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In a realistic interacting system described by (2þ 1)-dimensional quantum electrodynamics (QED3),
there is always a certain number of impurities by which fermions are scattered. In general, impurity
scattering can generate a finite density of states at the Fermi level, which screens the temporal component of
the gauge field. This effect is expected to weaken dynamical fermion mass generation. Within the Born
approximation, by introducing a damping term in the energy component of the fermion propagator, the
influences of finite temperature and impurity scattering on the chiral phase transition in QED3 are
investigated. Pursuing this aim, we solve the Dyson-Schwinger equations for the fermion and boson
propagators to the leading order in 1=Nf expansion at zero frequency and then calculate the chiral
condensate, the chiral susceptibility, and the thermal susceptibility within a range of the impurity scattering
rates Γ and the numbers of fermion flavors Nf . It is found that impurity scattering leads to an obvious
suppression of the dynamical fermion mass generation and critical temperature Tc.
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I. INTRODUCTION

Quantum chromodynamics (QCD), which describes the
interactions between quarks and gluons, is regarded as an
important component of the Standard Model of particle
physics. Dynamical chiral symmetry breaking (DCSB) and
quark color confinement are two fundamental features of it.
Research on the chiral and deconfinement phase transitions
at a finite temperature and/or chemical potential is con-
ducive to deepening our understanding of the nature as well
of the early Universe and, thus, becomes one of the hot
topics in today’s theoretical calculations and experimental
measurements. A great many studies have been done in this
field [1–12]. It is commonly accepted that with the temper-
ature and/or chemical potential increasing, strongly inter-
acting matter will undergo a phase transition from the
Nambu-Goldstone phase (often referred to as the Nambu
phase, in which chiral symmetry is dynamically broken) to
the Wigner phase (where the chiral symmetry is partially
restored). However, because of the complicated non-
Abelian feature of QCD itself, it is difficult to have a
thorough understanding of the mechanisms of DCSB and
confinement. In this case, to gain a valuable comprehension
of them, it is very suggestive to study some models which
are structurally much simpler than QCD while sharing the
same basic nonperturbative phenomena.

As an effective model, quantum electrodynamics in
(2þ 1) dimensions (QED3) has several nonperturbative
features in common with QCD, such as asymptotic freedom
[13–18], DCSB [19–31], and confinement [32–36]. In
addition, due to the coupling constant being dimensionful
(its dimension is

ffiffiffiffiffiffiffiffiffiffi
mass

p
), QED3 is superrenormalizable

and does not suffer from the ultraviolet divergences which
are present in the corresponding four-dimensional theories.
These properties of QED3 enable it to serve as a toy model
of QCD.
In the past three decades, the chiral phase transition in

QED3 has aroused great interest and been investigated
intensively. At zero temperature and chemical potential,
to the leading order in 1=Nf expansion, Appelquist, Nash,
and Wijewardhana [37] first solved the Dyson-Schwinger
equation (DSE) for the fermion self-energy function and
found that the chiral phase transition takes place only when
the number of fermion flavors is less than a critical number
of fermion flavors Nc

f ¼ 32=π2. After taking into account
the next-to-leading-order corrections to the fermion wave-
function renormalization function, Nash [38] then obtained
Nc

f ¼ 128=3π2. Later, Maris [39] solved a set of coupled
integral equations for the fermion wave-function renorm-
alization function, the fermion self-energy function, and
the boson vacuum polarization with a range of simplified
fermion-boson vertices and arrived at Nc

f ≈ 3.3. Recently,
Fischer et al. [40] employed an ansatz satisfying the Ward-
Takahashi identity for the fermion-boson vertex and found
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Nc
f ≈ 4. In addition, Bashir et al. [41] established that

QED3 can possess Nc
f if, and only if, the fermion wave-

function renormalization function and boson vacuum
polarization are homogeneous functions at infrared
momenta and argued that if Nc

f exists in QED3, then its
value is independent of the gauge parameter. Braun et al.
[42] studied the many-flavor phase diagram of QED3 by
analyzing the RG fixed-point structure of the theory and
found that the phase transition towards a chirally broken
phase occurring at small flavor numbers could be separated
from the quasiconformal phase at larger flavor numbers by
an intermediate phase.
At finite temperature and zero chemical potential, to the

leading order in 1=Nf expansion, by retaining only the
temporal component of the boson propagator and ignoring
all but the zero-frequency component of the boson momen-
tum, Dorey and Mavromatos studied the dynamical fer-
mion mass generation [43]. After including the contribution
from the fermion wave-function renormalization function
and taking into account the momentum dependence of the
fermion self-energy function, Aitchison and Klein-Kreisler
then restudied the problem of dynamical fermion mass
generation [44]. Recently, in the same approximation
framework, Feng et al. solved the DSE for the fermion
self-energy function and found a critical temperature Tc,
at which the system undergoes a phase transition from the
Nambu phase into the Wigner phase [45]. Furthermore, Lo
and Swanson analyzed the behavior of the theory at a finite
temperature and investigated the chiral phase transition of
the QED3 at a finite temperature and density by computing
the dressed fermion and boson propagators with full
frequency dependence [46].
In addition, since the discovery of high-Tc supercon-

ductivity, QED3 has attracted considerable interest from
physicists. It is generally believed that QED3 with Nf

flavors of fermions can be regarded as a possible low-
energy effective theory for strongly correlated electronic
systems, such as high-Tc cuprate superconductors [47–53]
and graphene [54,55]. In these realistic interacting systems,
there is always a certain number of impurities (or defects),
by which the fermions are scattered. Generally, impurity
scattering has two important effects. First, it generates a
finite density of states at the Fermi level, which screens the
temporal component of the gauge field. This effect is
expected to weaken the strength of the gauge interaction.
Second, it produces a finite damping of fermion quantum
states and, thus, reduces the time for fermions to interact
with their antiparticles. These effects indicate that impurity
scattering will have important effects on the dynamical
fermion mass generation and the chiral phase transition.
As far as we know, however, the influences of impurity

scattering on the chiral phase transition have rarely
been investigated in the previous literature. The authors
of Ref. [27] studied the effects of finite chemical potential
and impurity scattering on dynamical fermion mass

generation. By solving the DSE for the fermion self-energy
function, they found that the finite chemical potential and
impurity scattering lead to a strong suppression of the
dynamical fermion mass generation and the critical number
of fermion flavors Nc

f. As mentioned above, in the realistic
applications of QED3 to condensed matter physics, impu-
rity scattering is usually important and, thus, should not be
ignored. The purpose of this paper is to study the effects of
impurity scattering on the chiral phase transition by solving
the DSEs for the fermion and boson propagators to the
leading order in 1=Nf expansion.
This paper is organized as follows: In Sec. II, we set up

the DSEs satisfied by the scalar functions of propagators
including impurity scattering. In Sec. III, the order
parameter describing the chiral phase transition of the
system is presented. In Sec. IV, we calculate the scalar
functions of propagators and order parameter within a
range of the impurity scattering rates Γ and the numbers
of fermion flavors Nf and then discuss the relationship
between the critical temperature Tc and the impurity
scattering rate Γ. A brief summary and discussion are
given in Sec. IV.

