the constraint is
imposed by specifying a diagonal’s length and then keeping
that length constant when another edge is varied.
Collins and Williams however use a different approach

to vary the skeleton: they would vary entire sets of identical
edges at once; for instance, they would vary all tetrahedral
edges on a Cauchy surface at once, or all struts between a
pair of consecutive surfaces. Under this variation, the
tetrahedra in each 4-block would remain equilateral, the
struts connecting them would continue having equal length,
and the 4-block itself would continue having no twist or
shear; thus even when varied, all 4-blocks would continue
having the same internal geometry as that specified by the
4-block coordinate system (10). We shall refer to this
approach as global variation. In standard general relativity,
global variation would be analogous to requiring the metric
in the Einstein-Hilbert action to be of FLRW form (1), and
then varying the action with respect to aðtÞ; this effectively
imposes Copernican symmetries on the metric prior to
varying the Einstein-Hilbert action. On the other hand,
local variation is analogous to the more standard approach
where the Einstein-Hilbert action is varied first, yielding the
Einstein field equations, and then the metric is set to be of
FLRW form.
However we have previously modeled the Λ-FLRW

universe using the CW formalism [24], and in those
models, we showed that locally varying the Regge action
for a CW skeleton led to a set of nonphysical equations.
When we triangulated the skeleton, we had assumed that all
tetrahedral edges in a Cauchy surface and all struts between
a pair of surfaces would remain identical. Thus, when we
locally varied the skeleton, we would set the relevant edges
to be equal to help simplify the resulting Regge equations;
this has the effect of reducing the number of independent
Regge equations to just one per distinct set of edges. We
were effectively assuming that had we not set the lengths
equal, the complete set of Regge equations would reveal
them to be equal anyway. However, we believe this
assumption to be unfounded because we believe the
diagonals actually disrupt the symmetry between edges,

rendering them no longer identical to each other. The
diagonals are not actually distributed uniformly across the
skeleton: some vertices are attached to more diagonals than
others; for instance in our 4-block triangulation above,
vertex A gets attached to three diagonals while vertex D
gets attached to none. Thus, the struts, which correspond to
the vertices’ world lines, would no longer be identical. For
similar reasons, other geometric objects, such as tetrahedral
edge lengths and their associated world sheets, may no
longer be identical either. Therefore, it no longer makes
sense to set edge lengths to be equal after locally varying
the skeleton; rather, each edge would have to be evolved
independently of all others using its own Regge evolution
equation, and there may potentially be one independent
equation for each edge in the Cauchy surface. We did not
encounter any similar problem when we globally varied the
Regge action; in that case, all edges of the same type would
indeed be truly identical to each other. Thus drawing on this
lesson, in this paper, we shall consider only solutions to the
global Regge equation for all models.
However, Brewin [23] has shown that, in certain cases,

the global Regge equation can be related to the local one
through a chain rule. In such cases, the local solutions
would form a subset of the global ones. Although we have
chosen to consider only global solutions, for the perturbed
lattice universes, we shall derive the global solutions by
using such a chain rule. This chain rule relationship
between the global and local Regge equations will be
further elaborated on when we consider the perturbed
universes in the fourth section.
Brewin has also drawn several analogies between the

ADM formalism and the CW formalism. He has likened
the tetrahedral edge lengths to the 3-metric of an ADM
foliation and the Regge equations obtained from varying
the tetrahedral edges to the ADM evolution equations. He
has also likened the struts and diagonals to the ADM lapse
and shift functions, respectively, and the Regge equations
obtained from their variation to the ADM Hamiltonian and
momentum constraints, respectively. Thus in this paper, we
shall refer to the Regge equations obtained from the
tetrahedral edges as evolution equations, from the struts
as Hamiltonian constraints, and from the diagonals as
momentum constraints. In our study of the Λ-FLRW
universe, we also found the Hamiltonian constraint to be
a first integral of the evolution equation; thus we could
study the universe’s behavior from the Hamiltonian con-
straint alone. Similarly, it can be shown that for the models
of the unperturbed lattice universe, which will be consid-
ered below, the Hamiltonian constraints are also first
integrals of the evolution equations, though we shall not
provide the proof. We shall assume a similar conclusion
holds for models of the perturbed lattice universe. This
conclusion means that we can determine the models’
evolution from their constraint equations alone, and this
is what we shall do.
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Before leaving this section, we wish to make a final
comment on using coordinate system (10) to calculate
geometric quantities in the CW skeleton. This coordinate
system greatly facilitates the calculation of any such
quantity, but these quantities would get expressed in terms
of the time difference δti rather than purely in terms of
skeletal edge lengths. In Regge calculus, it is the skeletal
edge lengths that are to be varied, so we shall have to
convert δti into edge lengths. Only the strut lengths mi
depend on δti, since increasing the time separation between
a pair of consecutive Cauchy surfaces lengthens mi but
leaves li and liþ1 unchanged. Therefore by using (10) to
calculate a strut length, such as that of AA0, we obtain the
relation

m2
i ¼

�
3

8
_l2i − 1

�
δt2i ; ð12Þ

where we have introduced the notation

_li ≔
liþ1 − li
tiþ1 − ti

:

III. REGGE CALCULUS OF CLOSED,
REGULAR LATTICE UNIVERSES

We shall now apply the CW formalism to model closed,
regular lattice universes. In this context, the Regge action
(8) can be greatly simplified. First, a nontriangulated CW
skeleton consists of only two distinct types of hinges,
spacelike triangular hinges corresponding to the triangles of
the equilateral tetrahedra and timelike trapezoidal hinges
generated by the world sheets of the tetrahedral edges as
they evolve from one Cauchy surface to the next. An
example of a triangular hinge would be ABC in the 4-block
described by (10), and an example of a trapezoidal hinge
would be ABA0B0. Secondly, in the regular lattice universe,
all masses are identical. Hence, the action (8) can be
expressed as

8πS ¼
X

i∈
n
trapezoidal
hinges

oAtrap
i δtrapi þ

X
i∈
n
triangular
hinges

oAtri
i δ

tri
i

− 8πNpM
X
i∈ftig

si; ð13Þ

whereM is the common mass of each particle, Np the total
number of particles in the universe, and si the length of one
particle’s trajectory between Cauchy surfaces Σi and Σiþ1.
As we shall be varying with respect to the struts alone, the
spacelike triangular hinges can be ignored.
When this action is varied globally with respect to the

struts mj, we obtain the Regge equation

0 ¼
X
i

∂Atrap
i

∂mj
δtrapi − 8πNpM

X
i∈ftig

∂si
∂mj

; ð14Þ

where the first summation is still over all trapezoidal
hinges.
There are several possible ways to arrange the masses

into a regular lattice on a Cauchy surface; examples include
placing masses at the centers of the tetrahedra, the centers
of the triangles, the midpoints of the tetrahedral edges, or
the tetrahedral vertices. Each of these configurations
will yield a regular lattice; the new cell boundaries would
lie along planes equidistant to pairs of masses that are
nearest neighbors to each other, and the masses would
consequently lie at the centers of the new cells. A two-
dimensional analogue has been illustrated in Fig. 9 of
Appendix A, where the original lattice, drawn in solid
lines, consists of equilateral triangles tessellating flat two-
dimensional space; masses placed at the midpoints of the
triangular edges result in a new lattice consisting of
rhomboidal cells, drawn in dashed lines. However as
discussed in Appendix A, not all new lattices would
correspond to Coxeter lattices; those that do not would
have nonregular polytopes as lattice cells and would
consequently have reduced lattice symmetries. However
we see that in this way, the CW formalism can allow us to
go beyond Coxeter lattices and model other lattice uni-
verses, something which would not be possible with the
LW formalism because spherical cells, which that formal-
ism uses, can only well approximate lattice cells that are
regular polytopes [18]. Once a particular arrangement of
masses has been chosen, then by symmetry, the masses will
maintain that arrangement on all subsequent Cauchy
surfaces. The masses are therefore comoving with respect
to the Cauchy surface.
Let us consider masses located in each tetrahedron at the

general location of

vi ¼ αAþ βBþ γCþ δD;

with vectorsA,B,C,D denoting the position vectors of the
tetrahedron’s four vertices relative to the tetrahedral centre,
and with constants α, β, γ, δ satisfying 0 ≤ α, β, γ, δ ≤ 1
and αþ β þ γ þ δ ¼ 1. Each mass is located at a distance
jvij from the tetrahedral center given by

vi · vi ¼
1

8
½3ðα2 þ β2 þ γ2 þ δ2Þ

− 2ðαβ þ αγ þ αδþ βγ þ βδþ γδÞ�l2i ; ð15Þ

with li being the length of a tetrahedral edge; as jvij=li is a
constant of time, we shall denote this constant by v.
We shall work with 4-block coordinates given by (10)

and their Σiþ1 counterparts to determine all geometric
quantities; we can consider position vectors A, B, C, D as
being identical to the position of vertices A, B, C,D in (10).
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In these coordinates, the length si of each mass’ line
element between Σi and Σiþ1 is given by

s2i ¼ v2δl2i − δt2i ;

where δli denotes the difference δli ≔ liþ1 − li. In terms of
the strut length mi, s2i can be expressed as

s2i ¼
�
v2 −

3

8

�
δl2i þm2

i ; ð16Þ

where we have made use of (12) to substitute for δt2i . Then
varying si with respect to mj yields

∂si
∂mj

¼ mi

si
δij: ð17Þ

The area of any trapezoidal hinge between Σi and Σiþ1 is

Atrap
i ¼ ι

2
ðliþ1 þ liÞ

�
1

4
ðliþ1 − liÞ2 −m2

i

�1
2

; ð18Þ

and varying this with respect to mj yields

∂Atrap
i

∂mj
¼ −

ι

2
miðliþ1 þ liÞ

�
1

4
ðliþ1 − liÞ2 −m2

i

�
−1
2

δij:

ð19Þ

Because all 4-blocks meeting at a trapezoidal hinge are
identical, the hinge’s deficit angle simplifies to

δtrapi ¼ 2π − nθi; ð20Þ

where n is the number of faces meeting at the hinge and θi
is the dihedral angle between any two adjacent faces. Since
each trapezoidal hinge corresponds to the world sheet of a
tetrahedral edge and each face on this hinge to the world
tube of a triangle at this edge, n is equal to the number of
triangles meeting at an edge; this number is given by the
last column of Table I.
To determine θi, let us consider the representative hinge

ABA0B0. Faces ABCA0B0C0 and ABDA0B0D0 meet at this
hinge and will be separated by a dihedral angle of θi; thus,
we can determine θi from the scalar product of the two
faces’ unit normals. Let n̂1 denote the unit normal pointing
into ABCA0B0C0 and n̂2 the unit normal out of ABDA0B0D0;
then in coordinate system (10), they have coordinates

n̂μ1 ¼
�
0; 0; 1;−ι 1

2
ffiffi
6

p _li
�

�
1 − 1

24
_l2i
�1

2

ð21Þ

and

n̂μ2 ¼
�
0;−2

ffiffiffi
2

p
; 1; ι

ffiffi
3

p
2
ffiffi
2

p _li
�

3
�
1 − 1

24
_l2i
�1

2

; ð22Þ

and their scalar product leads to the relation

cos θi ¼
1þ 1

8
_l2i

3 − 1
8
_l2i
: ð23Þ

We now have all the relevant geometric quantities
necessary to solve the Regge equation (14). Thus by
substituting (19), (20), (12), and (17) into (14), we are
led to the Hamiltonian constraint

li ¼ 8πM
Np

N1

� 1
8
_l2i − 1

v2_l2i − 1

�1
2 1

2π − nθi
; ð24Þ

where N1 is the total number of tetrahedral edges on a
Cauchy surface. By using (23), we can express _li as a
function of the dihedral angle θi and thereby reexpress
(24) as

li ¼ 8πM
Np

N1

tan θi
2

½8v2tan2 θi
2
− 1

2
ð8v2 − 1Þ�12

1

2π − nθi
: ð25Þ

We shall now determine the continuum time limit of the
constraint equation. When taking this limit, such that as
δti → 0,

θi → θ þOðdtÞ;
li → l;

liþ1 → lþ _ldtþOðdt2Þ;

the various geometric quantities become

_li → _lþOðdtÞ; ð26Þ

m2
i →

�
3

8
_l2 − 1

�
dt2 þOðdt3Þ; ð27Þ

cos θi → cos θ ≈
1þ 1

8
_l2

3 − 1
8
_l2
þOðdtÞ: ð28Þ

Relation (28) can then be inverted to parametrize _l in terms
of θ, thus yielding

_l2 ¼ 8

�
1 − 2tan2

�
1

2
θ

��
: ð29Þ

Finally, the constraint equation (25) becomes
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l ¼ 8πM
Np

N1

tan θ
2

½8v2tan2 θ
2
− 1

2
ð8v2 − 1Þ�12

1

2π − nθ
: ð30Þ

Equations (29) and (30) provide a parametric description of
the universe’s evolution in terms of θ.
It is often easiest to study a model’s evolution by

considering the evolution of its Cauchy surface’s volume,
and we shall do this below. In the continuum time limit, the
CW Cauchy surface volume is given by

UN3
ðtÞ ¼ N3

6
ffiffiffi
2

p lðtÞ3; ð31Þ

where N3 is the number of tetrahedra in the surface and is
given by the first column of Table I; the volume’s rate of
expansion is given by

_UN3
ðtÞ ¼ N3

2
ffiffiffi
2

p lðtÞ2_lðtÞ: ð32Þ

Both _l and the lengths of the struts place constraints on
the range of θ. In the continuum time limit, the strut length
is given by relation (27), and for the strut to remain
timelike, we require that θ > π=3. On the other hand,
for _l2 to be positive, we require that θ ≤ 2 arctan 1ffiffi

2
p . Thus, θ

is constrained to lie in the range

π

3
< θ ≤ 2 arctan

1ffiffiffi
2

p : ð33Þ

For the square root in (30) to be real, we also require that

θ > 2 arctan

�
v2 − 1

8

2v2

�1
2

; ð34Þ

thus l diverges if θ ¼ 2 arctan ½v2−1
8

2v2 �
1
2. We can compare this

with the range of θ, as given by (33), to see under what

conditions will divergence occur. If 2 arctan ½v2−1
8

2v2 �
1
2 ≥ π=3,

then l will definitely diverge; this happens if

v2 ≥
3

8
:

Equality would correspond to placing the masses at the
tetrahedral vertices. However the lower bound of θ > π=3
came from requiring that the struts be timelike, not from
any direct constraints on l itself. Thus, even if the model

satisfies 2 arctan ½v2−1
8

2v2 �
1
2 < π=3, we may still see the begin-

nings of a divergence in l that is abruptly cut off by the
θ ¼ π=3 bound. Therefore, for l to be unconditionally
convergent, we require the more stringent constraint that

0 < −
1

2
ð8v2 − 1Þ;

which comes from requiring the square root in (30) to be
real and nonzero, even when θ ¼ 0; thus v2 must satisfy

v2 <
1

8
:

When v2 ¼ 1=8, the masses are located at the midpoints of
the tetrahedral edges. Therefore, the universe will only be
unconditionally convergent if the masses are placed within
a spherical region in the center of the tetrahedron with a
boundary that just touches the midpoints of the tetrahedral
edges. Such a region would include the centers of the
triangles and of the tetrahedra itself.
Interestingly, Collins and Williams [19] found a similar

result in their study of closed dust-filled universes. They
were considering different ways to measure the “time” of
the universe by using the proper time τ of test particles
located at different positions in the tetrahedron. We note
that τ is actually identical to the continuum time limit of si,
that is, the continuum time limit of the square root of (16).
They found that dUN3

