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Perturbative renormalization of neutron-antineutron operators
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Two-loop anomalous dimensions and one-loop renormalization scheme matching factors are calculated
for six-quark operators responsible for neutron-antineutron transitions. When combined with lattice QCD
determinations of the matrix elements of these operators, our results can be used to reliably predict the
neutron-antineutron vacuum transition time, z,;, in terms of basic parameters of baryon-number-violating
beyond-the-Standard-Model theories. The operators are classified by their chiral transformation properties,
and a basis in which there is no operator mixing due to strong interactions is identified. Operator projectors
that are required for nonperturbative renormalization of the corresponding lattice QCD six-quark operator
matrix elements are constructed. A complete calculation of ém = 1/z,; in a particular beyond-the-
Standard-Model theory is presented as an example to demonstrate how operator renormalization and results
from lattice QCD are combined with experimental bounds on ém to constrain the scale of new baryon-
number-violating physics. At the present computationally accessible lattice QCD matching scale of
~2 GeV, the next-to-next-to-leading-order effects calculated in this work correct the leading-order plus
next-to-leading-order 6m predictions of beyond-the-Standard-Model theories by < 26%. Next-to-next-to-
next-to-leading-order effects provide additional unknown corrections to predictions of ém that are

estimated to be < 7%.
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I. INTRODUCTION

The Universe contains many more baryons than anti-
baryons [1]. Unless this baryon asymmetry is attributed to
fine-tuning of the initial conditions of the Universe, the
baryon asymmetry must have been generated dynamically
during the early Universe. Any mechanism describing this
process of baryogenesis must include violation of baryon-
number (B) conservation, violation of C and CP, and
departure from thermal equilibrium [2]. The Standard
Model includes B violation through nonperturbative
electroweak processes that violate B + L but preserve
B — L [3,4]. It also includes classical C and CP violation
and departure from thermal equilibrium during the electro-
weak phase transition. However, the B and CP violating
effects present in the Standard Model cannot reproduce the
observed magnitude of the baryon asymmetry [5-7]. As a
result, beyond-the-Standard-Model (BSM) physics is needed
to explain baryogenesis. BSM baryon-number violation
could occur in many different ways. Theories that allow
AB =1 transitions can allow B — L conserving proton
decay,1 which has been experimentally constrained to a high
degree [9-11]. Other classes of BSM theories do not allow
proton decay, but do allow other baryon-number-violating
processes. These models often instead include the AB = 2,
B — L violating, neutron-antineutron transition [12-39].

In vacuum, neutron-antineutron (nn) transitions would
manifest themselves as oscillations between neutrons

'See Ref. [8] for a recent review on proton decay.
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and antineutrons. The probability that a free neutron has
transformed into an antineutron after time ¢ is given by
P,; = sin*(t/t,;), where 7,; is the neutron-antineutron
vacuum transition time. Experimental measurements of
magnetically shielded cold neutron beams at the Institut
Laue-Langevin (ILL) have established a limit of
7,7 > 2.7 yr [40]. There are also experimental bounds
on the decay rate of neutrons bound in nuclei from large
volume underground detectors. Super-K has bounded
the transition time 7 for nn transitions in oxygen, 7 >
1.89 x 1032 yr [41]. Nuclear structure calculations can be
used to relate this nuclear transition time to the vacuum
transition time 7,;. This bound on the vacuum transition
time is estimated to be a factor of 4 or 5 larger than the ILL
bound, but the nuclear structure calculations introduce
nontrivial systematic uncertainties.” It is believed that
improvements in neutron transport/optics and neutron
moderation technologies since the 1994 ILL experiment
would allow for new neutron beam experiments to improve
the ILL bounds by an order of magnitude or more [43].
There has been a recent push from both theoretical and
experimental communities in support of new, state-of-the-
art nii experiments [43—45].

In order to constrain BSM theories predicting nn
transitions, experimental results must be compared to

In particular Ref. [41] cites a derived bound of z,,; > 7.7 yr.
More recent structure calculations in Ref. [42] modify this bound
to be 7,; > 10.9 yr, as noted in Ref. [43].
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theoretical predictions for 7,;. Making reliable predictions
for z,; within a particular BSM theory is challenging. In
particular, theoretical descriptions of the nn transition
process must include strong interaction physics as well
as BSM physics. These effects are important at very
different scales. High-scale BSM physics gives rise to
effectively local AB = 2 interactions turning three quarks
into three antiquarks. Comparatively low-scale strong
interactions bind these quarks (antiquarks) into a neutron
(antineutron). Theoretical descriptions of this high- and
low-scale physics can be factorized by using a Standard
Model effective field theory description of n# transitions.
In this approach, the Hamiltonian governing ni transitions
is described as a linear combination of operators built from
Standard Model fields.

The most relevant Standard Model effective field theory
operators contributing to n# transitions are dimension-nine
six-quark operators. A complete basis of these six-quark
operators can be constructed without specializing to a
particular BSM theory. This construction was begun in
Refs. [46,47], generalized and detailed in Refs. [48,49], and
completed in Ref. [50], where spin-color Fierz identities
were used to remove redundant operators from the basis.
Higher-order operators of potential interest have also been
discussed [51,52]. The effects of low-scale strong inter-
action physics on nii transitions are encoded in quantum
chromodynamic (QCD) matrix elements of six-quark
operators between initial neutron and final antineutron
states. All high-scale physics and BSM model dependence
is encoded in the particular numerical coefficients used to
express the effective Hamiltonian for a given theory in a
six-quark operator basis. These numerical coefficients can
be calculated perturbatively in BSM matching calculations
for particular theories of interest.

Testable predictions for 7,; cannot be made without
reliable calculations of six-quark operator QCD matrix
elements. Equivalently, experimental bounds on 7,; cannot
be used to constrain BSM theory without reliable QCD
matrix element calculations. These six-quark matrix ele-
ments have been estimated in the MIT bag model [48,49],
but model estimates introduce uncontrolled uncertainties
into the relation between BSM parameters and experimental
observables [53]. The only available method to determine
hadronic matrix elements with controlled uncertainties is
lattice QCD. Preliminary lattice QCD calculations of nn
matrix elements are under way [54]. Once completed, lattice
QCD n#n matrix elements can be nonperturbatively renor-
malized and then combined with BSM matching calculations
performed with renormalized perturbation theory.

The need for perturbative nii operator renormalization
arises because lattice QCD matrix elements can only be
renormalized at scales smaller than the UV cutoff of the
lattice (typical calculations today use lattice matching
scales of py =2 GeV [55]), but renormalization scales
that are currently accessible in lattice QCD simulations
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cannot be (directly) used for perturbative BSM matching
calculations. These BSM matching calculations receive
logarithmic corrections that become large enough to
invalidate perturbation theory unless the renormalization
scale chosen is comparable to high scales where BSM
physics becomes important. For typical BSM theories,
these scales are in the range Aggy = 10°-10'¢ GeV. To
address this issue, renormalization group (RG) techniques
can be used to sum these large logs and reliably relate
matrix elements calculated with different renormalization
scales. This RG evolution (“running”) and typical
BSM matching calculations are both simplest in mass-
independent renormalization schemes such as modified
minimal subtraction (NDR-MS).> The MS renormalization
scheme can only be applied directly to dimensionally
regularized matrix elements, and in particular cannot be
applied directly to lattice regularized matrix elements.
Instead, the regularization-independent-momentum (RI-
MOM) scheme can be introduced as an intermediate
renormalization scheme [56]. As long as the lattice match-
ing scale p, used for nonperturbative renormalization is
larger than hadronic scales where QCD becomes non-
perturbative, it is possible to relate RI-MOM and MS
renormalized matrix elements perturbatively (“matching”).
The perturbative calculation of RG running and matching
factors therefore allows nonperturbatively renormalized
lattice QCD matrix elements to be combined with pertur-
bative BSM matching calculations to provide testable
predictions for 7,; in BSM theories of interest.

The largest corrections to 7,,; arising from RG evolution
are encoded in perturbative one-loop-running factors.
These have been correctly calculated for nn operators in
Ref. [50]. One-loop running provides an overall multipli-
cative correction to nonperturbatively renormalized matrix
elements, see Eq. (2). Further RG corrections to this result
can be organized as a power series in a,(pg). In order to
verify that this perturbative expansion is well controlled at a
given p,, it is necessary to determine the first term in this
a,(po) power series. This term is parametrically O(a,(po)),
and includes one-loop-matching effects. When running to
high scales u where a,(u) < a,(pg), two-loop-running
effects also contribute at O(a,(py)) and must be included
as well, see Eq. (2). This work provides the first calculation
of the one-loop-matching and two-loop-running factors
needed to reliably estimate the convergence of RG relations
between ni matrix elements at low scales p, accessible to
lattice QCD simulations and high scales u accessible to
perturbative BSM matching calculations.

*Naive dimensional regularization (NDR) prescribes that ys
anticommutes with y, in D dimensions. Since closed fermion
loops do not appear in n#i calculations, no complications arise
from using the NDR prescription. In the remainder of this paper
we abbreviate NDR-MS as MS for brevity.
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The remainder of this paper begins with a summary of
our final results in Sec. II. Results are presented for the
fixed-flavor basis commonly used in the literature and for a
new chiral basis that is diagonal under RG evolution. The
construction of this chiral basis is presented in Sec. III. The
RI-MOM renormalization scheme and associated operator
projectors needed for perturbative and nonperturbative nn
operator renormalization are defined in Sec. IV. Calculation
of one-loop-matching factors relating RI-MOM and MS
renormalized operators is discussed in Sec. V. Calculation
of two-loop-running factors is discussed in Sec. VI
Sections V and VI both discuss the careful treatment of
evanescent operators vanishing in D = 4 that is necessary
for a correct calculation of RG effects. To demonstrate the
phenomenological application of our results, a complete
calculation of 7} and resulting experimental constraints are
discussed for a simplified BSM model in Sec. VII. Physical
results and implications are summarized in Sec. VIIL
Analogous one-loop-matching and two-loop-running cal-
culations have been performed for four-quark weak matrix
elements [57-65] and proton decay [66—73], the latter of
which has also recently been analyzed at the level of two-
loop matching and three-loop running [74]. These calcu-
lations provide useful techniques as well as cross-checks
for intermediate results. We avoid discussion of established
techniques for multiloop diagram evaluation in the main
text, but for readers unfamiliar with two-loop diagram
evaluation we present a pedagogical discussion in
Appendixes A and B. Our explicit evanescent operator
basis (technically required for a full definition of MS
operator renormalization) is presented in Appendix C,
and some intermediate results are shown in Appendix D.

II. SUMMARY OF RESULTS

The neutron-antineutron vacuum transition time 7,;
predicted by a particular BSM theory can be calculated
from matrix elements of the Hamiltonian density

= "Cr(u) Qi (u). (1)

where the Q;(u) form a complete basis of dimension-nine
local six-quark operators with nonvanishing matrix ele-
ments (i|Q;(u)|n) between initial neutron and final

|

=3O (U, po) OF (o).
1

Ur(u.po) =4y s N5
Uy (u,m)U; " (my, po)
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antineutron states, the C;(u) are Wilson coefficients, and
u is a renormalization scale. The Wilson coefficients are
renormalization scheme and scale dependent and will differ
between BSM theories. They can be calculated by match-
ing tree- or one-loop-level nin amplitudes between the full
BSM theory and an effective theory containing only
Standard Model degrees of freedom. Hadronic matrix
elements of Q;(u) are independent of the BSM theory
used to calculate the C; () but renormalization scheme and
scale dependent.

Lattice QCD first determines matrix elements of bare,
lattice regularized operators. By subsequent lattice QCD
calculations, these bare matrix elements can be nonpertur-
batively renormalized in the RI-MOM scheme described
in Sec. IV at a lattice matching scale p,. Provided
a,(py) < 1, dimensionally regularized perturbation theory
can be used to relate RI-MOM renormalized matrix
elements to MS renormalized matrix elements.
Introduction of RI-MOM as an intermediate renormaliza-
tion scheme is necessary because the MS scheme can
only be directly applied to dimensionally regularized (and
not, for instance, lattice regularized) matrix elements.
Setting the MS renormalization scale y = p, removes
large logarithms from the RI-MOM matching calculation.

Perturbative calculations of C}S(x) in a particular BSM
theory typically introduce additional logarithmic correc-
tions In(u/Aggy ). Since lattice QCD computational limits
demand po < Aggy, Wilson coefficients calculated at
u = Aggy must be RG evolved to y = p, and then
combined with MS renormalized matrix elements to
include all large logs in BSM theory predictions of z,,;.
The renormalization scale dependence of the Wilson
coefficients is encoded in the MS anomalous dimension
matrix y;;, defined in Sec. VL. In Sec. III, we use chiral flavor
symmetry to construct an operator basis where the anoma-
lous dimension matrix is diagonal. The RG equations
relating Wilson coefficients at different renormalization
scales can be solved perturbatively in this diagonal chiral
basis. Including one-loop-matching and two-loop-running
effects, the relation between the desired Hamiltonian H',

the BSM matching coefficients CI}’TS(,M) at arbitrary scale g,

and the nonperturbatively renormalized operators QR (py)
used in lattice QCD simulations is

N;=6 N,=5 N,=4
Ulf (ﬂvmt)Ulf (mhmb)U[f (mp, pg) for m. < py < my,

’

for m, < py < m,

as(/"l)

©
. (1) 10 o a
Ulf(ﬂl,ﬂz)—< : 2) 1_5M2-P0r§) -

(Po) <ﬂ1ﬁ°> yﬁ”) a(p2) — as(p1)

285 2P 4n
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TABLE 1. Summary of results. The leftmost column lists the chiral basis operators Q; with independent NNLO operator
renormalization factors. The second column lists the corresponding fixed-flavor basis operators used in Refs. [46-50] that renormalize
identically to Qy, see Sec. III. Each Q; is equal to (—4) times the first fixed-flavor basis operator listed in the corresponding row of the
second column. The other fixed-flavor basis operators listed may not be directly proportional to Q; but share the same one-loop MS

anomalous dimension yfo) (third column), two-loop MS anomalous dimension yglj (fourth column), and one-loop Landau gauge RI-

MOM matching factor r§0) (fifth column) appearing in Eq. (2). yﬁl) and rﬁo) depend on the evanescent operator basis used to extend
D = 4 Fierz relations to D-dimensional operator relations in dimensional regularization. Our evanescent operator basis is presented in
Appendix C. One-loop BSM matching calculations must use the same evanescent operator basis for consistency. Tree-level BSM

matching calculations are unaffected, see Sec. VII for a sample matching calculation.

Chiral basis Flavor basis 3/30) J/E 1) r§°>

0, O 311 4 335/3 — 34N /9 101/30 +8/151n2
0, O3 pr> O i O s —4 91/3 — 26N /9 —31/6 + 88/15In2
03 O3 x> Oxee 0 64 — 10N /3 -9/10 +16/51n2
on (4/50%k + 1/50kzr), (4/50%,, +1/50,,) 24 229 —46N,/3 177/10 — 64/51n2
05 Oby ., OLp, O, O s O3, 12 238 — 14N, 49/10 —24/51n2

Okers (2/307 15 +1/30] 1), (2/307 ¢ + 1/301 ),
(2/30%ge +1/30kgy), (2/30%g, +1/30k.z)

0, (1/30%gr — 1/30kgr), (1/30%,, —1/30},,) 4 797/3 - 118N;/9  —109/30 +8/15In2
0s (1/30% 2 = 1/30} 1), (1/30%, —1/30k,) 0 218 —38N,/3 ~79/10 + 16/5In2
where rgo) is a one-loop-matching factor defined in Sec. V, U;(u, pg) depends on u and differs between operators.
ygo) and 751) are one-loop- and two-loop-running factors ~ Taking pg =2 GeV and using the four-loop parametriza-

defined in Sec. VI, and fB;, and f; are well-known
perturbative coefficients of the QCD f function presented
for reference in Eq. (46). Only S, 3, and yf,l) depend on
the number of active quark flavors, N . Matching between
theories with different N’s at quark thresholds is included
in the same manner as in RG evolution of weak matrix
elements without penguin contributions [75] since no
penguin diagrams exist for nin operators.

Ignoring QCD effects on RG evolution gives the leading-
order (LO) result U;(u, py) = 1. Next-to-leading-order
(NLO) QCD effects give a multiplicative correction
to U;(u, pg) whose size is determined by the one-loop-

running factor yﬁo) correctly calculated in Ref. [50]. Higher-

order corrections due to matching and running provide
additive corrections that can be perturbatively expanded
in powers of a,(py) and a (). For high scales y where
a,(p) < ag(pg), Eq. (2) shows that one-loop-matching
and two-loop-running effects receive similar O(a,(py))
suppression. Both one-loop-matching and two-loop-
running effects must therefore be included in a next-to-
next-to-leading-order (NNLO) calculation of U;(u, py).
Next-to-next-to-next-to-leading-order (N3LO) corrections
not included in Eq. (2) arise from two-loop-matching
and three-loop-running effects that are both O(a,(pg)?)
suppressed.

