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We propose a new detection strategy for gravitational waves (GWs) below a few hertz based on a
correlated array of atom interferometers (AIs). Our proposal allows us to reduce the Newtonian noise (NN),
which limits all ground based GW detectors below a few hertz, including previous atom interferometry-
based concepts. Using an array of long baseline AI gradiometers yields several estimations of the NN,
whose effect can thus be reduced via statistical averaging. Considering the km baseline of current optical
detectors, a NN rejection of a factor of 2 could be achieved and tested with existing AI array geometries.
Exploiting the correlation properties of the gravity acceleration noise, we show that a tenfold or more NN
rejection is possible with a dedicated configuration. Considering a conservative NN model and the current
developments in cold atom technology, we show that strain sensitivities below 1 × 10−19=

ffiffiffiffiffiffi
Hz

p
in the

0.3 − 3 Hz frequency band can be within reach, with a peak sensitivity of 3 × 10−23=
ffiffiffiffiffiffi
Hz

p
at 2 Hz. Our

proposed configuration could extend the observation window of current detectors by a decade and fill the
gap between ground-based and space-based instruments.
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I. INTRODUCTION

Gravitational wave (GW) detection remains one of the
challenges in fundamental physics and astrophysics. State-
of-the-art GW detectors consisting of giant Fabry-Perot
Michelson interferometers [1–5] now reach a sensitivity
that justifies the expectations for a direct detection of
GWs in the next few years [6]. Nevertheless, low frequency
GW sources will remain hidden for ground based detectors
for which the observation bandwidth will be limited to
frequencies above a few Hz [7]. Reaching sub-Hz sensi-
tivities would provide a decisive asset to GWastronomy as
the sources in this band produce more powerful and durable
signals [8]. For this purpose, hybrid detectors based on two
distant atom interferometers (AIs) interrogated by a laser
propagating over a long baseline have been proposed (see,
e.g., Ref. [9]). Using as test masses free falling atoms
instead of suspended mirrors could resolve most of the
technical limitations presented by optical GW detectors at
low frequency, such as residual seismic noise or thermal
noise of suspension systems.
Like all ground based detectors, current atom interfer-

ometry proposals will nevertheless suffer from the so-called
Newtonian noise (NN) [10]. NN consists in fluctuations of
the terrestrial gravity field which creates a tidal effect on
separated test masses and is indiscernible from the effect of
a GW [10,11]. NN is therefore considered as a fundamental

limit for any ground based GW detectors at frequencies
below a few Hz. Various methods have been considered to
circumvent this problem [12–15]. In this paper we propose
a new concept which uses an array of AIs configured to
reject the NN.
Unlike previous single strainmeter or gradiometer pro-

posals where the NN and the GW signal are indiscernible, the
array of AIs allows us to extract the GW signal by averaging
over several realizations of the NN. The NN rejection can be
further enhanced by exploiting the correlation spatial behav-
ior of the gravity acceleration. With the 3 − 4 km baseline of
current best optical detectors, our method reaches a NN
rejection of about 2; this factor is comparable to what was
obtained by other passive methods (e.g., Ref. [14]). The
principle of such rejection can be tested in current AI array
projects [16]. We focus here on a 16 km baseline detector
that takes full advantage of our method and enables strong
NN rejection by more than a decade. This could complement
the current optical interferometers development program by
opening the ∼0.3 − 3 Hz observation window.

II. PRINCIPLE

A single AI gradiometer [Fig. 1(a)] consists of two AIs
separated by a baseline L and interrogated by a common
laser beam of frequency ν close to the atomic transition
frequency (see, e.g., Ref. [9]). We consider a three light-
pulse AI (with T the time between the successive pulses)
using Bragg diffraction of atoms from a standing wave
produced by retroreflecting the interrogation laser. The
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output phase of each AI originates from the local phase
difference Δφ between the two counterpropagating beams
at the time of the pulse and the position of the atom [17].
The retroreflection configuration gives immunity to laser
phase noise induced by position noise of the input laser
system. We consider large momentum transfer (LMT)
diffraction [18], where the atom absorbs n photons from
one beam and emits n photons in the counterpropagating
beam. When the interrogation laser is pulsed, the atom
undergoes diffraction with a momentum change of n × 2ℏk
along the laser propagation direction (k ¼ 2πν=c is the
laser wave vector). A phase nΔφðX; tÞ is imprinted on the
diffracted component.
After the three pulses, the output phase of the AI reads

