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Two-loop anomalous dimensions and one-loop renormalization scheme matching factors are calculated
for six-quark operators responsible for neutron-antineutron transitions. When combined with lattice QCD
determinations of the matrix elements of these operators, our results can be used to reliably predict the
neutron-antineutron vacuum transition time, τnn̄, in terms of basic parameters of baryon-number-violating
beyond-the-Standard-Model theories. The operators are classified by their chiral transformation properties,
and a basis in which there is no operator mixing due to strong interactions is identified. Operator projectors
that are required for nonperturbative renormalization of the corresponding lattice QCD six-quark operator
matrix elements are constructed. A complete calculation of δm ¼ 1=τnn̄ in a particular beyond-the-
Standard-Model theory is presented as an example to demonstrate how operator renormalization and results
from lattice QCD are combined with experimental bounds on δm to constrain the scale of new baryon-
number-violating physics. At the present computationally accessible lattice QCD matching scale of
∼2 GeV, the next-to-next-to-leading-order effects calculated in this work correct the leading-order plus
next-to-leading-order δm predictions of beyond-the-Standard-Model theories by < 26%. Next-to-next-to-
next-to-leading-order effects provide additional unknown corrections to predictions of δm that are
estimated to be < 7%.
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I. INTRODUCTION

The Universe contains many more baryons than anti-
baryons [1]. Unless this baryon asymmetry is attributed to
fine-tuning of the initial conditions of the Universe, the
baryon asymmetry must have been generated dynamically
during the early Universe. Any mechanism describing this
process of baryogenesis must include violation of baryon-
number ðBÞ conservation, violation of C and CP, and
departure from thermal equilibrium [2]. The Standard
Model includes B violation through nonperturbative
electroweak processes that violate Bþ L but preserve
B − L [3,4]. It also includes classical C and CP violation
and departure from thermal equilibrium during the electro-
weak phase transition. However, the B and CP violating
effects present in the Standard Model cannot reproduce the
observed magnitude of the baryon asymmetry [5–7]. As a
result, beyond-the-Standard-Model (BSM) physics is needed
to explain baryogenesis. BSM baryon-number violation
could occur in many different ways. Theories that allow
ΔB ¼ 1 transitions can allow B − L conserving proton
decay,1 which has been experimentally constrained to a high
degree [9–11]. Other classes of BSM theories do not allow
proton decay, but do allow other baryon-number-violating
processes. These models often instead include the ΔB ¼ 2,
B − L violating, neutron-antineutron transition [12–39].
In vacuum, neutron-antineutron (nn̄) transitions would

manifest themselves as oscillations between neutrons

and antineutrons. The probability that a free neutron has
transformed into an antineutron after time t is given by
Pnn̄ ¼ sin2ðt=τnn̄Þ, where τnn̄ is the neutron-antineutron
vacuum transition time. Experimental measurements of
magnetically shielded cold neutron beams at the Institut
Laue-Langevin (ILL) have established a limit of
τnn̄ > 2.7 yr [40]. There are also experimental bounds
on the decay rate of neutrons bound in nuclei from large
volume underground detectors. Super-K has bounded
the transition time τO16 for nn̄ transitions in oxygen, τO16 >
1.89 × 1032 yr [41]. Nuclear structure calculations can be
used to relate this nuclear transition time to the vacuum
transition time τnn̄. This bound on the vacuum transition
time is estimated to be a factor of 4 or 5 larger than the ILL
bound, but the nuclear structure calculations introduce
nontrivial systematic uncertainties.2 It is believed that
improvements in neutron transport/optics and neutron
moderation technologies since the 1994 ILL experiment
would allow for new neutron beam experiments to improve
the ILL bounds by an order of magnitude or more [43].
There has been a recent push from both theoretical and
experimental communities in support of new, state-of-the-
art nn̄ experiments [43–45].
In order to constrain BSM theories predicting nn̄

transitions, experimental results must be compared to

1See Ref. [8] for a recent review on proton decay.

2In particular Ref. [41] cites a derived bound of τnn̄ > 7.7 yr.
More recent structure calculations in Ref. [42] modify this bound
to be τnn̄ > 10.9 yr, as noted in Ref. [43].
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theoretical predictions for τnn̄. Making reliable predictions
for τnn̄ within a particular BSM theory is challenging. In
particular, theoretical descriptions of the nn̄ transition
process must include strong interaction physics as well
as BSM physics. These effects are important at very
different scales. High-scale BSM physics gives rise to
effectively local ΔB ¼ 2 interactions turning three quarks
into three antiquarks. Comparatively low-scale strong
interactions bind these quarks (antiquarks) into a neutron
(antineutron). Theoretical descriptions of this high- and
low-scale physics can be factorized by using a Standard
Model effective field theory description of nn̄ transitions.
In this approach, the Hamiltonian governing nn̄ transitions
is described as a linear combination of operators built from
Standard Model fields.
The most relevant Standard Model effective field theory

operators contributing to nn̄ transitions are dimension-nine
six-quark operators. A complete basis of these six-quark
operators can be constructed without specializing to a
particular BSM theory. This construction was begun in
Refs. [46,47], generalized and detailed in Refs. [48,49], and
completed in Ref. [50], where spin-color Fierz identities
were used to remove redundant operators from the basis.
Higher-order operators of potential interest have also been
discussed [51,52]. The effects of low-scale strong inter-
action physics on nn̄ transitions are encoded in quantum
chromodynamic (QCD) matrix elements of six-quark
operators between initial neutron and final antineutron
states. All high-scale physics and BSM model dependence
is encoded in the particular numerical coefficients used to
express the effective Hamiltonian for a given theory in a
six-quark operator basis. These numerical coefficients can
be calculated perturbatively in BSM matching calculations
for particular theories of interest.
Testable predictions for τnn̄ cannot be made without

reliable calculations of six-quark operator QCD matrix
elements. Equivalently, experimental bounds on τnn̄ cannot
be used to constrain BSM theory without reliable QCD
matrix element calculations. These six-quark matrix ele-
ments have been estimated in the MIT bag model [48,49],
but model estimates introduce uncontrolled uncertainties
into the relation between BSM parameters and experimental
observables [53]. The only available method to determine
hadronic matrix elements with controlled uncertainties is
lattice QCD. Preliminary lattice QCD calculations of nn̄
matrix elements are under way [54]. Once completed, lattice
QCD nn̄ matrix elements can be nonperturbatively renor-
malized and then combined with BSMmatching calculations
performed with renormalized perturbation theory.
The need for perturbative nn̄ operator renormalization

arises because lattice QCD matrix elements can only be
renormalized at scales smaller than the UV cutoff of the
lattice (typical calculations today use lattice matching
scales of p0 ≃ 2 GeV [55]), but renormalization scales
that are currently accessible in lattice QCD simulations