=dτ, where UN3
is the volume of the

universe as given by (31), would diverge if the test particle
were outside the same spherical region of convergence as
the one we obtained. We suspect this region of convergence
may be a generic feature of any model based on CW
skeletons.
Although masses situated at or near vertices will cause

the resulting model to diverge, there may be a way around
this problem. Each closed Coxeter lattice admits a dual
Coxeter lattice centered on the original lattice’s vertices, as
noted in Appendix A, although the dual lattice may not
necessarily be a tetrahedral lattice. Each model thus admits
a dual model using Cauchy surfaces based on the dual
lattice, and we can always extend the CW formalism to
perform Regge calculus with these nontetrahedral models.
Where masses would have been at the vertices in the
original model, when translated to the dual model, they
would now be at the centers of the dual cells. As a result,
the particles would now be both comoving with respect to
the Cauchy surface and following geodesics globally across
the entire Regge space-time; this follows because even with
nontetrahedral cells, each cell would simply expand or
contract uniformly about its center as the Cauchy surface
evolves, so a particle at the cell center would simply
propagate along the temporal direction only. We addition-
ally conjecture that in nontetrahedral models, there would
also be an analogous spherical region of convergence
centered at the cell centers regarding the placement of
massive particles. However, it remains to be seen whether
the spherical regions of both the original and dual models
would completely cover the entire Cauchy surface such that
for any configuration of the particles, there is always a
model for which the configuration would be well behaved.
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As noted in Appendix A, the 5-tetrahedra lattice is dual to
itself, so in this case, the region of convergence in the dual
model is exactly identical to the region of convergence in
the original model, and if masses are positioned at the
vertices of the original model, then when they are translated
to the dual model, the resulting model will behave in
exactly the same way as the original model with the masses
at its cell centers.
In the foregoing discussion, we have only considered

universes consisting of a single set of regularly distributed
masses. We can also consider the more general case where
we have not one but several different sets of masses, each
set being regularly distributed and having equal magnitude,
though the magnitude can differ between sets. If wework in
the original lattice, then each set would be arranged in a
way that preserves the lattice symmetries, since, as men-
tioned above, the sets would lie at such sites as the lattice
vertices or the midpoints of the edges. Therefore, even if the
magnitudes of the masses differ between sets, because the
lattice symmetries remain preserved, the edges in particular
would all remain identical to each other; hence, the lattice
would still have only one length scale l. A similar argument
applies when the masses are translated to the dual model.
Therefore for such models with multiple sets of masses, it
can be shown that the continuum time equation for l
becomes

l ¼ 8π
X
i

Mi
Ni

N1

tan θ
2

½8v2i tan2 θ
2
− 1

2
ð8v2i − 1Þ�12

1

2π − nθ
;

ð35Þ

where i labels the set, the summation is over all sets, Ni is
the number of particles in set i, Mi is the magnitude of the
masses in set i, and vi denotes the parameter v for set i. It is
clear that this equation has the same convergence con-
ditions as those for the single-set universe. We note though
that there are certain set combinations that would not lead
to well-behaved models, even when translated to dual
models. One example would be a 5-tetrahedra model where
one set lies at the tetrahedral centers and another at the
vertices; one of the two sets would always lie outside the
region of convergence, regardless of whether the original
model or the dual was being considered.
Returning to the single-set universes, to illustrate the

behavior of our various Regge models, we have plotted
dU=dt against U in Fig. 3, where U is the universe’s
volume as given by (31) for the Regge models. For
comparison, we have also plotted the corresponding
graphs for the dust-filled closed FLRW model and for
the equivalent LWmodels in [18]. Since the FLRWCauchy
surfaces are 3-spheres, the FLRW universe’s volume is
given by

UFLRWðtÞ ¼ 2π2aðtÞ3; ð36Þ

and its rate of expansion by

_UFLRWðtÞ ¼ 6π2aðtÞ2 _aðtÞ; ð37Þ

for a dust-filled FLRW universe, the scale factor aðtÞ is
given parametrically by

a ¼ a0
2
ð1 − cos ηÞ; ð38Þ

t ¼ a0
2
ðη − sin ηÞ; ð39Þ

where

a0 ¼
8πρ0
3

; ð40Þ

and where ρ0 is the energy density when a ¼ 1. We have
taken the LW universe’s “volume” to be the volume of a
3-sphere as well, though with the radius set equal to the LW
lattice universe scale factor aðτÞ instead2; that is, the
universe’s volume and expansion rate are given, respec-
tively, by

ULWðτÞ ¼ 2π2aðτÞ3; ð41Þ

_ULWðτÞ ¼ 6π2aðτÞ2 _aðτÞ; ð42Þ

and the LW scale factor aðτÞ is given parametrically by

a ¼ rEb

2

ffiffiffiffiffiffiffi
rEb

2m

r
ð1 − cos ηÞ; ð43Þ

τ ¼ rEb

2

ffiffiffiffiffiffiffi
rEb

2m

r
ðη − sin ηÞ; ð44Þ

where

rEb
¼ 2m

1 − Eb
;

Eb ¼ cos2ψN3
;

and where the angle ψN3
is given by

1

N3

¼ 2ψN3
− sin 2ψN3

2π
;

2We do not imply anything physical by this LW 3-sphere; it has
merely been defined to facilitate comparison of length scales
between LWand Regge models. We could instead have chosen to
graph _aðτÞ against aðτÞ for the LWuniverses and _l=Z against l=Z,
where Z is some suitably chosen constant that converts the Regge
edge lengths into an embedding 3-sphere radius; possible
embeddings were explored at great length in [24]. The compari-
son of the models would effectively be equivalent.
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with N3 being the number of tetrahedra in the model, as
listed in the first column of Table I. Two classes of Regge
models are shown in Fig. 3: on the one extreme, Fig. 3a
shows the behavior when particles are positioned at the
centers of the tetrahedra, while on the other, Fig. 3b shows
the behavior when they are at the midpoints of the
tetrahedral edges, right on the boundary of the region of
unconditional convergence.
There are several features to note from these graphs. The

evolution of all lattice models are well behaved and closed.
Moreover, the behavior of the approximations converge to
that of the FLRW universe as the number of particles is
increased, which is to be expected because the matter
content then becomes more dustlike. However, the Regge

models and the LW models converge from opposite direc-
tions. It is difficult to say a priori whether the LW
approximation or the Regge approximation is more repre-
sentative of the actual lattice universe: on the one hand, the
average matter density is reduced as the number of particles
is reduced, and this would weaken the gravitational inter-
action between particles, but on the other, the mass of each
particle gets increased, and this would strengthen the
interaction. However, comparison with exact initial value
data on the time-symmetric hypersurface seems to favor the
LW models [9]: using various measures for the lattice scale
factor alatt on such a hypersurface, Clifton et al. have shown
that the ratio alatt=aFLRW would always approach unity from
above as the number of lattice masses increases.

(a)

(b)

FIG. 3. The expansion rate of the universe’s volume dU=dt versus the volume U itself for the dust-filled FLRW universe, the three
different Regge models, and the three equivalent LW models. In the Regge models, the masses have been positioned (a) at the centers of
the tetrahedra and (b) at the midpoints of the tetrahedral edges. The Regge universe volume is given by the sum of the volumes of the
Cauchy surface’s constituent tetrahedra, while the LW universe volume is given by the volume of a 3-sphere with a radius equal to the
lattice universe scale factor aðτÞ. The universe’s total mass is the same across all universes.
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We note that there is a degree of ambiguity in choosing a
common measure with which to compare the two approx-
imations. It was demonstrated in [24] that CW Cauchy
surfaces can be embedded into 3-spheres in E4; the radius
of the embedding 3-sphere could serve as a measure of the
CW Cauchy surface’s scale factor, but it was shown that
there were multiple ways to define the embedding and
hence the radius, although each possible radius would
simply be a constant rescaling of the tetrahedral edge length
lðtÞ. Each radius implies a different 3-sphere volume,
which results in volume graphs of different magnitudes,
although regardless of which scaling is chosen, the graphs
would still remain closed and well behaved. Thus, it is
within the realm of possibility that the models are actually
equivalent and that the apparent difference is due to an
inappropriate choice of scaling.
However, we suspect that the principal factor behind the

two approximations’ discrepancy is the finite resolution of
the lattice cell’s geometry in the Regge models. We have
constructed Regge models where the entire geometry of
each cell has been reduced to one quantity, that of the
tetrahedral edge length; the cell’s interior geometry consists
uniformly of Minkowski space-time throughout, with no
hinges or extra edges to provide additional geometric
information, and such a model is clearly very coarse
grained. In contrast, LW models approximate each cell’s
interior geometry with Schwarzschild space-time, and,
although not perfect, this approximation should still be
more accurate than completely uniform Minkowski space-
time. One could perhaps fine-grain the Regge models by
further triangulating each lattice cell into smaller tetrahe-
dra; this would certainly introduce more edges and hence
more geometric information into each cell, although the
smaller tetrahedra would no longer be identical nor equi-
lateral. One algorithm for subdividing these tetrahedra
has been developed by Brewin [23]. Alternatively, one
might be able to construct a finer-grained 5-cell universe,
for instance, by distributing five massive particles in a
regular manner in a 600-tetrahedra Cauchy surface; it
remains to be seen whether such a regular distribution of
the masses can be obtained. Though assuming it is possible,
then each cell would now be associated with several edge
lengths rather than just one, and this would also provide
greater geometric information about each lattice cell.
Nevertheless, we see that even these coarse-grained models
can still reveal much qualitative information about the
lattice universe’s behavior, most notably its stability and its
closed evolution; thus we shall continue to use them to
study the lattice universe.
Our first method for increasing the number of edge

lengths per lattice universe effectively “spaces out” the
masses on the CW Cauchy surface so that each lattice
universe cell would consist of multiple Cauchy surface
cells. It may actually be easier to do this in Regge models of
flat and open lattice universes. The CW formalism should

readily be extendible to Cauchy surfaces based on the flat
and open Coxeter lattices described in Appendix A.
Because such Cauchy surfaces would extend indefinitely
outwards in all directions, it would be far easier to space out
the masses: for instance, in Cauchy surfaces based on the
flat cubic Coxeter lattice, one could easily place a particle at
the center of every nth cube for some suitably large n, and
each lattice universe cell would then consist of n3 Cauchy
surface cubes. In extending the CW formalism to these
other Coxeter lattices, it would also be interesting to see
what analogous regions of convergence and dual models
these new models would admit. For the moment though, we
leave such investigations to future work.
We shall henceforth work with universes where the

masses are located at the centers of the tetrahedra. This
would place the masses right in the middle of the region of
convergence. Furthermore, as mentioned above, this is the
only position in the tetrahedra where comoving masses
would also be following geodesics of the Regge space-time,
which is closest to what happens in an FLRW universe.

IV. PERTURBATIONS OF A SINGLE MASS

We shall now construct a universe where the magnitude
of a single central mass gets perturbed from M to M0. This
would induce a commensurate perturbation in the sur-
rounding geometry, specifically in the lengths of the edges
surrounding the perturbed mass. In general, there will be
several sets of edges, each with its own independent length,
and we must determine what those sets are. We begin
with the edges in the tetrahedron enclosing the perturbed
mass. The Cauchy surface will remain symmetric about this
single perturbed mass; therefore the enclosing tetrahedron
will still remain equilateral but with perturbed edge lengths

lð1Þi . We shall refer to this tetrahedron as a Type I
tetrahedron. Next, we consider the four tetrahedra that
share a face with the Type I tetrahedron. We shall refer to
these as Type II tetrahedra. These tetrahedra will no longer
be equilateral: they will each have an equilateral base in the
face shared with the Type I tetrahedron, but they will also
have three other edges identical to each other but different

from the lð1Þi edges. In the 5-tetrahedra model, these two
sets of edges are the only ones present, and we denote the

length of the second set by lð0Þi . In the 16- and 600-
tetrahredra models, we must keep going; we must next
consider the new sets of tetrahedra neighboring the ones
already considered. Each additional set may introduce a
new set of edges, and each additional set of edges will
generally have a length different from the lengths of all
other edges so far considered. Thus, there will be far more
than just two sets of edges in these models. For example,
the 16-tetrahedra model has four distinct edge lengths. One
might consider simplifying the model by constraining all

edges to have a common length lð0Þi apart from the edges lð1Þi
of the equilateral tetrahedron enclosing the perturbed mass;
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that is, one might attempt to localize all perturbation in
geometry to just this equilateral tetrahedron. We attempted
this but found that the resulting model was self-
inconsistent. Therefore, we cannot study all three models
in a general manner but must construct and examine
each one individually. We have chosen to focus only on
the 5-tetrahedra model as it is the most tractable, involving
only two distinct edge lengths.
We shall once again work with a coordinate system for

the tetrahedra’s 4-blocks, though each tetrahedral type
requires its own system. Since the Type I tetrahedron is
equilateral, we can use the same coordinates for its 4-block
as those in (10) and its Σiþ1 counterpart, although we must

replace li and liþ1 with lð1Þi and lð1Þiþ1, respectively; we shall
continue to label the lower tetrahedron’s vertices by A, B,
C, D and their upper counterparts by A0, B0, C0, D0.
For a Type II tetrahedron’s 4-block, we shall label the

vertices of the lower tetrahedron by A, B, C, E, with E
denoting the tetrahedron’s apex, and we shall denote their
counterparts in the upper tetrahedron by A0, B0, C0, E0;
vertices A, B, C are shared with the Type I tetrahedron in Σi
and A0, B0,C0 with the Type I tetrahedron in Σiþ1. We assign
to the lower tetrahedron the coordinates

A ¼
�
−
lð1Þi

2
;−

lð1Þi

2
ffiffiffi
3

p ; 0; 0

�
;

B ¼
�
lð1Þi

2
;−

lð1Þi

2
ffiffiffi
3

p ; 0; 0

�
;

C ¼
�
0;
lð1Þi ffiffiffi
3

p ; 0; 0

�
;

E ¼ ð0; 0; hi; 0Þ; ð45Þ
where we have introduced the symbol

hi ≔
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðlð0Þi Þ2 − 1

3
ðlð1Þi Þ2

r

to denote the length of the tetrahedron’s central axis.
By symmetry, the base A0B0C0 of the upper tetrahedron

should simply be a uniform expansion or contraction of the
lower tetrahedron’s base; there may also be a shift δzi in the
spatial direction orthogonal to the base, but that is all. This
shift would be determined by the lengths of the struts. Thus,
the upper base vertices A0, B0,C0 should have the coordinates

A0 ¼
�
−
lð1Þiþ1

2
;−

lð1Þiþ1

2
ffiffiffi
3

p ; δzi; ιδt
ð1Þ
i

�
;

B0 ¼
�
lð1Þiþ1

2
;−

lð1Þiþ1

2
ffiffiffi
3

p ; δzi; ιδt
ð1Þ
i

�
;

C0 ¼
�
0;
lð1Þiþ1ffiffiffi
3

p ; δzi; ιδt
ð1Þ
i

�
;

where δtð1Þi is the temporal shift of the upper base with

respect to the lower one. Both δzi and δtð1Þi can be deduced
from the fact that (i) struts AA0, BB0, CC0 are shared with the
Type I tetrahedron and must therefore have the same length
in both coordinate systems, and (ii) diagonals such as AB0,
AC0, BC0 are shared with the Type I tetrahedron and must
therefore have the same length in both coordinate systems.