The NNLO operator renormalization factors rg()) and ygl)
are calculated for the first time here and summarized in
Table 1. The relative size of NNLO to NLO corrections to

tion of () in Ref. [76], NNLO corrections to NLO + LO
results for 6m = 1/z,; are < 26% for all u’s > p, and may
be significantly smaller in some BSM theories. Section VII
presents a sample calculation of the niz vacuum transition
rate for one of the simplified models of Ref. [25]. In this
model the relative size of NNLO to NLO corrections to
Sm is 14%. Estimating that unknown N3LO O(a,(po)?)
corrections are comparable to the square of NNLO
O(a,(py)) corrections allows systematic uncertainty due
to unknown N3LO corrections to be quantified as < 7%
generically and 2% in the model discussed in Sec. VIL

III. CHIRAL OPERATOR BASIS

The operators relevant for n# transitions are Lorentz,
color, and electromagnetic singlet six-quark operators of
dimension nine. Since hadronic matrix elements must be
calculated in lattice QCD simulations that only maintain
approximate chiral symmetry at best, operators that are not
singlets of the full electroweak gauge group should be
considered. Even so, operator renormalization is most
simply performed in the limit of massless up and down
quarks. Classifying operators according to the SU(2), x
SU(2)g chiral symmetry of QCD in this limit proves quite

useful.* In this section we construct a basis of irreducible
chiral tensor operators that do not mix under perturbative

“We thank Brian Tiburzi for the very helpful insights on these
chiral transformation properties.
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QCD interactions. Fierz relations and symmetries of the
color, spin, and flavor tensors used throughout this section
are detailed in Appendix A. Our notational conventions are
as follows: we use i, j, k, ... as fundamental color indices,
u,v,p, ... as four-vector Lorentz indices, a,p,y,... as
Lorentz spinor indices, a, b, c, ... as flavor spinor indices,
I,J,K, ... as operator basis labels, and y’s as chirality
labels L,R. We will use A,B,C,... to denote adjoint
indices in both color and flavor. 81(3), color generators
will be denoted by * and normalized to Tr(41%) = 1 548
while 811(2); and 8u(2), flavor generators will be denoted
by ' and normalized as Pauli matrices Tr(z*7%) = 2518
with 7* =1(z' £i7?). We use a Euclidean (+ + ++)
metric 31gnature and will not distinguish between raised
and lowered indices. Final results are valid in the
Minkowski signature; intermediate steps are not.
Summation convention applies to all indices but not to
operator basis I,J, K, ... and chirality y labels.

Two quarks can be combined into a spin-singlet diquark
by contraction with the antisymmetric charge conjugation
matrix C and projected onto definite chirality by including
Py g =3(1Fys). In D =4, spin Fierz identities can be
used to express any product of vector diquarks containing
¥, or tensor diquarks containing ¢, = é [7,» 7,] as a product
of scalar diquarks. Denoting flavor doublet quark fields by
w? = (u%, d?), only operators containing three products of
scalar diquarks w¢, [CP){]“ﬂwfb need to be considered.

Flavor Fierz identities allow us to only consider oper-
ators where each diquark is either a flavor singlet con-
tracted with the antisymmetric tensor iffl , or a flavor vector
contracted with the symmetric tensor [iz*7%],,,

D, = (yCP,it*y), D} = (wCP,it*cty),  (3)
where we have suppressed free color indices. Irreducible
$u(2),-spin-two and 8u(2),-spin-three chiral tensor oper-
ators can then be defined as

DAB D{A B}

1
— O DS,

I
D¢ = D' DEDY) — <[44 DI DYDY + 6D DL D)

A D
+ 3D DL Dy)|. (4)

Since operators contributing to n# transitions must lower
the third SU(2), isospin component /3 isospin by one
unit,” at least one diquark must be contracted with [iz271],
to form a d‘l?‘df diquark. The other two diquarks must

°In particular, nii transitions only involve operators with
negative parity, A/ =1, and Al3 =—1. We only explicitly
enforce the latter constraint, A/; = —1, in order to simplify
the perturbative calculations presented here.
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combine to have no net effect on /5. Taking this d?d?
combination to be our third diquark for convenience and
enforcing antisymmetry under quark exchange, the only
available tensors for constructing color singlet six-quark
operators are

555 _
T3 ey mny = EikmEjin T €jkmEitn + EitmEjkn + Eikn€ jim>
AAS _
T[ij][kl]{mn} = & jm€kin + Eiju€kim (5)

where { } denotes index symmetrization and [] denotes
index antisymmetrization. From here onward we suppress
explicit quark indices and use the diquark notation

lT abwﬂb (6)

(l//iCPRifz%) Wi CPR

We further suppress color indices in diquark products, e.g.

() (o) Qo) 445 = () (i) Qo) T30 o

Using these building blocks and neglecting operators
that have Al; # —1 or vanish by quark anticommutivity,
we find that at NLO there are five chiral tensor operators
with independent renormalization properties,

01 = (WCPRit*y) (wCPRit*y ) (w CPit*c y ) TS,
(7a)

0, = (wCPLit*y) (wCPit*y) (y CPyit*t y) TA4S,
(7b)

03 = (wCPLit*y) (wCP ity (y CPgit*t y) TAS,
(7c)

Q4= (WCPRIiT* Ty ) (WCPRIT Ty ) (wCPriv*t y) T

1
~3 (wCPRit*t ) (wCPrit*t y ) (wCPit* Ty ) T5SS,

(7d)

Qs = (wCPRit*t™y)(wCPit*tHy) (wCPit*t y) T35S,

(7e)

Symmetries of 7555 and 7445 under diquark exchange
ensure that all products of flavor vector diquarks are totally
symmetric. Q, includes a flavor trace subtraction. This
ensures that all operators are irreducible chiral tensor
operators.

There are two additional operators that cannot be
expressed as linear combinations of Qy, ..., Os,

Q6 = (WCPRIiT*Ty) (WCPLIT* Py ) (wCPLit> T y) T,
(8a)
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The chiral basis operators Q; shown in the first column are equal to (—4) times the corresponding

fixed-flavor basis operator combinations shown in the second column. Each chiral basis operator is equal to a color

contraction of the tensor operators Dy

shown in the third column. The corresponding chiral irreducible
representation of each operator is shown in the last column. Qy, ...

, Q7 and their parity conjugates (L<>R) form a

complete basis for n7 transition operators in D = 4. Since they are components of the same chiral tensor operator

DADEC, Q¢ and Q- renormalize identically to Q5 and are redundant for our purposes. Q1 and Q3 are equal to Q; and
Q3 in D = 4, but they renormalize independently in MS at NNLO.

Chiral basis Fixed-flavor basis

Chiral tensor structure

Chiral irreducible representation

Qi O?K’RR DRIDRD; 48 (12,3z)
&) O%RR Dy DRD;S ™S (12,3g)
0; OzLR ,DLIDLID; TS (12,3g)
Q4 4/50%pr + 1/50kkk DPITSSS (1,,7%)
Os Oke DD, 1% (52,3g)
Qs Oker DDy T5SS (50.3x)
Q7 2/307,5 + 1/30] 1k DDy T* (5..3g)
0, 1/30%gg = 1/30kpe DgDrDiT*% (12,3g)
0; 1/307,2 = 1/30} 11 D, D, Dy T* (12,3g)

Q7= (wCPit*ty)(yCP it*c?

1
—g(y/CPL i’y ) (wCPit*t ) (wCPrit*t Ty ) TS5S,

w)(wCPgit’t y) TS5

(8b)

These two operators and Qs are different components of the
same chiral tensor operator, DyDEC. This implies that Qs,
Q6. and O, have identical anomalous dimensions and
matching factors in renormalization schemes respecting
chiral symmetry. In D =4, Qy,...,Q; and their seven
parity conjugates found by taking L <> R everywhere and
including a relative minus sign form a complete basis of
dimension-nine operators contributing to ni transitions.

We also consider two more operators, Ql and Q3, that
in D =4 are equal to Q; and Q;, respectively, by Fierz
identities,

~ 1

0, = §(I/ICPRZTZTAI,U)(I//CPRITZTAUI)(I,UCPRlT hy) 5SS,
(9a)

~ 1

Q3 = §(1;/CPL1721A1;/) (wCP it y) (yCPRit> Ty ) TS5S.

(9b)

The Fierz relations Q; = Q1 and O, = Q3 are broken in
dimensional regularization, and 0 | and Q3 are independent
operators in D dimensions. In principle, we could choose
our phys1ca1 operator basis to be Qj, ..., Qs and include

0, - Ql and Q5 — Q3 as additional evanescent operators

vanishing in D =4 but present in D dimensions. In
practice, it is much easier to directly determine matrix
elements of Ql and Q3 and explicitly include them in
the physical operator basis. For the purposes of NNLO
operator renormalization we take our chiral basis operators
Q; to include Qy, ..., Qs, Oy, O3.

The basis commonly used in the literature involves fixed-
flavor quark fields [46-50],

O) 1y = (UCP, u)(dCP,,d)(dCP, d)TS,
O s = (uCP, d)(uCP,, d)(dCP, d)T5,
0)3(1)(2){; = (MCP;(] d)(MCPXZd)(dCPMd)TAAS. (10)

These fixed-flavor basis operators satisfy the relations
O)(LR = 0! ki, and O%’,’z){ = (’)i’ix In D=4, they also
satisfy the Fierz identities O} , — O, , =30, ,. These
relations reduce the number of linearly independent oper-
ators to 14. It is straightforward to evaluate the flavor
contractions of w = (u,d) in the Q; and verify that
Q4,..., Q7 and their parity conjugates form 14 linearly
independent combinations of fixed-flavor basis operators.
One can similarly verify that the Fierz relations Ql =0,
and Q3 = (5 are equivalent to the fixed-flavor basis Fierz
relation above. The precise relations between the chiral
basis and fixed-flavor basis operators and their explicit
chiral tensor structures are shown in Table II.

IV. RENORMALIZATION SCHEMES

The commonly used MS renormalization scheme sim-
plifies RG evolution, preserves important symmetries of
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chiral gauge theories such as the Standard Model, and is
technically simple to implement in perturbative calcula-
tions performed with dimensional regularization. MS is
limited, however, in that its defining renormalization
condition can only be applied to regularized matrix
elements calculated with dimensional regularization and
not with other regularization schemes such as lattice. The
RI-MOM renormalization scheme [56], while not as
technically simple to apply to dimensionally regularized
matrix elements, has the advantage of a regularization-
independent renormalization condition. In this section we
construct a RI-MOM operator renormalization condition
for the Q; that can be applied both nonperturbatively to
lattice QCD matrix elements and perturbatively to dimen-
sionally regularized matrix elements. This is an essential
intermediate step in connecting lattice regularized and MS
renormalized nii matrix elements.

In this section we explicitly display the spacetime and
renormalization scale dependence of the quark fields
w? (x,u) and six-quark operators Q;(x,u). These renor-
malized quark fields and six-quark operators should be
distinguished from their bare (regularized) counterparts,
defined for quark fields of flavor ¢ = u, d by

g (x 1) = Z3'"* (1) [q)¢ (%),
0:(e.) = S 71 () OY(x), (1

where the wave function renormalization factor Z,(u)
and operator renormalization matrix Z;;(u) are formally
defined by the renormalization conditions of a particular
renormalization scheme. We denote perturbative expansion
coefficients for either renormalization factor by

Z(u) =1+ <#)Z('> + <M>ZZ(2) +0(a?).

Vs iy 4
(12)

The RI-MOM scheme wave function renormalization
factor Z}'(u) is defined by [56]

—i oS U= -1
1——lTr(y” q(Poﬂ Po) )

48 op*
. 0 -1
_ I Ri " aSq(pO)
48 Zq (pU)Tr <Y ap” ’ (13)

where Tr denotes a trace over color and spin (quark flavor ¢
is held fixed), p, is the lattice matching scale, and S9(po)
and S, (py. u) are bare and renormalized quark propagators,
respectively. The normalization is chosen such that
Z®(u) = 1+ O(ay). Equation (13) assumes that a gauge
fixing condition has been imposed so that the quark
propagator is nonvanishing. In this work we consider a

PHYSICAL REVIEW D 93, 016005 (2016)

general R; gauge where the tree-level gluon propagator is
§'8(g,,/p* — (1 = €)p,p,/p*). One-loop matching is per-
formed in the Landau gauge, £ = 0. Two-loop-running
results are gauge invariant, and for simplicity the two-loop
calculation is performed in the Feynman gauge, £ = 1.
A one-loop calculation of the quark self-energy in
D = 4 — 2¢ dimensions shows that the counterterm needed
to renormalize the bare propagator according to the
renormalization condition equation (13) is [56]

4
zot ) = -3 <§+§> (14)

where 1/& = 1/e —yg +1In4x. The MS wave function
renormalization factor is defined by the condition that
Z, remove precisely the poles in 1/ from the quark
propagator. At one loop

250 —%‘ <§> (15)

At two-loop order the quark propagator includes diagrams
with divergent one-loop subdiagrams. These diagrams
include nonlocal divergences proportional to In(u?/p?)/z.
Renormalizability guarantees that these nonlocal two-loop
divergences cancel after including counterterm diagrams in
which divergent subdiagrams are replaced by their one-loop
counterterms [77].° The remaining local divergences are
removed by a two-loop counterterm that in Feynman gauge
is given by [79]

Ms,2) 44

B —47 + 2N,
- 9g2

3% , (16)
where N is the number of active quark flavors.

A regularization-independent definition of Z/ () can be
given in terms of a renormalization condition applied to
vertex functions for each Q;. These vertex functions can be
constructed, perturbatively or nonperturbatively, by Wick
contracting Q; with interpolating operators for initial
neutron and final antineutron states. A vertex function
with Q; inserted at zero momentum can be constructed
by including three external antiquark fields carrying
momentum p and three external antiquark fields carrying
momentum —p. These antiquark fields act as interpolating
operators capable of creating initial neutron and final
antineutron states. In order to simplify the nonperturbative
construction of this vertex function in lattice QCD calcu-
lations, it is convenient to work with interpolating operators
built from fixed-flavor quark fields. The quark fields
must be assigned momenta symmetrically in order for

6 . . . . .
For a comprehensive review of renormalization theory with
further references to the original literature, see Ref. [78].
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the RI-MOM scheme defined using the vertex function to preserve chiral symmetry. A suitable definition is given

by [80]

A (P) =

where antisymmetrization of all antiquark fields of the
same flavor is implied, renormalization scale dependence is
suppressed, and the subscript amp refers to the prescription
of amputating external legs with the replacement

a¥(p.p) = 3% (p. w)[S7" (p. )]0 (18)

When the Wick contractions for A; are enumerated, the 20
distinct momentum routings available for Feynman dia-
grams with six indistinguishable external legs carrying
momentum {p, p, p, —p,—p, —p} each appear with equal
weight. Perturbative contributions to A; are defined by

A
A(po) = AP + (—4(7/;))/\5')(17,/4)

() e 09

It should also be noted that A; is defined with an “excep-
tional momentum configuration” where the momenta of
some subsets of external fields add to zero. However, vertex
functions for purely baryonic operators like Q; are not
expected to suffer from the nonperturbative chiral sym-
metry breaking artifacts that affect mesonic operators in
exceptional momentum configurations. In particular, infra-
red divergences in the chiral limit arising from pseudo
Goldstone poles can lead to enhanced nonperturbative
chiral symmetry violating mesonic operator mixing in
lattice QCD simulations with chiral fermions, see for
example [62]. Enhancements arise from diagrams in which
an external quark and antiquark can be combined in a
subdiagram with zero external momentum. For the purely
baryonic operators considered here as well as for proton

|

(=p)d,(p)&(p)dl(p)ds(=p))| (17)

decay operators, there are no pseudo Goldstone pole
enhancements from diagrams in which two external quarks
with positive baryon number are combined in a zero-
momentum subdiagram.

The RI-MOM scheme is defined by a renormalization
condition on A;(p, u),

81y = Te[PrA;(pos. ke = po)]
= ZR(po)(ZR(po)*Tr[PsA% (po)].  (20)

where A%(py) is a bare vertex function built from
bare operators and amputated with bare propagators,

— ong ong
Tr[Pl AJ ] = Pzﬁlgrr?n A?ﬁ}lln?n’

‘P; are defined by

and the operator projectors

TP, AV = 5y, (1)

Each external quark in Eq. (20) carries momentum = p
and the renormalization scale is identified with this lattice
matching scale y = py. As discussed above, p, must be
chosen to be much larger than hadronic scales to allow for
perturbative matching but much smaller than the inverse
lattice spacing used for nonperturbative renormalization to
control discretization errors. For many quantities, these
constraints are satisfied at p, =2 GeV. A comparison of
the size of O(a,(py)) NNLO corrections to the NLO result
in Eq. (2) should provide an estimate of perturbative
convergence with a chosen p,.