cannot be (directly) used for perturbative BSM matching
calculations. These BSM matching calculations receive
logarithmic corrections that become large enough to
invalidate perturbation theory unless the renormalization
scale chosen is comparable to high scales where BSM
physics becomes important. For typical BSM theories,
these scales are in the range ΛBSM ¼ 102–1016 GeV. To
address this issue, renormalization group (RG) techniques
can be used to sum these large logs and reliably relate
matrix elements calculated with different renormalization
scales. This RG evolution (“running”) and typical
BSM matching calculations are both simplest in mass-
independent renormalization schemes such as modified
minimal subtraction (NDR-MS).3 The MS renormalization
scheme can only be applied directly to dimensionally
regularized matrix elements, and in particular cannot be
applied directly to lattice regularized matrix elements.
Instead, the regularization-independent-momentum (RI-
MOM) scheme can be introduced as an intermediate
renormalization scheme [56]. As long as the lattice match-
ing scale p0 used for nonperturbative renormalization is
larger than hadronic scales where QCD becomes non-
perturbative, it is possible to relate RI-MOM and MS
renormalized matrix elements perturbatively (“matching”).
The perturbative calculation of RG running and matching
factors therefore allows nonperturbatively renormalized
lattice QCD matrix elements to be combined with pertur-
bative BSM matching calculations to provide testable
predictions for τnn̄ in BSM theories of interest.
The largest corrections to τnn̄ arising from RG evolution

are encoded in perturbative one-loop-running factors.
These have been correctly calculated for nn̄ operators in
Ref. [50]. One-loop running provides an overall multipli-
cative correction to nonperturbatively renormalized matrix
elements, see Eq. (2). Further RG corrections to this result
can be organized as a power series in αsðp0Þ. In order to
verify that this perturbative expansion is well controlled at a
given p0, it is necessary to determine the first term in this
αsðp0Þ power series. This term is parametricallyOðαsðp0ÞÞ,
and includes one-loop-matching effects. When running to
high scales μ where αsðμÞ ≪ αsðp0Þ, two-loop-running
effects also contribute at Oðαsðp0ÞÞ and must be included
as well, see Eq. (2). This work provides the first calculation
of the one-loop-matching and two-loop-running factors
needed to reliably estimate the convergence of RG relations
between nn̄ matrix elements at low scales p0 accessible to
lattice QCD simulations and high scales μ accessible to
perturbative BSM matching calculations.

3Naive dimensional regularization (NDR) prescribes that γ5
anticommutes with γμ in D dimensions. Since closed fermion
loops do not appear in nn̄ calculations, no complications arise
from using the NDR prescription. In the remainder of this paper
we abbreviate NDR-MS as MS for brevity.
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The remainder of this paper begins with a summary of
our final results in Sec. II. Results are presented for the
fixed-flavor basis commonly used in the literature and for a
new chiral basis that is diagonal under RG evolution. The
construction of this chiral basis is presented in Sec. III. The
RI-MOM renormalization scheme and associated operator
projectors needed for perturbative and nonperturbative nn̄
operator renormalization are defined in Sec. IV. Calculation
of one-loop-matching factors relating RI-MOM and MS
renormalized operators is discussed in Sec. V. Calculation
of two-loop-running factors is discussed in Sec. VI.
Sections V and VI both discuss the careful treatment of
evanescent operators vanishing in D ¼ 4 that is necessary
for a correct calculation of RG effects. To demonstrate the
phenomenological application of our results, a complete
calculation of τ−1nn̄ and resulting experimental constraints are
discussed for a simplified BSMmodel in Sec. VII. Physical
results and implications are summarized in Sec. VIII.
Analogous one-loop-matching and two-loop-running cal-
culations have been performed for four-quark weak matrix
elements [57–65] and proton decay [66–73], the latter of
which has also recently been analyzed at the level of two-
loop matching and three-loop running [74]. These calcu-
lations provide useful techniques as well as cross-checks
for intermediate results. We avoid discussion of established
techniques for multiloop diagram evaluation in the main
text, but for readers unfamiliar with two-loop diagram
evaluation we present a pedagogical discussion in
Appendixes A and B. Our explicit evanescent operator
basis (technically required for a full definition of MS
operator renormalization) is presented in Appendix C,
and some intermediate results are shown in Appendix D.

II. SUMMARY OF RESULTS

The neutron-antineutron vacuum transition time τnn̄
predicted by a particular BSM theory can be calculated
from matrix elements of the Hamiltonian density

Hnn̄
eff ¼

X
I

CIðμÞQIðμÞ; ð1Þ

where the QIðμÞ form a complete basis of dimension-nine
local six-quark operators with nonvanishing matrix ele-
ments hn̄jQIðμÞjni between initial neutron and final

antineutron states, the CIðμÞ are Wilson coefficients, and
μ is a renormalization scale. The Wilson coefficients are
renormalization scheme and scale dependent and will differ
between BSM theories. They can be calculated by match-
ing tree- or one-loop-level nn̄ amplitudes between the full
BSM theory and an effective theory containing only
Standard Model degrees of freedom. Hadronic matrix
elements of QIðμÞ are independent of the BSM theory
used to calculate the CIðμÞ but renormalization scheme and
scale dependent.
Lattice QCD first determines matrix elements of bare,

lattice regularized operators. By subsequent lattice QCD
calculations, these bare matrix elements can be nonpertur-
batively renormalized in the RI-MOM scheme described
in Sec. IV at a lattice matching scale p0. Provided
αsðp0Þ ≪ 1, dimensionally regularized perturbation theory
can be used to relate RI-MOM renormalized matrix
elements to MS renormalized matrix elements.
Introduction of RI-MOM as an intermediate renormaliza-
tion scheme is necessary because the MS scheme can
only be directly applied to dimensionally regularized (and
not, for instance, lattice regularized) matrix elements.
Setting the MS renormalization scale μ ¼ p0 removes
large logarithms from the RI-MOM matching calculation.

Perturbative calculations of CMS
I ðμÞ in a particular BSM

theory typically introduce additional logarithmic correc-
tions lnðμ=ΛBSMÞ. Since lattice QCD computational limits
demand p0 ≪ ΛBSM, Wilson coefficients calculated at
μ ¼ ΛBSM must be RG evolved to μ ¼ p0 and then
combined with MS renormalized matrix elements to
include all large logs in BSM theory predictions of τnn̄.
The renormalization scale dependence of the Wilson

coefficients is encoded in the MS anomalous dimension
matrix γIJ, defined in Sec. VI. In Sec. III, we use chiral flavor
symmetry to construct an operator basis where the anoma-
lous dimension matrix is diagonal. The RG equations
relating Wilson coefficients at different renormalization
scales can be solved perturbatively in this diagonal chiral
basis. Including one-loop-matching and two-loop-running
effects, the relation between the desired Hamiltonian Hnn̄

eff ,

the BSM matching coefficients CMS
I ðμÞ at arbitrary scale μ,

and the nonperturbatively renormalized operators QRI
I ðp0Þ

used in lattice QCD simulations is

Hnn̄
eff ¼

X
I

CMS
I ðμÞUIðμ; p0ÞQRI

I ðp0Þ;

UIðμ; p0Þ ¼
8<
:

U
Nf¼6

I ðμ; mtÞUNf¼5

I ðmt;mbÞUNf¼4

I ðmb; p0Þ for mc < p0 < mb

U
Nf¼6

I ðμ; mtÞUNf¼5

I ðmt; p0Þ for mb < p0 < mt

;

U
Nf

I ðμ1; μ2Þ ¼
�
αsðμ2Þ
αsðμ1Þ

�
−γð0ÞI =2β0

�
1 − δμ2;p0

rð0ÞI
αsðp0Þ
4π

þ
�
β1γ

ð0Þ
I

2β20
−
γð1ÞI

2β0

�
αsðμ2Þ − αsðμ1Þ

4π
þOðα2sÞ

�
; ð2Þ
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where rð0ÞI is a one-loop-matching factor defined in Sec. V,