From these two constraints, it can be deduced that δtð1Þi ¼
δti ¼ tiþ1 − ti and that δzi ¼ � 1

2
ffiffi
6

p δlð1Þi ; but, in the limit

whereM0 → M, we must recover the unperturbed model, so

we take δzi to be δzi ¼ − 1

2
ffiffi
6

p δlð1Þi .

The only constraint on apex E0 is that it lie a distance lð0Þi
from each of A0, B0, and C0. This is equivalent to the two
constraints that E0 lie at distance hiþ1 from the base’s center
and that the central axis connecting E0 to the base’s center
lie orthogonally to the base. As base A0B0C0 defines a two-
dimensional plane in a (3þ 1)-dimensional Minkowski
space-time, the subspace orthogonal to it would be a
(1þ 1)-dimensional plane, and the tetrahedron’s central
axis can be oriented along any direction in this plane.
Combined with the first constraint, the second constraint
implies that E0 will lie on a hyperbola in this (1þ 1)-
dimensional plane; exactly where on the hyperbola it lies
depends on the length of strut EE0, which need not be
identical to the length of AA0. Thus the axis of the upper
tetrahedron may in general be Lorentz boosted relative to
that of the lower tetrahedron.
Therefore, the upper vertices’ coordinates are given most

generally by

A0 ¼
�
−
lð1Þiþ1

2
;−

lð1Þiþ1

2
ffiffiffi
3

p ;−
δlð1Þi

2
ffiffiffi
6

p ; ιδti

�
;

B0 ¼
�
lð1Þiþ1

2
;−

lð1Þiþ1

2
ffiffiffi
3

p ;−
δlð1Þi

2
ffiffiffi
6

p ; ιδti

�
;

C0 ¼
�
0;
lð1Þiþ1ffiffiffi
3

p ;−
δlð1Þi

2
ffiffiffi
6

p ; ιδti

�
;

E0 ¼
�
0; 0; hiþ1 coshψ i −

δlð1Þi

2
ffiffiffi
6

p ; ιδti þ ιhiþ1 sinhψ i

�
;

ð46Þ

where ψ i is the relative boost between the upper and lower
tetrahedra’s axes.
However, as with the unperturbed model, we shall

require that all 4-blocks in the perturbed model have no
twist or shear as well. This implies that the world sheet
generated by each tetrahedral edge between Σi and Σiþ1

must be flat; in other words, the four vectors parallel to the
four sides of this world sheet must be coplanar. When this
requirement is imposed on any world sheet involving E0,
such as AEA0E0, we obtain the further constraint that

REGGE CALCULUS MODELS OF CLOSED LATTICE UNIVERSES PHYSICAL REVIEW D 93, 023502 (2016)

023502-13



0 ¼ Aψ − Bψ coshψ i þ Cψ sinhψ i; ð47Þ

where

Aψ ¼ hil
ð1Þ
iþ1;

Bψ ¼ hiþ1l
ð1Þ
i ;

Cψ ¼ hiþ1
_lð1Þi

�
hiþ1 −

lð1Þi

2
ffiffiffi
6

p
�
: ð48Þ

This constraint effectively determines ψ i, and solving it
leads to a quadratic equation with two solutions. However,

if we take the limit where lð0Þi → lð1Þi and δzi → − 1

2
ffiffi
6

p δlð1Þi ,

we expect to recover the 4-block of an equilateral tetrahe-
dron; in this limit, ψ i should vanish, and this only happens
for one of the solutions. Therefore, we require that

ψ i ¼ ln

2
64−Aψ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2
ψ þ C2

ψ − B2
ψ

q
Cψ − Bψ

3
75: ð49Þ

We note that because of the nonzero boost parameter ψ i,
the timelike hinges of this skeleton will be quadrilateral but
not necessarily trapezoidal. Indeed, the lengths of the struts
would not, in general, be identical: the length of EE0 would
be different. Therefore, we shall denote the areas and deficit
angles of quadrilateral hinges by Aquad

i and δquadi instead.
We also note that in the continuum time limit where
δti → 0, ψ i must become _ψ dt to leading order in dt; this
is because the relative boost between the lower and upper
tetrahedra must become infinitesimally small as the sepa-
ration between Cauchy surfaces tends to zero, and there-
fore, the zeroth order term of ψ i must be zero.
As mentioned earlier, Brewin has likened a choice of

strut lengths in the CW formalism to a choice of lapse
function in the ADM formalism and the choice of having
no twist or shear in the 4-blocks to a choice of shift
function. In the ADM formalism, both the lapse and shift
functions can be freely chosen independently of each other
throughout the Cauchy surface. Yet in this CW skeleton,
our choice of ψ i implies that if we freely specify the
common length of struts AA0, BB0, CC0, then the length of
EE0 would be completely determined; we do not have any
freedom to specify its length separately. We therefore see
that the choice of shift function here has constrained the
freedom to choose the lapse function to just the freedom to
choose a single strut length. Thus the CW formalism is not
completely analogous to the ADM formalism, at least for
global models.
The global Regge action for the perturbed lattice model

can now be expressed as

8πS ¼
X

i∈fquadrilateralhinges g
Aquad
i δquadi þ

X
i∈ftriangularhinges g

Atri
i δ

tri
i

− 8π
X

i∈fparticlesg
j∈f4-blocksg

Misij; ð50Þ

where sij is the path length for the mass of magnitudeMi in
the 4-block labeled j; when varied with respect to the struts
mk, it yields the Regge equation

0 ¼
X
i

∂Aquad
i

∂mk
δquadi − 8π

X
i∈fparticlesg
j∈f4-blocksg

Mi
∂sij
∂mk

; ð51Þ

where the first summation is still over all quadrilateral
hinges.

A. Global and local Regge equations

As mentioned in Sec. II, the global Regge equations can,
in certain cases, be related to the local equations through a
chain rule, and we have chosen to use such a chain rule
relationship to obtain the global Regge equations for the
perturbed lattice universe model. We shall therefore elabo-
rate now on this relationship.
As discussed above, local variation requires that each

4-block of the skeleton be fully triangulated. We have
already described in Sec. II how the triangulation of each
4-block is to be carried out. To understand how the
triangulation works more globally, we label the five vertices
of the 5-tetrahedra CW Cauchy surface Σi by A, B, C,D, E,
with E corresponding to the common apex of all nonequi-
lateral tetrahedra; each vertex in Σiþ1 is then labeled by the
same letter as its counterpart in Σi but with a prime.
Diagonals are chosen so that the letter of a diagonal’s vertex
in Σi alphabetically precedes the letter of the diagonal’s
vertex in Σiþ1; thus, it is actually the relative ordering of
the labels rather than the labels themselves that matter. In
the 5-tetrahedra model, this triangulation generates the 10
diagonals of AB0, AC0, AD0, AE0, BC0, BD0, BE0, CD0, CE0,
andDE0. This algorithm for choosing the diagonals ensures
that each 4-block gets properly triangulated into 4-sim-
plices; and indeed, the triangulation is consistent with the
4-block triangulation described earlier.
To relate the local and global Regge equations, it is

necessary that the global and local Regge actions be
identical. In our model, the Regge action will consist of
two components, one corresponding to

1

8π

X
i∈fhingesg

Aiδi

and another to
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X
i∈fparticlesg
j∈fblocksg

Misij:

We shall show that each of these components are identical
in the two actions and hence that the two actions are
themselves identical for the model we are considering.
We begin with the first component. In the global action,

there are two types of hinges: the quadrilateral timelike
hinges generated by the world sheets of the tetrahedral
edges and the triangular spacelike hinges corresponding to
the triangles of the tetrahedra in a Cauchy surface. In the
4-block described by (45) and (46), an example of the
quadrilateral hinge would be ABA0B0, and an example of
the triangular hinge would be ABC. In the local action,
there are three types of hinges. The diagonals split each
quadrilateral hinge into a pair of timelike triangular hinges,
and these pairs of timelike triangular hinges correspond to
the first type; an example pair would be ABB0 and AA0B0.
The second type are same triangular spacelike hinges as
in the global action. The third type correspond to isosceles
triangular hinges formed by two diagonals and one tetra-
hedral edge, an example being ABC0. These hinges have no
analogue in the global action. However, they do not depend
on the struts either, and as we shall be varying the action
with respect to the struts only, they will have no contri-
bution to the Regge equations; hence we shall ignore these
hinges. Since each quadrilateral hinge is required to be
planar, whether triangulated or not, the area of each
quadrilateral hinge will equal the sum of the areas of its
constituent timelike triangular hinges. Naturally, the space-
like triangular hinges will have the same areas in the global
and the local actions. Thus the hinge areas appearing in the
two actions are identical, and if the corresponding deficit
angles are identical, then the first component is identical in
the two actions.
After edge lengths of the same type have been set equal,

the deficit angles δAi and δBi of any triangular timelike
hinge do become identical to the deficit angle δquadi of the
original quadrilateral hinge; that is, δAi ¼ δBi ¼ δquadi .
Setting the edge lengths equal makes the two triangular
hinges be coplanar both with each other and with the
original quadrilateral hinge. Thus the 4-blocks meeting at
the triangular hinges would be flat, the unit normals of the
triangulated faces would be identical to the unit normals of
the original face, and the dihedral angles between the
triangulated faces would be identical to the dihedral angles
between the original faces. Since the number of faces
meeting at the triangulated hinge is the same as the
number of faces at the original hinge, the deficit angles
for the triangulated hinge and the original hinge are
identical.
The deficit angle of the spacelike triangular hinges are

also identical in the original and the triangulated skeletons;
this follows simply because the unit normals to the faces

meeting at the hinge will not change because of the
triangulation. Thus we can conclude that the first compo-
nent of the local and global actions are identical.
As for the second component, clearly the path through

the 4-block should not depend on whether the 4-block has
been triangulated or not. Hence the global and local form of
this component should also be identical; therefore the local
and global actions are indeed completely identical.
Since the two actions are effectively identical, we can

express the global Regge equation as a linear combination
of local equations through a chain rule

0 ¼ ∂S
∂mi

¼
X
j

∂S
∂ml

i

∂ml
i

∂mi
þ
X
j

∂S
∂dj

∂dj
∂mi

; ð52Þ

where ∂S=∂ml
i is a local variation with respect to a single

strut ml
i , with superscript l indicating that these struts are

to be considered as local rather than global struts, and
where ∂S=∂dj is a local variation with respect to a single
diagonal dj; the first summation is over all local struts and
the second is over all diagonals.
We shall examine the contribution of each summation in

(52) to the global Regge equation. First, however, we note
that as we are varying locally with respect to the struts,
there are two distinct sets of struts in our skeleton relevant
to local variation, one corresponding to the struts of the
Type I tetrahedron, and the other to the EE0 strut of the
Type II tetrahedron. The first set of struts all have the same
length, which we shall denote bymAA0

i since the set includes
strut AA0. The length is given by (12) as well, but with _li
replaced by _lð1Þi , that is, by

ðmAA0
i Þ2 ¼

�
3

8
ð_lð1Þi Þ2 − 1

�
δt2i : ð53Þ

The length of strut EE0 will be denoted by mEE0
i and is

given by

ðmEE0
i Þ2 ¼

�
hiþ1 coshψ i − hi −

1

2
ffiffiffi
6

p δlð1Þi

�
2

− ½δti þ hiþ1 sinhψ i�2: ð54Þ

We now examine the contribution of the first summation
in (52). We shall always choose the global strut lengthmi to
equal either mEE0

i or mAA0
i ; without loss of generality, let us

assume then that mi ¼ mAA0
i . Then it trivially follows that

∂mAA0
j =∂mi ¼ δij, which is clearlyOð1Þ to leading order in

dt when the continuum time limit is taken. If we substitute
for δti in (54) using (53), it can also be shown that the
leading order of ∂mEE0

j =∂mi will be at least Oð1Þ as well.
We shall be explicitly calculating ∂S=∂ml

i below, and at
the end of the calculation, we shall see that the leading
order of ∂S=∂ml

i is alsoOð1Þ. Therefore unless the second
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summation in (52) has negative leading order, the first
summation will definitely contribute to the leading order of
the global Regge equation.
We now turn to the second summation in (52). Our

skeleton has two diagonals, one triangulating quadrilateral

hinges generated by lð0Þi edges, and the other triangulating

quadrilateral hinges generated by lð1Þi edges. The first set of
hinges are the ones that involve vertices E and E0 in the
Type II tetrahedra’s 4-blocks, and an example of a diagonal
on such a hinge would be AE0; these diagonals have length
dAE

0
i given by

ðdAE0
i Þ2 ¼ 2

3
ðlð1Þi Þ2 − ðlð0Þi Þ2 þ ðmEE0

i Þ2

þ hi

�
2hiþ1 coshψ i −

1ffiffiffi
6

p δlð1Þi

�
: ð55Þ

An example of a diagonal on the second set of hinges
would be AB0, and these diagonals have length dAB

0
i

given by

ðdAB0
i Þ2 ¼ lð1Þiþ1l

ð1Þ
i þ ðmAA0

i Þ2: ð56Þ

It can be shown that

∂dAB0
i

∂mi
¼ ∂dAB0

i

∂mAA0
i

¼ mAA0
i

dAB
0

i

:

In the continuum time limit, where lð1Þi → lð1ÞðtÞ, we have
that mAA0

i =dAB
0

i → mAA0
i =lð1Þ, which is an OðdtÞ term. Thus,

∂dAB0
i =∂mi raises the leading order of the second summa-

tion in (52) by one. It can also be shown that in the
continuum time limit, the leading order term of ∂dAE0

j =∂mi

is at least OðdtÞ as well. Therefore ∂dj=∂mi will be at least
OðdtÞ to leading order for all diagonals.
So unless the leading order of ∂S=∂dj is negative, the

leading order of the second summation in (52) will be at
least OðdtÞ. Naturally, verifying that the leading order of
∂S=∂dj is not negative requires a direct calculation of
∂S=∂dj. However, such a calculation is beyond the scope
of this paper. Instead, we shall assume the conclusion. First,
if ∂S=∂dj had negative leading order, then the correspond-
ing Regge equation would diverge in the continuum time
limit; thus our model would break down. We are assuming
this is not the case. Second, we have found many
similarities between the Regge model we are studying
here and the parent Regge models of the Λ-FLRW universe
studied in [24]. In that paper, we similarly considered
the relationship between global and local Regge equations
through an essentially identical chain rule to (52). We found
the leading order of ∂dj=∂mi to be OðdtÞ as well for all
diagonals. We also found the leading order of ∂ml

i =∂mi to
be Oð1Þ; this followed trivially because all struts between

pairs of consecutive Cauchy surfaces had equal length, so
∂ml

i =∂mi would be unity for struts between the same pair
of surfaces. Finally, we found the leading order of ∂S=∂ml

i
to be Oð1Þ as well. Since the two models have identical
leading orders for three of the partial derivatives appearing
(52) and its analogue in [24], we suspect they would have
identical leading order for the final partial derivative,
∂S=∂dj. In [24], the order of this term was OðdtÞ, so
we suspect it would be the same here.
If this is true, then the second summation in (52) would

have a higher leading order than the first summation and
would therefore not contribute. As a result, the solutions
to 0 ¼ ∂S=∂ml

i would by themselves satisfy the global
Regge equation 0 ¼ ∂S=∂mi, much like the situation with
the Λ-FLRW Regge models in [24].