A set of projectors satistfying Eq. (21) for the chiral basis
operators is given by

Q 1 a a

(Py) e = = 93160 T wtyimny (CPRIV(CPR)(CPRYE + 2T1G L (CPR)™(CPR)P (CPR)Y),  (222)
o 1

(P2) i = BETYED) (=T33 sty gy (CPL) (CPR)P(CPR)™ + 2T (5 11y (CPL) (CPR)* (CPR)™).  (22b)
Q 1 a, o1

(P3)hione = ~3eseq T ety (CPLP(CPLY(CPR)™ + 2715 1y (CPL)(CPL(CPR)F).  (22¢)
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(PO = = e (T35 o oy (CPRYP (CPRYP(CPRYE 4 3THS L (CPRYP(CPRYP(CPyYE),  (224)
(PSS = — e (T35 oy (CPRYP(CPLYA(CPL)Y), (22¢)
(P )imm = —ﬁ (T35 i o (CPRIP(CPLYP(CPL Y + 68 | (CPR)®(CPLYE(CP, )P, (22f)
(PO = = o (T35 1y (CPLP(CPLYS(CPRY 4+ 2T, (CPLY(CPLYP(CPRYE).  (228)

We explicitly include projectors for Qg and Q5 since they
must be analyzed separately in lattice QCD calculations
without exact chiral symmetry. The seven parity conjugates
of Oy, ..., Q7 should be analyzed separately in lattice QCD
calculations; projectors for these operators are found by
taking L<>R everywhere and including a relative minus
sign. P, and P; are suitable projectors for Ql and Q3 since
they are equal to O, and Q5 at tree level. Projectors and for
fixed-flavor basis operators differ from those of Eq. (22) by
an overall normalization factor of (—4) are described in
more detail in Ref. [81].

ZMS can be defined through a renormalization condition
for dimensionally regularized vertex functions: at each
order of renormalized perturbation theory, add counter-
terms that remove precisely the 1/ poles proportional to
A, from A;. A more precise definition of both the RI-MOM
and MS renormalization conditions for dimensionally
regularized amplitudes requires a careful treatment of
evanescent operators. This is postponed to Sec. V B.

V. ONE-LOOP MATCHING

RI-MOM and MS renormalized operators with renorm-
alization scale y = p, are related by Eq. (11),

Ri(po) = D _ZR(po)[(Z%) 7k (po)] QXS (po)
= ZUJQ?TS(PO)- (23)

The matching factor r;; relates renormalized operators
and is therefore a finite quantity. r;; can be consistently

calculated perturbatively in terms of ZR! and ZMS as long as
both contain the same UV divergences and in particular are
calculated with the same regularization. This allows us to
perturbatively express r;; as

as\p . MS,
i) = 1+ 5P (0 A0 | o)
=1+ “Sii 2 0 1 o(c2). (24)

Since the chiral basis operators do not mix under renorm-
alization, Z;; and r;; are diagonal and we further define r§°>

to be the diagonal elements r§(}> =9 Jrgo) (no summation

on I). Differences between definitions of the renormalized
coupling constant a,(p,) in different schemes are formally
O(a?) and can therefore be neglected in Eq. (24). When
calculating numerical results in Sec. VII, we use a MS
coupling constant definition for both two-loop running and

one-loop matching. This defines the one-loop-matching

factor rﬁo) appearing in Eq. (2) in terms of ng. The

remainder of this section describes the diagrammatic

evaluation of Z;}) from one-loop corrections to ASO).

A. Diagram evaluation

Feynman diagrams representing corrections to Q;
involve six-quark lines carrying a baryon number into a
local vertex where the quark lines are joined to form three
spin-singlet diquarks. To simplify the structure of these
diagrams it is convenient to introduce charge conjugate
quarks (€)% = (Cy)¢,. Expressing all diquarks in Q; as
(wCP,w) = (W P,y) removes the need to introduce spin-
transposed propagators and explicit factors of C at the six-
quark vertex. With this approach, one quark line contained
in each spin-singlet diquark is replaced with a conjugate-
antiquark line with its fermion charge arrow pointing out
of the six-quark vertex, as shown in Fig. 1. These obey
standard Feynman rules for quark lines carrying fermion
charge away from the vertex, except that conjugate quark-
gluon vertices receive an extra minus sign and transposition
of 4 because (J/icy"tf}ch) = (Wi thw;).

Matching between RI-MOM and MS is performed in the
limit of massless quarks where SU(2); x SU(2) chiral
symmetry guarantees that loop-level operator corrections
will contain diquarks with the same chiral structure as the
tree-level operator. When calculating diagrams with no
closed fermion loops in NDR, explicit factors of P, can
therefore always be moved from the operator vertex to one
end of the quark line representing each spin-singlet
diquark. In addition, the tree-level flavor structure of each
operator is preserved diagram by diagram because of the
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flavor-blind nature of QCD. With these considerations, the
only nontrivial tensor structure that needs to be inserted at
each six-point operator vertex is (1 ® 1 ® 1)7445 for O,
0,, and Q5 and (1 ® 1 ® 1)T555 for Q4, Qs, Oy, and Q.
Diagrams with six-quark vertex factors of (1 ® 1 ®
1)T445 and (1 ® 1 ® 1)T55S represent amplitudes denoted
by M4 and M5, respectively. These amplitudes provide
loop-level operator corrections to Q; once factors of CP,,
flavor tensors, and contractions with quark fields are
included. As a concrete example, diagrammatic operator
corrections to Q; are found from the amplitude M4 by
making the replacement

(I ® T, ® T3)T — (wCPRI it?y) (W CPRILit*y)

X (wCPRIsit>rHy ) TAAS, (25)

To determine finite O(¢”) contributions to Aﬁo), all
contributing diagrams should be calculated with all
distinct momentum routings assigning incoming momenta

{p,p,p,—p,—p,—p} to the external legs. Aﬁo) is then
found by adding external quark fields to build the corre-
lation functions of Eq. (17), performing Wick contractions,
and amputating external legs. The contribution of each
Wick contraction is represented by the sum of all contrib-
uting amputated diagrams with a particular momentum
routing. 1/ pole terms are momentum independent, and
can be determined from any momentum routing free of
infrared divergences.

PHYSICAL REVIEW D 93, 016005 (2016)

The topologically distinct classes of one- and two-loop

Feynman diagrams contributing to Agl) and A§2) are shown

in Fig. 1. Calculating r§1) requires evaluating the 15 one-

loop diagrams in classes d = 1-3. For each of the one-
gluon-exchange diagrams in d = 1-3, the two distinct
momentum routings correspond to gluon exchange
between quarks with equal momenta and gluon exchange
between quarks with opposite momenta. With A; defined
by Eq. (17), a gluon is exchanged between quarks with
equal momenta in 2/5 of the Wick contractions and
between quarks with opposite momenta in 3/5 of the
Wick contractions. Since external quark fields of the same
flavor are antisymmetrized when constructing A;, each
Wick contraction contributes to A; with equal weight.

The amplitudes M4 and M3 for diagrams of class d
can be evaluated using standard techniques summarized
in Appendices A-D. After expressing the resulting spin-
color tensors as linear combinations of the basis tensors
introduced in Appendix A, it is straightforward to verify
that most spin-color tensors contributing to M4 and M5
have index exchange symmetries different from the
symmetries of the tree-level operator insertion. These
contributions vanish after making the replacement of
Eq. (25) and can be neglected. The remaining contribu-
tions to the one-loop amplitudes M4 for the relevant
combination of 2/5 the equal momentum routing ampli-
tude plus 3/5 the opposite momentum routing amplitude
are given by

A_as(:“) /,4_2 ‘ ﬂ _% _% AAS
M = dn <p2> ( z +442¢ 51n2 5ln2 1®1® 17449, (26a)
AT P‘_Z [, 190 8 _& AAS
M= <p2> {<2§+20+ o “sn2-z 2 |1®1e 1]
L I, 2 $SS ASA SAA
+ —g—@-i—glnz [(qu R0, ® 1)T + (l Rou ® GW)T + (gﬂv RI® O'ﬂ,,)T ]
dr_ne 2,5 % o 1 oans
M (15 6O+151n2+151n2> {(mﬂ@ﬂm@l)(T T
> 5
+(1® 7, ® 1) (TASA + gTAAS> + (P ®1® pr,) (TSAA + gTAASﬂ } (26b)

4n 26 20 5 5

2\ €
MA = %) (”—2> {<E+3—7—|—4—§—iln2—%ln2)[l ® 1 ® 1]T44S

p

+ (—i 7 + iln 2) (6 ® 0, @ NTSSS + (1 ® 0 ® UW)TASA + (0, ®1® GﬂD)TSAA]

8¢ 60 15

e 2 28
60 ' 15 15

3

1 /1 1 5
+? (E -—+—In2+ —ln2> [(yﬂp@) P7, Q1) (TSSS + §TAAS> +(1®7,7Q pr,) <TASA - —TAAS>

5
+(r 7 ® 1 ® pr,) (TSAA -3 TAAS>:| }

(26¢)
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FIG. 1. The tree-level operator diagram, 15 one-loop diagrams, and 320 two-loop diagrams evaluated in this work (350 in the
counting of QGRAF [82], see Sec. VI). Operator insertions are represented by a six-point vertex joining three quarks and three
conjugate antiquarks. The operator insertions are local; the separate solid lines represent propagators for quarks contracted into
separate spin-singlet diquarks as indicated by the fermion charge arrows. The external quarks are assigned momenta
{p,p.p,—p,—p.—p}. Diagrams are organized into classes that share the same loop integrals and Dirac structures. The number
of diagrams in each class is shown. All two-loop diagrams with divergent subdiagrams are accompanied by a one-loop counterterm
diagram, not shown. The curly lines represent gluon propagators, and the gluon self-energy bubble shown in diagrams 29-31
includes quark, gluon, and ghost loops. Diagrams 1-31 contribute to fermion charge renormalization and are numbered consistently
with Refs. [59,61]. Diagrams 32-46 are considered for the first time here. The 1/& pole structure of each diagram is summarized in
Tables III-VI.
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where the color tensors 7454 and 7544 are defined in Appendix A. Similarly, the one-loop contributions to M5 with the

correct index symmetries are

2\ &
M = % (1) (”_2> (—¥—4—2§+25—41n2+%1n2>[1 Q1 Q 1755,
€

47 \p

19¢ 8 '3

s_ag(w) (N[ (56 29 19¢ 8, ,_ 8, ,
M= <p2> {(2512*6 305730

3 17
8 20 5

1e 2 28

2
+ (—— ——+—ln2> (6, ® 0, ® 1)TA4S +

+

P2 \5 20 '5 5

5 5
+(1 @ 7,7 ® p1,) (TSAA +3 T“S> + (7 ® 1 ® pr,) (TASA +3 TSSS)] }

9

(27a)

)[1 ® 117558

(1Q®0, ®0,)T* + (6, ® 1 0,,)T*5]

iz (l ——~ +zIn2 +—ln2> {(yﬂd@ P7, Q1) <TAAS +§TSSS)

(27b)

2\ €
M = % W) (”—2> {<§+3—7+4—‘5—fln2—ﬁlnz>[1 ® 1@ 1|75

4n 2e 12 3 3 3

p

+ <—i U + gln 2) (6, ® 0, @ NTAS +(1Q06,, ®06,)T* + (6, ® 1Q0,,)T*]

8 20 5

1 11E 2 28
520 5 5

==~ +zIn2 +—ln2> {(yﬂpf@) Py, ®1) <TAAS —%TSSS> + (1 @ y,# ® pr,) (TSAA —%TSSS)

5
o183

To complete our calculation of r}o), we need to precisely

define operator counterterms that renormalize the vertex
functions associated with these amplitudes. Subtleties
arise at this step. These subtleties and their resolution
are discussed in the following section.

B. Evanescent operators

In order to precisely define operator counterterms
suitable for RI-MOM or MS renormalization, we must
address the issue that our operator basis is complete in
D = 4 but incomplete in an arbitrary D. This issue also
arises for four-quark operators in weak matrix element
calculations. For four-quark operators it has been consis-
tently resolved through the introduction of evanescent
operators vanishing in D = 4 [59,83,84]. Following this
approach, in this section we precisely define evanescent
operator counterterms for the Q;. It would be possible to
present complete one-loop-matching results without these
precise definitions, but the definitions and notation intro-
duced in this section will prove essential for calculating the
nontrivial evanescent contributions to two-loop running
in Sec. VL

Renormalized vertex functions include counterterms that
remove the 1/ poles in Egs. (26) and (27). The physical
operators Q; mix under RG evolution with the operators

(27¢)

used to construct these counterterms, so a complete
operator basis must include all operators used to construct
counterterms. Dirac structures involving ¢ ® ¢ appear in
the pole terms above, but have been eliminated from
our complete basis in D =4 by means of the Fierz
transformation

[CP,c ]75Di4

x yv]aﬁ [CP 0,

a a (]
O 8PUOPY —4PYPY). (28)

v74 (

This relation follows from completeness of a basis of 16
Dirac matrices in D = 4 and cannot be uniquely continued
to an analytic function of D. In particular, one could
prescribe that in the dimensionally regularized theory

[CP,c

7 }w]aﬂ[CP 1O

0 )° = 8, ((8 + a;e)PPPY

— (4+ ae)PYPY), (29)

with a; and a, being arbitrary. The choice a; = a, =0
ensures that 6, ® 6,, is kept equal to its D = 4 Fierz
transform. Conversely, y,7, ® 7,7, is not kept equal to its
D = 4 Fierz transform with a; = a, = 0. The necessity of
breaking one or the other Fierz relation follows from the
well-known property that contraction of a tensor operator
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with g, does not commute with renormalization of the
dimensionally regularized tensor operator [78].

Working in a dimensionally regularized theory, it is
important to distinguish between counterterms in the span
of the D =4 basis operators Q; in D dimensions, and
counterterms that are linearly independent in D dimen-
sions. A convenient basis is found by including Q; along
with a set of evanescent operators E; that vanish in D = 4
but are needed as counterterms to renormalize matrix
elements of ;. For example, renormalization of Q;
requires a counterterm insertion of

E{ = (wCPgoy, ity ) (wCPRoy, ity ) (y CPRityT ) TS5

- 120,. (30)

The evanescent operator E¢ vanishes in D = 4 by Eq. (28),
color-flavor Fierz relations, and the D = 4 Fierz relation

Q1D§4Q1. Because Eq. (28) is broken in dimensional
regularization, it is possible that loop-level corrections will
introduce O(a;) contributions to matrix elements of Ef that
do not vanish in D = 4. Explicit calculation demonstrates
that this possibility is realized. The nonvanishing one-loop
contributions are O(e”) and arise from 1/ poles in one-
loop integrals multiplied by O(¢)-suppressed differences in
Dirac algebra for the two terms on the rhs of Eq. (30). In a
naive definition of the MS renormalization scheme, matrix
elements of RG evolved physical operators will include
nonvanishing contributions from renormalized evanescent
operators.

Following Ref. [59], we adopt a definition of the MS
renormalization scheme in which the renormalized evan-
escent operators £; mixing with Q; under RG evolution are
defined to include finite O(&°) counterterms. These coun-
terterms are chosen to make loop-level matrix elements of
E; vanish in D = 4 at a particular scale y. It is proven in
Refs. [83,84] that this is sufficient to make renormalized
matrix elements of generic four-quark evanescent operators
vanish at all scales. Extension of this proof to six-quark
operators is straightforward and is discussed in Sec. VI
The basis used here for the E; needed as one-loop
counterterms for Q; is explicitly presented in
Appendix C. Physical observables are independent of
the evanescent basis, but renormalized Wilson coefficients
and matrix elements separately are not. It is therefore
imperative that this same basis is used for loop-level BSM
matching calculations. This subtlety is irrelevant for tree-
level BSM matching calculations.

Inclusion of MS counterterms in this scheme is equiv-
alent to replacing all terms involving ¢ ® o/ with their
D = 4 Fierz transforms plus the evanescent operators of
Appendix C, for instance

PHYSICAL REVIEW D 93, 016005 (2016)

1 ) . .
- (wCPgo,, ity ) (WCPRG,, iTow) (wCPriTyT ) T3S
— 1 1
+ (MS counterterm) = z 120, + EE‘f (31)

Inclusion of these counterterms leads to mixing between Q;
and E; and we must enlarge our basis of renormalized
operators to

O;(p) Zy(w)  Zigg,(u) - oY
E(w) | — | Zean) Zgg, (1) E)
i
= 2w | B |, (32)

where the ellipses indicate that increasingly many evan-
escent operators are required to form a complete basis
for RG evolution at increasingly high loop order. We are
specializing to the case of no mixing between the Q; or
between the FE;, extension to the general case is
straightforward.