II. DYSON-SCHWINGER EQUATIONS IN THE
PRESENCE OF IMPURITY SCATTERING

In Euclidean space, the Lagrangian density of QED3

with Nf flavors of massless fermions is given by

L ¼
XNf

f¼1

ψ̄fð∂ þ ieAÞψf þ
1

4
F2
μν þ

1

2ξ
ð∂μAμÞ2: ð1Þ

In (2þ 1)-dimensional space-time, the lowest rank irre-
ducible representation of the Lorentz group is two-
dimensional. In this representation, Dirac fermions are
described by two-component spinors and the γ matrices
may be chosen as the usual Pauli matrices. However, as the
three Pauli matrices are a complete set of mutually
anticommuting 2 × 2 matrices, it is impossible to define
the other 2 × 2 matrix that anticommutes with all three γ
matrices. Consequently, there is nothing to generate a chiral
symmetry that would be broken by a mass term mψ̄ψ ,
whether it be explicit or dynamically generated. Besides,
any mass term has the undesirable property that it is
odd under parity transformations. Given these, we employ
four-component spinors and a 4 × 4 matrix representation
as in four-dimensional space-time in this paper. A more
thorough discussion of the reducible and irreducible
representations of the Dirac matrices in QED3 can be seen
in Refs. [56,57].
For the fermion propagator, the finite temperature

version of DSE is given by

S−1ðpÞ ¼ S−10 ðpÞ þ ΣðpÞ; ð2Þ
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S−10 ðpÞ ¼ i~γ · ~pþ iγ3p3; ð3Þ

ΣðpÞ ¼ T
XZ Z

γμSðkÞΓνðp; kÞDμνðqÞ; ð4Þ

where p ¼ ðp3; ~pÞ with p3 ¼ ð2mþ 1ÞπT and j~pj ¼ P,

k ¼ ðk3; ~kÞ with k3 ¼ ð2nþ 1ÞπT and j~kj ¼ K, and q ¼
ðq3; ~qÞ ¼ p − k with q3 ¼ 2ðm − nÞπT and j~qj ¼ Q ¼
j~p − ~kj. The notation

PR
denotes

Pþ∞
n¼−∞

R
d2~k
ð2πÞ2. S

−1ðpÞ
and S−10 ðpÞ are the inverse dressed and free fermion
propagators, respectively, ΣðpÞ is the fermion self-energy,
Γνðp; kÞ is the dressed fermion-boson vertex, andDμνðqÞ is
the dressed boson propagator.
As we all know, the introduction of temperature to a

system breaks the original O(3) symmetry to O(2). The
most general form of the inverse dressed fermion propa-
gator can be written as [58,59]

S−1ðpÞ ¼ i~γ · ~pAðpÞ þ BðpÞ þ iγ3p3CðpÞ
þ ~γ · ~pγ3p3DðpÞ; ð5Þ

where AðpÞ and CðpÞ are usual fermion wave-function
renormalization functions and BðpÞ is the fermion self-
energy function. Because the tensor term ~γ · ~pγ3p3 is not
invariant under the time reversal transformation, the cor-
responding dressing function DðpÞ vanishes exactly
[60,61], and then the general form of the inverse dressed
fermion propagator is

S−1ðpÞ ¼ i~γ · ~pAðpÞ þ iγ3p3CðpÞ þ BðpÞ: ð6Þ

To the leading order in 1=Nf expansion, we neglect the
effect of the fermion wave-function renormalization func-
tions AðpÞ and CðpÞ and replace the dressed vertex
Γνðp; kÞ by the bare one γν. Such an approximation scheme
is consistent with the requirement following from theWard-
Takahashi identity that the fermion wave-function renorm-
alization function and the vertex renormalization are equal.
In addition, the fermion self-energy function becomes
frequency independent when the instantaneous exchange
approximation [21,26,27,29,43,44,62–64] is employed for
the boson propagator. Hereafter, the approximations will be
kept for the fermion propagator. Substituting Eqs. (3), (4),
and (6) into Eq. (2) and then taking the trace on both sides
of this equation yields

BðP2; TÞ ¼ T
XZ BðK2; TÞ

k23 þ K2 þ B2ðK2; TÞDμμðQ; TÞ: ð7Þ

For the boson propagator, the finite temperature version
of DSE is written as

D−1
μν ðqÞ ¼ D0;−1

μν ðqÞ þ ΠμνðqÞ; ð8Þ

D0;−1
μν ðqÞ ¼ q2ðδμν − qμqν=q2Þ; ð9Þ

ΠμνðqÞ ¼ −NfT
XZ

Tr½γμSðkÞΓνðp; kÞSðpÞ�; ð10Þ

where D0;−1
μν ðqÞ is the inverse free boson propagator and

ΠμνðqÞ is the vacuum polarization tensor. Herein we have
chosen the Landau gauge.
As aforementioned, the introduction of temperature to

a system breaks the original O(3) symmetry to O(2). In
general, the vacuum polarization tensor has four indepen-
dent components corresponding to the four independent O
(2)-invariant tensors. However, as at T ¼ 0 it satisfies the
transversality condition and, thus, can be conveniently
decomposed in terms of two independent transverse
tensors [43]

