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We apply QCD-inspired techniques to study nonrelativistic N-component degenerate fermions with
attractive interactions. By analyzing the singular-value spectrum of the fermion matrix in the Lagrangian,
we derive several exact relations that characterize spontaneous symmetry breaking Uð1Þ × SUðNÞ →
SpðNÞ through bifermion condensates. These are nonrelativistic analogues of the Banks-Casher relation
and the Smilga-Stern relation in QCD. Nonlocal order parameters are also introduced and their spectral
representations are derived, from which a nontrivial constraint on the phase diagram is obtained. The
effective theory of soft collective excitations is derived, and its equivalence to random matrix theory is
demonstrated in the ε regime. We numerically confirm the above analytical predictions in Monte Carlo
simulations.
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I. INTRODUCTION

Spontaneous symmetry breaking is a universal concept
across broad fields of physics. The Bose–Einstein con-
densation of atoms is a marked example of quantum
phenomena accessible in laboratory experiments [1–4].
Superconductivity of electrons plays an essential role in
condensed matter physics and furnishes diverse techno-
logical applications [5]. Chiral symmetry breaking in
quantum chromodynamics (QCD) is a dominant mecha-
nism for mass generation in our Universe [6–8]. The
masses of elementary particles are generated by the
Higgs mechanism [9–11].
Spontaneous symmetry breaking is driven by quantum

effects. For its exact derivation, the full information of a
quantum many-body vacuum is necessary, but it is
extremely difficult to obtain. To tackle this difficult
problem, many theoretical approaches have been developed
in each field. Although they are formulated in different
ways among different fields, the underlying physics must
be common and an approach that proved successful in one
field is expected to be applicable to another field. Such an
interdisciplinary endeavor is of vital importance to grasp
the true nature of a universal phenomenon.
The target of this paper is spontaneous symmetry break-

ing in nonrelativistic multicomponent degenerate fermions.
This occurs in a variety of physical situations in nature. In
nuclear physics, an atomic nucleus is composed of protons
and neutrons with two spin states, entailing an approximate
spin-isospin symmetry [12]. In ultracold atomic systems,
SUðNÞ-symmetric ultracold Fermi gases have been exper-
imentally realized [13]. The SUðNÞ Hubbard model on
a lattice has also attracted attention [14,15]. We refer to
[16–29] for a partial list of works addressing the novel

physics of multicomponent Fermi gases, and [30] for a
recent review.
In this work, we apply analytical tools established in the

study of spontaneous chiral symmetry breaking in QCD to
interacting nonrelativistic fermions with an even number
of components. As in QCD, we analyze the eigenvalues
(more precisely, the singular values) of the fermion matrix
in the Lagrangian formalism.1 The structure of the spectrum
reflects realization of global symmetries in the ground state.
We derive some exact relations between the spectrum and
symmetry breaking, including the nonrelativistic counter-
parts of the Banks-Casher relation (Sec. II) and the Smilga-
Stern relation (Sec. IV), both of which are well established
in studies of the Dirac operator in QCD. In addition, by
relating two-point correlation functions of fermion bilinears
to the singular-value spectrum, we show in Sec. III that
if U(1) symmetry is spontaneously broken, then SUðNÞ
symmetry must be broken down to SpðNÞ, and vice versa,
in N-component fermions. A salient feature of the Dirac
spectrum in QCD is that it obeys random matrix theory
(RMT) in a finite-volume regime called microscopic
domain (or ε regime). In Sec. V we derive the effective
theory of soft collective excitations for nonrelativistic
multicomponent fermions, and identify the correspondence
between the singular-value spectrum and RMT. We verify
these analytical predictions by path-integral Monte Carlo
simulations of nonrelativistic fermions on a lattice, utilizing
powerful techniques developed in lattice QCD (Sec. VI).
In Appendixes, a few analytical derivations are given for
completeness.

1They should not be confused with the energy eigenvalues of
the Hamiltonian operator in the Hamiltonian formalism.
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II. BANKS-CASHER-TYPE RELATION

Our main interest is in N-component degenerate fer-
mions with s-wave contact interactions with UðNÞ-
symmetric theory, where N ¼ 2; 4; 6;… is assumed to
be even. We will work in D-dimensional space with
D ¼ 2 and 3. The action in the imaginary-time formalism
is given (in the unit ℏ ¼ 1) by

S¼
Z
x

�XN
i¼1

ψ�
i

�
∂τ−∇2

2m
−μ

�
ψ iþ

c
2

�XN
i¼1

ψ�
iψ i

�
2
�

ð1Þ

with
R
x ≡

R β
0 dτ

R
dDx. The coupling c < 0 (c > 0) repre-

sents an attractive (repulsive) interaction, respectively.2 The
inverse temperature β ¼ 1=kBT is arbitrary at this stage.
The partition function is given by the path integral
Z ¼ R

Dψ�Dψ expð−SÞ. At N ¼ 2, Eq. (1) is reduced to
the conventional spin-1=2 Fermi gas with Uð1Þ × SUð2Þ
symmetry.
From here on, we concentrate on the attractive

interaction and let g≡−c > 0. By means of a
Hubbard–Stratonovich transformation, one obtains
Z ¼ R

Dψ�DψDϕ expð−S0Þ with

S0 ¼
Z
x

�XN
i¼1

ψ�
i

�
∂τ − ∇2

2m
− μ − gϕ

�
ψ i þ

g
2
ϕ2

�
; ð2Þ

where ϕðxÞ is a real bosonic auxiliary field. Now S0 is
bilinear in fermion fields.
If the system develops a fermion pair condensate hψ iψ ji,

it breaks UðNÞ symmetry spontaneously. To extract the
condensate, it is useful to add the following source term to
the action

δS ¼ − j
2

Z
x
ðψ iIijψ j þ H:c:Þ; ð3Þ

with I ≡ ð 0
−1

1
0
Þ ⊗ 1N=2. This term breaks UðNÞ symmetry

down to the unitary symplectic group defined by

SpðNÞ ¼ fu ∈ SUðNÞjuTIu ¼ Ig: ð4Þ

We introduce the source term (3) with j > 0, and then let
j → 0 in the end of calculations. A nonzero condensate
in the j → 0 limit signals spontaneous UðNÞ symmetry
breaking.
Combining Eq. (3) with Eq. (2) and going to the Nambu-