The one-loop vertex function AE‘) can now be expressed

in terms of Ago)’ tree-level vertex functions AI(EOI) built from

E;, operator counterterms 5&}), and vertex functions
®,;(p, u) built from the nonlocal finite terms in Egs. (26)

and (27) including 7,7 @ py, and In(p?/u?),

(n Ly (D0, (1)) A0
A (p.u) = T+L11 +oy |

(1)1
LIE 1 0 1),0
# (M ol A8+ L0
+ O(e), (33)

where all the loop diagram coefficients L(!) are pure
numbers independent of u, p, and e.L") and ®;(p,u)
are simply obtained by expressing vertex functions con-
structed from Egs. (26) and (27) in the form of Eq. (33).
The one-loop vertex function Agl) for E; can similarly be
expressed as

OR

L
1 EE; 1 0 1),0 1 0
Ao = (Z55 o, )G+ L + oA

L
+ (T + 51(21,)&) AY +0(e), (34)
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where F; is a new evanescent operator not included in the E, that should be included in the ...’s in Eq. (32). MS

counterterms can be defined as

1),1 o
SVS.() _ Ly SVS.()
11 F IE,

O
IE, MS.(1) _ _ 7 (1).0 (35)

o = .
: VI El

The bare operator QY includes UV singularities due to the presence of six bare quark fields as well as the vertex function
singularities above. In order to remove all UV singularities from Q;(u), define

210 = @Sy 1+

MS. (2
where 6, @

w

2 () = (255(u)) | 850 <as(u)

az(:)> 4o (%(ﬂ))z N 0(0{3)], (36)

iy 4

represents two-loop counterterms that will be explicitly constructed in Sec. VI. For future use, define

)

MS.,(2 as(ﬂ) 2
+51E,()(?) +0(af)},

L i¥s
IS () — (ZMS -3 _5M_S,(l) (1) 5M_S.(l) ag(u)? 0
E1() = (Z3°(n) " |0k, e + 0,1 “Ar +0(ay) |,
_ _ ' — — 2
2V, () = (238 (u) 7 |1+ o35V %) + o) (“ﬁ‘)) +0(a§)} (37)

This completes our definition of MS operator renormaliza-
tion factors in terms of diagrammatic counterterms.

The RI-MOM operator renormalization condition should
also be modified so that RI-MOM renormalized evanescent
operators have vanishing matrix elements in D = 4. This is
accomplished by adding a supplemental RI-MOM renorm-
alization condition

Tr(PyAg,) = 0. (38)

Combining this with the RI-MOM condition equation (20)
expanded to O(a;) gives

(1).1
RI(1 L 1).0 1.0
oy = = = L) = Lig) TPy @1 (po. s = po)).

(39)

where in analogy to Eq. (36),

250 = (230 |1+ () + 0lad)|

(40)

The one-loop-matching factor rﬁo) defined in Eq. (23)
therefore has the diagrammatic expansion

0 . MS, . MS,
r = o = 5 =325 (py) + 325 (o)
i - ng,’OTr[PI‘I)I(Povﬂ = po)]

==Ly
- 32142]’(])(170) + 322/[5'(])(170)- (41)

[
Applying the diagrammatic results of the last section
gives

© 101 13¢ 8 8¢

r _E_l_s—i-ﬁan—i-?lnl (42a)
r§o>:_%_§+§1nz+51—65§1n2, (42b)
rg°>:_%_§+15—61n2+¥1n2, (42¢)
A =TT 1 Sy (424)
r§0)2%+%—25—41n2+%1n2, (42¢)
;§o>:_%_%+%mz+§mz, (42f)
?(30>:—%—§+1,5—61n2+¥1n2- (42g)

The final one-loop-matching results in Table I are
obtained after choosing the Landau gauge, £ = 0.

VI. TWO-LOOP RUNNING

In order to simultaneously remove large logarithms
from perturbative calculations of RI-MOM matching fac-
tors and BSM Wilson coefficients, RG evolution can be
used to relate Wilson coefficients calculated at different
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renormalization scales.” We perform this RG evolution in
the MS scheme for simplicity, and all quantities in this
section with suppressed renormalization scheme labels are
in the MS scheme. The renormalization scale dependence
of the Wilson coefficients can be determined from the MS

anomalous dimension matrix

1
vis(as) = ( )dln,u Cy(u ZZIK dln %y (1)

Eyﬁ(ﬁ$§+y9<ﬁf§ Yo, @)

where the first equality follows from renormalization scale
independence of H”f} and the second defines the perturba-
tive expansion coefficients y(©) and y(!) appearing in
Eq. (2). The other factors appearing in Eq. (2) are related
to the QCD p function, defined by

as(ﬂ) = 2:8(“.91 8)“&(:“) = (_28 + 2ﬁ(as))as(:u)

(- oy, (40

+M@Qmw» (44)

dlinp

The D-independent piece of the # function has a perturba-
tive expansion that is conventionally written as

W) - () 0@, 6

where for QCD with N, active quark flavors the well-
known perturbative coefficients are [85—88]
2 38

Bla) = %(

In MS and other minimal subtraction schemes, u depend-
ence of Z;; and y;; only enters through dependence on
a,(u). The differential equation in Eq. (43) can be readily
solved in a diagonal operator basis where y;; = d;577,

Cilpa) _ exp [/m’“ y,(as(ﬂ'))dﬂ_ﬂ
o[ [ ) 0]

:@wv/%P+@y_£>
ag(ur) 285 2o

Xﬁ@kﬁﬂﬁ+mﬁﬂ (47)

4

"See Ref. [75] for a nice review of RG evolution for weak
matrix elements including a discussion of evanescent operators.
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This equation can be used to RG evolve BSM-scale Wilson
coefficients between quark mass thresholds at which the
number of active flavors N, decreases. In Sec. V we
introduced r;;(p) as the renormalization scheme matching

and QR The renormalization scheme
CMS

factor relating Q?A_S

invariance of H% allows and CR! to be related using
r;(p). This allows us to express the Uy 7 (4, po) appearing

in Eq. (2) as

RI
U (1, po) = 2\4—2?0))
CMS €™ (po) _ 0% (po) o2
CMS( ) < 1 477,' +0( r))
_ as(pO) _YEO)/Z/}O _r(O) as(Po)
; (%(ﬂ)) [1 " 4n
Bt N as(py) = s(u)
+ (G ) P ot

(48)

The remainder of this section discusses the diagrammatic

evaluation of yf,o), ygl).

In Sec. VB we discussed the need to remove dimen-
sional regularization artifacts by adding finite counterterms
proportional to evanescent operators E; to physical oper-
ators Q; and vice versa. Without these counterterms the
renormalized E; would contribute to physical observables
and therefore to BSM matching calculations of Wilson
coefficients. With these counterterms, Q; mixes under
renormalization with E; and the assumption of a diagonal
anomalous dimension matrix taken above is invalidated.
We must instead consider the renormalization scale
dependence of the infinite dimensional matrix of
Eq. (32) and define

Yy VIE,

VE(L VEE, . (49)

>

Equation (47) is preserved if and only if yz,; = 0 to two-
loop order. A proof that yg,; vanishes to all orders for
generic four-quark operators is given in Refs. [83,84] and
applies to our six-quark operators as well. This is discussed
in detail at the end of this section.

Since u dependence of Z only enters through explicit
dependence on a(u), the anomalous dimension matrix 7 is
given by
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- (et yo2) 2 (0

where - denotes matrix multiplication. Perturbative coef-
ficients of Z defined in analogy to Eq. (43) are given by

70 = 2¢7(1),
) = 4e7D _ 27 . Z(1) 2‘502(1). (51)

The anomalous dimensions of the physical operators Q; are
therefore

7 =26z,
2 2 1 1
n = dezi) —2e(2)) + 2 Z0) + 2602y . (52)

The nontrivial effect of evanescent-counterterm subtraction
: (1) (1) . (1)
is the appearance of Z;z Zp in y; .

The factors above are simply related to diagrammatic
counterterms. The one-loop anomalous dimension is deter-
mined by the counterterms of Sec. VB as

7 =265y —32)), (53)

which is finite at D = 4. Calculation of ygl) requires the 1/&

pole contributions to the two-loop Q; vertex functions

(2).2 2).1
L
L) /R 5%)) AEO)

2
A§ )(P,ﬂ) = (5—2 z
Lg?l 0
+ ( = )A(F} +0(e").

(54)

Including one-loop counterterm diagrams with insertions

of 59 as well as quark self-energy, gluon self-energy, and

quark-gluon-vertex counterterms ensures that nonlocal

. 2).1 .
divergences are canceled and L5,> is a pure number.

The two-loop MS counterterm is then defined as

(2).2 (2).1
@ _ Ly Ly,
o, = T (55)

We can then use Eqgs. (36) and (37) to express the Z factors
appearing in Eq. (52) in terms of these counterterms,

1 2 2 12 st b?
= ety 372~ 266+ A~ 374
+2p0(831’ —32). (56)
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Two-loop counterterms include 1/ contributions, so
the various terms in Eq. (56) are divergent in D = 4.
Renormalizability of composite operators in the MS
scheme guarantees that matrix elements of Q;(u) are
free of UV divergences at all renormalization scales and
therefore that y; is finite order by order [78]. This means
that divergences must cancel between the terms of
Eq. (56).8 After this cancellation, the anomalous dimension
is given by

y = AL -1z 1oLy Ly
2),1 2).1
= 4Ly )" - 1227, (57)

where Z(qz)’1 is the 1/& piece of Eq. (16).
It was noticed in Ref. [59] that the finite contributions to
(1) ¢ . . .
y;  from mixing with evanescent operators contribute

exactly like an additional counterterm diagrams apart from
the relative factor of (—1/2) between Lﬁ)’] and L;}i)l’]Lgl),'O

in Eq. (57). As discussed after Eq. (54), Lg) includes
contributions with one-loop counterterm diagrams contain-
ing insertions of 55?. Suppose for each of these one-loop

counterterm diagrams we include an additional counterterm

. . . . (1 1).0
diagram with an insertion of (1/2)55,)1 = (—1/2)L1(51), :
These diagrams make a 1/ pole contribution of
(-1/ 2)L§21'1Lg1)1’0 /&. Including these additional one-loop
counterterm diagrams with insertion of (1/ 2)5(51,)1 therefore

shifts the 1/& single-pole part of A§2) to

2).1 »1 L1, )0
Lol = Ly =S Li, L) (58)

the factor appearing directly in Eq. (57).

To ensure a proper treatment of two-loop subdivergences
and verify cancellation of nonlocal divergences diagram by
diagram, each two-loop diagram should be combined with
a one-loop counterterm diagram in which any divergent
one-loop subdiagram present is replaced by a one-loop
counterterm that cancels the subdivergence. To provide this
cancellation diagram by diagram, the one-loop counterterm
must have the same color structure as the one-loop subdia-
gram. For subdiagrams with the topology of a one-loop
self-energy or vertex correction, the color structure of
the subdiagram is a simple multiple of the corresponding

8AApotential point of confusion: if one naively takes Eq. (51)
with Z replaced by Z;l as a formula for the two-loop quark field
anomalous dimension and inserts Eq. (16), 1/&> divergences do
not cancel. The subtlety is that Z, depends on the gauge
parameter £, which in turn depends on the renormalization scale
[78]. When Eq. (50) is modified to include this additional source
of renormalization scale dependence, the resulting quark field
anomalous dimension is indeed finite.
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tree-level color structure, and this procedure is straightfor-
ward. For subdiagrams with the topology of a one-loop
operator correction d = 1-3, the color structure of the
subdiagram differs from the tree-level operator color
structure, and care must be taken. In particular, the physical
operator counterterm associated with each d = 1-3 subdia-
gram must precisely reproduce that subdiagram’s contri-
bution to 65}) in D dimensions. This means that the operator
used for each physical operator counterterm must be
proportional to Q; in D dimensions.

To produce physical operator counterterms proportional
to Q; in D dimensions, it is necessary but not sufficient
that all appearances of ¢ ® ¢ in d = 1-3 subdiagrams are
replaced in one-loop counterterm diagrams by trivial spin
structures containing only the identity matrix. A convenient
prescription that meets this necessary criterion is to use
Eq. (29) with a; = a, = 0. This prescription amounts to
replacing all appearances of 6 @ ¢ in d = 1-3 subdiagrams
with their D = 4 Fierz transforms and clearly produces
one-loop counterterm diagrams with the same color struc-
tures as each two-loop diagram. However, one-loop coun-
terterms defined by this prescription are not proportional
to Q; in D dimensions and instead differ by terms propor-
tional to (Q; — Q) and (Q; — Q). Applying the pre-
scription of Eq. (29) with a; = a, = 0 to the one-loop
amplitude defines a basis E) different from the one-loop
counterterm basis E;. For example, the operator E{' is
given by

(WCPro,, it2y) (W CPro,, itay) (W CPrityt ) TS5

= 8(y[CPg]“inry?) (y [CPRPizyy)
X (W [CPR|" ityr yf) TS5 + EY'

=120, -6(Q, - Q)) + E¥, (59)

where the last equality follows from color-flavor algebra.
Operators E¢, E¢', E{, and Ej differ from their unprimed
counterparts by factors of (Q; —Q;) and (Q; — Q;) as
seen for E{ by comparing Eqs. (59) and (30). The
remaining operators needed to define the E} basis and
its relation to the E; basis are explicitly presented in
Appendix C.

In the E basis, the total physical plus evanescent one-
loop operator counterterm associated with two-loop dia-
grams d = 4-6, 16-24, and 32-45 containing d = 1-3
subdiagrams is simply given by minus the pole part of the
subdiagram with appearances of ¢ ® o replaced by

6®0’—>%(6®6+F[0’®6]), (60)

where F[o ® o] is given by the rhs of Eq. (29) with
a, = a, = 0. The total 1/ single-pole contribution given
by a diagrammatic two-loop calculation using this

PHYSICAL REVIEW D 93, 016005 (2016)

prescription we denote [L{Ot]ﬁ)'l and is related to
2).1
[Ltot]ﬁl) by

2).1 a1 Lo, 1o 1.0
Lol = (Lol =3 LI, (L) = L)), (61)

The change of evanescent basis factors appearing in
Eq. (61) can be immediately obtained from one-loop

results for (r(lo) - ?§0>) and (rgo) - ;go)) and are given in

Appendix C. We have explicitly verified that after includ-
ing these change of evanescent basis factors the total
contribution of one-loop physical operator counterterm
diagrams is equal to the sum of one-loop counterterm
diagrams with insertions of 6;}).

With this evanescent-counterterm diagram prescriptions
in hand, diagrammatic calculation of the E} basis contri-

butions to yﬁl) proceeds as described in Sec. VA and
Appendixes A-D. There are 320 contributing two-loop
diagrams, organized into independent classes d = 4-46
in Fig. 1. The total number of two-loop diagrams can be
determined through straightforward combinatoric argu-
ments, for example there are (§) = 20 diagrams involving
a three-gluon vertex with gluon lines attached to three
separate quark lines and ($)> —1($)(5) = 180 diagrams
involving planar one-gluon exchange between two quark
pairs. The remaining diagram types can be grouped in
multiples of (g) = 15, the number of one-loop diagrams. As
a check on the completeness of the set of diagrams included
in this work, we have verified that the number of diagrams
in all classes shown in Fig. 1 agrees with the results of
the automated Feynman diagram generation program
QGRAF [82].9

Diagrams 4-31 contribute to NNLO renormalization of
scalar four-quark operators, and many also contribute to
renormalization of three-quark operators. We have adopted
the same numbering scheme for these diagrams used
in Refs. [59,61], and have verified that our results for
these diagrams agree with the scalar four-quark operator
results of Ref. [61] after changing to the appropriate
evanescent operator basis (the “Greek projection” basis,
see Appendix A). Diagrams 32-46 are new. For future

°For reference, we note that a two-loop QGRAF analysis of a
process with six incoming quark fields interacting with standard
QCD Feynman rules plus a six-quark vertex provides 350 one-
particle-irreducible diagrams excluding “tadpoles” and “snails.”
Forty-five of these are gluon-self-energy diagrams that are only
counted as 15 diagrams, each containing an insertion of the
complete one-loop gluon-self-energy bubble, in Fig. 1. Organ-
izing a QGRAF analysis with three incoming quarks and three
incoming conjugate antiquarks requires more care; a QGRAF
analysis including three incoming quarks and three incoming
antiquarks interacting with a six-point vertex produces an
additional 90 spurious penguin diagrams with baryon-number-
violating quark-conjugate-antiquark annihilation into gluons.
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TABLEIIl. NDR 1/& pole structure of the diagram amplitudes in Feynman gauge without color factors. d labels the diagrams classes

of Fig. 1, N, is the number of diagrams within class d, 5, = J,,,,, and A, = 6,,,,0,,,,- Evanescent counterterms in the E) basis defined

by applying Eq. (60) to divergent subdiagrams are included in these results.