ΠμνðqÞ ¼ ΠAðqÞAμν þ ΠBðqÞBμν; ð11Þ

where

Aμν ¼
�
δμ0 −

qμq0
q2

�
q2

Q2

�
δν0 −

qνq0
q2

�
ð12Þ

and

Bμν ¼ δμi

�
δij −

qiqj
Q2

�
δjν; ð13Þ

Aμν and Bμν are orthogonal and satisfy the following
relationship:

Aμν þ Bμν ¼ δμν −
qμqν
q2

: ð14Þ

The functions ΠAðqÞ and ΠBðqÞ are related to the temporal
and spatial components of the vacuum polarization tensor
ΠμνðqÞ by the following expressions:

ΠAðqÞ ¼
q2

Q2
Π00ðqÞ ð15Þ

and

ΠBðqÞ ¼ ΠiiðqÞ −
q20
Q2

Π00ðqÞ: ð16Þ

Substituting Eqs. (9) and (11) into Eq. (8), we can obtain
the dressed finite temperature boson propagator

DμνðqÞ ¼
Aμν

q2 þ ΠAðqÞ
þ Bμν

q2 þ ΠBðqÞ
: ð17Þ

Herein we shall follow Refs. [21,26,29,43,44,62] in retain-
ing only the temporal component of the boson propagator
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and ignoring all but the zero-frequency component of the
boson momentum (instantaneous exchange approxima-
tion), and then we are left with

DμνðQ; TÞ ¼ 2δμ3δν3
Q2 þ ΠðQ2; TÞ ; ð18Þ

we will retain these approximations for the boson propa-
gator in the following sections.
To the leading order in 1=Nf expansion, the one-loop

contribution to the vacuum polarization tensor can be
obtained by replacing the dressed fermion propagator
and vertex with their bare quantity separately in Eq. (10):

ΠμνðqÞ ¼ −NfT
XZ

Tr½γμS0ðkÞγνS0ðpÞ�

¼ 4NfT
Z

1

0

dx
XZ Iμν

½l2 þ xð1 − xÞq2�2 ; ð19Þ

where

Iμν ¼ 2lμlν þ ð1 − 2xÞðlμqν þ lνqμ − l · qδμνÞ
þ 2xð1 − xÞðq2δμν − qμqνÞ − ½l2 þ xð1 − xÞq2�δμν

ð20Þ

and l ¼ kþ xq. The detailed calculations of the one-loop
vacuum polarization tensor are presented in Appendix A.
The temporal component of the one-loop vacuum

polarization tensor is given by

Π33ðqÞ ¼ 4NfT
Z

1

0

dx
XZ

½S1 − 2ðL2 þ xð1 − xÞq20ÞS2
þ ð1 − 2xÞq0S��; ð21Þ

where

Si ¼
Xþ∞

n¼−∞

1

½l20 þ L2 þ xð1 − xÞq2�i ð22Þ

and

S� ¼
Xþ∞

n¼−∞

l0
½l20 þ L2 þ xð1 − xÞq2�2 : ð23Þ

Within the instantaneous exchange approximation,
the integral in Eq. (21) can be performed by the methods
presented in Ref. [43]. After a tedious but straightforward
computation, we obtain the following expression for the
polarization function:

ΠðQ2; TÞ ¼ 2NfT

π

Z
1

0

dx ln
�
2 cosh

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xð1 − xÞp

Q
2T

�
: ð24Þ

Combining Eqs. (7), (18), and (24), the fermion self-
energy function can be numerically solved using the
straightforward iteration method. Once the momentum
dependence of the fermion self-energy function is obtained,
we can further investigate the dynamical fermion mass
generation and the chiral phase transition.
The discussions above can be generalized to the case

of finite temperature and impurity scattering. Because
the problem of impurity scattering is very complicated
and now has not been fully understood, some approx-
imations are required before progress can be made. If
we consider a single impurity atom, then impurity
scattering can be treated by the self-consistent Born
approximation. Within this approximation, the retarded
fermion propagator develops a finite imaginary part,
which is usually represented by a constant scattering
rate Γ [65]. To study the problem of impurity scattering,
it is most convenient to work in the Matsubara formal-
ism, and thus the inverse dressed and free fermion
propagators are written as [27]

S−1ðp;ΓÞ ¼ i~γ · ~pþ iγ3p3;Γ þ Bðp;ΓÞ; ð25Þ

S−10 ðp;ΓÞ ¼ i~γ · ~pþ iγ3p3;Γ; ð26Þ

where p3;Γ ¼ p3 þ Γsgnðp3Þ. Intuitively, the parameter
Γ measures the decaying rate of the fermion state
characterized by such quantum numbers as ðp3; ~pÞ,
which is known as the Landau damping effect.
Substituting Eqs. (4), (25), and (26) into Eq. (2) and

taking the trace on both sides of this equation, we arrive at

BðP2; T;ΓÞ ¼ T
XZ BðK2; T;ΓÞ

k23;Γ þ K2 þ B2ðK2; T;ΓÞ
×DμμðQ; T;ΓÞ: ð27Þ

Analogizing the derivation of Eq. (18), the boson
propagator in the presence of impurity scattering can be
written as

DμνðQ; T;ΓÞ ¼ 2δμ3δν3
Q2 þ ΠðQ2; T;ΓÞ ; ð28Þ

where ΠðQ2; T;ΓÞ is the polarization function including
impurity scattering.
Substituting Eq. (26) into Eq. (10), the polarization

function is expressed as
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ΠðQ2; T;ΓÞ ¼ 4NfT

π

Z
1

0

dx

�
Re

�
lnΓ

�
1

2
þ Γþ iX

2πT

��

þ X2 − C2

X2
Im

�
ψ

�
1

2
þ Γþ iX

2πT

���				∞
C
;

ð29Þ

where C ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xð1 − xÞp

Q, ΓðzÞ is the usual Gamma func-
tion, and ψðzÞ ¼ Γ0ðzÞ=ΓðzÞ is the Digamma function. The
detailed calculations of the one-loop vacuum polarization
tensor in the presence of impurity scattering are presented
in Appendix B.
To simplify the theoretical and numerical analysis, we

use the same approximate expressions for this two func-
tions as that presented in Ref. [27]:

Re
�
lnΓ

�
1

2
þ Γþ iX

2πT

��
≈ −

T þ cΓ
2T

ln
�
cosh

X
2ðT þ cΓÞ

�
ð30Þ

and

Im

�
ψ

�
1

2
þ Γþ iX

2πT

��
≈
π

2
tanh

X
2ðT þ cΓÞ ; ð31Þ

where the constant c ¼ 10ln 2=ð2πÞ. After substituting
Eqs. (30) and (31) into Eq. (29) and performing some
algebraic calculations, we arrive at

ΠðQ2; T;ΓÞ

¼ 2NfðT þ cΓÞ
π

Z
1

0

dx ln

�
2 cosh

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xð1 − xÞp

Q
2ðT þ cΓÞ

�
: ð32Þ

From Eqs. (27), (28), and (32), the fermion self-energy
function in the presence of impurity scattering can be
obtained, and thus we can investigate the influences of
impurity scattering on the dynamical fermion mass gen-
eration and the critical temperature Tc.