Gor’kov representation, one finds

S0 þ δS

¼
Z
x

�XN=2

k¼1

ðψ�
2k−1 ψ2k Þ

�
W j

j −W†

��
ψ2k−1
ψ�
2k

�
þ g
2
ϕ2

�

ð5Þ

with

W ≡ ∂τ − ∇2

2m
− μ − gϕ: ð6Þ

The next step is to integrate out fermions, with the result

ZðjÞ ¼
Z

Dϕ detN=2

�
W j

j −W†

�
exp

�
− g
2

Z
x
ϕ2

�

¼
Z

Dϕ detN=2ðj2 þWW†Þ exp
�
− g
2

Z
x
ϕ2

�
: ð7Þ

This form manifestly shows that the path-integral measure
is positive definite so that this theory can be simulated with
standard Monte Carlo methods. We warn that this is no
longer true if N is odd or if the interaction is repulsive.
It is now straightforward to find the fermion condensate

by taking the derivative with j,

1

2
hψTIψ þ H:c:i ¼ lim

V→∞

1

βV
d
dj

logZðjÞ

¼ N
2

lim
V→∞

1

βV

�X
n

2j
j2 þ Λ2

n

�

¼ N
2

Z
∞

0

dΛ
2j

j2 þ Λ2
R1ðΛÞ; ð8Þ

where V is the spatial volume and Λn ≥ 0 are square roots
of the eigenvalues of WW† (i.e., the singular values of W).
The spectral density (or one-point function), R1ðΛÞ, is
defined for Λ ≥ 0 as

R1ðΛÞ≡ lim
V→∞

1

βV

�X
n

δðΛ − ΛnÞ
�

ð9Þ

where the average h� � �i is taken with respect to the
measure (7). By taking the limit j → 0, we arrive at

lim
j→þ0

1

2
hψTIψ þ H:c:i ¼ N

2
π lim
j→þ0

R1ð0Þ: ð10Þ

This relation, linking the density of small singular values
ofW to spontaneous symmetry breaking Uð1Þ × SUðNÞ →
SpðNÞ,3 is the main result of this section. This is a
generalization of the celebrated Banks-Casher relation

2In this paper, we ignore physics related to three-body
interactions.

3For N ¼ 2, the breaking pattern is Uð1Þ → ∅ since
Spð2Þ ≅ SUð2Þ.
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for gauge theories [31] to nonrelativistic fermions. Several
remarks are in order.

(i) As is clear from the derivation above, the new
relation (10) holds both in the normal phase and
in the superfluid phase. The temperature, chemical
potential and the interaction strength are arbitrary.

(ii) The action (1) based on the s-wave contact inter-
action has an intrinsic short-distance cutoff scale
(i.e., the effective range of the interparticle poten-
tial). This implies that it is not physically meaningful
to integrate over Λ up to infinity in Eq. (8) beyond
the short-distance cutoff. However, a more elaborate
treatment of the integral would not change the final
formula (10) because all contributions to Eq. (8)
from regions away from the origin will eventually
drop out in the limit j → 0. Thus, Eq. (10) holds
irrespective of the detailed short-distance physics.

(iii) We stress that the positivity of the measure is
essential for the derivation of Eq. (10). If the
measure becomes negative or complex, the spectral
density tends to be a violently oscillating function
that has no smooth thermodynamic limit [32–36], so
that the last step from Eq. (8) to Eq. (10) replacing
2j

j2þΛ2 with 2πδðΛÞ is invalidated. This suggests that
this kind of an exact formula will not exist in a spin-
imbalanced Fermi gas, even though the condensate
itself may exist.

(iv) In the free limit g → 0, one can compute R1ðΛÞ
analytically, as outlined in Appendix A. In D ¼ 3
dimensions at T ¼ 0, we find

R1ðΛÞ ∝ Λ3=2 ð11Þ

for μ ¼ 0 and

R1ðΛÞ ∝
ffiffiffi
μ

p
Λ ð12Þ

for μ ≫ Λ > 0. In either case R1ð0Þ ¼ 0 gives a
vanishing condensate, but it is worthwhile to note
that the density of small eigenvalues is substantially
enhanced for μ > 0 as compared to μ ¼ 0. This
means that a positive chemical potential (or the
presence of a Fermi surface) acts as a catalyst of
spontaneous symmetry breaking. Analogous phe-
nomena occur in the singular-value spectrum of the
Dirac operator in dense QCD-like theories [34] and
the Dirac spectrum of QCD in an external magnetic
field [37]; in both cases the spectral density near the
origin is enhanced from ∼Λ3 to ∼Λ.

(v) While the above derivation focuses on the SpðNÞ-
symmetric condensate hψTIψi, one can also con-
sider hψTITAψi and hψ†taψi, where [38,39]
(a) fTAg � � �NðN − 1Þ=2 − 1 generators of the

coset space SUðNÞ=SpðNÞ, normalized as
trðTATBÞ ¼ 1

2
δAB. ðTAÞTI ¼ ITA holds.

(b) ftag � � �NðN þ 1Þ=2 generators of SpðNÞ,
normalized as trðtatbÞ ¼ 1

2
δab. ðtaÞTI ¼ −Ita

holds.
The former condensate transforms in the rank-2 antisym-
metric tensor representation of SpðNÞ, while the latter in the
adjoint representation of SpðNÞ. From the Vafa-Witten
theorem [40,41], one can show hψTITAψi ¼ hψ†taψi ¼ 0
for any j ≠ 0. This argument assures that SpðNÞ symmetry
is unbroken for any j ≠ 0. Namely, SpðNÞ-symmetric states
have lower free energy than SpðNÞ-breaking states at j ≠ 0.
Then, if any SpðNÞ-breaking states are degenerate with
SpðNÞ-symmetric states in the j → 0 limit, SpðNÞ sym-
metry could be spontaneously broken. We will assume
that SpðNÞ is not spontaneously broken throughout the
remainder of this paper.

III. U(1) VERSUS SUðNÞ SYMMETRY

While hψTIψi ≠ 0 signals spontaneous breakdown of
both U(1) and SUðNÞ for even N ≥ 4, one can in principle
also imagine a phase where either U(1) or SUðNÞ is broken
but the other is unbroken. Taking such intermediate phases
into account leads us to three distinct phase diagrams
sketched in Fig. 1. In cases (i) and (ii) there appear phases
with partial symmetry breaking, while in case (iii) U(1) and
SUðNÞ are simultaneously restored. (Similar diagrams can
be drawn for a varying interaction strength.)
In this section, we shall use spectral methods inspired

by QCD to argue that such exotic intermediate phases
should not arise at least for N ¼ 4. The key requirement in
our analysis is that, to characterize phases with no bilinear
condensate, one must consider higher-order condensates
containing more than two fermions, as a source of
symmetry breaking. We clarify the necessary and suffi-
cient condition for the singular-value spectrum of W to
support such higher-order condensates in a phase with
limj→0R1ð0Þ ¼ 0.