γð0ÞI and γð1ÞI are one-loop- and two-loop-running factors
defined in Sec. VI, and β0 and β1 are well-known
perturbative coefficients of the QCD β function presented

for reference in Eq. (46). Only β0, β1, and γð1ÞI depend on
the number of active quark flavors, Nf. Matching between
theories with different Nf’s at quark thresholds is included
in the same manner as in RG evolution of weak matrix
elements without penguin contributions [75] since no
penguin diagrams exist for nn̄ operators.
Ignoring QCD effects on RG evolution gives the leading-

order (LO) result UIðμ; p0Þ ¼ 1. Next-to-leading-order
(NLO) QCD effects give a multiplicative correction
to UIðμ; p0Þ whose size is determined by the one-loop-

running factor γð0ÞI correctly calculated in Ref. [50]. Higher-
order corrections due to matching and running provide
additive corrections that can be perturbatively expanded
in powers of αsðp0Þ and αsðμÞ. For high scales μ where
αsðμÞ ≪ αsðp0Þ, Eq. (2) shows that one-loop-matching
and two-loop-running effects receive similar Oðαsðp0ÞÞ
suppression. Both one-loop-matching and two-loop-
running effects must therefore be included in a next-to-
next-to-leading-order (NNLO) calculation of UIðμ; p0Þ.
Next-to-next-to-next-to-leading-order (N3LO) corrections
not included in Eq. (2) arise from two-loop-matching
and three-loop-running effects that are both Oðαsðp0Þ2Þ
suppressed.

The NNLO operator renormalization factors rð0ÞI and γð1ÞI
are calculated for the first time here and summarized in
Table I. The relative size of NNLO to NLO corrections to

UIðμ; p0Þ depends on μ and differs between operators.
Taking p0 ¼ 2 GeV and using the four-loop parametriza-
tion of αsðμÞ in Ref. [76], NNLO corrections to NLOþ LO
results for δm≡ 1=τnn̄ are < 26% for all μ’s ≥ p0 and may
be significantly smaller in some BSM theories. Section VII
presents a sample calculation of the nn̄ vacuum transition
rate for one of the simplified models of Ref. [25]. In this
model the relative size of NNLO to NLO corrections to
δm is 14%. Estimating that unknown N3LO Oðαsðp0Þ2Þ
corrections are comparable to the square of NNLO
Oðαsðp0ÞÞ corrections allows systematic uncertainty due
to unknown N3LO corrections to be quantified as < 7%
generically and 2% in the model discussed in Sec. VII.

III. CHIRAL OPERATOR BASIS

The operators relevant for nn̄ transitions are Lorentz,
color, and electromagnetic singlet six-quark operators of
dimension nine. Since hadronic matrix elements must be
calculated in lattice QCD simulations that only maintain
approximate chiral symmetry at best, operators that are not
singlets of the full electroweak gauge group should be
considered. Even so, operator renormalization is most
simply performed in the limit of massless up and down
quarks. Classifying operators according to the SUð2ÞL ×
SUð2ÞR chiral symmetry of QCD in this limit proves quite

useful.4 In this section we construct a basis of irreducible
chiral tensor operators that do not mix under perturbative

TABLE I. Summary of results. The leftmost column lists the chiral basis operators QI with independent NNLO operator
renormalization factors. The second column lists the corresponding fixed-flavor basis operators used in Refs. [46–50] that renormalize
identically to QI , see Sec. III. Each QI is equal to ð−4Þ times the first fixed-flavor basis operator listed in the corresponding row of the
second column. The other fixed-flavor basis operators listed may not be directly proportional to QI but share the same one-loop MS

anomalous dimension γð0ÞI (third column), two-loop MS anomalous dimension γð1ÞI (fourth column), and one-loop Landau gauge RI-

MOM matching factor rð0ÞI (fifth column) appearing in Eq. (2). γð1ÞI and rð0ÞI depend on the evanescent operator basis used to extend
D ¼ 4 Fierz relations to D-dimensional operator relations in dimensional regularization. Our evanescent operator basis is presented in
Appendix C. One-loop BSM matching calculations must use the same evanescent operator basis for consistency. Tree-level BSM
matching calculations are unaffected, see Sec. VII for a sample matching calculation.

Chiral basis Flavor basis γð0ÞI γð1ÞI rð0ÞI

Q1 O3
RRR, O

3
LLL 4 335=3 − 34Nf=9 101=30þ 8=15 ln 2

Q2 O3
LRR, O

3
RLR, O

3
RLL, O

3
LRL −4 91=3 − 26Nf=9 −31=6þ 88=15 ln 2

Q3 O3
LLR, O

3
RRL 0 64 − 10Nf=3 −9=10þ 16=5 ln 2

Q4 ð4=5O2
RRR þ 1=5O1

RRRÞ, ð4=5O2
LLL þ 1=5O1

LLLÞ 24 229 − 46Nf=3 177=10 − 64=5 ln 2

Q5 O1
RLL, O

1
LRR, O

2
RLL, O

2
LRL, O

2
LRR,

O2
RLR, ð2=3O2

LLR þ 1=3O1
LLRÞ, ð2=3O2

LLR þ 1=3O1
LRLÞ,

ð2=3O2
RRL þ 1=3O1

RRLÞ, ð2=3O2
RRL þ 1=3O1

RLRÞ

12 238 − 14Nf 49=10 − 24=5 ln 2

~Q1 ð1=3O2
RRR − 1=3O1

RRRÞ, ð1=3O2
LLL − 1=3O1

LLLÞ 4 797=3 − 118Nf=9 −109=30þ 8=15 ln 2

~Q3 ð1=3O2
LLR − 1=3O1

LLRÞ, ð1=3O2
RRL − 1=3O1

RRLÞ 0 218 − 38Nf=3 −79=10þ 16=5 ln 2

4We thank Brian Tiburzi for the very helpful insights on these
chiral transformation properties.
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QCD interactions. Fierz relations and symmetries of the
color, spin, and flavor tensors used throughout this section
are detailed in Appendix A. Our notational conventions are
as follows: we use i; j; k;… as fundamental color indices,
μ; ν; ρ;… as four-vector Lorentz indices, α; β; γ;… as
Lorentz spinor indices, a; b; c;… as flavor spinor indices,
I; J; K;… as operator basis labels, and χ’s as chirality
labels L;R. We will use A;B;C;… to denote adjoint
indices in both color and flavor. suð3Þc color generators
will be denoted by tA and normalized to TrðtAtBÞ ¼ 1

2
δAB

while suð2ÞL and suð2ÞR flavor generators will be denoted
by τA and normalized as Pauli matrices TrðτAτBÞ ¼ 2δAB

with τ� ≡ 1
2
ðτ1 � iτ2Þ. We use a Euclidean ðþ þ þþÞ

metric signature and will not distinguish between raised
and lowered indices. Final results are valid in the
Minkowski signature; intermediate steps are not.
Summation convention applies to all indices but not to
operator basis I; J; K;… and chirality χ labels.
Two quarks can be combined into a spin-singlet diquark

by contraction with the antisymmetric charge conjugation
matrix C and projected onto definite chirality by including
PL;R ¼ 1

2
ð1∓γ5Þ. In D ¼ 4, spin Fierz identities can be

used to express any product of vector diquarks containing
γμ or tensor diquarks containing σμν ¼ i