III. CRITERIA FOR CHIRAL PHASE TRANSITION

The chiral condensate is the vacuum expectation value
for the scalar operator ψ̄ψ. The character, the nonzero value
of which indicates that chiral symmetry reflected on the
Lagrangian level is spontaneously broken on the vacuum
level and the chiral symmetry gets restored when the chiral
condensate vanishes for the chiral limit, makes it possible to
define the chiral condensate as the order parameter for the
chiral phase transition.
The chiral condensate is commonly given by the first-

order derivative of the generating functional with respect to
the current mass of the fermion

hψ̄ψiðTÞ ¼ −
T
V
∂ lnZ
∂m ¼ −T

XZ
Tr½SðpÞ�; ð33Þ

where the notation Tr denotes the trace operation over
Dirac indices of the fermion propagator.
In addition, dynamical properties of a many-particle

system can be investigated by measuring the response of
the system to an external perturbation that disturbs the
system only slightly in its equilibrium state. A noticeable
measure is the susceptibility that is defined as the first-order
derivative of the order parameter with respect to the
external field. The order parameter is radically different
in two phases and thus characterizes the phase transition
of the system. As a result, the divergence or some other
singular behaviors of the susceptibility are usually regarded
as essential characteristics of phase transition.
The first-order derivative of the chiral condensate with

respect to the current mass of the fermion is known as the
chiral susceptibility [66–68]:

χcðTÞ ¼ −
∂hψ̄ψiðTÞ

∂m ¼ T
V
∂2 lnZ
∂m2

: ð34Þ

It is known that the chiral susceptibility measures the
response of the chiral condensate to a small perturbation of
the current mass of the fermion from Eq. (34).
Similarly, the first-order derivative of the chiral con-

densate with respect to the temperature is referred to as
thermal susceptibility [69–72]:

χTðTÞ ¼ ∂hψ̄ψiðTÞ
∂T ¼ −

1

V
∂2ðT lnZÞ
∂T∂m : ð35Þ

We can analyze the behavior of the chiral condensate with
varying temperature more directly from Eq. (35).
Equations (33)–(35) can be generalized to the case of

finite temperature and impurity scattering by replacing
the dressed fermion propagator with the one including
impurity scattering:

hψ̄ψiðT;ΓÞ ¼ −T
XZ

Tr½Sðp;ΓÞ�; ð36Þ

χcðT;ΓÞ ¼ −
∂hψ̄ψiðT;ΓÞ

∂m ; ð37Þ

χTðT;ΓÞ ¼ ∂hψ̄ψiðT;ΓÞ
∂T : ð38Þ

IV. NUMERICAL RESULTS

From the discussions mentioned above, we know that
solving numerically Eq. (27) and thus obtaining the
momentum dependence of the fermion self-energy function
are needed, when we study the dynamical fermion mass
generation and the chiral phase transition in the presence of
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impurity scattering. However, before doing this, it is
necessary to investigate the momentum dependence of
the polarization function. In the following discussion, we
will first study the behavior of the polarization function.
Performing the integral over the parameter x in Eq. (32),

we can know how the polarization function changes as a
function of momentum. In Fig. 1, we show the momentum
dependence of it for different impurity scattering rates Γ
and numbers of fermion flavors Nf.
It can be seen that the polarization function is almost

constant in the infrared region and reduces to the one-loop
approximation result in the ultraviolet region. For a given
number of fermion flavors Nf, the infrared constant value
of the polarization function increases as the impurity
scattering rate Γ changes from zero to a finite value, and
the ultraviolet polarization functions for different impurity
scattering rates Γ are all close to a common one-loop
approximation result. When the number of fermion flavors
Nf increases, the polarization function rises.
The infrared value of the polarization function can be

obtained by taking the limit of the exchange momentum Q
tending to zero:

lim
Q→0

ΠðQ2; T;ΓÞ ¼ 2 ln 2Nf

π
ðT þ cΓÞ; ð39Þ

and the ultraviolet asymptotic behavior of the polarization
function can also be obtained by the same method:

lim
Q→∞

ΠðQ2; T;ΓÞ ¼ NfQ

8
: ð40Þ

Now we solve numerically the DSE of the fermion self-
energy function. Using the following identity:

Xþ∞

n¼−∞

1

k23;Γ þ ε2K;T;Γ
¼ 1

πTεK;T;Γ
Im

�
ψ

�
1

2
þ Γþ iεK;T;Γ

2πT

��
;

ð41Þ

where εK;T;Γ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K2 þ B2ðK2; T;ΓÞ

p
, and then combining

with Eq. (31), Eq. (27) reduces to

BðP2; T;ΓÞ ¼
Z

d2K
ð2πÞ2

BðK2; T;ΓÞ
εK;T;Γ

tanh
εK;T;Γ

2ðT þ cΓÞ
×

1

½Q2 þ ΠðQ2; T;ΓÞ� : ð42Þ

The equation can be solved by using the straightforward
iteration method. In Fig. 2, we display the momentum
dependence of the fermion self-energy function for differ-
ent impurity scattering rates Γ and numbers of fermion
flavors Nf.
We can clearly see that the fermion self-energy function

is nearly constant in the infrared region and decreases
monotonically to zero in the ultraviolet region. For a
given number of fermion flavors Nf, the infrared constant
value of the fermion self-energy function decreases as the
impurity scattering rate Γ changes from zero to a finite
value, and the ultraviolet fermion self-energy functions for
different impurity scattering rates Γ are all close to zero.
The fermion self-energy function also falls when the
number of fermion flavors Nf increases.
For the chiral condensate, substituting Eq. (25) into