FIG. 1. Classification of possible finite-temperature phase
diagrams for even N ≥ 4.
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We mention that there are ample literature on symmetry
breaking driven by higher-order condensates in high-
energy physics. In QCD at finite density, the breaking of
U(1) baryon number symmetry and chiral symmetry in
color-superconducting phases is characterized by a six-
quark condensate and a four-quark condensate, respectively
[42,43]. Four-quark condensates also appear in the hypo-
thetical Stern phase of QCD [44–46]. Nonlocal four-quark
operators play a central role in the debate over effective
restoration of the anomalous Uð1ÞA symmetry at high
temperature [47–52]. Furthermore, in some inhomo-
geneous phases of QCD, the bilinear condensate is washed
out by strong fluctuations of phonons, so the leading
condensate consists of four quarks [53] (see [54,55] for
analogs in condensed matter physics).
Returning to the nonrelativistic N-component system of

fermions, we define four bilinears as,

Π0ðxÞ≡ iðψTIT0ψ þ ψ†T0Iψ�Þ ð13aÞ

Δ0ðxÞ≡ ψTIT0ψ − ψ†T0Iψ� ð13bÞ

ΠAðxÞ≡ iðψTITAψ þ ψ†TAIψ�Þ ð13cÞ

ΔAðxÞ≡ ψTITAψ − ψ†TAIψ�; ð13dÞ

where fTAg are the generators of SUðNÞ=SpðNÞ as before,
and T0 ≡ 1N=

ffiffiffiffiffiffiffi
2N

p
. These operators are mixed with each

other under Uð1Þ × SUðNÞ transformations, as summarized
in Fig. 2. We define the integrated connected correlator of a
field X ¼ fΠ0;Δ0;ΠA;ΔAg as

CX ≡
Z
x

Z
y
fhXðxÞXðyÞi − hXðxÞihXðyÞig; ð14Þ

where the averages are taken with respect to the measure
(7). This is an extensive quantity and must be divided by βV
when the thermodynamic limit is taken later. The explicit
forms of CX are presented in Appendix B.
Let us introduce nonlocal observables that are sensitive

to the realization of U(1) and SUðNÞ symmetry. Since Π0

mixes with ΔA under SUðNÞ transformations [cf. Fig. 2],
one must have

CΠ0 ¼ CΔA ð15Þ

in the j → 0 limit if SUðNÞ is unbroken. This property
prompts us to define

ωSUðNÞ ≡ 1

βV

X
A

ðCΠ0 − CΔAÞ

¼ 1

βV

�
N2 − N − 2

2
CΠ0 −X

A

CΔA

�

¼ 2ðN2 − N − 2Þ
βV

�
tr

j2

ðW†W þ j2Þ2
�

¼ 2ðN2 − N − 2Þ
Z

∞

0

dΛ
j2

ðΛ2 þ j2Þ2 R1ðΛÞ; ð16Þ

where formulas in Appendix B have been used repeatedly.
Next, Fig. 2 shows that ΠA and ΔA mix with each other
under U(1) transformations. Hence, one must have

CΠA ¼ CΔA ð17Þ

in a phase with unbroken U(1) symmetry. Let us define

~ωUð1Þ ≡ 1

βV

X
A

ðCΠA − CΔAÞ

¼ 2ðN2 − N − 2Þ
Z

∞

0

dΛ
j2

ðΛ2 þ j2Þ2 R1ðΛÞ: ð18Þ

Intriguingly, this is exactly equal to Eq. (16). Hence,

ωSUðNÞ ¼ ~ωUð1Þ ð19Þ

follows. What is the physical meaning of this relation? Let
us consider the following two cases separately:

(i) N ≥ 6. Since

~ωUð1Þ ¼ − 2

βV

Z
x;y
hψTðxÞITAψðxÞψTðyÞITAψðyÞi

þ H:c:

is a charge-4 condensate, it must vanish when ZN ⊂
SUðNÞ with N ≥ 6 is restored, irrespective of the
U(1) symmetry realization. In other words, unbro-
ken SUðNÞ is enough to ensure the degeneracy of
ðΠ0;Δ0;ΠA;ΔAÞ even though U(1) could still be
broken by higher-order condensates. Thus Eq. (19)

FIG. 2. The four fermion bilinears that transform to each other
under U(1) and SUðNÞ=SpðNÞ rotations.
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does not tell us anything about the interrelation
between U(1) and SUðNÞ symmetries—we only
learn that the restoration of SUðNÞ symmetry
requires not only limj→0R1ð0Þ ¼ 0 but also

lim
j→0

Z
∞

0

dΛ
j2

ðΛ2 þ j2Þ2 R1ðΛÞ ¼ 0; ð20Þ

which is a far more stringent condition than
limj→0R1ð0Þ ¼ 0.4

(ii) N ¼ 4. Unbroken SU(4) symmetry does not imply
~ωUð1Þ ¼ 0, so ~ωUð1Þ can now be treated as a faithful
order parameter for U(1) symmetry breaking. We
interpret the coincidence (19) as an indication that
U(1) breaking goes hand-in-hand with SU(4) break-
ing. Hence, intermediate phases as depicted in Fig. 1
are not expected to arise in the phase diagram.

Since there is no obvious reason to regard the N ¼ 4
fermion system as exceptional, we conjecture that the
simultaneous restoration of U(1) and SUðNÞ would be a
generic phenomenon for N ≥ 4. A further investigation on
this issue is left for future work.
Finally we wish to analyze the possibility that both U(1)

and SUðNÞ are broken by higher-order condensates despite
hψTIψi ¼ 0. This hypothetical phase, characterized by
limj→0R1ð0Þ ¼ 0 and

lim
j→0

Z
∞

0

dΛ
j2

ðΛ2 þ j2Þ2 R1ðΛÞ > 0; ð21Þ

is not excluded by the arguments in this section.5 What is
the form of R1ðΛÞ consistent with Eq. (21)? It is readily
seen that if R1ðΛÞ is strictly zero in the range 0 ≤ Λ ≤ λ0
for some λ0 > 0 (as is the case for free fermions at finite
temperature), then ωSUðNÞ ¼ ~ωUð1Þ ¼ Oðj2Þ → 0 and the
symmetry is restored. Thus a nonzero density of eigenval-
ues in the infinitesimal vicinity of the origin is a necessary
condition for Eq. (21). More precisely, Eq. (21) holds if R1

has the form6

R1ðΛÞ ∼ jαΛ1−α for 0 ≤ α ≤ 1: ð22Þ

A somewhat puzzling instance of the behavior (22) is
encountered in a free theory at T ¼ 0, where R1ðΛÞ ∝ Λ for

μ > 0 (see Appendix A). Our interpretation is that this is
not a true symmetry breaking but rather an indication that
free fermions at μ > 0 is on the verge of symmetry
breaking. At μ > 0, a nonzero density of states at the
Fermi surface ensures that fermion pairs condense and
break symmetries spontaneously for an arbitrarily weak
attractive interaction g > 0, i.e., the Cooper instability. We
believe that ωSUðNÞ ¼ ~ωUð1Þ ≠ 0 at g ¼ 0 should be seen as
an extrapolation of symmetry breaking in the limit g → þ0.
Note that they vanish as soon as we raise the temperature
from zero; namely, the true many-body effect is needed to
achieve ωSUðNÞ ¼ ~ωUð1Þ ≠ 0 at any small but nonzero
T > 0. A quite similar phenomenon is known to occur
when Dirac fermions are subjected to an external magnetic
field in 2þ 1 dimensions: the chiral condensate assumes a
nonzero value even in a free theory [56,57]. This deceiving
condensate evaporates at any nonzero temperature [58],
similarly to our case.