2
½γμ; γν� as a product

of scalar diquarks. Denoting flavor doublet quark fields by
ψα
ia ¼ ðuαi ; dαi Þ, only operators containing three products of

scalar diquarks ψα
ia½CPχ �αβψβ

jb need to be considered.
Flavor Fierz identities allow us to only consider oper-

ators where each diquark is either a flavor singlet con-
tracted with the antisymmetric tensor iτ2ab or a flavor vector
contracted with the symmetric tensor ½iτ2τA�ab,

Dχ ≡ ðψCPχiτ2ψÞ; DA
χ ≡ ðψCPχiτ2τAψÞ; ð3Þ

where we have suppressed free color indices. Irreducible
suð2Þχ-spin-two and suð2Þχ-spin-three chiral tensor oper-
ators can then be defined as

DAB
χ ≡DfA

χ DBg
χ −

1

3
δABDC

χ DC
χ ;

DABC
χ ≡DfA

χ DB
χD

Cg
χ −

1

5

h
δABDfC

χ DD
χ D

Dg
χ þ δACDfB

χ DD
χ D

Dg
χ

þ δBCDfA
χ DD

χ D
Dg
χ

i
: ð4Þ

Since operators contributing to nn̄ transitions must lower
the third SUð2ÞV isospin component I3 isospin by one
unit,5 at least one diquark must be contracted with ½iτ2τþ�ab
to form a dαi d

β
j diquark. The other two diquarks must

combine to have no net effect on I3. Taking this dαi d
β
j

combination to be our third diquark for convenience and
enforcing antisymmetry under quark exchange, the only
available tensors for constructing color singlet six-quark
operators are

TSSS
fijgfklgfmng ¼ εikmεjln þ εjkmεiln þ εilmεjkn þ εiknεjlm;

TAAS
½ij�½kl�fmng ¼ εijmεkln þ εijnεklm; ð5Þ

where f g denotes index symmetrization and ½ � denotes
index antisymmetrization. From here onward we suppress
explicit quark indices and use the diquark notation

ðψ iCPRiτ2ψ jÞ≡ ψα
ia½CPR�αβ½iτ2�abψβ

jb: ð6Þ

We further suppress color indices in diquark products, e.g.
ðψψÞðψψÞðψψÞTAAS≡ðψ iψ jÞðψkψ lÞðψmψnÞTAAS

½ij�½kl�fmng.
Using these building blocks and neglecting operators

that have ΔI3 ≠ −1 or vanish by quark anticommutivity,
we find that at NLO there are five chiral tensor operators
with independent renormalization properties,

Q1 ¼ ðψCPRiτ2ψÞðψCPRiτ2ψÞðψCPRiτ2τþψÞTAAS;

ð7aÞ

Q2 ¼ ðψCPLiτ2ψÞðψCPRiτ2ψÞðψCPRiτ2τþψÞTAAS;

ð7bÞ

Q3 ¼ ðψCPLiτ2ψÞðψCPLiτ2ψÞðψCPRiτ2τþψÞTAAS;

ð7cÞ

Q4¼ðψCPRiτ2τ3ψÞðψCPRiτ2τ3ψÞðψCPRiτ2τþψÞTSSS

−
1

5
ðψCPRiτ2τAψÞðψCPRiτ2τAψÞðψCPRiτ2τþψÞTSSS;

ð7dÞ

Q5 ¼ ðψCPRiτ2τ−ψÞðψCPLiτ2τþψÞðψCPLiτ2τþψÞTSSS:

ð7eÞ

Symmetries of TSSS and TAAS under diquark exchange
ensure that all products of flavor vector diquarks are totally
symmetric. Q4 includes a flavor trace subtraction. This
ensures that all operators are irreducible chiral tensor
operators.
There are two additional operators that cannot be

expressed as linear combinations of Q1;…; Q5,

Q6 ¼ ðψCPRiτ2τ3ψÞðψCPLiτ2τ3ψÞðψCPLiτ2τþψÞTSSS;

ð8aÞ

5In particular, nn̄ transitions only involve operators with
negative parity, ΔI ¼ 1, and ΔI3 ¼ −1. We only explicitly
enforce the latter constraint, ΔI3 ¼ −1, in order to simplify
the perturbative calculations presented here.
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Q7¼ðψCPLiτ2τ3ψÞðψCPLiτ2τ3ψÞðψCPRiτ2τþψÞTSSS

−
1

3
ðψCPLiτ2τAψÞðψCPLiτ2τAψÞðψCPRiτ2τþψÞTSSS:

ð8bÞ

These two operators andQ5 are different components of the
same chiral tensor operator, DA

RD
BC
L . This implies that Q5,

Q6, and Q7 have identical anomalous dimensions and
matching factors in renormalization schemes respecting
chiral symmetry. In D ¼ 4, Q1;…; Q7 and their seven
parity conjugates found by taking L↔R everywhere and
including a relative minus sign form a complete basis of
dimension-nine operators contributing to nn̄ transitions.
We also consider two more operators, ~Q1 and ~Q3, that

in D ¼ 4 are equal to Q1 and Q3, respectively, by Fierz
identities,

~Q1 ¼
1

3
ðψCPRiτ2τAψÞðψCPRiτ2τAψÞðψCPRiτ2τþψÞTSSS;

ð9aÞ

~Q3 ¼
1

3
ðψCPLiτ2τAψÞðψCPLiτ2τAψÞðψCPRiτ2τþψÞTSSS:

ð9bÞ

The Fierz relations Q1 ¼ ~Q1 and Q2 ¼ ~Q3 are broken in
dimensional regularization, and ~Q1 and ~Q3 are independent
operators in D dimensions. In principle, we could choose
our physical operator basis to be Q1;…; Q5 and include
Q1 − ~Q1 and Q3 − ~Q3 as additional evanescent operators

vanishing in D ¼ 4 but present in D dimensions. In
practice, it is much easier to directly determine matrix
elements of ~Q1 and ~Q3 and explicitly include them in
the physical operator basis. For the purposes of NNLO
operator renormalization we take our chiral basis operators
QI to include Q1;…; Q5; ~Q1; ~Q3.
The basis commonly used in the literature involves fixed-

flavor quark fields [46–50],

O1
χ1χ2χ3 ¼ ðuCPχ1uÞðdCPχ2dÞðdCPχ3dÞTSSS;

O2
χ1χ2χ3 ¼ ðuCPχ1dÞðuCPχ2dÞðdCPχ3dÞTSSS;

O3
χ1χ2χ3 ¼ ðuCPχ1dÞðuCPχ2dÞðdCPχ3dÞTAAS: ð10Þ

These fixed-flavor basis operators satisfy the relations
O1

χLR ¼ O1
χRL and O2;3

LRχ ¼ O2;3
RLχ . In D ¼ 4, they also

satisfy the Fierz identities O2
χχχ0 −O1

χχχ0 ¼ 3O3
χχχ0 . These

relations reduce the number of linearly independent oper-
ators to 14. It is straightforward to evaluate the flavor
contractions of ψ ¼ ðu; dÞ in the QI and verify that
Q1;…; Q7 and their parity conjugates form 14 linearly
independent combinations of fixed-flavor basis operators.
One can similarly verify that the Fierz relations ~Q1 ¼ Q1

and ~Q3 ¼ Q3 are equivalent to the fixed-flavor basis Fierz
relation above. The precise relations between the chiral
basis and fixed-flavor basis operators and their explicit
chiral tensor structures are shown in Table II.