Eq. (36) and performing the summation yield

hψ̄ψiðT;ΓÞ ¼ −2
Z

d2P
ð2πÞ2

BðP2; T;ΓÞ
εP;T;Γ

tanh
εP;T;Γ

2ðT þ cΓÞ :

ð43Þ

The chiral condensate can be calculated once the self-
energy function is obtained by Eq. (42). The temperature
dependence of it for different impurity scattering rates Γ
and numbers of fermion flavors Nf is shown in Fig. 3.
We find that −hψ̄ψi, the negative of the chiral con-

densate, decreases slowly when the temperature is small
and falls rapidly to zero as the temperature approaches to

FIG. 2. Momentum dependence of the fermion self-energy
function BðP2,T,Γ) for different impurity scattering rates Γ and
numbers of fermion flavors Nf at T ¼ 10−3.

FIG. 1. Momentum dependence of the polarization function
ΠðP2; T;ΓÞ for different impurity scattering rates Γ and numbers
of fermion flavors Nf at T ¼ 10−3.
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the critical temperature Tc. For a given number of fermion
flavors Nf, the critical temperature Tc decreases when the
impurity scattering rate Γ changes from zero to a finite
value, which shows that impurity scattering indeed sup-
presses the dynamical fermion mass generation. This is
consistent with the discussions presented in the introduc-
tion. In addition, the critical temperature Tc also decreases
as the number of fermion flavors Nf increases.
Here, we notice that, in the deep infrared limit, QED3 at a

finite temperature becomes an effectively two-dimensional
theory in which there is no spontaneous breaking of a
continuous symmetry due to the Coleman-Mermin-Wagner
theorem [73,74]. As a consequence, there is only
spontaneous chiral symmetry breaking in QED3 in the
zero-temperature limit. Nevertheless, in the large-Nf

approximation, the long-range fluctuations are absent,
and thus dynamical mass generation can still be observed
even in two dimensions as is illustrated by the chirally
symmetric Gross-Neveu model [75,76]. This can also be
found in condensed matter physics, where dynamical
chiral symmetry breaking is studied self-consistently in
the framework of the mean field theory, which is the large-
Nf approximation employed in the present studies. In such
a theory, the correlation between fluctuations of the order
parameter is ignored. The mean field transition temperature
provides a correct energy scale below which the amplitude
of the order parameter becomes finite and its spatial
correlation becomes strong and rather long-ranged. In this
sense, the mean field transition temperature marks a
crossover in the thermodynamic properties. In particular,
for a U(1) or O(2) symmetry to be broken, there is in fact
an algebraic order below the so-called Kosterlitz-Thouless
transition temperature, a temperature not far from the mean
field one. Moreover, in a realistic layered system, the
interlayer coupling can easily drive the system into a true
ordered state once the in-plane correlations are already
strong, e.g., below the mean field transition temperature.
In this sense, the mean field transition temperature in
two dimensions provides the upper limit in a layered
three-dimensional system. In addition, in the context of

high-temperature superconductivity, the chirally broken
and symmetric phases of QED3 are associated with the
antiferromagnetic spin-density wave state and the pseudo-
gap phase of the cuprates described as algebraic Fermi
liquid, respectively [50,51]. It is commonly accepted that
with the temperature and/or doping increasing, the cuprates
will undergo a phase transition from the antiferromagnetic
spin-density wave phase to the pseudogap phase.
For the chiral susceptibility, substituting Eq. (43) into

Eq. (37) and performing the summation, then we arrive at

χcðT;ΓÞ ¼ 2

Z
d2P
ð2πÞ2

�
BmðP2; T;ΓÞ

�P2 tanh εP;T;Γ
2ðTþcΓÞ

ε3P;T;Γ

þ
B2ðP2; T;ΓÞsech2 εP;T;Γ

2ðTþcΓÞ
2ðT þ cΓÞε2P;T;Γ

�
−
tanh P

2T

P

�
; ð44Þ

where the function BmðP2; T;ΓÞ is just the derivative of the
fermion self-energy function with respect to the current
mass and can be given by

BmðP2; T;ΓÞ ¼ 1þ
Z

d2K
ð2πÞ2

(
K2 tanh εK;T;Γ

2ðTþcΓÞ
ε3K;T;Γ

þ
B2ðK2; T;ΓÞsech2 εK;T;Γ

2ðTþcΓÞ
2ðT þ cΓÞε2K;T;Γ

)

×
BmðK2; T;ΓÞ

Q2 þ ΠðQ2; T;ΓÞ : ð45Þ

Because the fermion self-energy function has already been
solved via Eq. (42), we can substitute it into Eq. (45), and
then the equation can be solved using the iteration method.
In Fig. 4, we display the momentum dependence of it for
different impurity scattering rates Γ and numbers of
fermion flavors Nf.
It can be seen that the derivation of the fermion self-energy

function BmðP2; T;ΓÞ is almost constant in the infrared

FIG. 4. Momentum dependence of the derivation of the fermion
self-energy function BmðP2; T;ΓÞ for different impurity scatter-
ing rates Γ and numbers of fermion flavors Nf at T ¼ 10−3.

FIG. 3. Temperature dependence of −hψ̄ψiðT;ΓÞ for different
impurity scattering rates Γ and numbers of fermion flavors Nf.
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region and approaches one in the ultraviolet region. For a
given number of fermion flavors Nf, the infrared constant
value ofBmðP2; T;ΓÞ increases as the impurity scattering rate
Γ changes from zero to a finite value, while the ultraviolet
BmðP2; T;ΓÞ for different impurity scattering rates Γ are all
close to zero. Furthermore, the functionBmðP2; T;ΓÞ rises as
the number of fermion flavors Nf increases.
From Eqs. (42) and (45), we can calculate the chiral

susceptibility. The temperature dependence of it for differ-
ent impurity scattering rates Γ and numbers of fermion
flavors Nf is shown in Fig. 5.
It is easy to see that the chiral susceptibility increases

slowly with the temperature increasing and tends to diver-
gence when the temperature approaches to the critical
temperature Tc, which shows that the chiral phase transition
driven by the temperature is a typical second-order phase
transition. For a given number of fermion flavors Nf, the
critical temperature Tc decreases when the impurity scatter-
ing rate Γ changes from zero to a finite value. This feature of
the chiral susceptibility also means that impurity scattering
plays the role of suppressing dynamical fermion mass
generation. Moreover, when we enlarge the number of
fermion flavors Nf, the critical temperature Tc decreases.
Similarly, for the thermal susceptibility, substituting