I®1I®I1 c@®oc®1 I1Qoc®o c®1 Qo cQ®0cQRo
d N, 1/& 1/ 1/& 1/e 1/& 1/ 1/82  1/8  1/8* 1/&
1 3 —4 0 0 0 0
2 6 -1 1/4 0 0 0
3 6 -1 —-1/4 0 0 0
4 3 -8 8 0 0 0 0 0 0 0 0
5 6 (-1-35,)/2 (5+368,)/4 1/2 -1/2 0 0 0 0 0 0
6 6 (—1—351)/2 (5+105)()/4 -1/2 15/16 0 0 0 0 0 0
7 3 0 -2 0 0 0 0 0 0 0 0
8 6 0 -2+ 36, 0 1/4 0 0 0 0 0 0
9 6 0 -2+ 3¢, 0 —1/4 0 0 0 0 0 0
10 6 2 2 0 0 0 0 0 0 0 0
11 12 1/2 0 -1/8 -5/16 0 0 0 0 0 0
12 12 1/2 0 1/8 5/16 0 0 0 0 0 0
13 6 -2 1 0 0 0 0 0 0 0 0
14 12 -1/2 0 1/8 1/16 0 0 0 0 0 0
15 12 -1/2 0 -1/8 -1/16 0 0 0 0 0 0
16 12 -2 1+76,/4 0 -1/16 0 0 0 0 0 0
17 12 -2 -1 1/2 1/2 0 0 0 0 0 0
18 12 -2 1-75,/4 0 1/16 0 0 0 0 0 0
19 12 -2 -1 -1/2 -1/2 0 0 0 0 0 0
20 12 -1/2+436,/2 (3-35,)/4 —1/4 1/8 0 0 0 0 0 0
21 12 —1/2+36,/2 (3—1051)/4 1/4 -9/16 0 0 0 0 0 0
22 3 —-16 0 0 0 0 0 0 0 0 0
23 3 -1-30, 0 1 0 0 0 0 0 0 0
24 3 -1-30, 75,/2 -1 7/8 0 0 0 0 0 0
25 6 —6 5 0 0 0 0 0 0 0 0
26 12 -3/2 1/2 3/8 1/16 0 0 0 0 0 0
27 12 -3/2 1/2 -3/8 -1/16 0 0 0 0 0 0
28 12 0 0 0 3/4 0 0 0 0 0 0
29 3 15/2—-N;, —13+4N,/3 0 0 0 0 0 0 0 0
30 6 0 0 =5/8+N;/12 17/48 = N,/72 0 0 0 0 0 0
31 6 0 0 5/8=Ng/12 —17/48 +N;/72 0 0 0 0 0 0
32 6 —4 0 1 0 0 0 0 0 0 0
33 6 —4 0 -1 0 0 0 0 0 0 0
34 6 -1/2 0 1/8 1/16 -A, /8 —-1/16+A,/16 1/8 —1/16 —1/8 0
35 6 -1/2 0 1/8 1/16 A,/8 1/16-4,/16 —-1/8 1/16  1/8 0
36 6 -1/2 0 1/8 1/16 -A, /8 —1/16+A,/16 1/8 —1/16 1/8 0
37 6 -1/2 0 1/8 1/16 A,/8 1/16-4,/16 -1/8 1/16 -1/8 0
38 6 -1/2 0 -1/8 -1/16 -A, /8 —1/16+A,/16 —-1/8 1/16 —1/8 0
39 6 -1/2 0 -1/8 -1/16 A,/8 1/16-4,/16  1/8 —1/16 1/8 0
40 6 -1/2 0 -1/8 -1/16 -A, /8 —1/16+A,/16 —-1/8 1/16  1/8 0
41 6 -1/2 0 -1/8 -1/16 A,/8 1/16-4,/16  1/8 —1/16 -1/8 0
42 6 -1 0 1/4 0 -A,/4 0 1/4 0 -1/4 0
43 6 -1 0 1/4 0 A, /4 0 —1/4 0 1/4 0
44 6 -1 0 -1/4 0 A, /4 0 1/4 0 1/4 0
45 6 -1 0 -1/4 0 —-A, /4 0 —1/4 0 -1/4 0
46 8 0 0 0 0 0 0 0 0 0 3/8
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calculations, it is interesting to note that there are no
additional two-loop diagram classes appearing for oper-
ators with more than six quarks. In principle the two-loop
anomalous dimension of any AB = N operator composed
of a product of scalar diquarks could be computed from the
results of Table III, combinatorics, and group theory.

After including all appropriate one-loop counterterms,
including the E) evanescent counterterms defined by
Eq. (60), the 1/ pole part of each diagram can be
decomposed into a color factor for each diagram times a
linear combination of Dirac structures that is identical up to
diquark permutations for all diagrams in the class. The pole
parts of these Dirac structures are shown in Table III, and
the corresponding color factor for a representative diagram
is shown in Table IV. The 1/ pole coefficients of the
combined spin-color tensors with nonvanishing contribu-
tions to T445 operators are shown in Table V. The
corresponding pole coefficients contributing to 7555 oper-
ators are shown in Table VI. After reintroducing quark
fields and flavor tensors for a given operator by Eq. (25),
the resulting pole structures for each operator are related
by Eq. (C1) to a multiple of the original operator plus
irrelevant contributions to Lﬁ?{’z.

When the dust settles, these diagrammatic contributions
sum to L1??/&2 + [L1,]\?"! /z. We have explicitly verified
that the 1/&> contributions to 59 cancel with the other
divergent terms in Eq. (56). This provides a highly non-
trivial check on the calculation. The physical anomalous
dimensions are then given by Eq. (57) as

T3 T g (62a)
1y 91 26Ny
Z_= 62b
72 3 9 (62b)
10N
7y = 64— —t (62¢)
46N
y =229 - Tf (62d)
) =238 — 14N, (62¢)
_ay 797 118N,
= _ , 62f
71 3 9 (62f)
38N
“_218-—3 ! (62¢)

In the MS scheme used in this work, Fierz-conjugate
operators Q, Ql and Qs, Q3 are equal in D =4 but
do not have identical two-loop anomalous dimensions.
Conversely, to be regularization independent the RI-MOM
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TABLE IV. Single diagram color factors corresponding to the

explicit diagrams in Fig. 1. This table alleviates potential sign and

coefficient ambiguity in Table III due to the choice of color terms
AA

factored out. T';j)ks){mny TEPrEsents T[d] kllmn} © {u} (KL} {mn)

depending on which operator is inserted in the dlagram

d Color Factor

1 3 (T Giywymny = 3T ) ktymn]

2 3Ty wjyimny = 3 T(u)(kl){mn}]

3 3Ty oy fmny = T uy )

4 i=3T Gy >{mn}+ > T (3 ki)

5 1= 3Ty @iy tmny + 9 Ty k) ]

6 i[—%T<zk)<m{mn}+ T (ij) k1) )

7 BTGy +35 T<u><kz>{mn}]

8 1B Tanwpimny +3 ! 5 T(ij) (kty {rny

9 BT <ﬂ>{mn}+9T<u><kz>{mn}]

10 —ﬁ [T ikt fmmy = ;Tm)(kl){mn}]

11 =13 [Tanywpgmny = 3T ) ktyfmn]

12 =15 [Ty Gy mmy = ! 3T () k) )]

13 TG mny = 3T )ty mn)]

14 Tk mny —%Tw ) ki) ]

15 ST avintmny = 3T )ty mn)]

16 AIHTM) Ki){mn} = %Tol)(kz){mn} - —T<,;><k, yomny 5T (i) (kty ]
17 3 (T iy mny = 3T Giykyommy = —T<,1><k,>{mn} + 5T 1)k nn]
18 2T Gryiy mny = 3T Giy k) mn) = T<zk </z>{mn}+9T<u><kz>{mn}]
19 2T iy oy tmmy = 3 TGy (kty fmny = T(tk)(fl){mn}+9 T (4j) ki) mn}]
20 3 [TGaytjyimny = 3 TGy 1) fmny = %Tuz)(kn{mn} +3 5 Tk o)
21 2 [Ty pmny =3 TGty fmny = T<,1><k,>{mn}+9 T (ij) (k1) fmn )
22 Z[TGiyanymny = 3T wytmny = 3T Gy imny + 5 g 5 T (0j) ki mn
23 [T <u>{mn}—iToz)(kn{mn}—-Tw» ity tmn + 3T (6j) k) )]
24 3 [T iy fmny — iT<zj><kz>{mn}——T<zk G tmny T 5T ) ktymny]
25 = 3T Gy mny = 3T (aj) k]

26 =Ty =3 T (i) (kt) {mn)

27 =Ty imny =3 T<u><k1>{mn}]

28 [Ty mny = T iy iy fmny )

29 3T ity mny = 3 SACITIED)

30 % [T ity kjy mny = 3 T(u (k1) ]

31 ad (kD) {mn} ]

)
(kD)
(T Gty 1y fmmy — T(u) )
(kD)
)(kD)

1 1
32 T il)(kj){nm} — ?T(ll)(kj){lnl’l} T(lj (kl){nm} + ?T(U kil {mn}]
33 T 1j)(ki){nm} — ?TUJ)(I( ){mn} — T(lj (kl){nm} + ?T(tj kil {mn}]
34 3T iy kg fmry — 3T i mm) 3 3Tkt iy + o i {mn}]
35 2T myiyimy = 3 Taneiyimny =5 Tmyanyny + 5T (i) (kt) mn) ]

36 LT imj)inyikny —%Tw(z/){mn} —1T<mj><k1>{m}+§ (i) (k1) fmn) ]
37 3T wpantma = 3T wpingmny =3 Twiywnimiy T 5T (i) k) fmn]
38 T ki {mn}]

i)y tmky = 3 T gmny = 3 Tkt fmjy + 3 9 57 (1)) (k1) mn)

40 T nj)(ki){ml} — %T(lj)(kl){mn} - _T(nj ) (kD){mi} + T(lj ki {mn}]
3 T onj e tomy =5 T aomn) =3 Ty + 5 7 5 o)
42 T ml)(kj){in} — §T<ll)(k Y{mn} — T(m])(kl){m} +39 T(tj kl {mn}]
43 T nl)(kj){mi} — ?T(tl)(kj){mn} - _T(nj )(kI) {ml} +39 9 T(tj kl {mn}]

T (k1) (im} — %Tow ; o7
T (uieyjty{miy = §T<zk> infmny =3 )y imiy T3¢
46 1 [Tanywpyimy = Ty ]

( )
( )
( )
( )
( )
( 1 1 1 )
(im)(j1) (kn} = 3 T (k) (j1) fmny = §T<if")(kl){jn} + 5T<u>
( )
( )
( )
( )
( )
( )
( 7)

——_ﬁ———ﬁ—ﬁ——Tq——————————————

w
O
Bl o o s o B o s

Gt
(
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TABLE V. Pole structure for 7445 operators Q;, Q,, Qs in the E} evanescent basis. As before, d labels the diagram class. Unlike
Table III, the remaining columns include the total contribution from all diagrams in the class. Only spin-color tensors with index
symmetries appropriate for these operators are shown. §} = =0y100 &= A

(1®1® 1)T448 (6 ®c®1)T55S (1®c®6) T +(6®1Q )T
d 1/8 1/e 1/8 1/e 1/8 1/
1 4 0 0
2 3/2 -1/8 -1/8
3 3/2 -1/8 -1/8
4 -8 8 0 0 0 0
5 (=11-78, —1383)/12 (55 + 768, + 13683)/24 1/12 -1/12 1/12 -1/12
6 (=11-78, —1383)/12 (165 + 708} + 13053)/72 1/12 -5/32 1/12 -5/32
7 0 1 0 0 0 0
8 0 (10 + 235} — 1957)/12 0 -7/48 0 —-7/48
9 0 (10 423684 — 195%)/12 0 -7/48 0 —7/48
10 2/3 2/3 0 0 0 0
11 1/4 0 —-1/48 -5/96 -1/48 -5/96
12 1/4 0 —-1/48 -5/96 -1/48 -5/96
13 16/3 -8/3 0 0 0 0
14 2 0 -1/6 -1/12 -1/6 -1/12
15 2 0 -1/6 -1/12 -1/6 -1/12
16 -2/3 (24 — 285} +358%)/72 0 1/48 0 -1/96
17 -2/3 -1/3 1/3 1/3 1/12 1/12
18 -2/3 (24 + 2868} —358%)/72 0 1/48 0 -1/96
19 -2/3 -1/3 1/3 1/3 1/12 1/12
20 (=1-138, +883)/12 (3 + 135} —85%)/24 1/8 -1/16 0 0
21 (—1-138} +88%)/12 (9 + 1305} — 805%)/72 1/8 -9/32 0 0
22 0 0 0 0 0 0
23 (=5-178} —48%) 0 1/12 0 1/3 0
24 (=5-78, —48) (496} +288%)/72 1/12 —7/96 1/3 -7/24
25 -18 15 0 0 0 0
26 —-27/4 9/4 9/16 3/32 9/16 3/32
27 —-27/4 9/4 9/16 3/32 9/16 3/32
28 0 0 0 -3/4 0 0
29 —15/24 Ny 13—4N,/3 0 0 0 0
30 0 0 5/16 = N;/24 —17/96 + N;/144 5/16 —N;/24  —=17/96 + N,/144
31 0 0 5/16 —N;/24 —17/96 + N;/144 5/16 = N,/24 —17/96 + N;/144
32 -14/3 0 -1/6 0 1/3 0
33 -14/3 0 -1/6 0 1/3 0
34 1/48 0 (10 - 3A L)/192 (=1+A,)/128  (10-3A,)/192  (=1+A4,)/128
35 1/48 0 (10-3A,)/192 (-1+4A,)/128 (10-3A,)/192 (=14 A,)/128
36 1/48 0 (10 - 3AX)/192 (-1+4,)/128  (10-3A,)/192 (=14 A,)/128
37 1/48 0 (10-3A,)/192 (=14 A,)/128 (10-3A,)/192 (=14 A,)/128
38 1/48 0 (10 - 3AX)/192 (-1+4,)/128 (10-3A,)/192 (=14 A,)/128
39 1/48 0 (10-3A,)/192 (-1+4+A,)/128 (10-3A,)/192 (=14 A,)/128
40 1/48 0 (10 - 3AX)/192 (-1+4,)/128  (10-3A,)/192 (=14 A,)/128
41 1/48 0 (10-3A,)/192 (-1+4A,)/128 (10-3A,)/192 (=14 A,)/128
42 —-11/24 0 (10 - 3A ,)/96 0 (=2-94,)/96 0
43 —-11/24 0 (10-3A,)/96 0 (-2-94,)/96 0
44 —-11/24 0 (10-34,)/96 0 (=2-9A,)/96 0
45 —-11/24 0 (10-3A,)/96 0 (-2-94,)/96 0
46 0 0 0 0 0 0
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TABLE VI.  Pole structure for 7555 operators Q,, Os, Q;, O3 analogous to Table V. 63 =8, + 8, +8,,..