IV. SMILGA-STERN-TYPE RELATION

One of the defining features of superfluidity is a nonzero
stiffness (helicity modulus) [59].7 It is important to under-
stand how the information of the stiffness is imprinted in
the spectral density R1ðΛÞ. In this section we apply the
method of low-energy effective field theory (EFT) to show
that, while limj→0R1ð0Þ is proportional to the condensate,
the slope of limj→0R1ðΛÞ is sensitive to the phase stiffness.
This is a generalization of the so-called “Smilga-Stern
relation” [61–63] in QCD to nonrelativistic superfluids.
Our method is applicable to even N ≥ 4 in the phase where
hψTIψi ≠ 0. This requires D ¼ 3 at sufficiently low T or
D ¼ 2 at T ¼ 0.
EFT is a powerful method enabling a systematic

description of low-energy physics based on symmetries.
It can be equally applied to systems with or without
Lorentz invariance, as has been theoretically demonstrated
in [64–67]; see [68,69] for a comprehensive overview of the
subject. In multicomponent Fermi gases with even N ≥ 4,
fermions are gapped through s-wave pairing and the
dominant excitations at low energy are gapless Nambu-
Goldstone modes originating from the symmetry breaking
Uð1Þ × SUðNÞ → SpðNÞ. Since the construction of the
effective Lagrangian in this case closely parallels previous
works in two-color QCD [34,38,39,70–72], we refer to
these references for details and only recapitulate the
main ideas.
The first step is to generalize the source term (3) to

δS ¼ − 1

2

Z
x
ðψTJψ þ H:c:Þ ð23Þ

4If limj→0R1ð0Þ > 0, then ωSUðNÞ and ~ωUð1Þ blow up to infinity
as j → 0. This is attributed to the IR divergence caused by the
coupling of Π0 and ΠA to the gapless Nambu-Goldstone modes.

5This kind of exotic symmetry breaking seems to occur in
the Stern phase of QCD [44] and the Fulde-Ferrell-Larkin-
Ovchinnikov phase of imbalanced fermions, where the bilinear
condensate is unstable and superfluidity is driven by a quartic
condensate [54,55]. It must be warned, however, that the path-
integral measure of imbalanced fermions is not positive definite
and R1ðΛÞ will not be a smooth positive function of Λ.

6R1ðΛÞ ∼ j2δðΛÞ yields ω ≠ 0, too, but such a singular form
does not seem to be physically well motivated.

7The helicity modulus is nothing but the squared pion decay
constant in the terminology of QCD literature [60].

NONRELATIVISTIC BANKS-CASHER RELATION AND … PHYSICAL REVIEW D 93, 016010 (2016)

016010-5



where

J ¼ jI þ
X
A

jAITA ð24Þ

is the most general decomposition of an antisymmetric
N × N matrix [34]. Corrections to the effective action due
to J can be sorted out in a perturbative manner. At leading
order in the number of derivatives (∂τ, ∇) and the external
field (J) we obtain

Leff ¼ F2½trð∂τΣ†∂τΣÞ þ v2trð∇iΣ†∇iΣÞ�

þ 1

2
½ð∂τϕÞ2 þ ~v2ð∇iϕÞ2� þ ΦRetrðJ ~ΣÞ; ð25Þ

which will be valid if kBT is much lower than the gap in the
single-particle excitation spectrum.
Several remarks are in order.
(i) The coset manifold SUðNÞ=SpðNÞ is parametrized

by ΣðxÞ ¼ UIUT ¼ U2I [39] with

UðxÞ ¼ exp

�
i
πAðxÞTA

2F

�
; ð26Þ

where fπAg are the Nambu-Goldstone modes. Σ
satisfies ΣT ¼ −Σ and Σ†Σ ¼ 1N . The coefficient of
ð∂τπ

AÞ2 in Eq. (25) is normalized to 1=2. v denotes
the velocity of the π fields.

(ii) The superfluid phonon is represented by ϕðxÞ, with
the velocity ~v. In ~Σ, the phonon is coupled to π as

~Σ ¼ Σeiϕ=f: ð27Þ

In two-color QCD, ϕðxÞ is absent because the
axial U(1) symmetry in QCD is violated by chiral
anomaly.

(iii) The last term in Eq. (25) containing J breaks the
SUðNÞ symmetry explicitly and generates a nonzero
gap (“mass”) for the Nambu-Goldstone modes. At
∀jA ¼ 0 we have

m2
π ¼

jΦ
2F2

and m2
ϕ ¼ jNΦ

f2
: ð28Þ

(iv) Evaluating the derivative of logZ with j at ∀jA ¼ 0
one finds

Φ ¼ lim
j→0

1

2N
hψTIψ þ H:c:i: ð29Þ

Combined with our Banks-Casher-type relation
(10), this means limj→0R1ð0Þ ¼ 2Φ=π. We note that
F, f, v, ~v and Φ all depend implicitly on T, μ, g
and N.

(v) Generally, in the absence of Lorentz invariance,
terms linear in the time derivative can appear in
effective Lagrangians and modify dispersion rela-
tions of Nambu-Goldstone modes qualitatively
[64–66]. This indeed occurs in the three-component
fermionic superfluids [24,73]. However, this does
not occur for even N [24,30]; i.e., the number of
Nambu-Goldstone modes is equal to that of broken
generators and they all enjoy a linear dispersion.
This can be argued as follows. According to
[65,66,74], the number of Nambu-Goldstone modes
must be equal to the number of broken generators if
h½Qa;Qb�i ¼ 0 for all pairs of broken generators
fQig. In the case of N-component fermions with
even N, the fact that the coset SUðNÞ=SpðNÞ is a
symmetric space [38] implies that a commutator of
broken generators is a linear combination of un-
broken generators. Then, if there is a nonzero
density of SpðNÞ charges in the ground state, it
breaks SpðNÞ and contradicts the assumption of
unbroken SpðNÞ symmetry. Hence, h½Qa;Qb�i ¼ 0.

(vi) In two-color QCD, a Wess-Zumino-Witten term
proportional to εμνρσ is necessary to account for
the axial anomaly at the level of the chiral Lagran-
gian [75,76]. The same term can emerge in our
effective theory as well (in 3þ 1 dimensions) at the
cost of parity, but this term is fourth order in
derivatives and can be safely neglected at low
energy.