Eq. (43) into Eq. (38) and performing the summation yield

χTðT;ΓÞ ¼ 2

Z
d2P
ð2πÞ2

(
−BTðP2; T;ΓÞ

"
P2 tanh εP;T;Γ

2ðTþcΓÞ
ε3P;T;Γ

þ
B2ðP2; T;ΓÞsech2 εP;T;Γ

2ðTþcΓÞ
2ðT þ cΓÞε2P;T;Γ

#

þ
BðP2; T;ΓÞsech2 εP;T;Γ

2ðTþcΓÞ
2ðT þ cΓÞ2

)
; ð46Þ

where the function BTðP2; T;ΓÞ represents the derivative of
fermion self-energy function with respect to the temper-
ature and can be expressed as

BTðP2; T;ΓÞ ¼
Z

d2K
ð2πÞ2

(
BTðK2; T;ΓÞ

"
K2 tanh εK;T;Γ

2ðTþcΓÞ
ε3K;T;Γ

þ
B2ðK2; T;ΓÞsech2 εK;T;Γ

2ðTþcΓÞ
2ðT þ cΓÞε2K;T;Γ

#

−
BðK2; T;ΓÞsech2 εK;T;Γ

2ðTþcΓÞ
2ðT þ cΓÞ2

−
BðK2; T;ΓÞ tanh εK;T;Γ

2ðTþcΓÞΠTðQ2; T;ΓÞ
εK;T;Γ½Q2 þ ΠðQ2; T;ΓÞ�

)

×
1

Q2 þ ΠðQ2; T;ΓÞ ; ð47Þ

while the function ΠTðQ2; T;ΓÞ denotes the derivative of
the boson polarization function with respect to the temper-
ature, which can be obtained from Eq. (32):

ΠTðQ2; T;ΓÞ ¼ Nf

π

Z
1

0

dx

8<
:ln

�
4cosh2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xð1 − xÞp

Q
2ðT þ cΓÞ

�

−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xð1 − xÞp

Q tanh
ffiffiffiffiffiffiffiffiffiffi
xð1−xÞ

p
Q

2TþcΓ
T þ cΓ

9=
;: ð48Þ

Because the fermion self-energy function is known from
Eq. (42), we substitute it into Eq. (47), and then the
equation is solved by the iteration method. The momentum
dependence of −BTðP2; T;ΓÞ, which is the negative of the
derivation of the fermion self-energy function BðP2; T;ΓÞ
with respect to the temperature, for different impurity
scattering rates Γ and numbers of fermion flavors Nf is
plotted in Fig. 6.
It can be seen that −BTðP2; T;ΓÞ is almost constant in

the infrared region and approaches zero in the ultraviolet
region. For a given number of fermion flavors Nf, the

FIG. 5. Temperature dependence of the chiral susceptibility χc

for different impurity scattering rates Γ and numbers of fermion
flavors Nf .

FIG. 6. Momentum dependence of −BTðP2; T;ΓÞ for different
impurity scattering rates Γ and numbers of fermion flavors Nf

at T ¼ 10−3.
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infrared constant value of −BTðP2; T;ΓÞ decreases as the
impurity scattering rate Γ changes from zero to a finite
value, while the ultraviolet −BTðP2; T;ΓÞ for different
impurity scattering rates Γ are all close to zero.
Furthermore, the −BTðP2; T;ΓÞ falls as the number of
fermion flavors Nf increases.
From the two functions BðP2; T;ΓÞ and BTðP2; T;ΓÞ,

we can obtain the dependence of the thermal susceptibility
on the temperature. As a result, the behavior of the thermal
susceptibility is plotted in Fig. 7.
We find that the thermal susceptibility increases slowly

with the temperature increasing and then is close to
divergence when the temperature arrives at the critical
temperature Tc, which again reveals that the chiral phase
transition is a typical second-order phase transition. For a
given number of fermion flavors Nf, the critical temper-
ature Tc decreases as the impurity scattering rate Γ changes
from zero to a finite value. This feature of the thermal
susceptibility means that impurity scattering suppresses the
dynamical fermion mass generation. The critical temper-
ature Tc also decreases when the number of fermion flavors
Nf increases.
In order to investigate the relationship between the

critical temperature Tc and the impurity scattering rate
Γ, we calculate the chiral condensate, the chiral suscep-
tibility, and the thermal susceptibility within a series of the
impurity scattering rates Γ. In Fig. 8, the relationship
between Tc and Γ is shown at the number of fermion
flavors Nf ¼ 1.
It can be clearly seen that there is a boundary that

separates the Tc − Γ plane into two regions. When the
temperature and the impurity scattering rate Γ are both
small, the system is in the phase of chiral symmetry
breaking, while the system is in the phase of chiral
symmetry restoration as the temperature and/or the impu-
rity scattering rate Γ exceed the critical value. From the
chiral condensate, the chiral susceptibility, and the thermal
susceptibility, it is known that this transition of the system
is a typical second-order phase transition.

In addition, we can also find that the boundary is
almost a straight line from Fig. 8. This feature of the
boundary may be interpreted from Eqs. (32) and (42): the
temperature and the impurity scattering rate Γ are
combined in a linear way. The property of the equations
determines that the relationship of the critical temperature
Tc and impurity scattering rate Γ is also linear. For
examining whether the interpretation is correct, we fit the
result for the critical temperature Tc and corresponding
impurity scattering rate Γ. It is found that they have the
following relationship:

Tc ¼ c0 − c1Γ; ð49Þ

where the constant c0 is just equal to the critical
temperature 2.47 × 10−2, that is without the influences
of impurity scattering, and the constant c1 is almost equal
to c appearing in Eqs. (32) and (42).
The phase diagram of Tc − Γ at the number of fermion

flavors Nf ¼ 2 is also shown in Fig. 9. The qualitative
behavior is similar to the case of Nf ¼ 1 except for the
quantitative value.