(1®1® 1TSS (@@ NI +(1Q06Q )T + (6 ®1Q )T (6 ® 06 ® o)T444

d 1/& 1/e 1/& 1/e 1/8 1/
1 -4 e 0 0
2 5/2 ces -3/8 0
3 5/2 -3/8 0
4 -8/3 8/3 0 0 0 0
5  (=13-1385)/12 (65 + 135)/24 1/4 -1/4 0 0
6 (—13-1365)/12 (195 + 13085)/72 1/4 -15/32 0 0
7 0 -11/3 0 0 0 0
8 0 (38 — 1955)/12 0 -7/16 0 0
9 0 (38 — 1955)/12 0 -7/16 0 0
10 -2/3 -2/3 0 0 0 0
11 5/12 0 -1/16 -5/32 0 0
12 5/12 0 -1/16 -5/32 0 0
13 -16/3 8/3 0 0 0 0
14 10/3 0 -1/2 -1/4 0 0
15 10/3 0 -1/2 —1/4 0 0
16 10/3 (=60 — 3555)/36 0 -1/8 0 0
17 10/3 5/3 -1/2 -1/2 0 0
18 10/3 (=60 + 3555)/36 0 -1/8 0 0
19 10/3 5/3 -1/2 -1/2 0 0
20 (1-85)/12 (=3 4 65)/24 -3/8 3/16 0 0
21 (1-265)/12 (=9 + 1055)/72 -3/8 27/32 0 0
22 -16/3 0 0 0 0 0
23 (=13 -1355)/12 0 1/4 0 0 0
24 (=13 —1355)/12 9185/72 1/4 -7/32 0 0
25 18 -15 0 0 0 0
26 —45/4 15/4 27/16 9/32 0 0
27 —45/4 15/4 27/16 9/32 0 0
28 0 0 0 9/4 0 0
29 15/2 = Ny —13+4N,/3 0 0 0 0
30 0 0 15/16 =N /8 —17/32+ N /48 0 0
31 0 0 15/16 —=N;/8 —17/32 4 N, /48 0 0
32 10/3 0 -1/2 0 0 0
33 10/3 0 -1/2 0 0 0
34 —25/48 0 (10 -3A,)/64 (=3+34,)/128 -9/32 0
35 —25/48 0 (10-3A,)/64 (=3+3A,)/128 -9/32 0
36 —25/48 0 (10— 3A,)/64 (=3+34,)/128 -9/32 0
37 —25/48 0 (10-3A,)/64 (=3+3A,)/128 -9/32 0
38 —25/48 0 (10— 3A,)/64 (=3+34,)/128 -9/32 0
39 —25/48 0 (10-3A,)/64 (=3+3A,)/128 -9/32 0
40 —25/48 0 (10— 3A,)/64 (=3+34,)/128 -9/32 0
41 -25/48 0 (10-3A,)/64 (=3+3A,)/128 -9/32 0
42 -25/24 0 (10-34,)/32 0 -9/16 0
43 -25/24 0 (10-3A,)/32 0 -9/16 0
44 -25/24 0 (10-34,)/32 0 -9/16 0
45 -25/24 0 (10-34,)/32 0 -9/16 0
46 0 0 0 0 0 9/4
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scheme cannot assign different anomalous dimensions to
operators identical in D = 4.1 Two-loop RI-MOM anoma-
lous dimensions are gauge dependent and depend on the
external state appearing in the RI-MOM renormalization
condition, but ygl)’RI should be independent of evanescent
basis and equal for Fierz-conjugate operators. The two-loop
RI-MOM anomalous dimension

1).RI 1) MS 0

= 2o (63)
can be shown to be independent of the renormalization
scheme and evanescent basis used to define counterterms
[75,89]. This provides a pair of consistency conditions,

RI(1) _ ~RI(1 RL(1
7’1'():71(), 73”

~RI(1

=i (64
that can be readily verified to hold for the results of
Egs. (42) and (62) in a general R; gauge. Equation (64)
provides a useful check on our calculation, and particularly

on evanescent contributions to 75” that cannot spoil the
1/& cancellation consistency check. In particular, we
observe that violations of Eq. (64) and the 1/&> poles
cancel independently from the following sets of diagrams:
{4-6,16-24,32-45} containing d = 1-3 subdiagrams;
{7-9} containing crossed gluon lines; {28, 46} containing
three-gluon vertices and no divergent subdiagrams; and
{10-15,25-27,29-31} combined with the one-loop con-

tribution 2ﬁ0r§0> and one- and two-loop wave function

renormalization.
It remains to verify that yz; = 0. At one-loop order

0 1
i = 263 (65)
Since 5%11), = —LS},’O is a finite counterterm, yg)l), trivially

vanishes at D = 4. At two-loop order
i = €05, = 26(3p,8; + ), 0p1) + 2Podpy. (66)

Vanishing of ygl), is less trivial. References [83,84] prove

that for generic four-quark operators a strictly stronger
statement is in fact true: the analog of 7 is upper triangular
to all orders. The argument of Herrlich and Nierste in
Ref. [84] is quite general and only relies on cancellation of
nonlocal divergences and O(g) suppression of diagrams
with evanescent operator insertions. We briefly review their
argument to demonstrate that it applies to our six-quark
operators without modification.

The evanescent operators E; vanish in D =4 by
spin-color-flavor Fierz transformations. The one-loop

""We thank Sergey Syritsyn for bringing this point to our
attention.
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counterterm 5211)1 therefore includes O(e)-suppressed tensor

algebra and can only include contributions nonvanishing in

D = 4 from terms that have received a 1/ enhancement

from loop integrals. 5(El,)1 is therefore O(&°), and one-loop

counterterm diagrams with insertions of 55511), only make 1/&

pole contributions to 7’1(51,)1 from terms that receive additional

1/& integral enhancements. This implies that the only 1/
pole contributions to 7’551,)1 from 5%11)152) and 5;511))5151(51,)1 are
single poles and arise from integral contributions with
1/&* double-pole enhancements and O(e) tensor-algebra
suppression. The sum of these one-loop counterterm
diagram  contributions is  explicitly = given by
02/ e + 6l — 60 of2). Without e
O(e)-suppressed tensor algebra, this expression would
include nonlocal divergences arising from 1/&* factors
multiplied by (1?/p?)¢. Cancellation of nonlocal divergen-
ces is independent of the tensor structure of operator
insertions, and these would-be nonlocal divergences must
cancel with 1/&% two-loop integrals multiplied by (u?/p?)*
and the same O(e)-suppressed tensor-algebra factors.
This gives 8y = 4 (51,61 + 64 6% — 821Bo/€), which
when inserted in Eq. (66) gives 71(51,)1 = 0. The remaining
inductive step needed to prove that 7 is upper triangular to all
orders does not rely on a particular evanescent operator
definition [83,84] and applies here as well.

VII. PHENOMENOLOGICAL APPLICATIONS:
AN ILLUSTRATIVE EXAMPLE

The phenomenological consequences of neutron-
antineutron operator renormalization are encoded in the

effective Hamiltonian M} of Eq. (2) and the operator

renormalization factors yﬁo), ysl), and r§0> collected in

Table I. These operator renormalization factors govern
the relations between matrix elements of Q; with different
renormalization scheme and scale choices. Nonperturbative
lattice QCD determinations of the renormalized QCD
matrix elements'' (72|Q®(py)|n) can be combined with
these operator renormalization factors to determine QCD

matrix elements (1| QM5 (u)|n) at high scales y, where BSM
physics is usually assumed to be perturbative. Once high-
scale QCD matrix elements have been calculated with fully
quantified uncertainties, perturbative BSM matching for a
particular BSM theory of interest can be used to predict nii
transition matrix elements

"Lattice matching scales of py =2 GeV are typically large
enough for matching to be perturbative but small enough that
unphysical UV cutoff effects are minimal (Agcp < pg < al,
where a is the lattice spacing).
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1 = nn
— = om = (a[Hgln). (67)

Tnin

in terms of basic BSM parameters. Experimental constrains
on the neutron-antineutron vacuum transition probability
P,;(t) = sin?(|6m|t) then unambiguously constrain the
parameter space of BSM theories predicting neutron-
antineutron transitions.

The extraction of phenomenological predictions from
Eq. (2) is best explained via an example of one specific
BSM model. Several broad classes of simplified models
with classical baryon number violation but no proton decay
were recently discussed by Arnold, Fornal, and Wise [25].
The BSM field content of these models consists of a pair of
colored scalar fields that carry noninteger baryon or lepton
number. For illustrative purposes, we will use the simplified
model discussed most heavily (model 1 in Ref. [25]), which
we will call the AFW1 model, to perform our calculation.
Identical steps can be used to make predictions for other,
more complicated BSM theories once a six-quark effective
Hamiltonian "} has been determined for those theories.

The AFW1 model adds two new scalars to the Standard
Model, X, and X,, which transform as X, € (6,1,—1/3)
and X, € (6,1,2/3) under SU(3).x SU(2), x U(1)y.
The X, and X, couplings to the SM right-handed fermions
are given by ¢} and g,, respectively, and an additional three-
scalar coupling between two X; and one X, is given by A
This model allows neutron-antineutron transitions at tree
level. The Hamiltonian operator H" is found by evaluating
a tree-level Feynman diagram connecting six external
quarks all carrying zero momentum. The resulting !}t
for the AFW1 model is presented in terms of fixed-flavor
quark fields u¢, d¢ in Eq. (12) of Ref. [25], neglecting
scalar couplings to left-handed quarks for simplicity. In the
fixed-flavor and chiral operator bases, this Hamiltonian is
given at tree level by

G,

eff — 4M?M% RRR
(%ll)2géli|: 3.
= Q4 +_Q1 ) (68)
16M1M3 5

where ¢j!! = gi! are dimensionless couplings assumed to
be O(1) at a high-scale M and 4, M, M, massive couplings
assumed to be O(M). Perturbative corrections to this
expression include the In(u?/M?) factors, and so to allow
the validity of tree-level BSM matching just described
u =M is chosen. RG evolution is simplest in minimal
subtraction schemes such as MS and, as a result, we
formally prescribe that these corrections should be calcu-
lated in the MS scheme. With these renormalization choices
and BSM naturalness assumptions, the AFW1 Hamiltonian
can be expressed as

PHYSICAL REVIEW D 93, 016005 (2016)

i 1 VT 3 Vs
= o | 2F00 + 2000 (9
The operator renormalization results of this work then
allow the AFW1 Hamiltonian to be expressed as

_ 1 3. -
=g | UM PO o)+ 201 0. p) o)

(70)

where U;(u, po) is the RG evolution and renormalization
scheme matching factor appearing in Eq. (2). Explicit
evaluation of U;(u, po) for arbitrary u, p, requires an
accurate parametrization of a,(u). For this we take the four-

loop parametrization of a(u) in terms of A]I\\;I—f and known

p-function coefficients presented in Ref. [76]. The full RG
evolution between u and p, is included through a product

of factors UIIV/ (1, o) where N is varied across each quark
mass threshold. Implicit N, dependence in the parametri-

zation of a,(u) in terms of the fit parameters A%_fs must be
included along with explicit N, dependence in fy, f,

and ygl) .
Preliminary lattice QCD neutron-antineutron simula-
tions have been performed [54] on anisotropic Wilson

lattices with 390 MeV pions. Updated values from these
anisotropic lattices are given by12

(7| O (po)|n) = (0.00 £ 2.06) x 1075 GeV,
(7|0 (po)|n) = (=56.13 £2.42) x 1075 GeV®,  (71)

where the errors shown are purely statistical and fitting
errors. It is important to note that these preliminary results
include several significant sources of systematic uncer-
tainty that have not been quantified at this time. These
sources of systematics are the absence of RI-MOM non-
perturbative renormalization,"” unphysically large quark
masses (pion masses of roughly 400 MeV), lattice spacing
artifacts (which unphysically break chiral symmetry), and
finite spatial extent artifacts. All of these systematic
uncertainties can be quantified and reduced with increased
computing.14 For this reason, these results should only be

1L attice calculations with a chiral fermion discretization (do-

main-wall fermions) at near-physical pion masses (140 MeV) have
been performed [80,90] and a paper presenting these results is in
progress [91]. There is currently no plan to publish the updated
anisotropic Wilson lattice results due to the high level of computa-
tional complexity of the nonperturbative renormalization on these
lattices.

Renormalization approximated by tadpole improved tree-
level renormalization [92,93].

The required computational resources are expected to be
similar to those used for lattice calculations of Bx with physical
pions and chiral fermion discretization [94].
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viewed as an illustrative example of how to combine the
perturbative QCD operator renormalization results of this
paper, BSM calculations of Wilson coefficients, and non-
perturbatively renormalized lattice QCD matrix elements to
arrive at a physical quantity that can be measured/bounded
by an experiment.

The experimental limit on ém determined from Super-K
measurements of 7, is [41,43]

6m| < 2 x 10733 GeV. (72)

Reference [25] uses this limit and an estimate for the QCD
matrix elements to relate this to a limit on the AFW1 model
scale,

M = 500 TeV. (73)

Using the operator renormalization factors of Table I and
Eq. (71), it is possible to express matrix elements of
Eq. (70) in terms of M and known parameters.
Substituting M = 500 TeV into Eq. (70),

om| = (6.74-2.44 +033  —094  £0.16 )
SN —— -
LO NLO NNLO matching NNLO running Lattice statistical

x 1073* GeV
= (3.68 £0.16) x 1073* GeV, (74)

gives rise to a nii vacuum transition time for the AFW1
model more than five times longer than the 7,; predicted by
the QCD matrix element estimate used in Ref. [25]. Note
that NLO one-loop running provides a multiplicative
correction to the LO matrix element and is shown as an
additive correction above only to illustrate the size of the
correction for this example. Corrections beyond NLO can
be organized as a perturbative power series in a,(pg). This
perturbative series for |6m| appears to be converging nicely,
with O(a,(pg)) NNLO corrections changing the NLO
result by 7%. Assuming further corrections have the same
rate of convergence, we expect unknown O(a,(pg)?)
N3LO corrections to modify the NNLO result by ~2%.

A constraint on M can be derived by inverting the
experimental bound equation (72),

M > (402 -34  +5 —16 +£3 ) TeV,
N~ ~—~ ~—
LO NLO NNLO matching NNLO running Lattice statistical
M > 357 + 3 TeV. (75)

This constraint is nearly one-third weaker than the con-
straint estimated in Ref. [25].

VIII. CONCLUSION

To determine which BSM theories are able to produce
the observed baryon asymmetry of our Universe, it is
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essential that each make reliable predictions for CP
violating and baryon-number-violating processes that can
be probed experimentally. Theories with AB = 2 inter-
actions can provide viable baryogenesis mechanisms while
avoiding stringent experimental bounds on AB = 1 proton
decay rates. Some of these theories predict new physics in
the 100-1000 TeV range that induce n# transitions that are
just outside the reach of current experimental bounds. If
these theories can be reliably constrained by experimental
measurements of the ni vacuum transition time 7,;, next-
generation nii experiments can search for new physics
appearing at scales comparable to, or higher than, scales
probed in next-generation collider experiments.

Reliable predictions for ém = 1/z,;, the parameter
governing the neutron-antineutron vacuum transition prob-
ability P,; = sin?(|6m|t), can be made by perturbatively
matching BSM theories to an effective field theory con-
taining Standard Model operators. The six-quark operator
matrix elements contributing to ém can be calculated with
lattice QCD at computationally accessible lattice matching
scales of 2 GeV, and large logarithmic strong interaction
corrections can be included using perturbative operator
renormalization. At NLO, operator renormalization intro-
duces known multiplicative corrections to six-quark oper-
ator matrix elements [50]. Further operator renormalization
corrections are organized as a perturbative series in which
the largest contributions arise from NNLO two-loop-
running and one-loop-matching effects. These effects are
calculated for the first time here and are summarized in
Table I. In addition, operator projectors needed for non-
perturbative renormalization of n# operators and the chiral
transformation properties of nn operators are presented.

Section VII discusses the calculation of ém in a sim-
plified model from Ref. [25] in order to illustrate how
perturbative operator renormalization results are combined
with lattice QCD six-quark operator matrix elements and
experimental bounds on ém to constrain the scale of new
baryon-number-violating physics. For fixed BSM param-
eters, the nin vacuum transition time calculated with the
perturbative operator renormalization results of this work
and preliminary lattice QCD results is found to be more
than a factor of 5 longer than was previously estimated.
Several features of this simple example have generic
implications for more complicated BSM theories and
deserve explicit mention:

(a) H" is described by a linear combination of multiple
chiral basis operators that make very different con-
tributions to n7 matrix elements. Color and flavor
structure matters when calculating the nin vacuum
transition time predicted by a particular model.

(b) Q,4 has a large positive anomalous dimension and its
contributions to ém are suppressed compared to other
operators.

(¢c) Q, is the only chiral basis operator with a negative
anomalous dimension and its contributions are
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enhanced compared to those of other operators. It does
not contribute in the simplified model considered.
(d) Qg arises in real models. QO and Q, should be treated

on equal footing, and QMS(u) # OYS(u) must be
remembered during BSM matching calculations. Iden-
tical considerations apply to Q3 and Q3.

(e) Qs, Q¢, and Q7 violate electroweak gauge invariance.
They do not appear in the simplified model con-
sidered.

(f) Assuming H/jf can be expressed as linear combina-

tions of O, ..., 07, Oy, Q3 and their parity conjugates
without the use of (spin) Fierz relations, evanescent
operators do not need to be explicitly included in tree-
level BSM matching calculations.

(g) At a fixed BSM scale of 500 TeV, NNLO effects
correct the NLO + LO ém prediction by 14%, within
the generic range of < 26%. Assuming that further
perturbative corrections have the same rate of con-
vergence, unknown N3LO corrections are estimated
to change the NNLO + NLO + LO ém prediction by
2%, within the generic estimate of < 7%.

(h) Perturbative corrections to BSM-scale constraints are
smaller than corrections to ém. In the simplified model
considered, NNLO effects change the NLO + LO
BSM-scale constraint by 3%.