IV. RENORMALIZATION SCHEMES

The commonly used MS renormalization scheme sim-
plifies RG evolution, preserves important symmetries of

TABLE II. The chiral basis operators QI shown in the first column are equal to ð−4Þ times the corresponding
fixed-flavor basis operator combinations shown in the second column. Each chiral basis operator is equal to a color
contraction of the tensor operators DA…

χ shown in the third column. The corresponding chiral irreducible
representation of each operator is shown in the last column. Q1;…; Q7 and their parity conjugates (L↔R) form a
complete basis for nn̄ transition operators in D ¼ 4. Since they are components of the same chiral tensor operator
DA

RD
BC
L ,Q6 andQ7 renormalize identically toQ5 and are redundant for our purposes. ~Q1 and ~Q3 are equal toQ1 and

Q3 in D ¼ 4, but they renormalize independently in MS at NNLO.

Chiral basis Fixed-flavor basis Chiral tensor structure Chiral irreducible representation

Q1 O3
RRR DRDRD

þ
RT

AAS ð1L; 3RÞ
Q2 O3

LRR DLDRD
þ
RT

AAS ð1L; 3RÞ
Q3 O3

LLR DLDLD
þ
RT

AAS ð1L; 3RÞ
Q4 4=5O2

RRR þ 1=5O1
RRR D33þ

R TSSS ð1L; 7RÞ
Q5 O1

RLL D−
RD

þþ
L TSSS ð5L; 3RÞ

Q6 O2
RLL D3

RD
3þ
L TSSS ð5L; 3RÞ

Q7 2=3O2
LLR þ 1=3O1

LLR Dþ
RD

33
L TSSS ð5L; 3RÞ

~Q1 1=3O2
RRR − 1=3O1

RRR DRDRD
þ
RT

SSS ð1L; 3RÞ
~Q3 1=3O2

LLR − 1=3O1
LLR DLDLD

þ
RT

SSS ð1L; 3RÞ
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chiral gauge theories such as the Standard Model, and is
technically simple to implement in perturbative calcula-
tions performed with dimensional regularization. MS is
limited, however, in that its defining renormalization
condition can only be applied to regularized matrix
elements calculated with dimensional regularization and
not with other regularization schemes such as lattice. The
RI-MOM renormalization scheme [56], while not as
technically simple to apply to dimensionally regularized
matrix elements, has the advantage of a regularization-
independent renormalization condition. In this section we
construct a RI-MOM operator renormalization condition
for the QI that can be applied both nonperturbatively to
lattice QCD matrix elements and perturbatively to dimen-
sionally regularized matrix elements. This is an essential
intermediate step in connecting lattice regularized and MS
renormalized nn̄ matrix elements.
In this section we explicitly display the spacetime and

renormalization scale dependence of the quark fields
ψα
iaðx; μÞ and six-quark operators QIðx; μÞ. These renor-

malized quark fields and six-quark operators should be
distinguished from their bare (regularized) counterparts,
defined for quark fields of flavor q ¼ u; d by

qαi ðx; μÞ ¼ Z−1=2
q ðμÞ½q0�αi ðxÞ;

QIðx; μÞ ¼
X
J

ZIJðμÞQ0
JðxÞ; ð11Þ

where the wave function renormalization factor ZqðμÞ
and operator renormalization matrix ZIJðμÞ are formally
defined by the renormalization conditions of a particular
renormalization scheme. We denote perturbative expansion
coefficients for either renormalization factor by

ZðμÞ ¼ 1þ
�
αsðμÞ
4π

�
Zð1Þ þ

�
αsðμÞ
4π

�
2

Zð2Þ þOðα3sÞ:

ð12Þ

The RI-MOM scheme wave function renormalization
factor ZRI

q ðμÞ is defined by [56]

1 ¼ −i
48

Tr

�
γμ

∂Sqðp0; μ ¼ p0Þ−1
∂pμ

�

¼ −i
48

ZRI
q ðp0ÞTr

�
γμ

∂S0qðp0Þ−1
∂pμ

�
; ð13Þ

where Tr denotes a trace over color and spin (quark flavor q
is held fixed), p0 is the lattice matching scale, and S0qðp0Þ
and Sqðp0; μÞ are bare and renormalized quark propagators,
respectively. The normalization is chosen such that
ZRI
q ðμÞ ¼ 1þOðαsÞ. Equation (13) assumes that a gauge

fixing condition has been imposed so that the quark
propagator is nonvanishing. In this work we consider a

general Rξ gauge where the tree-level gluon propagator is
δABðgμν=p2 − ð1 − ξÞpμpν=p4Þ. One-loop matching is per-
formed in the Landau gauge, ξ ¼ 0. Two-loop-running
results are gauge invariant, and for simplicity the two-loop
calculation is performed in the Feynman gauge, ξ ¼ 1.
A one-loop calculation of the quark self-energy in

D ¼ 4 − 2ε dimensions shows that the counterterm needed
to renormalize the bare propagator according to the
renormalization condition equation (13) is [56]

ZRI;ð1Þ
q ¼ −

4

3

�
ξ

ε̄
þ ξ

2

�
; ð14Þ

where 1=ε̄ ¼ 1=ε − γE þ ln 4π. The MS wave function
renormalization factor is defined by the condition that
Zq remove precisely the poles in 1=ε̄ from the quark
propagator. At one loop

ZMS;ð1Þ
q ¼ −

4

3

�
ξ

ε̄

�
: ð15Þ

At two-loop order the quark propagator includes diagrams
with divergent one-loop subdiagrams. These diagrams
include nonlocal divergences proportional to lnðμ2=p2Þ=ε̄.
Renormalizability guarantees that these nonlocal two-loop
divergences cancel after including counterterm diagrams in
which divergent subdiagrams are replaced by their one-loop
counterterms [77].6 The remaining local divergences are
removed by a two-loop counterterm that in Feynman gauge
is given by [79]

ZMS;ð2Þ
q ¼ 44

9ε̄2
þ −47þ 2Nf

3ε̄
; ð16Þ

where Nf is the number of active quark flavors.
A regularization-independent definition of ZRI

IJðμÞ can be
given in terms of a renormalization condition applied to
vertex functions for each QI . These vertex functions can be
constructed, perturbatively or nonperturbatively, by Wick
contracting QI with interpolating operators for initial
neutron and final antineutron states. A vertex function
with QI inserted at zero momentum can be constructed
by including three external antiquark fields carrying
momentum p and three external antiquark fields carrying
momentum −p. These antiquark fields act as interpolating
operators capable of creating initial neutron and final
antineutron states. In order to simplify the nonperturbative
construction of this vertex function in lattice QCD calcu-
lations, it is convenient to work with interpolating operators
built from fixed-flavor quark fields. The quark fields
must be assigned momenta symmetrically in order for

6For a comprehensive review of renormalization theory with
further references to the original literature, see Ref. [78].