B. Particle trajectories

The final term of the Regge action (50) determines the
effect of the masses on the behavior of the universe. This
term depends on sij, the length of the trajectory followed by
the mass Mi through the 4-block labeled j; thus to fully
specify our Regge model, we must specify what trajectory
the masses will follow.
Ideally, we should like our masses to follow geodesics

throughout the entire universe and also be comoving with
respect to the Cauchy surfaces, as we expect this to be the
situation in the continuum universe. As mentioned earlier
on, this is the situation in the perfectly smooth FLRW
universe, where test particles comoving with respect to
constant-t Cauchy surfaces are also following geodesics of
the space-time. In the lattice universe, the point masses
should similarly be comoving with respect to the universe’s
Cauchy surfaces so as to preserve the lattice symmetries—
we do not expect the gravitational interactions between a
symmetric distribution of masses to give rise to an
asymmetric motion of the masses. Yet these particles
should also be following geodesics as well. However we
have seen that in the unperturbed Regge model, it is not
possible for the particle to be simultaneously comoving and
following geodesics across the entire space-time unless the
particles are positioned at the centers of the equilateral
tetrahedra. Even in CW approximations of the perfectly
homogeneous and isotropic FLRW space-times, comoving
test particles will not follow geodesics globally either
unless the particles are at the centers of the tetrahedra.
Consider, for example, test particles comoving with respect
to the centers of the triangles. These centers themselves
trace out piecewise linear trajectories as the underlying
CW skeleton is piecewise linear. Therefore, test particles
comoving with these points will follow the same piecewise
linear trajectories, deflecting every time they cross from
one Cauchy surface into the next. Only trajectories traced
out by the centers of the tetrahedra will have no deflection,
since the tetrahedra expand or contract uniformly about
their centers as they evolve, and this thereby leaves the
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tetrahedral centers spatially fixed with time. We note
though that each linear segment of a piecewise linear
trajectory will still be a local geodesic within the 4-block
it traverses because straight-line segments are always
geodesics according to the Minkowski metric. If we take
the continuum space-time limit of a CWapproximation to a
FLRW space-time, we expect to recover the continuum
FLRW space-time itself in which any comoving particle
will indeed follow geodesics as well. The reason only the
tetrahedral centers follow global geodesics is because
Cauchy surfaces of the CW skeleton are not perfectly
isotropic and homogeneous; thus, not all points on the
Cauchy surface have been “created equal.” If comoving
particles do not follow geodesics in CW approximations of
the perfectly homogeneous and isotropic FLRW space-
times, there is even less reason for them to follow geodesics
in approximations of the lattice universe, both perturbed
and unperturbed. Thus we shall only require the point
masses of the perturbed Regge lattice universe to be
comoving with respect to the Cauchy surfaces. But in
the continuum space-time limit, we do hope that these
comoving particles will indeed follow geodesics as well.
As mentioned previously, we have chosen to work with a

lattice universe where the masses would be comoving with
the centers of the tetrahedra when the universe is unper-
turbed. For the particle in the equilateral Type I tetrahedron,
the trajectory is straightforward: by symmetry, the particle
should remain, for its entire trajectory, at the tetrahedron’s
center. For particles in Type II tetrahedra, it is less clear
where the particles should be positioned because the
tetrahedra are no longer equilateral. The only clear sym-
metry here is in the equilateral base. We can therefore say
that a particle should remain above the center of the
equilateral base for the entirety of its trajectory. The issue
lies in fixing the particle’s position above the base. We
know that the vertices themselves should be comoving
with respect to the Cauchy surface, so we shall use them as
reference points to express the trajectory of the comoving
particle. The particle’s position pi on Cauchy surface Σi can
be expressed as

pi ¼ αðAþBþ CÞ þ βE; ð57Þ

where A, B, C, E are the position vectors of vertices A, B,
C, E, respectively, and where α and β are yet-to-be-
determined constants. For the particle to be inside the
tetrahedron, α and β must be non-negative and satisfy the
constraint 3αþ β ¼ 1. For the particle to be comoving, we
require that its position piþ1 on Cauchy surface Σiþ1 be
given by (57) as well, but with vectors A, B, C, E replaced
by A0, B0, C0, E0, respectively. In the 4-block between Σi
and Σiþ1, the particle then propagates in a straight line from
pi to piþ1, and such a trajectory is considered comoving
with respect to the Cauchy surfaces.

There is one situation where there is clearly a unique

choice for α and β. Should lð1Þi become equal to lð0Þi at any
moment, then the corresponding tetrahedron will be equi-
lateral; we would then require the particle to lie at the
tetrahedron’s center, which means α and β must be 1

4
at this

moment. Yet based on our definition of comoving trajec-
tories, α and β must be constant over the particle’s entire
trajectory. Therefore, α and β must be 1

4
over the particle’s

entire trajectory. However, we shall take α and β to be 1
4
for

all particles, regardless of whether their tetrahedra become
equilateral or not. Such a choice would place the particles at
the tetrahedra’s centroids, which would in some sense
generalize our requirement that the particles be at the
tetrahedra’s centers.

C. Geometric quantities for the Regge equation

We now turn to deriving the geometric quantities relevant
for the Regge equation. From (51), it is clear that we need
to derive three types of quantities: the varied areas of the
timelike hinges, ∂Ai=∂mk; the corresponding deficit angles
δi, or equivalently, the dihedral angle θi between neighbor-
ing faces; and the varied lengths of the particles’ trajectories
across 4-blocks, ∂sij=∂mk.
We shall be taking the continuum time limit of these

quantities so that we can express the Regge equation in its
continuum time form. Thus, we shall be needing the
continuum time form of the lengths and the boost param-
eters; these are given by

lð0Þi → lð0ÞðtÞ;
lð0Þiþ1 → lð0Þ þ _lð0ÞdtþOðdt2Þ;
lð1Þi → lð1ÞðtÞ;
lð1Þiþ1 → lð1Þ þ _lð1ÞdtþOðdt2Þ;
ψ i → _ψdtþOðdt2Þ;

dAE
0

i → lð0Þ þOðdtÞ;
dAB

0
i → lð1Þ þOðdtÞ;

mEE0
i → _mEE0

dtþOðdt2Þ;
mAA0

i → _mAA0
dtþOðdt2Þ;

where

_h ≔
lð0Þ_lð0Þ − 1

3
lð1Þ_lð1Þ

h
; ð58Þ

_mAA0 ≔
�
3

8
ð_lð1ÞÞ2 − 1

�1
2

; ð59Þ

_mEE0 ≔
��

1

2
ffiffiffi
6

p _lð1Þ − _h

�
2

− ðh _ψ þ 1Þ2
�1

2

; ð60Þ
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_ψ ≔
_hlð1Þ − h_lð1Þ

h_lð1Þ½h − lð1Þ
2
ffiffi
6

p �
; ð61Þ

and where h ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðlð0ÞÞ2 − 1

3
ðlð1ÞÞ2

q
denotes the continuum

time limit of hi.
As mentioned previously, our skeleton has two types of

timelike hinges corresponding to the world sheets of lð0Þi

and lð1Þi edges. We shall refer to the quadrilateral hinge

generated by lð1Þi as a Type I hinge and its triangular
components as hinges A1 and B1, counterparts to triangles
A and B, respectively, in Fig. 4. We can use Heron of
Alexandria’s formula to express these triangular hinges’
areas in terms of their edge lengths. Hinge A1 has area

AA1
i ¼ 1

4
½2½ðlð1Þi Þ2ðdAB0

i Þ2 þ ðlð1Þi Þ2ðmAA0
i Þ2þðdAB0

i Þ2ðmAA0
i Þ2�

−½ðlð1Þi Þ4 þ ðdAB0
i Þ4 þ ðmAA0

i Þ4��12; ð62Þ

and, when varied with respect to mAA0
i , yields

∂AA1
i

∂mAA0
i

¼ mAA0
i

8AA1
i

½ðlð1Þi Þ2 þ ðdAB0
i Þ2 − ðmAA0

i Þ2�12: ð63Þ

Hinge B1 has area

AB1
i ¼ 1

4
½2½ðlð1Þiþ1Þ2ðdAB

0
i Þ2 þ ðlð1Þiþ1Þ2ðmAA0

i Þ2þðdAB0
i Þ2ðmAA0

i Þ2�

−½ðlð1Þiþ1Þ4 þ ðdAB0
i Þ4 þ ðmAA0

i Þ4��12; ð64Þ

and, when varied with respect to mAA0
i , yields

∂AB1
i

∂mAA0
i

¼ mAA0
i

8AB1
i

½ðlð1Þiþ1Þ2 þ ðdAB0
i Þ2 − ðmAA0

i Þ2�12: ð65Þ

It can be shown that in the continuum time limit, the varied
areas become

∂AA1

∂mAA0 ¼ ∂AB1

∂mAA0 ¼ lð1Þ

2
_mAA0

�
1

8
ð_lð1ÞÞ2 − 1

�
−1
2

; ð66Þ

that is, ∂AA1=∂mAA0
and ∂AB1=∂mAA0

are identical to at
least leading order.

We shall refer to the quadrilateral hinge generated by lð0Þi
as a Type II hinge and its triangular components as hinges
A2 and B2, also counterparts to triangles A and B,
respectively, in Fig. 4. Hinge A2 has area

AA2
i ¼ 1

4
½2½ðlð0Þi Þ2ðdAE0

i Þ2 þ ðlð0Þi Þ2ðmEE0
i Þ2þðdAE0

i Þ2ðmEE0
i Þ2�

−½ðlð0Þi Þ4 þ ðdAE0
i Þ4 þ ðmEE0

i Þ4��12; ð67Þ

and, when varied with respect to mEE0
i , yields

∂AA2
i

∂mEE0
i

¼ mEE0
i

8AA2
i

½ðlð0Þi Þ2 þ ðdAE0
i Þ2 − ðmEE0

i Þ2�12: ð68Þ

Hinge B2 has area

AB2
i ¼ 1

4
½2½ðdAE0

i Þ2ðlð0Þiþ1Þ2þðmAA0
i Þ2ðlð0Þiþ1Þ2þðdAE0

i Þ2ðmAA0
i Þ2�

−½ðlð0Þiþ1Þ4þðdAE0
i Þ4þðmAA0

i Þ4��12; ð69Þ

and, when varied with respect to mAA0
i , yields

∂AB2
i

∂mAA0
i

¼ mAA0
iþ1

8AB2
i

½ðlð0Þiþ1Þ2 þ ðdAE0
i Þ2 − ðmAA0

i Þ2�12: ð70Þ

It can be shown that in the continuum time limit, the varied
areas become

∂AA2
i

∂mEE0
i

→
∂AA2

∂mEE0

¼ lð0Þ

2
_mEE0

�
1

3

�
lð1Þ

lð0Þ

�
2
�

_lð1Þ

2
ffiffiffi
6

p − _h

�2

− ðh _ψ þ 1Þ2
�−1

2

þOðdtÞ ð71Þ

and

FIG. 4. A diagonal di divides a timelike quadrilateral hinge into
a lower and upper triangular hinge, labeled A and B, respectively.
The hinge has been represented with the generic tetrahedral edge

lengths of li and liþ1; these would equal lð0Þi and lð0Þiþ1,

respectively, or lð1Þi and lð1Þiþ1 according to the type of hinge being
considered.
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∂AB2
i

∂mAA0
i

→
∂AB2

∂mAA0

¼ lð0Þ

2
_mAA0

�
1

3

�
lð1Þ

lð0Þ

�
2
��

_lð1Þ

2
ffiffiffi
6

p − _h

�2

− ð_lð0ÞÞ2
�

−
�

_lð1Þ

2
ffiffiffi
6

p − _hþ h

lð0Þ
_lð0Þ

�2

þ ð _mAA0 Þ2
�
−1
2 þOðdtÞ:

ð72Þ

Since the Cauchy surface is no longer composed solely
of equilateral tetrahedra, we must use (6) to calculate the
hinges’ deficit angles. Each 4-block will contribute one
dihedral angle to each of its hinges. The Type I tetrahe-
dron’s 4-block will contribute the same dihedral angle to all
of its hinges: the tetrahedron is equilateral, so all of its
associated A1 hinges are geometrically identical, as are all
of its B1 hinges; moreover, when all edges are constrained
to be identical, each pair of A1 and B1 hinges become
coplanar, as mentioned previously, and the unit normals to
the two faces meeting at A1 become identical to the unit
normals to the two faces meeting at B1. Thus all dihedral

angles become identical, and this angle θð0Þi is given by (23)

but with _li replaced by _l
ð1Þ
i . In the continuum time limit, we

have that θð0Þi → θð0Þ, and θð0Þ is then given by (28) but with
_l replaced by _lð1Þ; that is, θð0Þ is given by

cos θð0Þ ¼ 1þ 1
8
ð_lð1ÞÞ2

3 − 1
8
ð_lð1ÞÞ2 þOðdtÞ: ð73Þ

The 4-block of a Type II tetrahedron has four distinct

types of hinges: a pair of A1 and B1 hinges for each lð1Þi

edge and a pair of A2 and B2 hinges for each lð0Þi edge. We
found that all hinges of the same type had the same
dihedral angle, even though they are not entirely identical
because of the way the Regge skeleton is triangulated.
Additionally, we found that A1 hinges and B1 hinges had
the same dihedral angle to leading order in the continuum
time limit. Therefore in the continuum time limit, the 4-
block of a Type II tetrahedron will contribute three
distinct dihedral angles, which we shall denote θð1Þ,
θð2Þ, and θð3Þ for A1, A2, and B2, respectively. Each
dihedral angle has been calculated by taking the scalar
product of the unit normals to the two faces meeting at the
corresponding hinge.
One example of an A1 hinge is ABB0, which is shared

with the Type I tetrahedron’s 4-block. The two faces
meeting at this hinge, ABB0C0 and ABB0E0, are separated

by a dihedral angle of θð1Þi . To leading order in the
continuum time limit, this angle is given by

cos θð1Þ ¼
��

1

8
ð_lð1ÞÞ2 − 3

�
lð1Þ −

1

2

ffiffiffi
3

2

r
ð_lð1ÞÞ2h

���
1

8
ð_lð1ÞÞ2 − 3

���
9 −

7

8
ð_lð1ÞÞ2

�
ðlð1ÞÞ2 þ 3ðð_lð1ÞÞ2 − 12Þðlð0ÞÞ2

−
ffiffiffi
3

2

r
hð_lð1ÞÞ2lð1Þ

��
−1
2 þOðdtÞ: ð74Þ

The B1 counterpart hinge is AA0B0, and as mentioned previously, we found the two faces meeting on this hinge, AA0B0C0
and AA0B0E0, to be separated by the same dihedral angle as well at lowest order in dt.
An example of an A2 hinge is AEE0. The two faces meeting at this hinge, ABEE0 and ACEE0, are separated by a dihedral

angle of θð2Þi . This angle is given by

cos θð2Þi ¼ 1

2

½ðlð0Þi Þ2 − 1
2
ðlð1Þi Þ2�ðmEE0

i Þ2 − h2i ½hiþ1 coshψ i − hi −
δlð1Þi

2
ffiffi
6

p �2

½ðlð0Þi Þ2 − 1
4
ðlð1Þi Þ2�ðmEE0

i Þ2 − h2i ½hiþ1 coshψ i − hi −
δlð1Þi

2
ffiffi
6

p �2
;

and in the continuum time limit, this expression becomes

cos θð2Þ ¼ 1

2

½ðlð0ÞÞ2 − 1
2
ðlð1ÞÞ2�ð _mEE0 Þ2 − h2½ _h − _lð1Þ

2
ffiffi
6

p �2

½ðlð0ÞÞ2 − 1
4
ðlð1ÞÞ2�ð _mEE0 Þ2 − h2½ _h − _lð1Þ

2
ffiffi
6

p �2
þOðdtÞ: ð75Þ

Finally, the B2 counterpart to the above A2 hinge is AA0E0. The two faces meeting here, AA0B0E0 and AA0C0E0, are
separated by a dihedral angle of θð3Þi . This angle is given by
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cos θð3Þi ¼
2½1