ΔϕxðX; tÞ ¼ ϵðX; tÞ þ 2nk

��
ΔνðtÞ
ν

þ hðtÞ
2

�
ðL − XÞ

þ Δx2ðtÞ − ΔxðX; tÞ
�
⊗ sðtÞ ð1Þ

where ϵðX; tÞ represents the detection noise (e.g., atom shot
noise) on the output phase of an AI using atoms placed at
position X. Here, sðtÞ is the sensitivity function of the three
pulse AI [19], and it relates the AI output phase to the
second temporal derivative of the local laser phase differ-
ence Δφ. Δx2ðtÞ is the position noise of the retroreflecting
mirror, and ΔxðX; tÞ represents the motion of the atoms
along the laser beam direction due to the fluctuations of the
local gravitational acceleration.
Taking the differential phase ψðX; tÞ ¼ ΔϕxðX; tÞ −

ΔϕxðX þ L; tÞ between two AIs separated by the distance
L and neglecting laser frequency noise yields

ψðX; tÞ ¼ 2nk

�
LḧðtÞ
2

þ axðX þ L; tÞ − axðX; tÞ
�
⊗ sαðtÞ

þ ϵðX; tÞ − ϵðX þ L; tÞ; ð2Þ

where sαðtÞ is the AI sensitivity function to acceleration,
given by ̈sαðtÞ ¼ sðtÞ. Importantly, position noise Δx2ðtÞ of
the retroreflecting mirror has been rejected in this gradi-
ometer configuration. Equation (2) shows that fluctuations
of the local gravity field result in an acceleration signal
axðX; tÞ ¼ ΔẍðX; tÞ whose gradient will have the same
signature as that of the GW (see Ref. [17] for a more
rigorous calculation).
The differential phase of Eq. (2) can be written as

ψð~ηÞ ¼ HðtÞ þ ~ηðtÞ, where HðtÞ is the GW signal and
~ηðtÞ the noise (detection noise and NN) at position X.
Our idea is to extract HðtÞ using a Monte Carlo method:
The GW signal is obtained by averaging over several
samples of the noise ~ηðtÞ, which formally reads
H ¼ R

Ψð~ηÞd~η. To this aim, we consider N realizations
fψðXi; tÞ≡ ψ iðtÞgi¼1.:N of the single gradiometer and
compute the average signal

HNðtÞ ¼
1

N

XN
i¼1

ψ iðtÞ; ð3Þ

which represents a nonbiased approximation to the GW
signal of interest, i.e., LhðtÞ=2. Assuming that the N
realizations are independent, the residual noise on the
GW measurement is reduced by

ffiffiffiffi
N

p
,

σHN
¼

ffiffiffi
2

p
σηffiffiffiffi
N

p ; ð4Þ

with ση ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2a þ σ2ϵ

p
the standard deviation (s.d.) resulting

from the NN and detection noise which we considered as
independent variables of s.d., σa and σϵ, respectively. We
assumed uncorrelated noise between the 2 AIs of a single
gradiometer, yielding

ffiffiffi
2

p
. This is always valid for the

detection noise and applies for the NN when the gradi-
ometer baseline L is much larger than the NN correlation
length. Since the GW signal increases with L, a very long
gradiometer baseline will be considered in the following,
which validates the assumption of uncorrelated NN bew-
teen the two AIs. As the N gradiometer measurements are
assumed to be independent, the AI array brings a

ffiffiffiffi
N

p
rejection factor for the NN (and for the detection noise).
We study an implementation of this Monte Carlo sampling

method in which N different gradiometer measurements are
simultaneously realized in parallel thanks to an array of
spatially distributed AIs. The proposed configuration is
chosen to enhance the NN reduction via variance reduction
[20]. For that, we optimize the AI array distribution, i.e., the
signal spatial sampling, in order to benefit from the spatial
behavior of NN correlations. We show that, in a given