PERTURBATIVE RENORMALIZATION OF NEUTRON-ANTINEUTRON … PHYSICAL REVIEW D 93, 016005 (2016)

016005-7



the RI-MOM scheme defined using the vertex function to preserve chiral symmetry. A suitable definition is given
by [80]

½ΛI�αβγδηζijklmnðpÞ ¼
1

5
hQIð0Þūαi ðpÞūβj ðpÞd̄γkðpÞd̄δl ð−pÞd̄ηmð−pÞd̄ζnð−pÞij

amp

þ 3

5
hQIð0Þūαi ðpÞūβj ð−pÞd̄γkðpÞd̄δl ðpÞd̄ηmð−pÞd̄ζnð−pÞij

amp

þ 1

5
hQIð0Þūαi ð−pÞūβj ð−pÞd̄γkðpÞd̄δl ðpÞd̄ηmðpÞd̄ζnð−pÞij

amp
; ð17Þ

where antisymmetrization of all antiquark fields of the
same flavor is implied, renormalization scale dependence is
suppressed, and the subscript amp refers to the prescription
of amputating external legs with the replacement

q̄αi ðp; μÞ → q̄α
0

i0 ðp; μÞ½S−1q ðp; μÞ�α0αi0i : ð18Þ

When the Wick contractions for ΛI are enumerated, the 20
distinct momentum routings available for Feynman dia-
grams with six indistinguishable external legs carrying
momentum fp; p; p;−p;−p;−pg each appear with equal
weight. Perturbative contributions to ΛI are defined by

ΛIðp; μÞ ¼ Λð0Þ
I þ

�
αsðμÞ
4π

�
Λð1Þ
I ðp; μÞ

þ
�
αsðμÞ
4π

�
2

Λð2Þ
I ðp; μÞ: ð19Þ

It should also be noted that ΛI is defined with an “excep-
tional momentum configuration” where the momenta of
some subsets of external fields add to zero. However, vertex
functions for purely baryonic operators like QI are not
expected to suffer from the nonperturbative chiral sym-
metry breaking artifacts that affect mesonic operators in
exceptional momentum configurations. In particular, infra-
red divergences in the chiral limit arising from pseudo
Goldstone poles can lead to enhanced nonperturbative
chiral symmetry violating mesonic operator mixing in
lattice QCD simulations with chiral fermions, see for
example [62]. Enhancements arise from diagrams in which
an external quark and antiquark can be combined in a
subdiagram with zero external momentum. For the purely
baryonic operators considered here as well as for proton

decay operators, there are no pseudo Goldstone pole
enhancements from diagrams in which two external quarks
with positive baryon number are combined in a zero-
momentum subdiagram.
The RI-MOM scheme is defined by a renormalization

condition on ΛIðp; μÞ,

δIJ ¼ Tr½PIΛJðp0; μ ¼ p0Þ�
¼

X
K

ZRI
IKðp0ÞðZRI

q ðp0ÞÞ3Tr½PJΛ0
Kðp0Þ�; ð20Þ

where Λ0
Kðp0Þ is a bare vertex function built from

bare operators and amputated with bare propagators,
Tr½PIΛJ�≡ Pαβγδηζ

ijklmnΛ
αβγδηζ
ijklmn , and the operator projectors

PI are defined by

Tr½PIΛ
ð0Þ
J � ¼ δIJ: ð21Þ

Each external quark in Eq. (20) carries momentum �p0

and the renormalization scale is identified with this lattice
matching scale μ ¼ p0. As discussed above, p0 must be
chosen to be much larger than hadronic scales to allow for
perturbative matching but much smaller than the inverse
lattice spacing used for nonperturbative renormalization to
control discretization errors. For many quantities, these
constraints are satisfied at p0 ≃ 2 GeV. A comparison of
the size of Oðαsðp0ÞÞ NNLO corrections to the NLO result
in Eq. (2) should provide an estimate of perturbative
convergence with a chosen p0.
A set of projectors satisfying Eq. (21) for the chiral basis

operators is given by

ðP1Þαβγδηζijklmn ¼ −
1

92160
ð−TSSS

fijgfklgfmngðCPRÞαβðCPRÞγδðCPRÞηζ þ 2TAAS
½ij�½kl�fmngðCPRÞαδðCPRÞγβðCPRÞηζÞ; ð22aÞ

ðP2Þαβγδηζijklmn ¼ −
1

18432
ð−TSSS

fijgfklgfmngðCPLÞαδðCPRÞγβðCPRÞηζ þ 2TAAS
½ij�½kl�fmngðCPLÞαδðCPRÞγζðCPRÞηβÞ; ð22bÞ

ðP3Þαβγδηζijklmn ¼ −
1

36864
ð−TSSS

fijgfklgfmngðCPLÞαβðCPLÞγδðCPRÞηζ þ 2TAAS
½ij�½kl�fmngðCPLÞαδðCPLÞγβðCPRÞηζÞ; ð22cÞ
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ðP4Þαβγδηζijklmn ¼ −
1

221184
ðTSSS

fijgfklgfmngðCPRÞαβðCPRÞγδðCPRÞηζ þ 3TAAS
½ij�½kl�fmngðCPRÞαδðCPRÞγβðCPRÞηζÞ; ð22dÞ

ðP5Þαβγδηζijklmn ¼ −
1

221184
ðTSSS

fijgfklgfmngðCPRÞαβðCPLÞγδðCPLÞηζÞ; ð22eÞ

ðP6Þαβγδηζijklmn ¼ −
1

55296
ðTSSS

fijgfklgfmngðCPRÞαδðCPLÞγβðCPLÞηζ þ 6TAAS
½ij�½kl�fmngðCPRÞαδðCPLÞγζðCPLÞηβÞ; ð22fÞ

ðP7Þαβγδηζijklmn ¼ −
1

73728
ðTSSS

fijgfklgfmngðCPLÞαβðCPLÞγδðCPRÞηζ þ 2TAAS
½ij�½kl�fmngðCPLÞαδðCPLÞγβðCPRÞηζÞ: ð22gÞ

We explicitly include projectors forQ6 andQ7 since they
must be analyzed separately in lattice QCD calculations
without exact chiral symmetry. The seven parity conjugates
of Q1;…; Q7 should be analyzed separately in lattice QCD
calculations; projectors for these operators are found by
taking L↔R everywhere and including a relative minus
sign. P1 and P3 are suitable projectors for ~Q1 and ~Q3 since
they are equal to Q1 and Q3 at tree level. Projectors and for
fixed-flavor basis operators differ from those of Eq. (22) by
an overall normalization factor of ð−4Þ are described in
more detail in Ref. [81].

ZMS
IJ can be defined through a renormalization condition

for dimensionally regularized vertex functions: at each
order of renormalized perturbation theory, add counter-
terms that remove precisely the 1=ε̄ poles proportional to
ΛJ from ΛI . A more precise definition of both the RI-MOM
and MS renormalization conditions for dimensionally
regularized amplitudes requires a careful treatment of
evanescent operators. This is postponed to Sec. V B.

V. ONE-LOOP MATCHING

RI-MOM and MS renormalized operators with renorm-
alization scale μ ¼ p0 are related by Eq. (11),

QRI
I ðp0Þ ¼

X
J;K

ZRI
IJðp0Þ½ðZMSÞ−1JKðp0Þ�QMS

K ðp0Þ

≡X
J

rIJQMS
J ðp0Þ: ð23Þ

The matching factor rIJ relates renormalized operators
and is therefore a finite quantity. rIJ can be consistently

calculated perturbatively in terms of ZRI and ZMS as long as
both contain the same UV divergences and in particular are
calculated with the same regularization. This allows us to
perturbatively express rIJ as

rIJðαsÞ ¼ 1þ αsðp0Þ
4π

ðZRI;ð1Þ
IJ − ZMS;ð1Þ

IJ Þ þOðα2sÞ

≡ 1þ αsðp0Þ
4π

rð0ÞIJ þOðα2sÞ: ð24Þ

Since the chiral basis operators do not mix under renorm-

alization, ZIJ and rIJ are diagonal and we further define r
ð0Þ
I

to be the diagonal elements rð0ÞIJ ¼ δIJr
ð0Þ
I (no summation

on I). Differences between definitions of the renormalized
coupling constant αsðp0Þ in different schemes are formally
Oðα2sÞ and can therefore be neglected in Eq. (24). When
calculating numerical results in Sec. VII, we use a MS
coupling constant definition for both two-loop running and
one-loop matching. This defines the one-loop-matching

factor rð0ÞI appearing in Eq. (2) in terms of Zð1Þ
IJ . The

remainder of this section describes the diagrammatic

evaluation of Zð1Þ
IJ from one-loop corrections to Λð0Þ

I .