6
lð1Þiþ1

_lð1Þi − hiþ1ð
_lð1Þi

2
ffiffi
6

p coshψ i þ sinhψ iÞ�
2
− ½ðlð1Þiþ1Þ2 − 2ðlð0Þiþ1Þ2�½18 ð_lð1Þi Þ2 þ 1�

½ðlð1Þiþ1Þ2 − 4ðlð0Þiþ1Þ2�½18 ð_lð1Þi Þ2 − 1� þ 4½ 1
12
lð1Þiþ1

_lð1Þi þ hiþ1ð
_lð1Þi

2
ffiffi
6

p coshψ i þ sinhψ iÞ�
2
;

and in the continuum time limit, this expression becomes

cos θð3Þ ¼
2½1

6
lð1Þ − 1

2
ffiffi
6

p h�2ð_lð1ÞÞ2 − ½ðlð1ÞÞ2 − 2ðlð0ÞÞ2�½1
8
ð_lð1ÞÞ2 þ 1�

½ðlð1ÞÞ2 − 4ðlð0ÞÞ2�½1
8
ð_lð1ÞÞ2 − 1� þ 4½ 1

12
lð1Þ þ 1

2
ffiffi
6

p h�2ð_lð1ÞÞ2 þOðdtÞ: ð76Þ

The last geometric quantity we require is the variation
∂sij=∂mk of the particle’s path length sij through a 4-block
with respect to each strut length mk. Between a pair of
Cauchy surfaces Σi and Σiþ1, there are only two distinct
types of path lengths: one corresponds to the path of the
unperturbed masses, and we shall denote this path length by
si; the other corresponds to the path of the perturbed mass,
and we shall denote this path length by s0i. It can be shown
that varying si with respect to each of the relevant struts and
then taking the continuum time limit yields

∂s
∂mA ¼ ∂s

∂mB ¼ ∂s
∂mC ¼ 1

4

_mAA0

_s0

�
1

4
h _ψ þ 1

�
þOðdtÞ

ð77Þ

and

∂s
∂mE ¼ 1

4

_mEE0

_s0

1
4
h _ψ þ 1

h _ψ þ 1
þOðdtÞ; ð78Þ

where mX denotes the length, in the continuum time limit,
of the strut attached to lower vertexX, and where _s0 denotes
the quantity

_s0 ≔
��

1

4
_h −

_lð1Þ

2
ffiffiffi
6

p
�2

−
�
1

4
h _ψ þ 1

�
2
�1

2

: ð79Þ

This latter quantity is related to the continuum time limit of
si, where si → s as δti → 0, through the Taylor expansion

s ≈ _s0dtþOðdt2Þ: ð80Þ

The expansion has no zeroth order term because as δti → 0,
the separation between Cauchy surfaces becomes infini-
tesimal, and therefore the particle’s path length from one
surface to the next would become infinitesimal as well. It
can also be shown that varying s0i with respect to each of the
struts and then taking the continuum time limit yields

∂s0
∂mA ¼ ∂s0

∂mB ¼ ∂s0
∂mC ¼ ∂s0

∂mD ¼ −
ι

4
_mAA0

: ð81Þ

The derivation of these results has been explained at length
in Appendix B.

D. Solving the Regge equations

Having now determined all relevant geometric quan-
tities, we can now substitute them into (51) to obtain the
corresponding Regge equations. As we have two distinct
types of struts, locally varying the Regge action will lead to
two distinct equations,

X
i

∂Ai

∂mEE0
k

δi ¼
X
i;j

8πMi
∂sij
∂mEE0

k

; ð82Þ

X
i

∂Ai

∂mAA0
k

δi ¼
X
i;j

8πMi
∂sij
∂mAA0

k

: ð83Þ

We can directly obtain the continuum time limit of these
equations by substituting in the continuum-time form of the
geometric quantities, and this is how we shall proceed.
We begin with the first equation. Between each pair of

consecutive Cauchy surfaces, there is only one strut with
length mEE0

k , namely the strut EE0 in the Type II tetrahe-
dron’s 4-block. Thus the only relevant geometric quantities
are those involving strut EE0 and vertex E. We begin by
working out the left-hand side of (82), starting with the
quantity ∂Ai

∂mEE0
k

. The only edges meeting at vertex E are AE-

type edges, all of which have length lð0Þi . Thus the only
hinges meeting at strut EE0 are hinges like AEE0, what we
have called A2 hinges above; for each of these hinges, ∂Ai

∂mEE0
k

is given by (71) in the continuum time limit. Next, we
consider the corresponding deficit angle. In the 5-tetrahedra
model, three faces meet at each hinge, and hence three
dihedral angles contribute to the hinge’s deficit angle. The
only dihedral angle at A2 hinges is θð2Þ, which is given by
(75) in the continuum time limit; thus the deficit angle is
δi ¼ 2π − 3θð2Þ. We finally perform the summation on the
left-hand side of (82). Because ∂Ai

∂mEE0
k

δi is identical for all

hinges meeting at EE0, performing the summation is
equivalent to multiplying this term by the number of hinges
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at EE0. As there are four edges meeting at vertex E, there
can only be four hinges.
Next, we consider the right-hand side of (82). There are

four tetrahedra meeting at vertex E, and each carry an
unperturbed mass M; thus Mi ¼ M for all i. Since all four
masses and all four tetrahedra are identical, the quantity
∂sij

∂mEE0
k

will be identical for all i as well. When index j ¼ k, its

continuum time form is given by (78); otherwise it is zero.

Because Mi
∂sij

∂mEE0
k

is identical for all i, performing the

summation on the right-hand side of (82) is equivalent

to multiplying M ∂sij
∂mEE0

k

by 4.

Finally we substitute everything into (82) to obtain the
constraint equation

lð0Þð2π − 3θð2ÞÞ

¼ 4πM
1
4
h _ψ þ 1

_s0

�
1

3

�
lð1Þ

lð0Þ

�
2
� _lð1Þ

2
ffiffi
6

p − _h

h _ψ þ 1

�2

− 1

�1
2

: ð84Þ

We next consider the second Regge equation (83). Struts
of length mAA0

are connected to the four vertices labeled A,
B, C, D in the Type I tetrahedron. As we shall see, varying
any of the four associated struts will lead to the same Regge
equation. We begin with the left-hand side of (83) as well.
Each of the four vertices has four tetrahedral edges attached
to it: three edges are attached to the three other vertices in
the tetrahedron and have length lð1Þ; the fourth is attached to
vertex E of a Type II tetrahedron and has length lð0Þ. Each
of the four edges generates a pair of timelike triangular
hinges, one of which is attached to the vertex’s strut. The
length-lð0Þ edge contributes hinges like AA0E0 in a Type II
tetrahedron’s 4-block, what we have called B2 hinges
above, and for such hinges, ∂Ai

∂mAA0
k

is given by (72). The

other three hinges correspond to either A1 or B1 hinges,
and in either case, ∂Ai

∂mAA0
k

is given by (66). Once again, the

deficit angles at each hinge involve three dihedral angles.
At a B2 hinge, the only relevant dihedral angle is θð3Þ,
which is given by (76). So a B2 hinge has a deficit angle of
δi ¼ 2π − 3θð3Þ. At A1 and B1 hinges, the relevant dihedral
angles are θð0Þ and θð1Þ. In general, each dihedral angle at a
hinge comes from a 4-block meeting at the hinge: each
4-block has two faces meeting at the hinge, and the dihedral
angle contributed by the 4-block would be the dihedral
angle between these two faces. Additionally, each 4-block
is generated by a tetrahedron attached to the edge that
generates the hinge. So in the case of A1 and B1 hinges,
each length-lð1Þ edge is always attached to the Type I
tetrahedron and to two Type II tetrahedra. The 4-block of
the Type I tetrahedron contributes a single θð0Þ to the
hinge’s deficit angle, and the two Type II tetrahedra each
contribute a θð1Þ angle, so the deficit angle of both A1 and

B1 hinges is δi ¼ 2π − θð0Þ − 2θð1Þ. Combining the con-
tributions from all four hinges, we can express the left-hand
side of (83) as

X
i

∂Ai

∂mAA0
k

δi

¼ 3

2
lð1Þ _mAA0

�
1

8
ð_lð1ÞÞ2 − 1

�
−1
2ð2π − θð0Þ − 2θð1ÞÞ

þ lð0Þ

2
_mAA0

�
1

3

�
lð1Þ

lð0Þ

�
2
��

_lð1Þ

2
ffiffiffi
6

p − _h

�2

− ð_lð0ÞÞ2
�

−
�

_lð1Þ

2
ffiffiffi
6

p − _hþ h

lð0Þ
_lð0Þ

�2

þ ð _mAA0 Þ2
�
−1
2ð2π − 3θð3ÞÞ:

We now move on to the right-hand side of (83). Varying
the strut length will affect the trajectory length sij of four
neighboring masses. One of these will be the perturbed
mass of magnitude M0 while the other three will be masses
of magnitude M. Thus the right-hand side will be

X
ij

8πMi
∂sij
∂mAA0

k

¼ 8π

�
M0 ∂s0

∂mA þ 3M
∂s
∂mA

�
;

with the quantity ∂s0
∂mA given by (81) and ∂s

∂mA by (77).
Finally substituting everything into (83), we obtain

4π

�
M0 þ ι3M

1
4
h _ψ þ 1

_s0

�

¼ 3lð1Þ
�
1 −

1

8
ð_lð1ÞÞ2

�
−1
2ð2π − θð0Þ − 2θð1ÞÞ

þ lð0Þ
��

_lð1Þ

2
ffiffiffi
6

p − _hþ h

lð0Þ
_lð0Þ

�2

− ð _mAA0 Þ2

−
1

3

�
lð1Þ

lð0Þ

�
2
��

_lð1Þ

2
ffiffiffi
6

p − _h

�2

− ð_lð0ÞÞ2
��−1

2

ð2π − 3θð3ÞÞ;

ð85Þ

where the quantity ι=_s0 appearing on the left-hand side
would actually be real; this follows because if the path
length s of the unperturbed particles is timelike, then s
would have to be imaginary, and by virtue of its relation-
ship to _s0 through Taylor expansion (80), _s0 would have to
be imaginary as well. We note that both equations (84)
and (85) came from the Oð1Þ term of the Regge equations
0 ¼ ∂S

∂mEE0 and 0 ¼ ∂S
∂mAA0 ; thus, the Regge equations areOð1Þ

to leading order, as claimed in Sec. IVA, when we were
relating the local and global Regge equations through chain
rule (52).
These Regge equations however involve both lð0Þ and lð1Þ

in a nonlinear manner, which makes solving for them
difficult. We shall therefore linearize these and all
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subsequent equations by performing a perturbative expan-
sion up to first order in δM ≔ M0 −M. Under this
expansion, we must have that

lð0Þ ≈ lþ δlð0Þ;

_lð0Þ ≈ _lþ δ_lð0Þ;

lð1Þ ≈ lþ δlð1Þ;

_lð1Þ ≈ _lþ δ_lð1Þ;

ψ ≈ δψ ;

_ψ ≈ δ _ψ ;

θðiÞ ≈ θ þ δθi for i ¼ 0; 1; 2; 3;

as the zeroth-order terms must match the corresponding
quantities for the unperturbed model. The zeroth-order
angle θ is given by relation (28).
It can then be shown that the zeroth-order terms for both

Regge equations yield

l ¼ 4πM
2π − 3θ

�
1 −

1

8
_l2
�1

2

; ð86Þ

which is equivalent to the unperturbed Regge equation (30)
for the 5-tetrahedra model with the masses at the tetrahedral
centers: for the 5-tetrahedra model, we would haveNp ¼ 5,
N ¼ 10, and n ¼ 3, and since the masses are at the
tetrahedral centers, we would have v2 ¼ 0, because we
recall that v is the ratio between jvij, the distance of a mass
to its tetrahedron’s center as given by (15), and li, the
tetrahedral edge length. By using (29) to substitute for _l, we
can parametrize l entirely in terms of θ, yielding

l ¼ 4
ffiffiffi
2

p
πM

2π − 3θ
tan

�
1

2
θ

�
: ð87Þ

An expression for δ _ψ can be deduced by taking the
perturbative expansion of _ψ as given by (61); we thus
obtain

δ _ψ ¼
ffiffiffi
6

p

l2_l
½lðδ_lð0Þ − δ_lð1ÞÞ − _lðδlð0Þ − δlð1ÞÞ�: ð88Þ

The quantities δθi can be deduced from the perturbative
expansions of relations (73) to (76). The zeroth-order terms
of these relations are all identical to (28), as expected. The
first-order terms yield

δθ0 ¼ −
δ_lð1Þ

4
ffiffiffi
2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3 cos θ − 1

1 − cos θ

r
ð1þ cos θÞ; ð89Þ

δθ1 ¼ −
δ_lð1Þ

4
ffiffiffi
2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3 cos θ − 1

1 − cos θ

r
ð1þ cos θÞ

þ 1

8
ffiffiffi
2

p ð2π − 3θÞ
πM

ð1þ cos θÞðδlð0Þ − δlð1ÞÞ; ð90Þ

δθ2 ¼
ð2π − 3θÞ
4

ffiffiffi
2

p
πM

�
1þ cos θ
1 − cos θ

�
ð2 cos θ − 1Þðδlð0Þ − δlð1ÞÞ

−
1

4
ffiffiffi
2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3 cos θ − 1

1 − cos θ

r
ð1þ cos θÞð2δ_lð0Þ − δ_lð1ÞÞ

þ 4ffiffiffi
3

p πM
ð2π − 3θÞ ð3 cos θ − 1Þδ _ψ ; ð91Þ

δθ3 ¼ −
ð2π − 3θÞ
4

ffiffiffi
2

p
πM

�
1þ cos θ
1 − cos θ

�
cos θðδlð0Þ − δlð1ÞÞ

−
δ_lð1Þ

4
ffiffiffi
2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3 cos θ − 1

1 − cos θ

r
ð1þ cos θÞ; ð92Þ

where we have made use of (29) and (87) to express these
as functions of θ. We note that only δθ2 depends upon the
boost parameter ψ. If we substitute in relation (88) for δ _ψ,
then δθ2 becomes

δθ2 ¼ −
1

4
ffiffiffi
2

p
�ð2π − 3θÞ

πM

�
1þ cos θ
1 − cos θ

�
cos θðδlð0Þ − δlð1ÞÞ

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3 cos θ − 1

1 − cos θ

r
ð1þ cos θÞδ_lð1Þ

�
; ð93Þ

and we note that δ_lð0Þ has now dropped out of this
expression; in fact, now none of the angle perturbations
depend on δ_lð0Þ.
From the perturbative expansion of (84), the first-order

term yields

δlð0Þð2π − 3θÞ − 3lδθ2

¼ −
πMffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 1

8
_l2

q 1

2
_l

�
_l
l
ðδlð0Þ − δlð1ÞÞ þ δ_lð1Þ

�
; ð94Þ

where we have substituted for δ _ψ using (88), and from the
perturbative expansion of (85), the first-order term yields

4πδM

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1−

1

8
_l2

r
¼ðδlð0Þ þ3δlð1ÞÞð2π−3θÞ

−3lðδθ0þ2δθ1þδθ3Þ

þð2π−3θÞ
1− 1

8
_l2

�
1

8
_l2ðδlð0Þ−δlð1ÞÞþ1

2
l_lδ_lð1Þ

�
:

ð95Þ

We note that none of these relations depend on δ_lð0Þ either.
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In the unperturbed model, we used the dihedral angle θ
to parametrize _l through relation (29). We shall do some-
thing similar here and parametrize δ_lð1Þ with respect to one
of the angle perturbations. It is easiest to do this with
relation (89), which then yields

δ_lð1Þ ¼ −4
ffiffiffi
2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − cos θ
3 cos θ − 1

r
δθ0

ð1þ cos θÞ : ð96Þ

Since none of the angle perturbations depend on δ_lð0Þ,
a similar parametrization is not possible for δ_lð0Þ.