(vii) Suitable extensions of Eq. (25) to the imbalanced
case were thoroughly discussed in [39,71,72,77,78]
in the context of two-color QCD.

Having introduced EFT, we are in a position to compute
low-energy observables. We calculate the susceptibility

χABðjÞ≡ lim∀jA→0
lim
V→∞

1

βV
∂2

∂jA∂jB logZ ð30Þ

from both the microscopic action and EFT. In the micro-
scopic theory, we have

χABðjÞ ¼
δAB
2

Z
∞

0

dΛ
Λ2 − j2

ðΛ2 þ j2Þ2 R1ðΛÞ: ð31Þ

On the EFT side, we find that the leading infrared
singularity as j → 0 is given by

χABðjÞ≃−δABχ̂ log j; ð32Þ

with

χ̂ ≡ 1

128π2
Φ2

F4

�ðN − 4ÞðN þ 2Þ
8N

1

v3
þ 4

v~vðvþ ~vÞ
F2

f2

�
ð33Þ
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at D ¼ 3 and T ¼ 0. The derivations of Eqs. (31), (32),
and (33) are given in Appendix C. The infrared divergence
in Eq. (32) must be accounted for by Eq. (31) as well, i.e.,
for small j

Z
∞

0

dΛ
Λ2 − j2

ðΛ2 þ j2Þ2 R1ðΛÞ≃−2χ̂ log j: ð34Þ

This constrains the possible form of R1ðΛÞ. We note that
the constant part of R1ðΛÞ does not contribute to the
integral [61], since

R
∞
0 dx x2−1

ðx2þ1Þ2 ¼ 0. A logarithmic diver-

gence could be reproduced if R1ðΛÞ − R1ð0Þ is linear in Λ
near the origin. Thus we finally obtain

lim
j→0

R1ðΛÞ ¼
2

π
Φþ 2χ̂Λþ oðΛÞ: ð35Þ

This is the main result of this section. Equation (35)
presents a condensed-matter analogue of the Smilga-Stern
relation in QCD [61]. This relation holds at T ¼ 0 inD ¼ 3
dimensions for N ≥ 4 even. Derivation of a similar formula
for N ¼ 2 is left as an interesting open problem. Probably
this can be handled by means of the supersymmetric
method along the lines of [62,63]. In D ¼ 2, the infrared
singularity is even stronger and χABðjÞ diverges as ∼1=

ffiffi
j

p
.

This implies

R1ðΛÞ − R1ð0Þ ∝ jαΛ
1
2
−α ð36Þ

up to the scale Λ ∼ j, for an arbitrary 0 ≤ α ≤ 1=2. This is
all we can say about the form of R1 in 2 dimensions.

V. RANDOM MATRIX THEORY

Although not explicitly shown in Eq. (25), there are
infinitely many terms in the effective Lagrangian and it is
imperative to organize them in a consistent manner. One
way to do this is to employ a counting scheme where the
derivative (∂τ, ∇) and the mass term mπ;ϕ are treated as
small quantities of the same order. However, there is yet
another way of organizing the expansion [79]. Suppose the
system is put in a box of linear extent L and assume a
counting scheme

∂τ ∼∇ ∼
1

L
∼ T ∼OðεÞ;

j ∼OðεDþ1Þ and mπ;ϕ ∼OðεDþ1
2 Þ: ð37Þ

This is called the “ε regime” [79]. This can be realized by
taking the combined limit T → 0, L → ∞, and j → 0,
keeping βVΦj ∼ 1. In this expansion, the leading term is
given by the mass term in Eq. (25) while all the rest are
suppressed by additional powers of ε, implying that the
spacetime-dependent part of the Nambu-Goldstone modes
is suppressed relative to the zero mode ~Σ ¼ const. This

leads us to an intriguing observation that the partition
function at leading order of the ε expansion reduces to just a
finite-dimensional integral over the coset space:

Z ¼
Z

UðNÞ=SpðNÞ

d ~Σ exp½−βVΦRetrðJ ~ΣÞ�; ð38Þ

which can be computed analytically [70,80].
A more intuitive way of understanding this dramatic

reduction is as follows. For D > 1, the counting (37)
implies that a separation of scales

β ≪
1

mπ;ϕ
and L ≪

v
mπ

;
~v
mϕ

ð39Þ

holds. This means that the box size is much shorter than the
correlation lengths in both temporal and spatial directions,
so that only zero modes of the Nambu-Goldstone modes
contribute to the partition function. To avoid confusion, we
stress that the domain of validity for the partition function
(38) does not overlap with the domain where the Banks-
Casher-type relation (10) and the Smilga-Stern-type rela-
tion (35) hold. The latter two assume that j → 0 is taken
after βV → ∞. This is different from the ε-regime where
the two limits must be taken simultaneously.
Since the form of the partition function (38) is totally

fixed by global symmetries, it embodies the universal
nature of the system. Namely, any theory undergoing the
same pattern of symmetry breaking should reduce to
the same partition function in the ε-regime, regardless of
all the complex details of the microscopic Lagrangian. This
reasoning suggests that the sigma model representation
(38) may result from a much simpler and tractable model.
Indeed it has been shown by Verbaarschot et al. [81–84] in
the context of QCD that Eq. (38) can be reproduced exactly
from the random matrix theory (RMT)8

ZRMT ¼
Z

Rn×n

dŴdetN=2

�
ĵ Ŵ

−ŴT ĵ

�
exp

�
−n
2
trŴŴT

�
;

ð40Þ

where Ŵ is a real n × n matrix and the hat ^ is attached to
dimensionless quantities. In the n → ∞ limit with
nĵ ¼ Oð1Þ, ZRMT reduces to (38) if we identify

βVΦJ ⇔ nĵI: ð41Þ

Equation (40) is called the “chiral Gaussian orthogonal
ensemble” (chGOE) which corresponds to Class BDI in the

8The connection between RMT and sigma models has been
discussed in quite general contexts; see e.g., [85,86].
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tenfold symmetry classification of RMT [87,88].9 While
chGOE was originally proposed to describe the Dirac
operator spectra in two-color QCD, it can equally be
applied to multicomponent Fermi gases due to the
coincidence of the global symmetry breaking pattern,
Uð1Þ × SUðNÞ → SpðNÞ. The only notable distinction is
that U(1) is violated by quantum anomaly in QCD but not
in Fermi gases, which is reflected in the form of Ŵ: it is a
rectangular matrix in applications to QCD but must be a
square matrix in our case.
A notable consequence of the above equivalence

between RMT and the ε-regime EFT is that the statistical
correlations of the near-zero singular values of W (in the
full theory) and Ŵ (in RMT) on the scale of average level
spacing should agree exactly. This is an example of spectral
universality that emerges in a variety of physical systems
[90]. In the model (40), the average level spacing near zero
is of order ∼1=n, so the universal behavior is manifested
in the singular value spectrum of Ŵ (denoted as fΛ̂ng) on
the scale ∼1=n. This leads us to define the so-called
“microscopic spectral density” [81],