FIG. 8. Relationship between the critical temperature Tc and
the impurity scattering rate Γ at the number of fermion
flavors Nf ¼ 1.

FIG. 7. Temperature dependence of the thermal susceptibility
χT for different impurity scattering rates Γ and numbers of
fermion flavors Nf .

FIG. 9. Relationship between the critical temperature Tc and
the impurity scattering rate Γ at the number of fermion
flavors Nf ¼ 2.
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From the above discussions, it is found that, at the same
value of the impurity scattering rate Γ, the critical temper-
ature Tc decreases as the number of fermion flavors Nf

increases. In order to confirm this conclusion, the chiral
condensate and the two susceptibilities are calculated
within a series of the numbers of fermion flavors Nf.
Finally, at impurity scattering rate Γ ¼ 0, we show the
relationship between Tc and Nf in Fig. 10.
From Fig. 10, it can be found that the value of the critical

number of fermion flavors Nc
f, where the critical temper-

ature Tc is equal to zero, is 3.3 that is close to the result
obtained by employing the large-Nf approximation of the
DSEs at zero temperature [37], and the critical temperature
Tc decreases as the number of fermion flavors Nf increases
(or, equivalently, the critical number of fermion flavors Nc

f

decreases with the temperature increasing). There is a
boundary, such that for (Nf, Tc) below this boundary
hψ̄ψi ≠ 0, and for (Nf,Tc) above it hψ̄ψi ¼ 0. In addition,
because the effect of impurity scattering is to replace the
temperature T with the linear combination of temperature T
and impurity scattering rate Γ when the analytic approx-
imations to the Γ function and ψ function appearing in
Eq. (29) are adopted, the critical number of fermion flavors
Nc

f also decreases as the impurity scattering rate Γ increases
for a given temperature.

V. SUMMARY AND CONCLUSIONS

In this paper, the influences of finite temperature and
impurity scattering on the chiral phase transition in QED3

are investigated. Within the Born approximation, the effects
of impurity scattering are treated by introducing a damping
term in the energy component of the fermion propagator.
First we numerically solve the DSEs for the fermion and

boson propagators to the leading order in the 1=Nf

expansion at zero frequency and discuss the momentum
dependence of the fermion self-energy function B(P2) for
different impurity scattering rates Γ and the numbers of
fermion flavors Nf at a given temperature.

Then we calculate the chiral condensate, the chiral
susceptibility, and the thermal susceptibility within a range
of the impurity scattering rates Γ and the numbers of
fermion flavors Nf. The results show that, for a given
number of fermion flavors Nf and impurity scattering rate
Γ, the chiral condensate decreases slowly and the two
susceptibilities increase gradually as the temperature
increases; when the temperature arrives at the critical value
Tc, the chiral condensate decreases rapidly to zero; mean-
while, the two susceptibilities tend to divergence, which
signals a typical second-order phase transition. For a given
number of fermion flavors Nf, the critical temperature Tc

decreases when the impurity scattering rate Γ increases,
which indicates that impurity scattering plays a role of
suppressing the dynamical fermion mass generation.
Finally, we discuss the relationship among the critical

temperatureTc, the impurity scattering rateΓ, and the number
of fermion flavorsNf and find that Tc decreases as Γ (orNf)
increases, which indicates that there is a boundary that
separates theTc − Γ (orTc − Nf) plane into chiral symmetry
breaking and chiral symmetry restoration regions.
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APPENDIX A: CALCULATIONS OF
POLARIZATION FUNCTIONS

To the leading order in 1=Nf expansion, the one-loop
contribution to the vacuum polarization tensor is given by

ΠμνðqÞ ¼ −NfT
XZ

Tr½γμS0ðkÞγνS0ðpÞ�; ðA1Þ

where p ¼ kþ q, and the free fermion propagator reads

S−10 ðkÞ ¼ iγμkμ ¼ i~γ · ~kþ iγ3k3: ðA2Þ

Substituting Eq. (A2) into Eq. (A1), we can obtain

ΠμνðqÞ ¼ −NfT
XZ

Tr

�
γμ

1

iγρkρ
γν

1

iγσðkþ qÞσ

�

¼ NfT
XZ

Tr
γμγρkργνγσðkþ qÞσ

k2ðkþ qÞ2

¼ 4NfT
XZ I1

μν

k2ðkþ qÞ2 ; ðA3Þ

where I1
μν ¼ 2kμkν þ kμqν þ kνqμ − kðkþ qÞδμν.

FIG. 10. Relationship between the critical temperature Tc
and the number of fermion flavors Nf at the impurity
scattering rate Γ ¼ 0.
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With the help of the Feynman parametrization
formula

1

AB
¼

Z
1

0

dx
1

½xAþ ð1 − xÞB�2 ; ðA4Þ

Eq. (A3) can be expressed as

ΠμνðqÞ ¼ 4NfT
Z

1

0

dx
XZ I1

μν

½ðkþ xqÞ2 þ xð1 − xÞq2�2 :

ðA5Þ

Defining a shifted three-momentum by l ¼ kþ xq
and changing variables in the momentum integral give

ΠμνðqÞ ¼ 4NfT
Z

1

0

dx
XZ I2

μν

½l2 þ xð1 − xÞq2�2 ; ðA6Þ

where

I2
μν ¼ 2lμlν þ ð1 − 2xÞðlμqν þ lνqμ − l · qδμνÞ

þ 2xð1 − xÞðq2δμν − qμqνÞ − ½l2 þ xð1 − xÞq2�δμν:
ðA7Þ

The temporal component of vacuum polarization tensor
is written as

Π33ðqÞ ¼ 4NfT
Z

1

0

dx
Z

d2L
ð2πÞ2 ½S1 − 2ðL2þ xð1− xÞq20ÞS2

þð1−2xÞq0S��; ðA8Þ

with

Si ¼
Xþ∞

n¼−∞

1

½l20 þ L2 þ xð1 − xÞq2�i ðA9Þ

and

S� ¼
Xþ∞

n¼−∞

l3
½l20 þ L2 þ xð1 − xÞq2�2 : ðA10Þ

Within the instantaneous exchange approximation
q0 ¼ 0, Eq. (A8) reduces to

Π33ðQ; TÞ ¼ 4NfT
Z

1

0

dx
Z

d2L
ð2πÞ2 ½S1 − 2L2S2�; ðA11Þ

with

Si ¼
Xþ∞

n¼−∞

1

½k23 þ L2 þ xð1 − xÞQ2�i

¼
Xþ∞

n¼−∞

1

½ðð2nþ 1ÞπTÞ2 þ L2 þ xð1 − xÞQ2�i

¼
�

1

2πT

�
2i Xþ∞

n¼−∞

1

½ðnþ 1
2
Þ2 þ Y2�i ; ðA12Þ

where Y ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L2þxð1−xÞQ2

p
2πT .