However, the first-order terms (94) and (95) of the two
Regge equations (84) and (85) do not depend on
δ_lð0Þ anyway, so such a parametrization of δ_lð0Þ is not
necessary.
Using relations (89), (90), (93), and (92) to substitute for

δθ0, δθ1, δθ2, δθ3, relation (96) to substitute for δ_lð1Þ, and
relations (87) and (29) to substitute for l and _l, we can now
solve (94) and (95) for δlð0Þ and δlð1Þ and express them
exclusively in terms of the parameters θ and δθ0. We
find that

δlð0Þ ¼ 4
ffiffiffi
2

p
πM

3ð2π − 3θÞ
�
2 sin θ

�
1þ 2 cos θ
1þ cos θ

�
þ ð2π − 3θÞ

�
−1
�
δM
M

�
1− cos θ
1þ cos θ

�1
2

�
6 sin θ

�
cos θ

1þ cos θ

�
þ ð2π − 3θÞ

�
3 cos θ − 1

1þ cos θ

��

þ 3δθ0
ð2π − 3θÞ

1

1þ cos θ
½3 sin θþ ð2π − 3θÞ�

�
2 sin θ

�
1þ 2 cos θ
1þ cos θ

�
þ ð2π − 3θÞ

��
ð97Þ

and that

δlð1Þ ¼ 4
ffiffiffi
2

p
πM

3ð2π − 3θÞ
�
2 sin θ

�
1þ 2 cos θ
1þ cos θ

�
þ ð2π − 3θÞ

�
−1
�
δM
M

�
1 − cos θ
1þ cos θ

�1
2

�
6 sin θ

�
cos θ

1þ cos θ

�
þ ð2π − 3θÞ

�

þ 3δθ0
ð2π − 3θÞ

1

1þ cos θ
½3 sin θ þ ð2π − 3θÞ�

�
2 sin θ

�
1þ 2 cos θ
1þ cos θ

�
þ ð2π − 3θÞ

��
: ð98Þ

Finally, we note that our two parameters θ and δθ0 are
not independent of each other; rather, both are functions of
the underlying time parameter t. Therefore, if one param-
eter evolves, so must the other. We can relate the two
parameters to t through the system of differential equations

_l ¼ d
dt

l; ð99Þ

δ_lð1Þ ¼ d
dt

δlð1Þ; ð100Þ

where the left-hand side denotes the quantities given by (29)
and (96), while the right-hand side denotes the explicit
differentiation of (87) and (98) with respect to t. The first
equation involves only θ; it can be solved on its own to yield
θðtÞ. This can then be substituted into the second equation to
give a differential equation for δθ0. We shall solve these
equations numerically. To determine a unique solution,
though, we must also specify a set of initial conditions:
we shall require the perturbed model to obey the initial value
equation at its moment of time symmetry. This equation will
be explained in the next section, and it implies specific
conditions on θ and δθ0 which we shall derive.
The range of the parameter t will be constrained by the

requirement that all struts remain timelike. As this con-
straint depends on δM, the resulting range of t will also
depend on δM.

Before leaving this section, we wish to remark on an
advantage that local variation has afforded over global
variation. For each model, local variation has yielded a pair
of Regge equations that, when expanded perturbatively,
gave three distinct equations: an identical equation from
their zeroth-order terms and two distinct equations from
their first-order terms. Had we directly varied the action
globally instead, we would only have obtained one Regge
equation corresponding to a linear combination of the two
local Regge equations, and the perturbative expansion of
this global equation would give just two independent
equations. Thus local variation has provided us with an
extra independent equation, allowing us to specify one
more of the five quantities, l, _l, δlð0Þ, δlð1Þ, δ_lð1Þ, that we
needed to solve for. This has allowed us to pick one unique
solution out of many in the solution space of the global
Regge equations.

V. INITIAL VALUE EQUATION FOR
PERTURBED MODELS

We now have a set of equations, in (99) and (100),
that should determine the entire Regge skeleton from a
set of initial conditions on θ and δθ0. However, the
question remains as to what initial conditions would be
appropriate. To answer this, we shall consider the analo-
gous (3þ 1)-formulation of general relativity wherein the
entire space-time is similarly determined by evolving
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forwards in time from some Cauchy surface Σ0 with initial
data; naturally, the evolution equation would be derived
from the Einstein field equations. It has been shown [25]
that, for such a formulation, the required initial data
consists of the first and second fundamental forms, h
and χ: the former corresponds to the projection of the
metric g into Σ0 and effectively determines the three-
dimensional intrinsic curvature of Σ0; the latter effectively
determines the extrinsic curvature of Σ0 within the overall
space-time.
However, for this initial data to be consistent with the

Einstein field equations, there is a set of constraint
equations that it must satisfy. Let us express the Einstein
field equations in the form

G ¼ 8πT;

where G is the Einstein tensor and T the stress-energy
tensor. Let n denote a field of normalized one-forms
everywhere orthogonal to Σ0. By making use of the
Gauss equation

ð3ÞRμνσρ ¼ Rαβγδhαμhβνhγσhδρ − χμσχνρ þ χμρχνσ; ð101Þ

which relates the three-dimensional intrinsic curvature
ð3ÞRμνσρ of Σ0 to its extrinsic curvature χ and its four-
dimensional intrinsic curvature Rαβγδ, we can express the
relation Gðn; nÞ ¼ 8πTðn; nÞ as

ð3ÞRþ ðχμνhμνÞ2 − χμνχρσhμρhνσ ¼ 16πρ; ð102Þ

where ð3ÞR is the three-dimensional Ricci scalar of Σ0 and ρ
is the energy density of the matter source as measured by an
observer comoving with respect to Σ0. Equation (102) gives
the first constraint equation; it is actually the Hamiltonian
constraint of the ADM formalism, where it is customarily
derived by extremizing the ADM action with respect to the
lapse function [26]. Let fuig, for i ¼ 1, 2, 3, denote a set of
normalized basis vectors tangent to Σ0, and let j denote
covariant differentiation with respect to the metric con-
nection implied by h. By making use of the Gauss-Codazzi
equation

Rσρnσhρμ ¼ χσμjσ − χσσjμ; ð103Þ

which relates the extrinsic curvature χ of Σ0 to its four-
dimensional intrinsic curvature in the form of the Ricci
tensor Rσρ, we can express the relation Gðn;uiÞ ¼
8πTðn; uiÞ as

ðχσμjμhσν − χσμjνhσμÞuνi ¼ 8πTμνnμuνi; ð104Þ

which is actually a set of three equations, one for each i.
This gives the rest of the constraint equations. These are the
momentum constraints of the ADM formalism, where they

are customarily derived by extremizing the ADM action
with respect to the shift functions [26].
Quite often, the initial surface Σ0 is chosen to be the

surface at a moment of time symmetry, that is, the moment
when the surface’s extrinsic curvature, as given by the
second fundamental form χ, vanishes. In this case,
the momentum constraints would vanish while the
Hamiltonian constraint would simplify to

ð3ÞR ¼ 16πρ: ð105Þ
This is known as the initial value equation at the moment of
time symmetry.
To determine the appropriate initial conditions for our

Regge model, we shall require our model to satisfy this
equation as well at its moment of time symmetry. However,
we note that this equation and the Einstein field equations,
from which it is derived, will only be satisfied in an average
manner on a Regge Cauchy surface. Curvature in the
surface is concentrated only at the hinges, yet matter can be
distributed away from the hinges where the skeleton is flat,
which is indeed the case for our Regge model; thus the two
sides of the equation will not agree in a pointwise manner.
This contradiction arises because the Einstein field equa-
tions actually apply to smooth manifolds rather than Regge
skeletons; they come about by varying the Einstein-Hilbert
action when the underlying manifold is smooth rather than
discrete. Thus by using the Einstein equations in this
manner, we are effectively varying the Einstein-Hilbert
action on a smooth manifold first and then applying the
resulting field equations on a discrete manifold afterwards.
The standard approach in Regge calculus is to use a discrete
manifold from the very beginning, with the field equations
obtained being different as a result. Clearly, the two
approaches are not equivalent.
We shall now apply (105) to our Regge model and

thereby deduce a set of initial conditions on θ and δθ0. The
perturbed models attain a moment of time symmetry when
all lengths cease expanding or contracting, that is, when
_lð0Þ ¼ _lð1Þ ¼ 0. We shall perform an averaging of (105) by
integrating it over such a time-symmetric CW Cauchy
surface Σ0. The left-hand side of (105) then becomes [20]

Z
Σ0

ð3ÞRd3x ¼ 2
X

i∈fhingesg
liδi;

where the integration measure is unity because the Regge
tetrahedra are flat, the summation is over all edges in Σ0

because these would be the hinges of a three-dimensional
skeleton, li is the length of an edge, and δi is its
corresponding three-dimensional deficit angle; the right-
hand side evaluates to

Z
Σ0

ρd3x ¼ 5M þ δM:
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Therefore, the averaged initial value equation for the
perturbed model can be expressed as

X
i∈fedgesg

liδi ¼ 8πð5M þ δMÞ: ð106Þ

By requiring our model to satisfy this form of the initial
value equation, we shall deduce the necessary initial
conditions on θ and δθ0.
The only quantities in (106) that have yet to be

determined are the deficit angles. A Cauchy surface of
the perturbed universe has only two distinct types of hinges,

the edges of length lð0Þi and the edges of length lð1Þi . Each
edge is connected to three faces separating three tetrahedra,
so each tetrahedron at the edge will contribute one dihedral
angle to the edge’s deficit angle. A Cauchy surface of the
perturbed universe also has only two distinct types of
tetrahedra, the Type I and Type II tetrahedra. As the Type I
tetrahedron is equilateral, it will contribute the same
dihedral angle to each of its six edges, and we denote this

angle by ϕð0Þ
i . In the Type II tetrahedron, all edges of lð0Þi are

identical to each other, as are all edges of length lð1Þi . Thus

this tetrahedron will contribute the same dihedral angle ϕð1Þ
i

to each of its lð0Þi edges and the same dihedral angle ϕð2Þ
i to

each of its lð1Þi edges. To determine the dihedral angle ϕðjÞ
i

between any pair of faces, we shall again take the scalar
product of the unit normals to the two faces, as this product

will yield cosϕðjÞ
i .

Let us first consider the dihedral angles in the Type I
tetrahedron. We can use coordinate system (10) for this
tetrahedron, dropping the time coordinate so that we work
in a purely three-dimensional spatial coordinate system and

replacing lengths li with lð1Þi , as this tetrahedron has edges

of length lð1Þi ; we can then use this coordinate system to
assign coordinates to any of the normal vectors. We can

calculate ϕð0Þ
i using the faces meeting at edge AB; these

faces are ABC and ABD, and the scalar product of their unit
normals yields

cosϕð0Þ
i ¼ 1

3
: ð107Þ

For the Type II tetrahedron, we can work with coordinate
system (45), again dropping the time coordinate to obtain a
purely three-dimensional spatial system. We can use edge

AE to calculate the dihedral angle ϕð1Þ
i at an edge of length

lð0Þi ; the faces meeting at AE are ABE and ACE, and the
scalar product of their unit normals yields

cosϕð1Þ
i ¼

1
2
ðlð0Þi Þ2 − 1

4
ðlð1Þi Þ2

ðlð0Þi Þ2 − 1
4
ðlð1Þi Þ2

: ð108Þ

Similarly, we can use edge AB to calculate the dihedral

angle ϕð2Þ
i of an lð1Þi edge; the faces meeting at AB are ABC

and ABE, and the scalar product of their unit normals yields

cosϕð2Þ
i ¼ lð1Þi

2
ffiffiffi
3

p 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðlð0Þi Þ2 − 1

4
ðlð1Þi Þ2

q : ð109Þ

To obtain the continuum time limit of these expressions to
leading order in dt, we simply need to drop all subscripts i.
If we next take the perturbative expansion of these
continuum time expressions, such that

ϕð1Þ ≈ ϕþ δϕð1Þ;

ϕð2Þ ≈ ϕþ δϕð2Þ;

we find that

ϕ ¼ 1

3
; ð110Þ

and that

δϕð1Þ ¼ −δϕð2Þ ¼ −
ffiffiffi
2

p

3l
ðδlð0Þ − δlð1ÞÞ: ð111Þ

To calculate the deficit angles at an edge, we simply
subtract the three relevant dihedral angles from 2π. Since
only Type II tetrahedra have lð0Þ edges, an lð0Þ edge must be
connected exclusively to Type II tetrahedra, and its deficit
angle δð0Þ must therefore be

δð0Þ ¼ 2π − 3ϕð1Þ ≈ 2π − 3 arccos
1

3
þ

ffiffiffi
2

p

l
ðδlð0Þ − δlð1ÞÞ:

ð112Þ

As there is only one Type I tetrahedron on the entire
Cauchy surface, an lð1Þ edge can only be connected to one
Type I tetrahedron, and its other two tetrahedra must be
Type II; its deficit angle δð1Þ must therefore be

δð0Þ ¼ 2π − ϕð0Þ − 2ϕð2Þ

≈ 2π − 3 arccos
1

3
−
2

ffiffiffi
2

p

3l
ðδlð0Þ − δlð1ÞÞ: ð113Þ

Having now determined the deficit angles, we can now
substitute all relevant geometric quantities into (106). As
mentioned previously, a 5-tetrahedra Cauchy surface will
have a total of 10 edges: six must come from the Type I
tetrahedron and must therefore be of length lð1Þ; the
remaining four must therefore be of length lð0Þ. Thus
(106) can be expressed as
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8πð5MþδMÞ¼4lð0Þ
�
2π−3arccos

1

3
þ

ffiffiffi
2

p

l
ðδlð0Þ−δlð1ÞÞ

�

þ6lð1Þ
�
2π−3arccos

1

3
−
2

ffiffiffi
2

p

3l
ðδlð0Þ−δlð1ÞÞ

�

≈ ½10lþ2ð2δlð0Þ þ3δlð1ÞÞ�
�
2π−3arccos

1

3

�
:

ð114Þ

The zeroth-order term corresponds to the initial value
equation for the unperturbed model. At the moment of time
symmetry in the unperturbed model, we have that _l ¼ 0;
from (28), it follows that θ is