FIG. 1. (a) A single gradiometer using two AIs at positionsX and
X þ L, interrogated by a common laser beam. (b) An array ofN AI
gradiometers used for sampling the spatial variations of the NN.
The separation between the gradiometers is δ. The array allows one
to repeat the experiment sketched in (a) N times and average the
NN. The use of two orthogonal arms injected by a common laser
enables one to reject laser frequency noise (the second arm in the y
direction is only partially represented here for clarity).
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frequency band, a significant additional rejection factor can
be gained with respect to the standard

ffiffiffiffi
N

p
of Eq. (4).

III. IMPLEMENTATION AND SENSITIVITY
OF THE DETECTOR

The implementation is sketched in Fig. 1(b). We consider
a symmetric configuration consisting of two orthogonal
arms of the same length and interrogated by the same laser.
For a GW with (þ) polarization, laser frequency noise is
therefore rejected (see Appendix A for more details). Each
arm of total length La consists in a series of gradiometers of
baseline L ¼ XNþi − Xi which are separated by the dis-
tance δ. The geometrical parameter δN reflects that the
baseline L and the separation δ between the gradiometers
are independent. For 1 ≤ i ≤ N we define

ψ iðtÞ ¼ ½ΔϕxðXi; 0; tÞ − ΔϕxðXNþi; 0; tÞ�
− ½Δϕyð0; Yi; tÞ − Δϕyð0; YNþi; tÞ� ð5Þ

and compute the output signal HNðtÞ of the detector using
Eq. (3). It contains the GW signal hðtÞ, as well as the
detection noise ϵðtÞ and the NN aðX; tÞ. To derive the
detector strain sensitivity curve, e.g., the minimum detect-
able GW power spectral density (PSD) ShðωÞ [21,22], we
compute the PSD of the detector output, SHN

ðωÞ, using
Eqs. (2), (3), and (5):

SHN
ðωÞ ¼ ð2nkLÞ2ω4ShðωÞjŝαðωÞj2

þ ð2nkÞ2SaðωÞjŝαðωÞj2 þ
4SϵðωÞ

N
: ð6Þ

Here ŝαðωÞ ¼ 4sin2ðωT=2Þ=ω2 is the Fourier transform of
the AI sensitivity function to acceleration sαðtÞ, and SϵðωÞ
is the PSD of the detection noise. The reduction by the
factor N reflects the uncorrelated detection noise in the
different AIs. The ratio between the first term (the GW
contribution) and the last two terms (the noise PSD) of
Eq. (6) defines the SNR of our detection. If we consider a
minimum sensitivity with a SNR of 1, we obtain the strain
sensitivity function

ShðωÞ ¼
SaðωÞ
ω4L2

þ 4SϵðωÞ
16NL2ð2nkÞ2sin4ðωT=2Þ : ð7Þ

The NN PSD SaðωÞ contains two contributions: one given
by the gravity acceleration correlations between AIs at two
positions fXi; Xjg in the same arm, and one given by the
correlations between AIs at two positions fXi; Yjg in
orthogonal arms. The calculation of these contributions
is detailed below.
Before looking into the details of the AI array rejection

method, we review the sources of NN, which are related to
the modification of the mass distribution around the
detector. We focus on the two main sources previously
identified for ground based detectors: (i) seismic noise
related to elastic waves propagating within the ground