ρRMTðλÞ≡ lim
n→∞

1

n

�X
n

δ

�
λ

n
− Λ̂n

��
: ð42Þ

In chGOE, ρRMTðλÞ has been computed analytically at
ĵ ¼ 0 in [83] and for general ĵ ≠ 0 in [91]. Now, based on
the correspondence between RMT and EFT [cf. (41)], we
expect that ρðλÞ defined in the full theory as

ρðλÞ≡ lim
βV→∞

1

βVΦ

�X
n

δ

�
λ

βVΦ
− Λn

��
ð43Þ

must coincide with ρRMTðλÞ exactly.10 This coincidence
should also occur for higher-order correlation functions and
the smallest singular-value distribution PðλminÞ. The latter
was analytically computed for chGOE by various authors
[92–97]. In the case of QCD, a quantitative agreement
between the Dirac spectrum in QCD and the prediction of
RMT for ρðλÞ and PðλminÞ has been firmly established
through Monte Carlo simulations [98] (see [99,100] for
reviews). Before proceeding, let us give a couple of
comments regarding ρðλÞ:

(i) One can define the microscopic spectral density only
in the symmetry-broken phase. In the symmetric

phase, there is no small singular values of order 1=V
and the correspondence to RMT is lost.

(ii) In numerical simulations in the ε-regime, one needs
to rescale the spectrum of dimensionless singular
values so as to match ρRMTðλÞ. This procedure
allows us to extract the value of Φ accurately. On
the other hand, the Banks-Casher-type relation
limj→0R1ð0Þ ¼ 2

πΦ also gives Φ. The values of Φ
obtained in these ways should agree with each other,
since Φ is a physical observable that enters the low-
energy effective theory (25). Note, however, that
these measurements cannot be done simultaneously,
as they have nonoverlapping domains of validity. In
practical simulations, the volume is necessarily finite
and any measurement is afflicted with finite-volume
effects. Of the two methods, one should use the one
that receives smaller finite-volume corrections in a
given setting.

(iii) Once the symmetry of the action is modified by
external perturbations, the corresponding RMT can
change from chGOE to something else. For instance,
coupling of fermions to an external gauge field
would make the matrixW complex. The appropriate
RMT is now the chiral Gaussian unitary ensemble
(chGUE) [82,101], which has complex matrix ele-
ments. In principle one can investigate a cross-
over between chGOE and chGUE in numerical
simulations.

(iv) Yet another perturbation of physical importance is a
species imbalance (or polarization). Let us take
N ¼ 2 for illustration. If the chemical potential
for up(↑) fermions is detuned from that of down
(↓) fermions by an amount δμ ≠ 0, the partition
function can no longer be expressed in terms of a
single operator WW† as in (7). Instead, one has to
handle a complex eigenvalue spectrum of a non-
Hermitian operatorW↑W↓ withW↑ ≠ W†

↓.
11 We are

then forced to adopt a non-Hermitian extension of
chGOE (or a chiral extension of the so-called “real
Ginibre ensemble” [102]) to describe universal
correlations of complex eigenvalues of W↑W↓.

12

Such an extension of chGOE has already been
thoroughly studied and even analytically solved in
[103–105], aiming at applications to two-color QCD
with baryon chemical potential. Based on the uni-
versality of RMT, we believe that the level statistics
of the non-Hermitian chGOE should apply to the
imbalanced Fermi gases as well.

9The reader may find the 2 × 2 block structure of (40) in the
‘particle-hole’ space to be reminiscent of the Bogoliubov–de
Gennes ensemble of random matrices [88,89]. To avoid con-
fusion, let us emphasize that our RMT (chGOE) has no
fluctuating components in the particle-particle and hole-hole
sector—namely, the Hubbard-Stratonovich transformation lead-
ing to (2) was performed only in the particle-hole channel.

10Note the difference from the definition (9) of R1ðΛÞ. The
microscopic spectral density ρðλÞ looks at a much finer structure
of the spectrum than the spectral density R1ðΛÞ does.

11The same situation arises when the masses of N components
are unequal.

12Note that, in the ε regime, δμ ∼OðεDþ1
2 Þ must go to zero in

the thermodynamic limit [32]. This means that RMT cannot be
used to describe phase transitions that occur in the V → ∞ limit
with δμ ≠ 0 fixed.
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VI. NUMERICAL SIMULATION

We checked a few of the theoretical findings in the
former sections by the path-integral Monte Carlo simu-
lation, which is familiar in lattice QCD [106]. The
Monte Carlo configurations are generated on the basis of
the measure (7), and then the statistical average over
configurations is taken. The operator (6) is discretized
on a (3þ 1)-dimensional lattice as

Wx;x0 ¼
1

a
½δx;x0 − f1þ gaϕðxÞgeμaδx−eτ;x0 �

−
1

2ma2
X

i¼x;y;z

ðδxþei;x0 þ δx−ei;x0 − 2δx;x0 Þ; ð44Þ

where ei is the unit lattice vector in the i-direction and a is
the lattice constant [107]. Boundary conditions are periodic
in spatial directions and antiperiodic in the τ-direction.
The particle mass and the chemical potential are fixed at
2ma ¼ 10 and μ ¼ 0, respectively.
We numerically computed the singular values Λn, i.e.,

the square roots of the eigenvalues of the matrixWW†. The
configurations for N ¼ 2 were generated by the Hybrid
Monte Carlo algorithm [108]. To measure the spectral
density (9), we performed simulations at L=a ¼ 4, 6, and 8,
and then extrapolated the results to the infinite volume
limit. The obtained spectral density is shown in Fig. 3. At a
low temperature (Ta ¼ 0.05), the spectral density has a
peak at Λ ¼ 0 and R1ð0Þ is clearly nonzero. From the
Banks-Casher-type relation (10), this indicates a nonzero
fermion condensate in a superfluid phase. At a high
temperature (Ta ¼ 0.25), the spectral density is a slowly
increasing function and R1ð0Þ is close to zero. This
indicates a normal phase.
We also checked the correspondence to RMT in a

small finite volume V=a3 ¼ 43. To increase the number
of configurations, we adopted the quenched approximation,

which is frequently used in lattice QCD to reduce the
computational cost [106]. In the quenched approximation,
the fermion determinant in the measure (7) is neglected.
The measure is thus given by a product of independent
Gaussian weights for ϕðxÞ, which helps to speed up the
simulation extremely. Since quenched configurations are
independent of j, singular-value distributions have no
dependence on j. In Fig. 4, the microscopic spectral density
ρðλÞ and the smallest singular-value distribution PðλminÞ are
shown. In the quenched chGOE with trivial topology
(ν ¼ 0), they are analytically given by [83,109]

ρRMTðλÞ ¼
λ

2
fJ0ðλÞ2 þ J1ðλÞ2g

þ 1

2
J0ðλÞ

�
1 −

Z
λ

0

dxJ0ðxÞ
�

ð45Þ

and [94]

PRMTðλminÞ ¼
2þ λmin

4
exp

�
− λ2min

8
− λmin

2

�
; ð46Þ

respectively, which are drawn in Fig. 4 for comparison.
Although these analytical solutions of RMT are parameter
free if Φ is known, here Φ is treated as a fitting parameter.
At a low temperature (Ta ¼ 0.05), the lattice simulation
nicely reproduces the predictions of RMT. At a high
temperature (Ta ¼ 0.25), the lattice simulation deviates
from RMT and approaches the Poisson distribution

PðλminÞ ¼ expð−λminÞ; ð47Þ

which signals absence of a level correlation.