θ ¼ arccos
1

3
: ð115Þ

Substituting this into the unperturbed model’s Regge
equation (86), we deduce that

4πM ¼ l

�
2π − 3 arccos

1

3

�
; ð116Þ

which is identical to the initial value equation for the
unperturbed model. Thus the Regge equation of the
unperturbed model satisfies its initial value equation at
the moment of time symmetry. Therefore, for the zeroth-
order component of the perturbed models’ initial value
equation to be satisfied, we must also require that θ satisfy
condition (115). This is the initial condition on θ.
We can next deduce the condition on δθ0 by solving for

it from the first-order term of (114). After using (115) to
substitute for θ as well as (97) and (98) to substitute for δlð0Þ

and δlð1Þ, we find that δθ0 must satisfy

δθ0 ¼ 0: ð117Þ

We note that the behavior of δ_lð1Þ near time symmetry
cannot be determined from (96). On the one hand, con-
dition (117) suggests it may approach zero, while on the
other, condition (115) suggests it may diverge. As we shall
see below however, δ_lð1Þ is indeed well behaved and tends
towards zero as time symmetry is approached.
Finally, even after imposing conditions (115) and (117)

at some moment t ¼ Tmax, we must still ensure that δ_lð0Þ ¼
δ_lð1Þ ¼ 0 at that moment; otherwise, t ¼ Tmax would not
be a moment of time symmetry. We have just mentioned
that δ_lð1Þ does tend toward zero as time symmetry is
approached. Given this information, it can also be shown
that δ_lð0Þ will be zero as well. First, by comparing (97)
and (98), we note that δlð0Þ can be expressed in terms of
δlð1Þ to give

δlð0Þ ¼ δlð1Þ −
8

ffiffiffi
2

p
πδM
3

�
1 − cos θ
1þ cos θ

�3
2

×

�
2 sin θ

�
1þ 2 cos θ
1þ cos θ

�
þ ð2π − 3θÞ

�
−1
: ð118Þ

If we differentiate this with respect to t, we obtain an
expression of the form

δ_lð0Þ ¼ δ_lð1Þ −
8

ffiffiffi
2

p
πδM
3

F1ðθÞ_θ:

At the moment of time symmetry, we have said that δ_lð1Þ

will vanish and that condition (115) must be satisfied; then
it can be shown that F1ðθ ¼ arccos 1

3
Þ will not vanish, and

therefore δ_lð0Þ will vanish if and only if _θ vanishes. To see
that _θ does indeed vanish, we next differentiate l, as given
by (87), with respect to t to obtain an expression of the form

_l ¼ F2ðθÞ_θ:

The left-hand side is given by (29) and is zero at time
symmetry. It can also be shown that F2ðθ ¼ arccos 1

3
Þ will

not vanish; thus for the two sides of the expression to equal,
it follows that _θ must vanish at time symmetry. Therefore,
we deduce that δ_lð0Þ vanishes at time symmetry provided
δ_lð1Þ vanishes as well.

VI. DISCUSSION OF THE MODELS

We shall now examine the behavior of the Regge model
just obtained, comparing the behavior for various mass
perturbations against each other and against the behavior of
the unperturbed 5-tetrahedra model. We begin by examin-
ing the expansion rate of the universe’s volume dU=dt
against the volume U itself, a relation which has been
plotted in Fig. 5. The volume of the unperturbed universe is
given by (31) and its expansion rate by (32). To first order
in the perturbative expansion, the volume of a perturbed
universe is given by

U ¼ 5

6
ffiffiffi
2

p l3 þ 1

2
ffiffiffi
2

p l2ð2δlð0Þ þ 3δlð1ÞÞ; ð119Þ

and the expansion rate by

dU
dt

¼ 5

2
ffiffiffi
2

p l2_lþ 1ffiffiffi
2

p l_lð2δlð0Þ þ 3δlð1ÞÞ

þ 1

2
ffiffiffi
2

p l2ð2δ_lð0Þ þ 3δ_lð1ÞÞ; ð120Þ

where δ_lð0Þ would be given by the explicit time derivative of
δlð0Þ. Across all perturbations in mass, the evolution of the
universe’s volume is very stable, indeed closely resembling
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the evolution of the unperturbed universe. The effect of
increasing the perturbation δM=M is for the universe to
attain larger volumes and faster expansion rates. All graphs
have been truncated on the left at the moment the struts turn
null. However, we note that these models actually remain
well behaved past this point all the way back to t ¼ 0, as
Fig. 6 shows for the δM=M ¼ 0.1 model.
Figure 7 shows the behavior of δ_lð0Þ and δ_lð1Þ as

functions of time; these graphs have also been extended
all the way back to t ¼ 0. They reveal that δ_lð0Þ and δ_lð1Þ are
indeed well behaved near t ¼ Tmax and approach zero as
t → Tmax, which is required for a moment of time sym-
metry. They also reveal that δ_lð0Þ and δ_lð1Þ start from zero as
well at t ¼ 0. Finally, they show that the absolute magni-
tudes of the graphs increase with δM=M.
We have computed the numerical values for _l, δ_lð0Þ, and

δ_lð1Þ at t ¼ Tmax to verify that they are indeed zero; the

results are given in Table II. As far as the computer is
concerned, δ_lð1Þ is exactly zero for all δM=M. All other
quantities are infinitesimally small, and the difference
from zero can be attributed to numerical error. Thus, we
can conclude that _l, δ_lð0Þ, and δ_lð1Þ are indeed all zero at
t ¼ Tmax, and hence t ¼ Tmax is a moment of time
symmetry, as required for our choice of initial conditions
to be valid.
Figure 8 shows the behavior of the length perturbations

δlð0Þ and δlð1Þ as functions of time; these graphs have also
been extended back to t ¼ 0. We see that the magnitudes of
these graphs also increase with δM=M, which is consistent
with the models’ attaining larger volumes in Fig. 5 as the
perturbation is increased. We also see that δlð0Þ and δlð1Þ are
always well behaved and nonzero. The latter fact implies
that there is never a moment when the tetrahedra have edges
of zero length. Rather, there is actually a moment when the
tetrahedra are equilateral: this happens at t ¼ 0, because θ
is then zero; from (118), it therefore follows δlð0Þ and δlð1Þ

FIG. 6. The same graph as in Fig. 5 for the δM=M ¼ 0.1
model, but with the graph extended all the way back to
t ¼ 0.

FIG. 7. Plots of δ_lð0ÞðtÞ (top) and δ_lð1ÞðtÞ (bottom) against t.
The graphs have been extended all the way back to t ¼ 0.

FIG. 5. The expansion rate of the universe’s volume dU=dt
versus the volume U itself. Graphs corresponding to four
different values of δM=M are shown, with δM=M ¼ 0 corre-
sponding to the unperturbed model. Owing to δM=M ¼ 0.001
and δM=M ¼ 0.01 being very small perturbations, the graph for
δM=M ¼ 0.01 has almost completely covered the graphs for
δM=M ¼ 0 and δM=M ¼ 0.001. The left sides of the graphs
have been truncated at the moment the struts turn null. In all four
models, the mass M has been fixed to be M ¼ 1=5.

TABLE II. The numerical values for _l, δ_lð0Þ, and δ_lð1Þ at
t ¼ Tmax.

δM
M

_l δ_lð0Þ δ_lð1Þ

0.001 5.16191 × 10−8 −1.5465 × 10−11 0
0.01 5.16191 × 10−8 −1.5465 × 10−10 0
0.1 5.16191 × 10−8 −1.5465 × 10−9 0
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are equal. This suggests that our choice of α ¼ β ¼ 1
4
for

comoving particle trajectories at the end of Sec. IV B was
appropriate. Finally, we see that the length perturbations
decrease with time, consistent with the fact that both δ_lð0Þ

and δ_lð1Þ are always negative, as Fig. 7 shows.
Before closing, we wish to comment on our choice of

approach to the perturbed Regge models. These models
were based on a specific triangulation of the CW skeleton
where all diagonals on Type II quadrilateral hinges termi-
nated at E0. This triangulation had the virtue of simplicity,
but there were other equally valid but inequivalent trian-
gulations we could have worked with. In terms of the
triangulation algorithm described in Sec. IVA, we used a
labeling of the Cauchy surface’s five vertices such that the
common apex to the Type II tetrahedra was ordered last. By
shifting the order of that vertex’s label, one could generate
an alternative triangulation that would certainly not be
equivalent to the one we used. For instance, if the orders of
vertices A and E were swapped, then the diagonals on all
hinges attached to strut AA0 would now terminate on A0
instead; none would terminate on A. Thus, compared to the
original triangulation, some of the diagonals on Type II
quadrilateral hinges would get swapped, and the new pair
of triangular hinges that result would be geometrically
different from the original pair. It remains to be seen how
many distinct triangulations there are, although we know
there must be at least five, as there are five possible
orderings of the label for the Type II tetrahedra’s common

apex; given a specific ordering for this vertex, it remains to
be seen whether permutations of the other vertices’ order-
ing would generate inequivalent triangulations or not. More
importantly, it remains to be seen whether these alternative
triangulations would lead to the same Regge equations or to
something new. For example, it is possible that in the
continuum time limit, the alternative triangulations would
still reduce to the same Regge equations at leading order in
dt. Even if we had a new set of Regge equations, the
solutions of both this new set and the original set would be
equally valid as both of them would satisfy the global
Regge equation, as discussed in Sec. IVA. We shall leave a
more thorough investigation of these alternative models to
future study.
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APPENDIX A: REGULAR LATTICES IN
3-SPACES OF CONSTANT CURVATURE

In this appendix, we shall list all possible lattices that
cover 3-spaces of constant curvature with a single regular
polyhedral cell. The cell is tiled to completely cover the
3-space without any gaps or overlaps. This tessellation
problem has been thoroughly studied by Coxeter [22].
Clifton and Ferreira [17] have succinctly summarized
Coxeter’s results relevant to our discussion, and we have
presented their summary in Table III.

FIG. 8. Plots of δlð0ÞðtÞ (top) and δlð1ÞðtÞ (bottom) against t.
The graphs have been extended all the way back to t ¼ 0.

TABLE III. All possible lattices obtained by tessellating 3-
spaces of constant curvature with a single regular polyhedron. We
note that the second column, which indicates how many cells
meet at any lattice edge, effectively determines the lattice’s
structure.

Elementary
cell shape

Number of cells at a
lattice edge

Background
curvature

Total cells in
lattice

Tetrahedron 3 þ 5
Cube 3 þ 8
Tetrahedron 4 þ 16
Octahedron 3 þ 24
Dodecahedron 3 þ 120
Tetrahedron 5 þ 600
Cube 4 0 ∞
Cube 5 − ∞
Dodecahedron 4 − ∞
Dodecahedron 5 − ∞
Icosahedron 3 − ∞
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The Coxeter lattices are the only possible lattices that use
a single regular polytope as its elementary cell. However, if
we allow for elementary cells that are not regular polytopes,
then further regular lattices are possible. For instance, one
can obtain a new lattice from the closed 600-tetrahedra
lattice by using the centers of the original lattice’s triangles
as the new cell centers; one would then partition out new
cells by erecting new boundaries between pairs of nearest-
neighboring triangular centers. Each tetrahedra has four
triangles, but each triangle is shared between two tetrahe-
dra, so the 600-tetrahedra lattice has a total of 1200
triangles; thus this new lattice has a total of 1200 cells.
Clearly, this cannot be a Coxeter lattice, and its cell
therefore cannot be a regular polytope; yet this new lattice
is regular because the triangles are distributed in a regular
manner. For an analogous situation, consider a lattice
tessellating flat two-dimensional space with equilateral
triangles, as shown in Fig. 9, and a new lattice with cells
centred on the midpoints of the original edges. This new
lattice is still regular, but its cells do not correspond to
regular polytopes: their internal angles are not equal, even
though their edges are; thus the cells are actually rhombi.
Since the internal angles are not equal, the vertices
themselves are not identical either, with three new cells
meeting at vertices like the one marked A and six at vertices
like the one marked B. Therefore, such cells would not

have as high a rotational symmetry as its regular counter-
part, the square; the rhombus has only an order-2 rotational
symmetry, while the square has order-4. For such reasons,
the Coxeter lattices are the lattices with the highest
symmetry.
For the closed lattices, if one constructs new lattices

using cells centered on the original lattice vertices, it
appears these new lattices form Coxeter lattices as well.
We shall refer to these new lattices as dual lattices. The 5-
tetrahedra lattice is dual to itself, as is the 24-octahedra
lattice. The 8-cube and 16-tetrahedra lattices are duals of
each other, as are the 120-dodecahedra and 600-tetrahedra
lattices. However, new lattices using cells centered on the
midpoints of edges or the centers of faces are not Coxeter
lattices in general.

APPENDIX B: VARIATION OF PARTICLE
PATH LENGTHS WITH RESPECT

TO THE STRUTS

In this appendix, we shall explain the derivation of
results (77), (78), and (81), which give the local variation
of the particle path lengths with respect to each strut
length. Let us consider the length si of an arbitrary
particle through a 4-block. We shall work with the 4-
block of a Type II tetrahedron because it is more general;
it can easily be reduced to the Type I case by setting

ψ i ¼ 0, lð1Þi ¼ lð0Þi , and lð1Þiþ1 ¼ lð0Þiþ1. In order to vary si with
respect to each strut locally, we need to express it first in
terms of the lengths of all four struts. We denote the four
strut lengths by mA

i , m
B
i , m

C
i , and mE

i , with the superscript
labeling the lower vertex to which the strut is attached.
Our approach will be to use a new coordinate system for
the 4-block such that the coordinates of the vertices are
given in terms of the lengths of the edges, including the
tetrahedral edges, the diagonals, and the struts. As we are
only interested in varying the struts, we can greatly
simplify our coordinate system if we first impose the
symmetries on all other edges, constraining them to be

lð0Þi , lð0Þiþ1, l
ð1Þ
i , lð1Þiþ1, d

AE0
i , dAE

0
iþ1, d

AB0
i , dAB

0
iþ1 accordingly; this

is permissible because when we locally vary with respect
to one edge, all other edges must be held constant. We
then calculate si in this new coordinate system, differ-
entiate it with respect to each ofmA

i ,m
B
i ,m

C
i ,m

E
i , and then

impose the relevant strut-length constraints on mA
i , m

B
i ,

mC
i , m

E
i .