Without knowledge of NNLO two-loop-running and
one-loop-matching factors, perturbative operator renorm-
alization effects contribute large unquantified systematic
uncertainties to BSM nn vacuum transition time predic-
tions. Including NNLO effects and estimating the size of
unknown N3LO corrections turns perturbative operator
renormalization into a few-percent-level uncertainty. This
places perturbative QCD corrections to 7,; firmly under
control. Electromagnetic one-loop-running corrections
have also been calculated in Ref. [50], though a complete
electroweak one-loop-running calculation has not been
performed.

A complete lattice QCD determination of the n# matrix
elements with controlled systematic uncertainties is neces-
sary to remove the largest remaining Standard Model
uncertainties present in BSM predictions of z,; [54,91].
In particular, RI-MOM scheme nonperturbative renormal-
ization factors should be calculated, continuum and infinite
volume extrapolations should be performed, and n# matrix
element calculations should be repeated with physical or
near-physical pion masses. All of these systematic uncer-
tainties can be removed using existing lattice QCD tech-
nology and computational resources available in the near
future.

ACKNOWLEDGMENTS

We would like to thank Brian Tiburzi and Sergey
Syritsyn for their collaboration and input at the early stages
of this work. We are especially thankful for Brian’s notation

PHYSICAL REVIEW D 93, 016005 (2016)

and chiral operator constructions that made much of this
work tractable. We are also very grateful to Sergey Syritsyn
for the detailed discussions of the consistency check that
RI-MOM anomalous dimensions are identical for Fierz-
conjugate operators and of vertex function momentum
assignments. We would like to thank Chris Schroeder,
Sergey Syritsyn, and Joe Wasem for their collaboration on
lattice calculations and for allowing the use of unpublished
results from a preliminary calculation. We would like to
thank Martin Savage for his helpful advice throughout
this work and Steve Sharpe for the many useful discussions.
We would also like to thank William Detmold and Zohreh
Davoudi for the helpful comments on a draft of this
manuscript. This work has been supported by the U.S.
Department of Energy under Grant No. DE-FGO02-
OOER41132. Feynman diagrams were created with
JaxoDraw [95].

APPENDIX A: TENSOR ALGEBRA

This appendix presents Fierz-type relations useful for
resolving complicated spin, color, and flavor tensors in a
desired tensor basis. All relations are derived using a well-
known tensor reduction strategy: write the tensor ** under
consideration as a linear combination of chosen basis
tensors B¢?, B4Y, ... with unknown coefficients ¢y, ¢y, ...,
e.g.

1% = ¢ B + ¢, BSP. (A1)
It is often useful to choose basis tensors with definite

index exchange symmetries. Contracting both sides of this
equation with each basis tensor gives a system of equations

Ballb tab Btllthltb BlllhBLzlh Cl
= (A2)
Bgbab BSPBSP BSPBSP ) \ ¢,
that can be readily solved for ¢y, ¢,.

1. Color algebra

There are five independent 3u(3). tensors that can
combine six quarks into color singlet operators,

SSS AAS ASA
Tonuaymy Ty Ty
SAA AAA
T wmn Tk (A3)

These five basis tensors are constructed from

SSS _
T{ij}{kl}{mn} - Sikmgjln + qukmgiln + Silmgjkn + Sikngjlm’
AAS _
T[ij][kl]{mn} - 8ijm8kln + 8ijn€klmv

TAAA

7 kifnn] (A4)

= Eijm€kin — Eijn€kim>
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where ¢;;; is the completely antisymmetric Levi-Civita
tensor for 8u(3). Each tensor is symmetrized { } or
antisymmetrized [ ] in the three index pairs shown. This
corresponds to combining the six 3 quarks as products
of symmetrized 6 or antisymmetrized 3 diquarks. These
tensors also obey the diquark exchange symmetries

SSS _ 788§ _ 7SS8S
Ty imny = Tan iy imny = TGty (i)

AAS __ TAAS
T tmny = Tiktlis) mn)
AAA __ _TAAA __ __TAAA
Tidikamn) = =T W mn) = =Tl (AS)
The remaining basis tensors are defined by
ASA _ TAAS SAA __ TAAS
Toitmn = Ty T ke = Tl
(A6)

When evaluating Feynman diagrams, one encounters
contractions of the color tensors 7445 and 7555 present in
Q; with the su(3) generators 4. The resulting color tensors
can always be expressed in terms of index permutations
of the original color tensors. For most diagrams this is
accomplished through the textbook identity

1 1
Bl =75 (51‘/./‘5./":‘ -3 5:"1'5;“./‘) ’ (A7)
where we assume the normalization Tr(:41%) = J&%5.

Certain classes of diagrams involving three-gluon inter-
actions require the additional identity

FABCA 1B G !

vityiton = 7 (0ukbyibuj = 818 71).

i0; (A8)
which we have derived by performing the tensor reduction
of Eq. (A2) for a basis of Kronecker-delta products. The
color structure produced by any diagram can therefore be
determined from the relations of the generators above and
color Fierz identities relating index-permuted tensors to the
five basis tensors.

The symmetrized color tensor obeys the Fierz identity

1 3
5SS _ _ L 7SSS _ 2 TAAS
Tieh i tmn = =5 Tl =5 Tk imny (A9)
The corresponding relations for interchange of any other
index pair follow from the symmetries above. The mixed
symmetry color tensor obeys the Fierz identities

i 1
AAS 1 sss 1 aas
Tigingmny = =5 Tty tmny T3 ik mny
1 1
AAS _ 1 raas _ L asa AAA
Tiimntiny = =5 Tigiietmny =5 Tiigimnt iy + Tk pmn)-
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All other index exchange relations follow by symmetry.
The antisymmetrized color tensor obeys the Fierz identity

1

|
__ _ TASA _ _ 7SAA
= 5 Ty =5 Doy (A10)

T
with all other relations again following by symmetry.
Color factors produced by any diagram can be expressed
in this basis through repeated application of these Fierz
identities or alternatively by direct tensor reduction of color
factors in the forms of Table IV. We find the second
approach more convenient at the two-loop level because it
can be readily automated in a computer algebra program
such as Mathematica.

2. Dirac algebra

QCD loop diagrams introduce additional factors of
y"y¥... into each diquark. In a theory with massless quarks
perturbative corrections will not modify the chirality of
each diquark. We can therefore express any Dirac structure
produced by a loop diagram as CP,I'y ® CP, I, ®
CP, I's, where the chirality labels are identical to those
of the tree-level operator in question. In D = 4, a suitable
basis of chirality preserving I'y ® I', ® I'; independent of
quark momenta is given by

11 ®1,
6w @10,

0y ®o0, & 1,

0y 02 Oup [0%) Oups

1®0, ®0c,,
(A11)

where 6,, = £[y,.7,] and 1 represents the 4 x 4 identity
matrix. An additional independent structure 6,0, ®
6,y ® 0, 1s not produced in the diagrams considered here.
When discussing these basis tensors we will often omit
the Lorentz indices and write shorthand expressions like
c®oc®land c Qo6 R o.

These basis structures provide a convenient orthogonal
basis for tensor decompositions of two-loop Dirac struc-
tures. Operators built from these basis structures are not
explicitly included in our physical operator basis. Using
spin Fierz relations, each basis tensor can be related to a
combination of index permutations of 1 ® 1 ® 1 and
therefore to the physical basis structures. Different tech-
niques are required to find basis decompositions for Dirac
structures produced in loop diagrams that are valid in D
dimensions. Useful discussions on the D-dimensional
Dirac algebra needed for three- and four-quark operator
renormalization can be found in Refs. [67,72,74,75], and in
particular many results and techniques for D-dimensional
tensor reduction can be found in Refs. [83,96].

As discussed at length in Sec. V B, spin Fierz relations
are broken in dimensional regularization since the 16 Dirac
matrices {1,7s,7,.0,,} (With 4 <v) are not a complete
basis for Dirac matrices in general D. Spin Fierz relations
should instead be considered prescriptions for defining
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evanescent operators built from the difference between the
lhs and rhs of these identities, see Refs. [59,75]. One has the
freedom to add O(¢) terms in defining this prescription, for
example

[CP,6,,)*[CP,6,,)1° > 6,,((8 4 aie)[CP,|*[CP,]7*
— (4 + aye)[CP, )P [CP,]7).
(A12)

The O(£") coefficients can be calculated by performing a
tensor reduction in D = 4. Our basis of evanescent operators
is explicitly defined in Appendix C. When applying pre-
scriptions such as Eq. (A12) to define evanescent operators,
finite matching factors and Wilson coefficients will depend
on the chosen aj,a,. Basis dependence cancels so that
physical quantities such as H} are independent of a;, a,.
Relations between renormalized matrix elements calculated
with different one-loop evanescent bases follow from general
considerations of renormalization scheme dependence, see
Refs. [60,84]. Alternative schemes for defining evanescent
operators can be found in Refs. [67,72,83].

Additional Dirac structures appear in two-loop diagrams
that are independent in general D. These must be treated
with analogous spin Fierz evanescent operator prescrip-
tions, such as

CPy0):0,, ® CPy0,,0,: = 8,/ ((48+b1€)CP, Q CP,
+ (84 bye)CP,0,,CP,0,,).
(A13)

where b; and b, are arbitrary parameters used to specify a
basis for two-loop evanescent counterterms. Freedom to
specify by, b, and other two-loop spin Fierz prescriptions
suggests there is an additional ambiguity in y(!) besides the
choice of a;, a, that determines the one-loop evanescent
counterterms. This suggestion is false.”® Since one-loop-
matching factors are independent of the b’s, there is no way

for ¥ to depend on the b’s while keeping HIE

"It is for this reason that we do not consider a tensor reduction
technique such as the Greek projections used in Ref. [75] that
commutes with algebraic relations valid in D dimensions. The
Greek projections provide algebraically consistent continuations of
spin Fierz relations between Dirac structures of the form I’ ® I to
D dimensions and for example specify b; = —80, b, = —12 in
Eq. (A13). Straightforward generalizations of the Greek projec-
tions can relate structures of the form I'} ® I, ® I';. However,
there is no straightforward extension of the Greek projections for
Eq. (A12) unless 0 ® o operators are included in the physical basis
asin Ref. [61]. Since the n# basis of interest for many BSM models
includes the scalar diquark operators considered here, Greek
projections do not give us a useful way to define our one-loop
evanescent-counterterm basis. After choosing this one-loop evan-
escent basis, y(l) is fully determined and we have no further need to
establish concrete evanescent basis conventions.
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independent of this arbitrary basis choice. Independence

of yf,l) on the b’s is proven for four-quark operators in

Ref. [84]. The proof only relies on cancellation of nonlocal
divergences and the factor of 1/2 multiplying evanescent
counterterm diagrams in Eq. (60) and applies to our six-
quark operators without modification. We have explicitly
verified that cancellation of the b’s dependence occurs
diagram by diagram between two-loop diagrams and one-
loop evanescent-counterterm diagrams in our calculation.

In addition to Eq. (A13), two-loop diagram evaluation
requires the D = 4 spin Fierz identities

CP, o O ® CP)(zo-/)T ® CP)(}UIW

X17PT

"='A,(4cP, ® CP,5,, ® CPo,

-4iCP,0,, ® CP,0,, ® CP,5,,), (A14)
where
Ay =641, (A15)

vanishes unless all three diquarks have identical chirality.
Relating the above Dirac basis tensors to permutations of
1 ® 1 ® 1 also requires
i[CP,,0,,]"[CP,,0,,°[CP,0,,]"

D=4 @

="A,(16[CP,J“[CP,"P|CP, "

- 8[CP,|*°[cp,]"P[CP,]" — 8[CP,|P|CP,]’*[CP,|"
—8[CP,]%[CP,]"°[CP, " + 8[CP,|*[CP,]"°[CP,]").

(A16)

Other useful formulas are derived by combining
Egs. (A12)—(A16). A particularly useful identity is

— 1 1
5){1121a50-}’ﬂ6’7§ D:4 A)( [51 Ro Qo+ EG RIRo

(A17)

1 apyéné
— 50 Ro® 6:|

Fierz relations involving p are also useful when comput-
ing evanescent-counterterm diagrams

1
6ZZ/F(CPX7/#”) ® (CP)(ﬁyy)

D=4 1
=96, (CPX) ® (CPX) +Z(CPZO'W) ® (CPXGW), (Al18a)

1
?(CP)(Gyuyﬂfp/) ® (Cpx’ouyﬁyl)
"=*125,,(CP,) ® (CP,) - (CP,0,,) ® (CP,5,,),

(A18b)
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1
?(CP)(U,WYM@/) ® (ij(’ﬁylaﬁw)

D=4
="125,,(CP,) ® (CP,) +3(CP,5,,) ® (CP,0,,).

(A18c)

Additional Fierz relations are useful for diagram classes
34-45, in particular

Pﬂ?g[P;(’Yyp]ﬂs[P)(p/yu]”ﬂ

p=41 u )
= E [P)(yyﬂ] ﬂ[P)(’pyu}yb‘P)}C

g P our P OB 0, (AI9%)
P, < Py 1, P
Dj% [Py, AP Py py, P
[P0 Py VP o). (AT9D)

8

Additional identities are found by permutation of the tensor
product structures I'} ® I'; ® '3 appearing on both sides
of the above equations. For example, applying the permu-
tation 'y @ I, @ I3 - I, @ I'; ® I'; to the lhs of either
equation leads to a new identity with the rhs modified by
1®c®oc<cQ®R®1®0, 1®1Q®1 and 6 Qo ® 1 left
unchanged, and 6 ® 6 ® 6 > —6 ® 6 @ 5. Identities
involving general permutations of I'y ® I', ® I'5 are con-
structed analogously, and in particular 6 @ 6 ® o will
change sign under any permutation of '} ® I', ® I'; with
an odd signature. All other Dirac structures produced by
two-loop diagrams can be related to those above and our
basis structures by algebra valid in general D.

3. Flavor algebra

A convenient basis for 81(2), tensors is given by

2, 207 2B L (A20)
where the 74’s
Tr(t478) = 2.

After applying the o ® o spin Fierz identity of
Eq. (A12), the resulting spin-singlet diquarks no longer
have their flavor indices contracted with one of the basis
structures above. Flavor (as well as color) Fierz relations
are useful in relating the resulting structures to the original
operator basis. One-loop diagrams involving flavor singlet
diquarks require

are normalized as Pauli matrices

1 1

TogTop = E’fihfzd + 5 (274) i (PP7) g (A21)

Similarly, flavor vector-singlet structures require
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1 1
Tid(TZTA)cb = Esz (T2TA)cd + E (TzTB)ab (TZTATB)cd'

(A22)

Finally, flavor vector-vector structures require

(B (F5)op = 5 L) (2 eg + (7)),
+ iSABC[(Tzfc)abT%d - thzb<727’-c)cd]
+ 0012 = (T7) 0 (T7°) ] }-

(A23)

Equation (A23) implies in particular that symmetric trace-
less tensors are Fierz self-conjugate.

APPENDIX B: TWO-LOOP INTEGRALS

When evaluating simple Feynman diagrams, one can
often perform Dirac “numerator algebra” that reduces the
diagram to a simple product of a Dirac structure times a
scalar integral. When evaluating diagrams with gluon
propagators connecting quarks in separate spin-singlet
diquarks, this is not possible. One is forced to work with
tensor integrals that contain free Lorentz indices contracted
with structures such as o,, ® 6,,. In this case, tensor
reduction techniques similar to those described in
Appendix A can be used to express tensor integrals in
terms of linear combinations of scalar integrals. In our
calculation of the diagrams of Fig. 1, the complete set of
two-loop tensor integrals appearing in these diagrams was
organized according to the propagator powers and loop-
momentum vectors appearing. Each tensor integral was
then expressed as a linear combination of basic tensors and
two-loop scalar integrals by tensor reduction techniques.
The two-loop scalar integrals were recursively evaluated as
described below and the results tabled for use in tensor
integral evaluation. Computer algebra was essential for this
process and performed using Mathematica scripts written
by the authors.

There exists a vast literature on the evaluation of multi-
loop tensor and scalar integrals. References to reviews
and original literature are given below, and it should be
emphasized that none of the techniques reviewed in this
appendix are novel. Our aim is simply to consolidate
known techniques needed for two-loop anomalous dimen-
sion calculations without detailing the additional compli-
cations and generalizations needed for more complex
higher-order calculations.

1. Two-loop scalar integrals

We are only concerned here with calculating the 1/&
single- and double-pole pieces of two-loop diagrams. This
allows for substantial simplifications. In particular, external
momenta can be freely chosen diagram by diagram. To see

016005-28



PERTURBATIVE RENORMALIZATION OF NEUTRON-ANTINEUTRON ...

this, note that in a renormalizable theory, these pole pieces
can be at most polynomial in external momenta. After
factoring out possible overall dimensionful factors
common to all diagrams, this means the pole pieces are
independent of external momenta. This holds for individual
diagrams as long as they contain no subdivergences, and
therefore for general two-loop diagrams as long as one-loop
counterterm diagrams canceling all subdivergences are
included [78]. We may therefore freely choose a different
momentum routing convenient for each two-loop diagram
under consideration as long as the same routing is used in
all corresponding one-loop counterterm diagrams.