[10,23,24] (seismically induced Newtonian noise—SNN),
and (ii) air mass fluctuations in the near atmosphere
[10,25]. We base our calculation on the Saulson model
[10]: For each frequency f ¼ ω=2π, the ground is sub-
divided into cells of fluctuating density whose size corre-
sponds to the half wavelength LρðωÞ ¼ vu=2f of a
propagating compression wave of velocity vu. More spe-
cifically, we use an upgrade of the Saulson model that
guarantees the mass conservation by assuming an anti-
correlation between adjacent cells [23]. We plot in Fig. 2 the
spatial behavior of the gravity acceleration correlation
between two distant points. Mass conservation yields a
negative minimum of the correlation function for a char-
acteristic length, which has been reported for the seismic
noise in Ref. [26]. The main other sources of low frequency
NN are those related to air pressure fluctuations caused by
wind induced air turbulence [10] (Infrasound Newtonian
Noise, INN), and to the effect of turbulence induced frozen
cells of random temperature dragged by thewind [25]. For a
detector at depth H, the latter effect has a cutoff frequency
fc ¼ vwind=ð4πHÞ [25] which is out of the detector band for
H > 100 m (vwind ≃ 10 − 20 m=s is the wind velocity).
We now give some details on the calculation of the NN

contribution SaðωÞ appearing in Eq. (7), which we express as

SaðωÞ ¼
1

N2

X2N
i;j¼1

C∥ðXi; Xj;ωÞ þ
1

N2

X2N
i;j¼1

C⊥ðXi; Yj;ωÞ;

ð8Þ
with the single arm component

X2N
i;j

C∥ðXi; XjÞ≡ 4
XN
i;j

CxxðXi; XjÞ − 4
XN
i;j

CxxðXi; XjþNÞ

ð9Þ

relative distance,
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J(
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/J
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FIG. 2. Spatial behavior of the normalized NN correlations
between two distant points separated by the relative distance
x ¼ jXj − Xij=LρðωÞ, where LρðωÞ is the NN correlation length.
The anticorrelation is a consequence of mass conservation
between adjacent cells of fluctuating density.
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and the crossed arms component

X2N
i;j

C⊥ðXi;XjÞ≡−2
XN
i;j

CxyðXi;YjÞ−2
XN
i;j

CxyðXiþN;YjþNÞ

þ4
XN
i;j

CxyðXiþN;YjÞ: ð10Þ

In Eqs. (9) and (10),Cxy is the Fourier transform of the gravity
acceleration correlation function between two AIs in arms
ðx; yÞ, and we hid the ω dependency for clarity. We assumed
isotropy of the NN and that the detector is surrounded by a
homogeneous medium for both seismic and infrasound-air
density fluctuations. We also consider the effects of the SNN
and INN as independent, so that the incoherent sumof the two
contributions provides an upper bound of our detector
sensitivity. With this model, the correlation Cxx between
two points in the same arm is given by

Cðu;aÞ
xx ðXi; Xj;ωÞ≃ G2Lðu;aÞ

ρ ðωÞ2Δρ2ðu;aÞðωÞJðxðu;aÞij ðωÞÞ;
ð11Þ

with xðu;aÞij ðωÞ ¼ jXi−Xjj
Lðu;aÞ
ρ ðωÞ. HereG is the gravitational constant,

ðu; aÞ are indices denoting the seismic and infrasound NN

contribution, and Lðu;aÞ
ρ ðωÞ ¼ πvu;a=ω is the corresponding

correlation length, with vu and va being, respectively, the
speed of seismic waves in the underground and the speed of
sound in the air. The function JðxÞ is a 3D integral which
represents the spatial behavior of NN correlations between
two distant pointsXi andXj. It is represented in Fig. 2 against
the relative distance x. A similar expression as in Eq. (11)
holds for Cxy, the correlation between two points fXi; Yjg in
orthogonal arms.
Following Refs. [8,10], the density fluctuations for SNN

and INN are respectively given by Δρ2uðωÞ ¼ ρ2uΔa2sðωÞ
πω2v2u

and

Δρ2aðωÞ ¼ ρ2a
γ2p2

a
Δp2ðωÞ. Here ρu ¼ 2300 kg=m3 is the

mean underground density, ΔasðωÞ the seismic acceler-
ation noise, ρa ¼ 1.3 kg=m3 the mean air density, 1=γ2 ≃
1=2 the air coefficient of adiabatic compression, pa the air
pressure and Δp2ðωÞ its PSD. We consider seismic waves
with a typical speed for P waves of vu ¼ 2 km=s corre-
sponding, for example, to porous rocks [27], yielding Lρ ¼
1 km at 1 Hz. The air pressure fluctuation spectrum used
for the INN is Δp2ðωÞ¼0.3×10−5=ðf=1HzÞ2Pa2=Hz
(as used by Saulson [10]). The seismic noise for the
SNN is 1 × 10−17 m2 s−4=Hz at 1 Hz as often reported
in underground sites (see, e.g., Ref. [28,29]).
The gradiometer separation δ determines the NN rejec-