Once again, the 4-block has been triangulated in the
manner described in Secs. II and IVA, and this introduces
the diagonals AE0, BE0, CE0, which have length dAE

0
i , and

the diagonals AB0, AC0, and BC0, which have length dAB
0

i .
We shall now construct our new coordinate system. We

can freely fix the coordinates of the upper tetrahedron’s
vertices to be

FIG. 9. A lattice of equilateral triangles tessellating flat two-
dimensional space with a new lattice, derived from the original,
centered on the midpoints of the triangular edges; the triangular
lattice has been drawn in solid lines and the new lattice in dashed
lines. The new lattice cells do not correspond to regular polytopes
but are instead rhombi; although their edge lengths are equal,
their interior angles are not. For the new cell marked ABCD, the
angles at the centers of triangles, marked A and C, are 120°, while
the angles at vertices of triangles, marked B and D, are 60°. These
angles imply that three dual cells would meet at A and C, and six
at B and D; thus the cell vertices are not identical either.
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A0 ¼
�
−
lð1Þiþ1

2
;−

lð1Þiþ1

2
ffiffiffi
3

p ; 0; 0

�
;

B0 ¼
�
lð1Þiþ1

2
;−

lð1Þiþ1

2
ffiffiffi
3

p ; 0; 0

�
;

C0 ¼
�
0;
lð1Þiþ1ffiffiffi
3

p ; 0; 0

�
;

E0 ¼ ð0; 0; hiþ1; 0Þ: ðB1Þ

Since the upper tetrahedron’s coordinates are fixed, the
dependence on the strut lengths must appear in the lower
tetrahedron’s coordinates.
Vertex A is constrained by the lengths

jAA0⟶
j ¼ mA

i ; jAB0⟶
j ¼ jAC0⟶

j ¼ dAB
0

i ; jAE0⟶
j ¼ dAE

0
i :

As A is equidistant to B0 and C0, its coordinates will have
the form

A ¼
�
−
1

2
aA;−

1

2
ffiffiffi
3

p aA; cA;−ιdA
�
:

Using our new coordinates for the vertices, we can calculate
the edge lengths above in terms of aA, cA, and dA. This
leads to the equations

ðmA
i Þ2 ¼

1

4
ðlð1Þiþ1 − aAÞ2 þ

1

12
ðlð1Þiþ1 − aAÞ2 þ c2A − d2A;

ðdAB0
i Þ2 ¼ 1

4
ðlð1Þiþ1 þ aAÞ2 þ

1

12
ðlð1Þiþ1 − aAÞ2 þ c2A − d2A;

ðdAE0
i Þ2 ¼ 1

3
a2A þ ðhiþ1 − cAÞ2 − d2A:

Since we are only interested in the first derivative of si with
respect to the strut lengths, we need only determine aA, cA,
and dA and similar quantities to first order in δmA

i , δm
B
i ,

δmC
i , and δmE

i . So by expressing mA
i as mA

i ≈mAA0
i þ δmA

i
and making use of (53) to (56), we can solve the above
system of equations to first order in δmA

i , obtaining

aA≈ lð1Þi −2
mAA0

i

lð1Þiþ1

δmA
i ;

cA≈
δlð1Þi

2
ffiffiffi
6

p coshψ iþsinhψ iδtiþ
1

3

mAA0
i

hiþ1

δmA
i ;

dA≈
δlð1Þi

2
ffiffiffi
6

p sinhψ iþcoshψ iδti

þ1

3

mAA0
i

hiþ1

δlð1Þi

2
ffiffi
6

p coshψ iþsinhψ iδti− ½2 lð1Þi

lð1Þiþ1

þ1�hiþ1

δlð1Þi

2
ffiffi
6

p sinhψ iþcoshψ iδti
δmA

i :

Vertex B is constrained by the lengths

jBB0⟶
j ¼ mB

i ; jBC0⟶
j ¼ dAB

0
i ;

jBE0⟶
j ¼ dAE

0
i ; jAB⟶ j ¼ lð1Þi ;

and we shall express its coordinates in the form

B ¼
�
1

2
aB;−

1

2
ffiffiffi
3

p bB; cB;−ιdB
�
:

Furthermore, based on symmetries and the coordinates just
obtained for A, we know what the coordinates of B should be
when mB

i ¼ mAA0
i , so we can express aB, bB, cB, and dB as

aB ≈ lð1Þi þ δaB;

bB ≈ lð1Þi þ δbB;

cB ≈
δlð1Þi

2
ffiffiffi
6

p coshψ i þ sinhψ iδti þ δcB;

dB ≈
δlð1Þi

2
ffiffiffi
6

p sinhψ i þ coshψ iδti þ δdB;

where δaB, δbB, δcB, δdB are linear in δmA
i and δm

B
i . We can

use the new coordinates to express the lengths above in terms
of aB, bB, cB, and dB, yielding

ðmB
i Þ2 ¼

1

4
ðlð1Þiþ1 − aBÞ2 þ

1

12
ðlð1Þiþ1 − bBÞ2 þ c2B − d2B;

ðdAB0
i Þ2 ¼ 1

4
a2B þ 1

3

�
lð1Þiþ1 þ

1

2
bB

�
2

þ c2B − d2B;

ðdAE0
i Þ2 ¼ 1

4
a2B þ 1

12
b2B þ ðhiþ1 − cBÞ2 − d2B;

ðlð1Þi Þ2 ¼ 1

4
ðaA þ aBÞ2 þ

1

12
ðbB − aAÞ2

þ ðcB − cAÞ2 − ðdB − dAÞ2:

Then by takingmB
i ≈ mAA0

i þ δmB
i andmaking use of (53) to

(56), we match the first-order terms and solve to obtain

δaB ≈ 2
mAA0

i

lð1Þiþ1

δmA
i ; δbB ≈ −2

mAA0
i

lð1Þiþ1

ðδmA
i þ 2δmB

i Þ;

δcB ≈
1

3

mAA0
i

hiþ1

ðδmA
i þ 2δmB

i Þ;

δdB ≈ −
1

3
mAA0

i

�
δlð1Þi

2
ffiffiffi
6

p sinhψ i þ coshψ iδti

�−1

×

��
1 −

δlð1Þi

2
ffiffi
6

p coshψ i þ sinhψ iδti

hiþ1

�
ðδmA

i þ 2δmB
i Þ

−
lð1Þi

lð1Þiþ1

ðδmA
i − δmB

i Þ
�
: ðB2Þ
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Vertex C is constrained by the lengths

jCC0⟶
j ¼ mC

i ; jAC⟶ j ¼ jBC⟶ j ¼ lð1Þi ; jCE0⟶
j ¼ dAE

0
i ;

and we shall express its coordinates in the form

C ¼
�
aC;

1ffiffiffi
3

p bC; cC;−ιdC
�
:

We also know what the coordinates of C should be when
mC

i ¼ mAA0
i , so we can express aC, bC, cC, and dC as

aC ≈ δaC;

bC ≈ lð1Þi þ δbC;

cC ≈
δlð1Þi

2
ffiffiffi
6

p coshψ i þ sinhψ iδti þ δcC;

dC ≈
δlð1Þi

2
ffiffiffi
6

p sinhψ i þ coshψ iδti þ δdC;

where δaC, δbC, δcC, δdC are linear in δmA
i , δm

B
i , and δm

C
i .

Following a similar method to that of the previous two
vertices, we find that

δaC ≈
mAA0

i

lð1Þiþ1

ðδmA
i − δmB

i Þ; δbC ≈
mAA0

i

lð1Þiþ1

ðδmA
i þ δmB

i Þ;

δcC ≈
1

3

mAA0
i

hiþ1

ðδmA
i þ δmB

i þ 3δmC
i Þ;

δdC ≈
1

3
mAA0

i

�
δlð1Þi

2
ffiffiffi
6

p sinhψ i þ coshψ iδti

�−1

×

��δlð1Þi

2
ffiffi
6

p coshψ i þ sinhψ iδti

hiþ1

− 1

�

× ðδmA
i þ δmB

i þ 3δmC
i Þ þ

lð1Þi

lð1Þiþ1

ðδmA
i þ δmB

i Þ
�
:

Finally, vertex E is constrained by the lengths

jEE0⟶
j ¼ mE

i ; jAE⟶ j ¼ jBE⟶ j ¼ jCE⟶ j ¼ lð0Þi ;

and we shall express its coordinates in the form

E ¼ ðaE; bE; cE;−ιdEÞ:

We also know what the coordinates of E should be when
mE

i ¼ mEE0
i , so we can express aE, bE, cE, and dE as

aE ≈ δaE;

bE ≈ δbE;

cE ≈
δlð1Þi

2
ffiffiffi
6

p coshψ i þ sinhψ iδti þ hi coshαi þ δcE;

dE ≈
δlð1Þi

2
ffiffiffi
6

p sinhψ i þ coshψ iδti þ hi sinh αi þ δdE;

where αi is a yet-to-be-determined boost parameter and
δaE, δbE, δcE, δdE are linear in δmA

i , δm
B
i , δm

C
i , and δmE

i .
Unlike the other struts, mE

i has the perturbative expansion
mE

i ≈ mEE0
i þ δmE

i . We can follow a similar method to that
of the previous vertices to solve the equations above for αi,
δaE, δbE, δcE, δdE. By matching the zeroth-order terms, we
deduce that

αi ¼ ψ i: ðB3Þ

Next, by matching the first-order terms and then solving,
we find that

δaE ≈
mAA0

i

lð1Þiþ1

δmA
i −

1

3

mAA0
i

lð1Þi

�
lð1Þi

lð1Þiþ1

þ 2
hi
hiþ1

coshψ i

�
δmB

i þ 1

3

mAA0
i

lð1Þi

hi sinhψ i

δlð1Þi

2
ffiffi
6

p sinhψ i þ coshψ iδti

×
�
lð1Þi

lð1Þiþ1

ð3δmA
i − δmB

i Þ − 2

�
1 −

δlð1Þi

2
ffiffi
6

p coshψ i þ sinhψ iδti

hiþ1

�
δmB

i

�
;

δbE ≈
1ffiffiffi
3

p mAA0
i

lð1Þiþ1

�
1þ hi sinhψ i

δlð1Þi

2
ffiffi
6

p sinhψ i þ coshψ iδti

�
ðδmA

i þ δmB
i Þ −

2ffiffiffi
3

p mAA0
i

lð1Þi

hi
hiþ1

δti þ hiþ1 sinhψ i

δlð1Þi

2
ffiffi
6

p sinhψ i þ coshψ iδti
δmC

i ;

δcE ≈ −
mEE0

i sinhψ i

δti þ hiþ1 sinhψ i
δmE

i þ 1

3

mAA0
i

hiþ1

�
1þ hi sinhψ i

δlð1Þi

2
ffiffi
6

p sinhψ i þ coshψ iδti

�
ðδmA

i þ δmB
i þ δmC

i Þ;
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δdE ≈ −
mEE0

i coshψ i

δti þ hiþ1 sinhψ i
δmE

i þ 1

3

mAA0
i

hiþ1

ðδmA
i þ δmB

i þ δmC
i Þ

δlð1Þi

2
ffiffi
6

p coshψ i þ sinhψ iδti þ hi coshψ i − hiþ1

δlð1Þi

2
ffiffi
6

p sinhψ i þ coshψ iδti
:

Using this new coordinate system, we shall now vary the
particle’s path length with respect to each of the struts.
Based on the particle’s position given by (57) and its
counterpart on Cauchy surface Σiþ1, the particle should
follow a trajectory si given by

si ¼
1

4
ðAA0⟶

þ BB0⟶
þ CC0⟶

þ EE0⟶
Þ:

We note that since si is just a linear combination of the four
strut vectors, it will always be timelike if all four strut
vectors are timelike. For each vertex X ¼ A, B, C, E, let us
express the perturbative expansion of the corresponding

strut vector XX0⟶
as

XX0⟶
≈ mX þ δmX þ � � � ;

where mX denotes a vector corresponding to the zeroth-

order component of XX0⟶
and δmX denotes a vector

corresponding to the component of XX0⟶
that is first order

in δmA
i , δm

B
i , δm

C
i , and δmE

i . Then the trajectory length si
can be expressed as the perturbative expansion

si ¼ js0j þ
s0
js0j

· δsþ � � �

¼ js0j þ
∂si
∂mA

i
δmA

i þ ∂si
∂mB

i
δmB

i þ ∂si
∂mC

i
δmC

i

þ ∂si
∂mE

i
δmE

i þ � � � ;

where s0 denotes the vector

s0 ¼
1

4
ðmA þmB þmC þmEÞ;

and δs the vector

δs ¼ 1

4
ðδmA þ δmB þ δmC þ δmEÞ:

In the new coordinate system, it can be shown that s0 has
coordinates

s0 ¼
�
0; 0;

1

4
ðhiþ1 − hi coshψ iÞ −

�
δlð1Þi

2
ffiffiffi
6

p coshψ i þ sinhψ iδti

�
;
ι

4
hi sinhψ i þ ι

�
δlð1Þi

2
ffiffiffi
6

p sinhψ i þ coshψ iδti

��
:

Since the first two coordinates are zero, to calculate s0
js0j · δs

and hence ∂si=∂mX
i we then need only the third and fourth

coordinates of δs. The third coordinate is

−
1

3

mAA0
i

hiþ1

�
1þ

1
4
hi sinhψ i

δlð1Þi

2
ffiffi
6

p sinhψ iþcoshψ iδti

�
ðδmA

i þδmB
i þδmC

i Þ

þ
1
4
mEE0

i sinhψ i

δtiþhiþ1 sinhψ i
δmE

i ;

and the fourth is

ι

3

mAA0
i

hiþ1

δlð1Þi

2
ffiffi
6

p coshψ i þ sinhψ iδti − hiþ1 þ 1
4
hi coshψ i

δlð1Þi

2
ffiffi
6

p sinhψ i þ coshψ iδti

× ðδmA
i þ δmB

i þ δmC
i Þ −

ι
4
mEE0

i coshψ i

δti þ hiþ1 sinhψ i
δmE

i :

We can then obtain ∂si=∂mX
i for each X by reading off the

factor multiplying δmX
i in s0

js0j · δs, and we find that

∂si
∂mA

i
¼ ∂si

∂mB
i
¼ ∂si

∂mC
i

¼ 1

4

mAA0
i

js0j
�
1þ

1
4
hi sinhψ i

δlð1Þi

2
ffiffi
6

p sinhψ i þ coshψ iδti

�
; ðB4Þ

∂si
∂mE

i
¼ 1

4

mEE0
i

js0j
1
4
hiþ1 sinhψ i þ δti
hiþ1 sinhψ i þ δti

; ðB5Þ

where

js0j¼
��

1

4
ðhiþ1−hicoshψ iÞ−

�
δlð1Þi

2
ffiffiffi
6

p coshψ iþsinhψ iδti

��2

−
�
1

4
hisinhψ iþ

δlð1Þi

2
ffiffiffi
6

p sinhψ iþcoshψ iδti

�2�1
2

: ðB6Þ

Taking the continuum time limit, we have that
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js0j → _s0dtþOðdt2Þ

¼
��

1

4
_h −

_lð1Þ

2
ffiffiffi
6

p
�2

−
�
1

4
h _ψ þ 1

�
2
�1

2

dtþOðdt2Þ;

ðB7Þ
and in this limit, it follows that

∂s
∂mA ¼ ∂s

∂mB ¼ ∂s
∂mC ¼ 1

4

_mAA0

_s0

�
1

4
h _ψ þ 1

�
þOðdtÞ;

∂s
∂mE ¼ 1

4

_mEE0

_s0

1
4
h _ψ þ 1

h _ψ þ 1
þOðdtÞ;

which are relations (77) and (78) as required.
Finally, to obtain the equivalent results for the particle in

the Type I tetrahedron, we simply set ψ i to be zero, replace

vertex E with vertex D, and replace the lengths lð0Þi , lð0Þiþ1,

and mEE0
i with lð1Þi , lð1Þiþ1, and mAA0

i , respectively. Since the
mass in this tetrahedron is the perturbed mass, the path
length is now s0i. We then find that

∂s0i
∂mA

i
¼ ∂s0i

∂mB
i
¼ ∂s0i

∂mC
i
¼ ∂s0i

∂mD
i
¼ −

ι

4

mAA0
i

δti
; ðB8Þ

and in the continuum time limit, this becomes

∂s0
∂mA ¼ ∂s0

∂mB ¼ ∂s0
∂mC ¼ ∂s0

∂mD ¼ −
ι

4
_mAA0

;

which is relation (81) as required.
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