A. Diagram evaluation

Feynman diagrams representing corrections to QI
involve six-quark lines carrying a baryon number into a
local vertex where the quark lines are joined to form three
spin-singlet diquarks. To simplify the structure of these
diagrams it is convenient to introduce charge conjugate
quarks ðψCÞαia ¼ ðCψ̄Þαia. Expressing all diquarks in QI as
ðψCPχψÞ ¼ ðψ̄CPχψÞ removes the need to introduce spin-
transposed propagators and explicit factors of C at the six-
quark vertex. With this approach, one quark line contained
in each spin-singlet diquark is replaced with a conjugate-
antiquark line with its fermion charge arrow pointing out
of the six-quark vertex, as shown in Fig. 1. These obey
standard Feynman rules for quark lines carrying fermion
charge away from the vertex, except that conjugate quark-
gluon vertices receive an extra minus sign and transposition
of tA because ðψ̄C

i γ
μtAijψ

C
j Þ ¼ −ðψ̄ iγ

μtAjiψ jÞ.
Matching between RI-MOM and MS is performed in the

limit of massless quarks where SUð2ÞL × SUð2ÞR chiral
symmetry guarantees that loop-level operator corrections
will contain diquarks with the same chiral structure as the
tree-level operator. When calculating diagrams with no
closed fermion loops in NDR, explicit factors of Pχ can
therefore always be moved from the operator vertex to one
end of the quark line representing each spin-singlet
diquark. In addition, the tree-level flavor structure of each
operator is preserved diagram by diagram because of the
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flavor-blind nature of QCD. With these considerations, the
only nontrivial tensor structure that needs to be inserted at
each six-point operator vertex is ð1 ⊗ 1 ⊗ 1ÞTAAS for Q1,
Q2, and Q3 and ð1 ⊗ 1 ⊗ 1ÞTSSS for Q4, Q5, ~Q1, and ~Q3.
Diagrams with six-quark vertex factors of ð1 ⊗ 1 ⊗
1ÞTAAS and ð1 ⊗ 1 ⊗ 1ÞTSSS represent amplitudes denoted
by MA and MS, respectively. These amplitudes provide
loop-level operator corrections to QI once factors of CPχ ,
flavor tensors, and contractions with quark fields are
included. As a concrete example, diagrammatic operator
corrections to Q1 are found from the amplitude MA by
making the replacement

ðΓ1 ⊗ Γ2 ⊗ Γ3ÞT → ðψCPRΓ1iτ2ψÞðψCPRΓ2iτ2ψÞ
× ðψCPRΓ3iτ2τþψÞTAAS: ð25Þ

To determine finite Oðε0Þ contributions to Λð0Þ
I , all

contributing diagrams should be calculated with all
distinct momentum routings assigning incoming momenta

fp; p; p;−p;−p;−pg to the external legs. Λð0Þ
I is then

found by adding external quark fields to build the corre-
lation functions of Eq. (17), performing Wick contractions,
and amputating external legs. The contribution of each
Wick contraction is represented by the sum of all contrib-
uting amputated diagrams with a particular momentum
routing. 1=ε̄ pole terms are momentum independent, and
can be determined from any momentum routing free of
infrared divergences.

The topologically distinct classes of one- and two-loop

Feynman diagrams contributing to Λð1Þ
I and Λð2Þ

I are shown

in Fig. 1. Calculating rð1ÞI requires evaluating the 15 one-
loop diagrams in classes d ¼ 1–3. For each of the one-
gluon-exchange diagrams in d ¼ 1–3, the two distinct
momentum routings correspond to gluon exchange
between quarks with equal momenta and gluon exchange
between quarks with opposite momenta. With ΛI defined
by Eq. (17), a gluon is exchanged between quarks with
equal momenta in 2=5 of the Wick contractions and
between quarks with opposite momenta in 3=5 of the
Wick contractions. Since external quark fields of the same
flavor are antisymmetrized when constructing ΛI, each
Wick contraction contributes to ΛI with equal weight.
The amplitudes MA

d and MS
d for diagrams of class d

can be evaluated using standard techniques summarized
in Appendices A–D. After expressing the resulting spin-
color tensors as linear combinations of the basis tensors
introduced in Appendix A, it is straightforward to verify
that most spin-color tensors contributing to MA

d and MS
d

have index exchange symmetries different from the
symmetries of the tree-level operator insertion. These
contributions vanish after making the replacement of
Eq. (25) and can be neglected. The remaining contribu-
tions to the one-loop amplitudes MA

d for the relevant
combination of 2=5 the equal momentum routing ampli-
tude plus 3=5 the opposite momentum routing amplitude
are given by