FIG. 3. Spectral density R1ðΛÞ in the lattice simulation for N ¼
2 and g=a2 ¼ 1. The averages over 500 configurations are shown.

FIG. 4. Microscopic spectral density ρðλÞ and the smallest
singular-value distribution PðλminÞ in the quenched lattice sim-
ulation with g=a2 ¼ 3. The green, blue, and red broken curves are
the predictions (45) and (46) by RMT and the Poisson statistics
(47), respectively. The averages over 5000 configurations are
shown.
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VII. SUMMARY AND PERSPECTIVE

In this work, we studied multicomponent fermionic
superfluids and derived a number of rigorous results by
using theoretical methods that hardly appear in conven-
tional studies of nonrelativistic systems but are well
established in the field of quantum chromodynamics
(QCD). By relating the order parameters of spontaneous
symmetry breaking to the singular-value spectrum of a
single operator W [Eq. (6)] we derived a nonrelativistic
analog of the Banks-Casher relation in QCD, which enables
us to extract the bifermion condensate hψψi from the
spectrum reliably. Furthermore we have shown, through a
spectral analysis of W, that the Uð1Þ and SUðNÞ symmetry
of theN-component Fermi gas must be restored (or broken)
simultaneously. This imposes a strong constraint on the
phase diagram by precluding intermediate phases where
either U(1) or SUðNÞ is broken and the other is not.
We also developed a low-energy effective theory of

Nambu-Goldstone modes in the superfluid phase for
general even N, and rigorously derived a formula which
expresses the slope of the spectral density near zero in
terms of low-energy constants that enter the effective
Lagrangian. This is an analog of the Smilga-Stern relation
in QCD. In addition, we pointed out that the effective
theory can be mapped to a random matrix theory in the ε
regime. From this correspondence we found an analytical
formula for the spectral density near zero. This provides us
with a novel, numerically clean method to extract the
bifermion condensate through fitting to the numerical data
of the spectrum. We confirmed these analytical calculations
by the path-integral Monte Carlo simulations.
It should be emphasized that the analysis in this paper

involves no uncontrolled approximations and is valid under
quite general conditions for temperature, density and the
interaction strength, as long as the path-integral measure is
positive definite. Our results can be used to benchmark
other theoretical methods.
There are various future directions. The multicomponent

Hubbard model can be studied in the same manner. This
may add to our knowledge of the rigorous results of the
Hubbard model. It is also worthwhile to extend the present
work to other cases of N; in particular, the symmetry
analysis based on the multi-point correlation functions in
Sec. III to N ≥ 6, the Smilga-Stern-like relation in Sec. IV
to N ¼ 2, and the numerical checks of correspondence to
RMT in Sec. VI to unquenched N ≥ 2. The extension of
our framework to theories with odd N or repulsive
interactions is a more challenging problem.
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APPENDIX A: SPECTRAL DENSITY
IN A FREE THEORY

In the free limit g → 0, the spectral density can be
obtained analytically. The spectral density is independent
of j in a free theory. At T ¼ 0,

R1ðΛÞ¼
1

βV

�X
n

δðΛn−ΛÞ
�

¼ 2Λ
βV

tr½δðWW†−Λ2Þ�

¼ 2Λ
βV

tr

�
δ

�
−∂2

τ þ
�
−∇2

2m
−μ

�
2

−Λ2

��

¼ 2ð2mÞD=2Λ
Z

dω
2π

Z
dDq
ð2πÞD δðω

2þðq2−μÞ2−Λ2Þ

¼ CD

ð2πÞD ð2mÞD=2Λ

×
Z

dω
2π

Z
∞

0

drrðD−2Þ=2δðω2þðr−μÞ2−Λ2Þ

¼ CD

ð2πÞDþ1
ð2mÞD=2Λ

×
Z

∞

0

drrðD−2Þ=2ΘðΛ2− ðr−μÞ2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Λ2− ðr−μÞ2

p ; ðA1Þ

where ΘðxÞ is a step function and C1 ¼ 2, C2 ¼ 2π,
and C3 ¼ 4π. The integrand of (A1) is nonzero for
ðr − μÞ2 ≤ Λ2, i.e., μ − Λ ≤ r ≤ μþ Λ. We divide the
ðμ;ΛÞ plane into two regions: μ ≥ Λ and Λ ≥ μ.

(i) Case I: μ ≥ Λ
Writing r ¼ μþ Λ cos θ (0 ≤ θ ≤ π), we obtain

R1ðΛÞ

¼ CD

ð2πÞDþ1
ð2mÞD=2Λ

Z
μþΛ

μ−Λ
dr

rðD−2Þ=2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Λ2 − ðr − μÞ2

p

¼ CD

ð2πÞDþ1
ð2mÞD=2Λ

Z
π

0

dθðμþ Λ cos θÞðD−2Þ=2

¼

8>><
>>:

m
2π

Λ ½D ¼ 2�
ð2mÞ3=2
2π3

Λ
ffiffiffiffiffiffiffiffiffiffiffiffi
μþ Λ

p
E

�
2Λ

μþ Λ

�
½D ¼ 3�

;

ðA2Þ

where EðxÞ≡ R π=2
0 dθ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − x sin2 θ

p
is the complete

elliptic integral of the second kind. Interestingly,
R1ðΛÞ has no μ dependence for D ¼ 2.
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(ii) Case II: Λ ≥ μ

R1ðΛÞ¼
CD

ð2πÞDþ1
ð2mÞD=2Λ

Z
μþΛ

0

dr
rðD−2Þ=2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Λ2−ðr−μÞ2

p

¼ CD

ð2πÞDþ1
ð2mÞD=2Λ

×
Z

Ξ

0

dθðμþΛcosθÞðD−2Þ=2jΞ≔cos−1ð−μ
ΛÞ

¼

8>><
>>:

m
2π2

ΞΛ ½D¼2�
ð2mÞ3=2
2π3

Λ
ffiffiffiffiffiffiffiffiffiffiffi
μþΛ

p
E

�
Ξ
2
j 2Λ
μþΛ

�
½D¼3�

;

ðA3Þ
where EðφjxÞ≡ R φ

0 dθ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − x sin2 θ

p
is the incom-

plete elliptic integral of the second kind. If we
formally set Ξ ¼ π, (A3) reduces to (A2).