tion efficiency. For instance, if δ is much larger than the NN
correlation length LρðωÞ for all ω, then the successive
measurement points are uncorrelated and Eq. (8) reduces to
terms i ¼ j, yielding

Sðu;aÞa ðδ∞;ωÞ≃ 4

N
G2Lðu;aÞ

ρ ðωÞ2Δρ2ðu;aÞðωÞJð0Þ: ð12Þ

This situation, which corresponds to the standard
Monte Carlo method [see Eq. (4)], already determines a
significant NN rejection of

ffiffiffiffi
N

p
(in noise amplitude).

Choosing an optimal value for δ, it is then possible to
benefit from the anticorrelation in the NN (corresponding
to negative values in Fig. 2). In this case, the Monte Carlo
variance reduction [20] increases the NN rejection of
Eq. (12). The choice of the AI array sampling pattern
(i.e., δ, δ0 and δN) sets the correlation between the
measurement points and thus the amount of additional
NN rejection compared to

ffiffiffiffi
N

p
. The INN and SNN rejection

prefactors depend on the shape of JðxÞ, i.e., on the
characteristics of the site [30].
We illustrate our discussion with a configuration of

N ¼ 80 gradiometers of baseline L ¼ 16.3 km, separated
by the distance δ ¼ 200 m. We plot the expected strain
sensitivity function in Fig. 3, using Eqs. (7)–(10). We use a
detection noise PSD Sϵ ¼ −140 dB rad2=Hz which corre-
sponds, for example, to Nat ¼ 1012 atoms per second and a
20 dB reduction (in variance) in the detection phase noise
by using entangled atomic states. We assumed LMT beam
splitters with n ¼ 1000. Similar parameters have been
considered in other AI proposals (see, e.g., Ref. [9]).
The total AI interrogation time is chosen as 2T ¼ 0.6 s,
which is compatible with the high sampling frequencies
and the absence of dead times required for GW detection by
using joint interrogation sequences [31].
The NN reduction offered by the AI array is maximal

around 1 Hz where it exceeds 30 for the INN and 10 for the
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FIG. 3. Strain sensitivity curve for an AI array with N ¼ 80,
δ ¼ 200 m, δ0 ¼ δN ¼ 500 m, L ¼ 16.3 km and La ¼ 32.6 km.
The AI phase noise is −140 dB rad2=Hz with the interrogation
time T ¼ 0.3 s, and n ¼ 1000 LMT beam splitters. Green:
Detection noise. Dotted-dashed black (dashed blue): INN
(SNN) for two test masses separated by the baseline L. Solid
black line (blue): Residual INN (SNN) after NN rejection with
the AI array. Red: Overall sensitivity curve.
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SNN, yielding a shot noise limited strain sensitivity level of
3 × 10−23=

ffiffiffiffiffiffi
Hz

p
at 2 Hz. At low frequency (≲0.3 Hz), the

SNN correlation length becomes much greater than δ,
which results in a high correlation between the different
gradiometer measurements, thereby preventing the NN
rejection. At high frequencies (>2 Hz), the detector is
limited by detection noise.