After summing over n, S1 can be written as

S1 ¼
1

4πT2Y
tanh πY; ðA13Þ

and S2 is associated with S1 by the following
relationship:

S2 ¼ −
1

8π2T2Y
∂S1
∂Y

¼ 1

32π2T4Y2

�
tanh πY
πY

− sech2πY

�
: ðA14Þ

Substituting Eqs. (A13) and (A14) into Eq. (A11) and
performing the integral over L, we obtain the following
expression for the temporal component of the vacuum
polarization tensor:

ΠðQ2; TÞ ¼ 2NfT

π

Z
1

0

dx ln

�
2 cosh

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xð1 − xÞp

Q
2T

�
:

ðA15Þ

APPENDIX B: CALCULATIONS OF
POLARIZATION FUNCTIONS

IN THE PRESENCE OF
IMPURITY SCATTERING

The one-loop contribution to the vacuum polari-
zation tensor including impurity scattering can be
written as

Πμνðq;ΓÞ ¼ −NfT
XZ

Tr½γμS0ðk;ΓÞγνS0ðp;ΓÞ�; ðB1Þ

where the free fermion propagator in the presence
of impurity scattering is given by

S−10 ðk;ΓÞ ¼ iγμkμ;Γ ¼ i~γ · ~kþ iγ3k3;Γ; ðB2Þ

with k3;Γ ¼ k3 þ Γsgnðk3Þ
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Substituting Eq. (B2) into Eq. (B1), we arrive at

Πμνðq;ΓÞ ¼ −NfT
XZ

Tr

�
γμ

1

iγρkρ;Γ
γν

1

iγσðkþ qÞσ;Γ

�

¼ NfT
XZ

Tr
γμγρkρ;Γγνγσðkþ qÞσ;Γ

k2Γðkþ qÞ2Γ
¼ 4NfT

XZ I3
μν

k2Γðkþ qÞ2Γ
; ðB3Þ

where
I3
μν ¼ kμ;Γðkþ qÞν;Γ þ kν;Γðkþ qÞμ;Γ − kΓðkþ qÞΓδμν.
Using the Feynman parametrization formula and

employing a shifted three-momentum lμ;Γ ¼ kμ;Γ þ xqμ,
Eq. (B3) can be written as

Πμνðq;ΓÞ ¼
Z

1

0

dx
XZ 4NfTI4

μν

½l2Γ þ xð1− xÞq2 þ 2xðk3 þ q3Þδ�2
;

ðB4Þ

where

I4
μν ¼ 2lμ;Γlν;Γ þ ð1 − 2xÞðlμ;Γqν þ lν;Γqμ − lΓ · qδμνÞ

þ 2xð1 − xÞðq2δμν − qμqνÞ − ½l2Γ þ xð1 − xÞq2�δμν
þ ½ðlμ;Γ − xqμÞδν;3 þ ðlν;Γ − xqνÞδμ;3
− ðl3;Γ − xq3Þδμν�δ: ðB5Þ

The temporal component of the vacuum polarization
tensor including impurity scattering is expressed as

Π33ðq;ΓÞ ¼ 4NfT
Z

1

0

dx
Z

d2L
ð2πÞ2

�
S1 − 2

�
L2 þ xð1 − xÞq20 þ x

�
k3 þ

3

2
q3

�
δ

�
S2 þ ½ð1 − 2xÞq3 þ δ�S�

�
; ðB6Þ

with

Si ¼
Xþ∞

n¼−∞

1

½l23;Γ þL2 þ xð1− xÞq2 þ 2xðk3 þ q3Þδ�i
ðB7Þ

and

S� ¼
Xþ∞

n¼−∞

l3;Γ
½l23;Γ þ L2 þ xð1 − xÞq2 þ 2xðk3 þ q3Þδ�2

:

ðB8Þ

Within the instantaneous exchange approximation
q0 ¼ 0, we are left with

Π33ðQ; T;ΓÞ ¼ 4NfT
Z

1

0

dx
Z

d2L
ð2πÞ2 ½S1 − 2L2S2�: ðB9Þ

Meanwhile,

Si¼
Xþ∞

n¼−∞

1

½ðk3þΓsgnðk3ÞÞ2þL2þxð1−xÞQ2�i

¼
Xþ∞

n¼−∞

1

½ðð2nþ1ÞπTþΓsgnðð2nþ1ÞπTÞÞ2þð2πTYÞ2�i

¼
�

1

2πT

�
2i Xþ∞

n¼−∞

1

½ðnþ 1
2
þ Γ

2πT sgnððnþ 1
2
ÞÞ2þY2�i :

ðB10Þ

Performing the summation over n yields

S1 ¼
1

2π2T2Y
Im

�
ψ

�
1

2
þ Γ
2πT

þ i
Y

2πT

��
ðB11Þ

and

S2 ¼ −
1

8π2T2Y
∂S1
∂Y

¼ 1

16π4T4Y3
Im

�
ψ

�
1

2
þ Γ
2πT

þ i
Y

2πT

��

þ 1

16π4T4Y2

∂Im½ψð1
2
þ Γ

2πT þ i Y
2πTÞ�

∂Y : ðB12Þ

Substituting Eqs. (B11) and (B12) into Eq. (B9) and
performing the integral over L, we finally obtain the
expression for the temporal component of the vacuum
polarization tensor including impurity scattering:

ΠðQ2; T;ΓÞ ¼ 4NfT

π

Z
1

0

dx

�
Re

�
lnΓ

�
1

2
þ Γþ iX

2πT

��

þ X2 − C2

X2
Im

�
ψ

�
1

2
þ Γþ iX

2πT

���				∞
C
;

ðB13Þ

where C ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xð1 − xÞp

Q.
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