Figure 5 displays R1ðΛÞ. In the limit μ → 0 (or Λ ≫ μ),
one finds from (A3)

R1ðΛÞ ∼

8>><
>>:

m
4π

Λ ½D ¼ 2�

c
ð2mÞ3=2
2π3

Λ
ffiffiffiffi
Λ

p
½D ¼ 3�

; ðA4Þ

where c≡ Eðπ
4
j2Þ ¼ 0.59907… is a numerical constant. In

contrast, for Λ ≪ μ, (A2) becomes

R1ðΛÞ ∼

8>><
>>:

m
2π

Λ ½D ¼ 2�
π

2

ð2mÞ3=2
2π3

ffiffiffi
μ

p
Λ ½D ¼ 3�

: ðA5Þ

At T > 0, the continuous frequency ω should be replaced
with the Matsubara frequency ωn ¼ ð2nþ 1ÞπT. This
means, in a plane basis,

WW† ¼ ω2
n þ

�
p2

2m
− μ

�
2

≥ ω2
0 ¼ ðπTÞ2: ðA6Þ

Therefore, R1ðΛÞ vanishes identically on the inter-
val Λ ∈ ½0; πT�.

APPENDIX B: CORRELATION FUNCTIONS

In this appendix, we summarize technical formulas of the
correlation functions used in Sec. III. The propagators for
the theory (7) read

ψðxÞψ
┌⏤⏤┐

†ðyÞ ¼ hxj 1N
W†W þ j2

W†jyi ðB1aÞ

ψðxÞψ
┌⏤⏤┐

TðyÞ ¼ hxj jI
W†W þ j2

jyi ðB1bÞ

ψ�ðxÞψ
┌⏤⏤┐

TðyÞ ¼ hxj − 1N
WW† þ j2

Wjyi ðB1cÞ

ψ�ðxÞψ
┌⏤⏤┐

†ðyÞ ¼ hxj − jI
WW† þ j2

jyi: ðB1dÞ

It is a straightforward exercise to evaluate the integrated
connected correlator (14) for the multiplet ðΠ0;Δ0;ΠA;ΔAÞ
defined in Eqs. 13(a)–13(d). Noting that the disconnected
piece is nonzero only for Δ0, we find

CΠ0 ¼ 2

�
tr

1

W†W þ j2

�
; ðB2aÞ

CΔ0 ¼ 2

�
tr

W†W − j2

ðW†W þ j2Þ2
�
þ 2N

��
tr

j
W†W þ j2

�
2
�

− 2N

�
tr

j
W†W þ j2

�
2

; ðB2bÞ

CΠA ¼ 4trðTATAÞ
�
tr

1

W†W þ j2

�
; ðB2cÞ

CΔA ¼ 4trðTATAÞ
�
tr

W†W − j2

ðW†W þ j2Þ2
�
: ðB2dÞFIG. 5. Spectral density in the noninteracting limit at T ¼ 0 in 2

(top) and 3 (bottom) spatial dimensions.
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In deriving these results, we used the identity

tr
j

WW† þ j2
¼ tr

j
W†W þ j2

: ðB3Þ

Note that an analogue of this relation for the Dirac operator
does not hold in QCD because of the index theorem. The
summation over A can be easily taken with the help of the
identity

X
A

TATA ¼ N2 − N − 2

4N
1N: ðB4Þ

APPENDIX C: DERIVATION OF χABðjÞ
Here, we derive Eqs. (31), (32), and (33). In the micro-

scopic theory, the partition function (7) is modified by the
generalized source term (23) as ZðjÞ → ZðJÞ. The suscep-
tibility is

χABðjÞ≡ lim∀ jA→0
lim
V→∞

1

βV
∂2

∂jA∂jB logZðJÞ

¼ lim∀ jA→0
lim
V→∞

1

4βV

Z
x

Z
y
hΔAðxÞΔBðyÞiJ

¼ δAB
2

Z
∞

0

dΛ
Λ2 − j2

ðΛ2 þ j2Þ2 R1ðΛÞ: ðC1Þ

This gives Eq. (31). While the average h� � �iJ is taken over
the measure with a generalized source term (23), R1ðΛÞ is
given by the original measure (7) in the jA → 0 limit.
In EFT, we assume T ¼ 0 for the sake of simplicity. The

jA-dependent part of the source term is

RetrðJ ~ΣÞ ¼ jAVA þ � � � ðC2Þ

with

VA ≡ 1

4F2
trðTAfTP; TQgÞπPπQ þ 1

2Ff
ϕπA ðC3Þ

in the leading order of ϕ and πA. Hence,

χABðjÞ ¼
Φ2

βV

Z
x

Z
y
hVAðxÞVBðyÞi1-loop; ðC4Þ

where hVAi ¼ 0 was used. The subscript implies we
will perform a one-loop analysis, which is sufficient to
see the leading infrared behavior. As the cross term
hπPπQϕπAi ¼ 0, we get

χABðjÞ ¼
Φ2

8F4
trðTAfTP;TQgÞtrðTBfTP;TQgÞ

×
Z
p

1

ðω2 þ v2p2 þm2
πÞ2

þ δAB
Φ2

4F2f2

Z
p

1

ω2 þ v2p2 þm2
π

1

ω2 þ ~v2p2 þm2
ϕ

;

ðC5Þ

with
R
p≡

R
dω
2π

R dDp
ð2πÞD . We consult [63] to obtain

trðTAfTP; TQgÞtrðTBfTP; TQgÞ ¼ ðN − 4ÞðN þ 2Þ
8N

δAB:

ðC6Þ

The momentum integrals in Eq. (C5) are divergent in the
limit j → 0 for D ≤ 3. At D ¼ 3, the leading singularity in
j → 0 is

Z
p

1

ðω2 þ v2p2 þm2
πÞ2

≃− 1

16π2
1

v3
log j; ðC7Þ

Z
p

1

ω2 þ v2p2 þm2
π

1

ω2 þ ~v2p2 þm2
ϕ

≃− 1

8π2
1

v~vðvþ ~vÞ log j: ðC8Þ

We used m2
π ¼ jΦ=2F2 and m2

ϕ ¼ jNΦ=f2. Collecting
everything, we obtain Eqs. (32) and (33). In the same
way one can show χABðjÞ ∼ 1=

ffiffi
j

p
at D ¼ 2.
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