The only caveat to this statement is that the choice of
external momentum routing must not introduce IR diver-
gences. For instance, if in a massless theory one sets all
external momenta to zero then all integrals vanish identi-
cally in dimensional regularization. This means IR diver-
gences have been introduced that are regulated as 1/&
poles and cancel all of the original UV divergences [97].
We are interested in the counterterms needed to cancel UV
divergences only, and so we must use care to choose
momentum routings free of IR divergences. See Ref. [98]
for a detailed review of this “infrared rearrangement” trick;

|
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for our purposes it is enough to note that IR divergences can
be found and avoided through standard power counting
arguments used to determine a diagram’s degree of UV
divergence [78].

For all diagrams in Fig. 1, a momentum routing can be
chosen so that the only scalar integrals appearing are of the
form

T(nl » My 13, 1y, I’ls)
o / dPkdPq i
(272)*2 (p + k)" (p + q)*= k> g (k = )"
(B1)

where p is an arbitrary external momenta that serves as
an IR regulator and we are suppressing omnipresent ie
terms in factors such as (k? + ie)™. If one of the propagator
factors does not appear (one n; equals zero), then the two-
loop integral can be expressed as a product of one-loop
integrals. The second loop includes noninteger propagator
powers, but can still be evaluated through the textbook
formula

ap) = [

The cases of n, =0 and ny =0 can be found by the
(ny, n3)<>(ny, ny) symmetry of T(ny,n,, n3, ny, ns).

This leaves the case of nonvanishing ny, ...,
case can be evaluated recursively through the “integration
by parts” technique of Refs. [99,100], see Ref. [101] for a
review. The starting point for this technique is the

dPk 1 (PP T+ p-24eT2—a—e)T2-f—¢) (B2)
2n)P (p + k) k¥ (4n)* [(4—a—-p—=2e)l(a)l(p)
Scalar two-loop integrals with (at least) one zero argument are given by
T(ny.ny, n3,ng,0) = I(n3,n)1(ng, ny),
T(0,ny, n3, 4, n5) = (p?)" 572 1 (3, ns5)1(n3 + ny + ns — 2 + e, ny),
T(ny,ny,0,n4,n5) = (p?)" "2 1 (ny, ns)1(ng, ny +ny +ns — 2+ e). (B3)
|
0 (k—q)"
Og" |(p +k)>" (p + @)k g (k = q)*"
ns. This
5 _[p_mk-q)-(p+q) 2mk-q)-q, ,
N A
1
(B5)

observation that there are no surface terms when inte-
grating a total derivative in dimensional regularization
[78], that is,

. [ dPkdP 0
o= [ G (apean) o9

where a#(k,q,p) is an arbitrary vector that may
depend on loop and external momenta. Useful identities
are generated by taking a, to be a loop-momentum
vector times the integrand of Eq. (B1). Consider in
particular

X .
(P + k)" (p + @)k g™ (k = q)*"s

Next, rewrite all scalar products appearing in Eq. (B5)
in terms of linear combinations of p?> and denominator
factors, for instance

2k—q)-(p+q)=(k+p)* = (k—q)*— (p+9)*.

2(k—q)-q="kK —(k—q)* - ¢*. (B6)

This allows us to express Eq. (B4) as
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0= [21’[5 + ny + ng — D + I’l22+(5_ - 1_)

+ n4d™ (57 = 37)|T(ny, ny, n3, ny, ns), (B7)
where we define
liT<l’l1, n2, n3, n4, n5) = T(l’ll :t 1, I’l2, I’l3, n4, n5), (Bg)

etc. This identity is sufficient to derive a recursive
solution for T(ny,n,, ns, ny, ns) with all n;’s nonzero,

T(”l » Ny, N3, Ny, ”5)

1
= 2+(57 -1~ 4+(5- -3-
B a2 (5 1) (5 - 3)

x T(ny, ny, nz, ny, ns). (B9)
This recursion terminates when each integral on the rhs
has at least one n; zero and the base case Eq. (B3) can
be applied. Many other integration by parts identities
and more powerful recursive algorithms can be con-
structed but are not needed for the calculation at hand.
For further discussions of more general one-loop scalar
integrals see Refs. [102,103]. For further discussions of
two-loop scalar integral evaluation see Refs. [104,105]
and the review Ref. [101].

2. Two-loop tensor integrals

Two-loop tensor integrals can be expressed in terms of
scalar integrals through tensor reduction techniques.
Consider for example the rank 2 integral

T/%v(nlﬂ Ny, N3, Ny, nS)
ke / dPkd"q k,k, |
(27)* (p +k)* (p + q)*= k" g (k — q)*
(B10)

By Lorentz invariance, the integral can be expressed as a
linear combination,

1

Contracting both sides with these same tensors gives the
system of equations

(Tg)_(4—2e 1>—l< 9T, > B12)
T2 11 =P p'T,
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The contractions of the rhs can be reduced to linear
combinations of scalar integrals by rewriting tensor
products in terms of differences of propagator factors as
before,

g"”Tﬁ,,(nl,n2,n3,n4,n5)

= 3_T(I’l1, I’l2, l’l3, l’l4, n5)

1 MoV T2
?P p Tﬂb(nl’nZ’n3an4an5)

1
P =3 - pZ]T},(nl,nz, N3, Ny, Ns).

=3, (B13)

This final formula does not apply to the cases of n; = 0 and
ny = 0. These must be treated separately, and a general
method can be constructed by first performing a tensor
reduction of a one-loop subintegral. This problem is
systematically considered in Ref. [106]. The following
recipe is sufficient for the integrals considered in this work:
first evaluate the one-loop integral for the loop momentum
that only appears in two propagators by a one-loop tensor
reduction. A change of variables may be useful to ensure
there is only one “external momentum” scale (which may
be a linear combination of p, and the other loop momen-
tum) that needs to be included in the one-loop tensor
reduction. The second integral will then be another one-
loop tensor integral involving a single scale that can be
readily evaluated. For further discussion of tensor integral
reduction techniques, see Refs. [107,108] and for a review
see Ref. [109].

APPENDIX C: EVANESCENT OPERATORS

The MS and RI-MOM renormalization schemes are fully
defined by the renormalization conditions of Sec. IV and
specification of the one-loop evanescent counterterms
appearing in Sec. V B. Two-loop MS anomalous dimen-
sions, one-loop RI-MOM matching factors, and Wilson
coefficients from one-loop BSM matching all separately
depend on the basis chosen for evanescent operator
counterterms. In particular, loop-level BSM matching
calculations must use the same evanescent basis used in
this work. Our basis includes the following evanescent
operators needed as one-loop counterterms to Q;:

E$ = (WCPgo,,ityy ) (WCPgo,,itay) (wCPrityT ) T35S — 120,

E? = (wCPityy) (WCPg0,,itoy) (WCPRO,,iT2T )
+ (wCPRoy ity ) (WCPRiTyY) (WCPro,, ity ) T = 80,

TASA

(Cla)
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E§ = (yCPL0,,itoy) (wCPgo,, ity ) (WCPRiTyT )
E} = (wCPityy) (W CPgo,,itoy) (wCPRo,, Tyt y)
+ (wCPL6,,itow ) (wCPRityy ) (W CPro,, ityT, w) TS — 40,
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TSSS

TASA

(C1b)

E§ = (wCPo,,itow) (wCP Loy, ity ) (wCPRityT ) TS — 120,

E’%’ = (wCPLitay)(wCPLo,itoy) (W CPRo,, iT)T )
+ (V/CPLG/,wiTZW) (V/CPLI.TZI//)(I/ICPRUyuiT2T+V/)

E4 = (yCPgo,,ityt3y ) (W CProy, ity T3y ) (WCPRiTyT )

TASA

AA
T544,

(Clc)

TAAS

-z (WCPRnyiTZTAW)(WCPRnyiTZTAW) (W CPrityr )T

—~ | =

+

+
—~ | =

N | —

Es = (wCPro,,ityt_y)(wCPpo,,itat ) (wCPLityT )
+ (WCPrity1_yw)(WCPL0,, i1y ) (WCP L0, iTaT )
+ (wCPgoy, ityt_y) (WCPLityT ) (WCP Loy ity ) T4 — 405,

Elz

E3:

Above we have grouped evanescent operators that make
similar contributions to one-loop counterterm diagrams, see
Tables V and VI.

The coefficients of Q; appearing above are determined
by demanding that the rhs vanish in D =4. We have
calculated them using two independent methods for veri-
fication: first by pen and paper application of the spin-
color-flavor Fierz relations derived in Appendix A and
second by automated Mathematica application of the

wCPRiTyT3y ) (WCPRO,, iT)T3w) (WCPRO,, IT)T )
(W CPrityTAW) (II/CPRG;wiTZTAl//)(I/ICPRG;wiTZTJrW)
WwCPRG,, i1T,T3y) (WCPRIT T3y ) (WCPRO,, IT)T )

(W CPgo, ity t3y) (W CPRity 3y ) (WCProy, ity ) TA — 120,

(WCPgo,, i1y TAY ) (WCPRO,, i1y T 5y ) (W CPRiTyT )
(WCPritytsy ) (WCPRO,, ity T Ay ) (WCPRO,, iTyT )

. ) . 4 -
(¥ CProw iTs7aw) (Y CPRiTsT4W) (W CP ROy inyT ) T + 201,

(WwCPLiTyTAY) (WCPL0,, iT2TAW) (WCPRO,,ITHT )

(WCP L0, ity taw) (WCPLiTy Ty ) (WCPRO,, Ty T ) TASA + 405,

TSAA
TSAA

TASA

(C1d)

TAAS

TSAA

(Cle)

TAAS

TSAA

(CIf)

TSAA

(Clg)

|

operator projectors of Eq. (21) to explicit vertex functions
constructed for each structure. It is straightforward to verify
that all other structures produced in amplitudes for d = 1-3
vanish by quark exchange antisymmetry.

When constructing one-loop counterterm diagrams for
two-loop diagrams d = 4-6, 16-24, and 32-45 containing
d = 1-3 subdiagrams, it is useful to employ a different
evanescent operator basis E;. The E) basis is defined by
demanding that the prescription
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[CP,c r6P=4s

0P [CPy0,, 1= 8, (8[CP,J®[CP,J' — 4[CP,|[CP,]"°)
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(C2)

always provides valid operator identities in general D when E/; operators are included. Applying this prescription to the

amplitudes for d = 1-3 provides an explicit construction of the E} operators

EY = (V/CPR%JWI/)(WCPR%yilel/)(WCPRiT27+W)TSSS
— 8y [CPR|izay) (y? [CPRIP irsy?) (W [CPy] ¥ iyt ) TS
= E{ +6(Q) - 0)), (C3a)
EY = (WCP0,,itow) (wCPy0,,itow) (wCPrityr )T
— 8(y[CPL )iz ) (W7 [CPL P irsy) (! [CPR] iyt TS
= E{ +6(03 - 03), (C3b)
~ 1 .
E\ = g(WCPRO-ﬂDlTZTAW) (W CProy,itytay) (wCPRiTyT )T
1 . . ;
+ 3 (WCPinytaw) (WCPRO it Taw) (WCP ROy, iTyT ) TS
1 . . .
+ 3 (WCPRoitsmay) (W CPrivstAY) (W CPRoyityT ) THH
8
5( WO [CP] iyt y? ) (W [CPRI ity y) (W' [CPR| ity y*) T
8
- g( wO[CPRIPityzy ) (w [CPR)* ityay®) (W [CPR|PityT ) T
8
- 5( yO[CPR|™ itytay? ) (W [CPR]itytap®) (W' [CPR|PityT 3¢ ) TAS
- 10 .
= E, +?<Q1 - O1). (C3c)
~ 1 . ; .
Ey = 3 (WCP Lo itstaw) WCP Loy iTsTaw) (W CPRityT ) T4
8
3( WO [CP L ityt ) (W [CP L ity p°) (W [CPR| iyt ) TS
= E5 +2(05 - 0). (C3d)
with all other E}’s equal to the corresponding E;. The E 1 ](2) (. L] ](2),1 §( 0 _ ;(0))
basis is convenient for two-loop diagram evaluation, but is totd11 totd11 2 L/
cumbersome for RG evolution because it includes one-loop @41 @1 3,0 -0
ixi 2 2 Loy = [Liadss™ =5 (3" =757)
mixing between Q; and Q; and between Q3 and Qs. totl33 toti33 V3 3
. . . . :
After evaluating two-loop diagrams 111(25}16 E} basis to [Z ]<2).1 _ [i’ ](2>,l —é(r(o) B ;(0)>
determine the loop coefficients [L{];;” defined in tot/11 tot11 21 1 -
Eq. (61), a change of basis to the E; basis can be performed i ](2), 1 i ](2),1 3 (r(o) B ;(0)) (C4)
to recover the coefficients [LtotE] directly appearing in 10133 (033 2V3 3
the anomalous dimension formula equation (57). Reading
off the coefficients LE}E)I from the entries for d = 1-3 in
Tables V and VI, the necessary change of basis formulas 0 Ope-loop matching results  give r&o) _ ,7(10) —7_
recover [Lmt]ﬁﬂ from [L{m]§,>’1 are found to be r§°> _ ;20).
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APPENDIX D: DIAGRAM RESULTS

After choosing a convenient momentum routing, each
two-loop diagram in Fig. 1 and the associated counterterm
diagrams are evaluated in terms of a tensor integral
contracted with a Dirac tensor, as discussed in
Appendix B. The amplitude for each diagram is represented
by a complicated combination of color factors and Dirac
structures that can be simplified with the tensor reduction
techniques of Appendix A. We find it convenient to first
perform a Dirac tensor reduction using the prescription of
Eq. (29) with a; = a, = 0 (that is, working in the E} basis)
that allows us to express the diagrams in a given class as
individual color factors times a common combination of
Dirac basis structures. These Dirac structures are shown in
Table III. We then perform color tensor reductions of the
color factors of Table IV. This allows each diagram
amplitude to be expressed as a combined spin-color tensor.
While there are 25 distinct spin-color tensors that can be
built from the basis tensors of Appendix A, most vanish by
quark exchange antisymmetry when contracted with exter-
nal quark fields and flavor tensors to form operator
corrections.

When contracted with (witoyw)(witoy)(ywit,tay), the
only spin-color tensors that give nonvanishing contribu-
tions are

i

W |

D=4
3

and

i(wCPRiTZTBG/WW) (II/CPRGﬂ/)iTZT3W) (II/CPRGUpiTZTJr}W)

1. . . :
- gl(WCPRlTZT{AG;wW) (WCPRGyplTZTAl//) (V/CPRGUplTZTJr}l//)

D=4

1 . . .
~3 (W CPrityt o) (WCPRiTyTAW ) (W CPRiTy Ty ) TSSS].

(WCPRiTZTAG;wl//)(WCPRGﬂpiTZTAW)(WCPRO-ypiT2T+V/)

8 . ; .
=" — 5 (WCPRityt4y ) (WCPRiTyTAY) (W CPRiTyT Y1)

= 4[(‘//CPR1"527{35;4»’//) (II/CPRifz‘WI/)(’//CPRiTz’M}l//)
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(6 ®0c®1)T55,
(6 ® 1 ® o)TS.

(1®1Q 1)T445,

(1 ®c® o)TA, (D1)

The overall contribution from each diagram class to M? is
represented by a linear combination of these four spin-color
tensors in Table V. Analogously, when contracted with

(witstaw)(pitytpy) (witytcy), the only spin-color ten-
sors that give nonvanishing contributions are

(1®1®1)T555,
(1 ® 06 Q o)T54,
(6 ® 6 ® 6)TA4,

(6 ®c ® 1)TH4S,
(6 ®1Q o)T*4,
(D2)

The overall contribution from each diagram class to M3 is
represented by a linear combination of these five spin-color
tensors in Table VI

After adding the amplitudes M4 and M5 from each
diagram class, we consider each Q; independently from
operator corrections by Eq. (25). The resulting operator
corrections can be expressed as a simple multiple of Q; in
D = 4 through application of either the operator projectors
of Eq. (22) or the relations of Appendix C and

TAAA

TSSS’ (D3)
TAAA
TAAA
TSSS
(D4)

The result is an operator correction proportional to Q; plus irrelevant evanescent contributions. The 1/& pole coefficient of

(

this amplitude represents L I?),z /& + [L{m]g?’l /€. After including the change of evanescent basis factors in Eq. (C4), ygl) is

immediately given by Eq. (57).
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