IV. DISCUSSION

As shown in Fig. 4, such performances would allow
observations in the frequency band ∼0.3 − 3 Hz. This
frequency band is covered neither by existing detectors
nor by next generation detectors such as the Einstein
Telescope [7] or ESA’s L3 gravity observation mission
eLISA [32], despite the presence of several astrophysical
sources [33].
To conclude, we show that an array of AIs in an

appropriate configuration can allow ground based GW
detection in the ∼0.3 − 3 Hz decade by overcoming the
current limitation imposed by NN. The main idea consists
in using a distribution of long baseline AI gradiometers to
average the NN to zero. We show that a further NN
reduction can be achieved by exploiting the NN correlation
properties to configure the AI array. While the present
concept can be tested on existing apparatuses, our method
will take full advantage of the recent and future develop-
ments in atom interferometry. More advanced schemes
might also lead to sensitivity improvements. For example,
the measurement of higher order spatial derivatives of
the gravity field [34], or the implementation of more
complex spatial distributions of AIs, could achieve higher

NN rejections, depending on the site-dependent NN corre-
lations. Detectors based on AI arrays could then help fill the
blind frequency band between ground-based and space-
based detectors.
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APPENDIX A: REQUIREMENT ON
SEISMIC ISOLATION OF BEAM

SPLITTING OPTICS

In the proposed configuration consisting of two orthogo-
nal arms [Fig. 1(b)], the beam splitting optical system that
distributes the laser to the two arms introduces an asym-
metry. Position noise (e.g., seismic noise) of the splitting
optics results in laser frequency noise which will affect one
arm and not the other: The phase φL of the laser beam
propagating in the y direction picks up the position noise δy
of the splitting optics, which results in a frequency noise
contribution Δν ¼ 1

2π
dφL
dt ¼ kfδy (with Fourier frequency

f). According to Eq. (1), such frequency noise yields a

frequency (Hz)
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FIG. 4. The strain sensitivity of the proposed AI array covers
the frequency region ∼0.3 − 3 Hz, where future ground-based
(Einstein Telescope, ET) and space-based (eLISA) detectors are
blind. The dashed line represents an envelope of the proposed AI
array sensitivity function at frequencies above 3 Hz and corre-
sponds to an average detector response for different interrogation
times T.
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(bottom) for the implementation of the AI array described in the
main text.
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contribution to the relative phase signal of the AI gradi-
ometers in the y arm equal to 2nkL × ΔνðtÞ=ν ¼
2nkL × 2πfδy=c, to be compared with the GW signal
2nk × Lh. Considering a minimum sensitivity with a SNR
of 1 yields the requirement on the position noise δymin of
the splitting optics given by δymin ¼ hc=2πf. To reach a
detector peak sensitivity of 3 × 10−23=

ffiffiffiffiffiffi
Hz

p
at f ¼ 2 Hz,

the seismic noise must be below δyminð2 HzÞ ≈ 7×
10−16 m=

ffiffiffiffiffiffi
Hz

p
. At f ¼ 0.3 Hz, the AI array can feature

a sensitivity of 1 × 10−19=
ffiffiffiffiffiffi
Hz

p
if the seismic noise is

mitigated below δyminð0.3 HzÞ ≈ 2 × 10−11 m=
ffiffiffiffiffiffi
Hz

p
. Such

seismic noise levels can be obtained with a dedicated low
frequency suspension system (see, e.g., Ref. [35]). Finally,
the contribution resulting from NN induced position
fluctuations of the splitting optics is negligible at the
targeted sensitivity level.

APPENDIX B: NEWTONIAN NOISE
REJECTION EFFICIENCY

Figure 5 illustrates the NN rejection efficiency of the AI
array. The dashed line shows the rejection in the case of a
standard Monte Carlo average illustrating the

ffiffiffiffiffi
80

p
rejection

factor. The plain line shows the rejection using the
Monte Carlo variance reduction method exploiting the
spatial behavior of the gravity acceleration correlation
function. The maximum rejection is obtained when the
NN correlation length Lðu;aÞ

ρ ¼ vu;a=2f approaches the
distance corresponding to the anticorrelation of the gravity
acceleration correlation function, which, from Fig. 2, is
obtained for xac ≈ 1.3. This condition on the length trans-
lates in the frequency where the maximum rejection is
observed, given by f ¼ vu;axac=2δ, and equals 1.1 Hz for
the INN and 6.5 Hz for the SNN.
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