MA
1 ¼ αsðμÞ

4π

�
μ2

p2

�
ε
�
3þ ξ

ε̄
þ 4þ 2ξ −

24

5
ln 2 −

8ξ

5
ln 2

�
½1 ⊗ 1 ⊗ 1�TAAS; ð26aÞ

MA
2 ¼ αsðμÞ

4π

�
μ2

p2

�
ε
��

3ξ

2ε̄
þ 29

20
þ 19ξ

10
−
8

5
ln 2 −

8ξ

5
ln 2

�
½1 ⊗ 1 ⊗ 1�TAAS

þ
�
−

1

8ε̄
−
17

60
þ 2

15
ln 2

�
½ðσμν ⊗ σμν ⊗ 1ÞTSSS þ ð1 ⊗ σμν ⊗ σμνÞTASA þ ðσμν ⊗ 1 ⊗ σμνÞTSAA�

þ 1

p2

�
1

15
−
11ξ

60
þ 2

15
ln 2þ 2ξ

15
ln 2

��
ðγμp ⊗ pγμ ⊗ 1Þ

�
TSSS −

1

3
TAAS

�

þð1 ⊗ γμp ⊗ pγμÞ
�
TASA þ 5

3
TAAS

�
þ ðγμp ⊗ 1 ⊗ pγμÞ

�
TSAA þ 5

3
TAAS

���
; ð26bÞ

MA
3 ¼ αsðμÞ

4π

�
μ2

p2

�
ε
��

3ξ

2ε̄
þ 37

20
þ 4ξ

5
−
4

5
ln 2 −

4ξ

5
ln 2

�
½1 ⊗ 1 ⊗ 1�TAAS

þ
�
−

1

8ε̄
−
17

60
þ 2

15
ln 2

�
½ðσμν ⊗ σμν ⊗ 1ÞTSSS þ ð1 ⊗ σμν ⊗ σμνÞTASA þ ðσμν ⊗ 1 ⊗ σμνÞTSAA�

þ 1

p2

�
1

15
−
11ξ

60
þ 2

15
ln 2þ 2ξ

15
ln 2

��
ðγμp ⊗ pγμ ⊗ 1Þ

�
TSSS þ 1

3
TAAS

�
þ ð1 ⊗ γμp ⊗ pγμÞ

�
TASA −

5

3
TAAS

�

þðγμp ⊗ 1 ⊗ pγμÞ
�
TSAA −

5

3
TAAS

���
; ð26cÞ
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FIG. 1. The tree-level operator diagram, 15 one-loop diagrams, and 320 two-loop diagrams evaluated in this work (350 in the
counting of QGRAF [82], see Sec. VI). Operator insertions are represented by a six-point vertex joining three quarks and three
conjugate antiquarks. The operator insertions are local; the separate solid lines represent propagators for quarks contracted into
separate spin-singlet diquarks as indicated by the fermion charge arrows. The external quarks are assigned momenta
fp; p; p;−p;−p;−pg. Diagrams are organized into classes that share the same loop integrals and Dirac structures. The number
of diagrams in each class is shown. All two-loop diagrams with divergent subdiagrams are accompanied by a one-loop counterterm
diagram, not shown. The curly lines represent gluon propagators, and the gluon self-energy bubble shown in diagrams 29–31
includes quark, gluon, and ghost loops. Diagrams 1–31 contribute to fermion charge renormalization and are numbered consistently
with Refs. [59,61]. Diagrams 32–46 are considered for the first time here. The 1=ε̄ pole structure of each diagram is summarized in
Tables III–VI.
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where the color tensors TASA and TSAA are defined in Appendix A. Similarly, the one-loop contributions to MS
d with the

correct index symmetries are

MS
1 ¼

αsðμÞ
4π

�
μ2

p2

�
ε
�
−
3þ ξ

ε̄
− 4 − 2ξþ 24

5
ln 2þ 8ξ

5
ln 2

�
½1 ⊗ 1 ⊗ 1�TSSS; ð27aÞ

MS
2 ¼

αsðμÞ
4π

�
μ2

p2

�
ε
��

5ξ

2ε̄
þ 29

12
þ 19ξ

6
−
8

3
ln 2 −

8ξ

3
ln 2

�
½1 ⊗ 1 ⊗ 1�TSSS

þ
�
−

3

8ε̄
−
17

20
þ 2

5
ln 2

�
½ðσμν ⊗ σμν ⊗ 1ÞTAAS þ ð1 ⊗ σμν ⊗ σμνÞTSAA þ ðσμν ⊗ 1 ⊗ σμνÞTASA�

þ 1

p2

�
1

5
−
11ξ

20
þ 2

5
ln 2þ 2ξ

5
ln 2

��
ðγμp ⊗ pγμ ⊗ 1Þ

�
TAAS þ 5

9
TSSS

�

þð1 ⊗ γμp ⊗ pγμÞ
�
TSAA þ 5

9
TSSS

�
þ ðγμp ⊗ 1 ⊗ pγμÞ

�
TASA þ 5

9
TSSS

���
; ð27bÞ

MS
3 ¼

αsðμÞ
4π

�
μ2

p2

�
ε
��

5ξ

2ε̄
þ 37

12
þ 4ξ

3
−
4

3
ln 2 −

4ξ

3
ln 2

�
½1 ⊗ 1 ⊗ 1�TSSS

þ
�
−

3

8ε̄
−
17

20
þ 2

5
ln 2

�
½ðσμν ⊗ σμν ⊗ 1ÞTAAS þ ð1 ⊗ σμν ⊗ σμνÞTSAA þ ðσμν ⊗ 1 ⊗ σμνÞTASA�

þ
�
1

5
−
11ξ

20
þ 2

5
ln 2þ 2ξ

5
ln 2

��
ðγμp ⊗ pγμ ⊗ 1Þ

�
TAAS −

5

9
TSSS

�
þ ð1 ⊗ γμp ⊗ pγμÞ

�
TSAA −

5

9
TSSS

�

þðγμp ⊗ 1 ⊗ pγμÞ
�
TASA −

5

9
TSSS

���
: ð27cÞ

To complete our calculation of rð0ÞI , we need to precisely
define operator counterterms that renormalize the vertex
functions associated with these amplitudes. Subtleties
arise at this step. These subtleties and their resolution
are discussed in the following section.

B. Evanescent operators

In order to precisely define operator counterterms
suitable for RI-MOM or MS renormalization, we must
address the issue that our operator basis is complete in
D ¼ 4 but incomplete in an arbitrary D. This issue also
arises for four-quark operators in weak matrix element
calculations. For four-quark operators it has been consis-
tently resolved through the introduction of evanescent
operators vanishing in D ¼ 4 [59,83,84]. Following this
approach, in this section we precisely define evanescent
operator counterterms for the QI. It would be possible to
present complete one-loop-matching results without these
precise definitions, but the definitions and notation intro-
duced in this section will prove essential for calculating the
nontrivial evanescent contributions to two-loop running
in Sec. VI.
Renormalized vertex functions include counterterms that

remove the 1=ε̄ poles in Eqs. (26) and (27). The physical
operators QI mix under RG evolution with the operators

used to construct these counterterms, so a complete
operator basis must include all operators used to construct
counterterms. Dirac structures involving σ ⊗ σ appear in
the pole terms above, but have been eliminated from
our complete basis in D ¼ 4 by means of the Fierz
transformation

½CPχσμν�αβ½CPχ0σμν�γδ ¼D¼4
δχχ0 ð8Pαδ

χ Pγβ
χ − 4Pαβ

χ Pγδ
χ0 Þ: ð28Þ

This relation follows from completeness of a basis of 16
Dirac matrices in D ¼ 4 and cannot be uniquely continued
to an analytic function of D. In particular, one could
prescribe that in the dimensionally regularized theory

½CPχσμν�αβ½CPχ0σμν�γδ → δχχ0 ðð8þ a1εÞPαδ
χ Pγβ

χ

− ð4þ a2εÞPαβ
χ Pγδ

χ0 Þ; ð29Þ

with a1 and a2 being arbitrary. The choice a1 ¼ a2 ¼ 0
ensures that σμν ⊗ σμν is kept equal to its D ¼ 4 Fierz
transform. Conversely, γμγν ⊗ γμγν is not kept equal to its
D ¼ 4 Fierz transform with a1 ¼ a2 ¼ 0. The necessity of
breaking one or the other Fierz relation follows from the
well-known property that contraction of a tensor operator
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with gμν does not commute with renormalization of the
dimensionally regularized tensor operator [78].
Working in a dimensionally regularized theory, it is

important to distinguish between counterterms in the span
of the D ¼ 4 basis operators QI in D dimensions, and
counterterms that are linearly independent in D dimen-
sions. A convenient basis is found by including QI along
with a set of evanescent operators EI that vanish in D ¼ 4
but are needed as counterterms to renormalize matrix
elements of QI . For example, renormalization of Q1

requires a counterterm insertion of

Ea
1 ¼ ðψCPRσμνiτ2ψÞðψCPRσμνiτ2ψÞðψCPRiτ2τþψÞTSSS

− 12Q1: ð30Þ

The evanescent operator Ea
1 vanishes in D ¼ 4 by Eq. (28),

color-flavor Fierz relations, and the D ¼ 4 Fierz relation

Q1 ¼D¼4 ~Q1. Because Eq. (28) is broken in dimensional
regularization, it is possible that loop-level corrections will
introduceOðαsÞ contributions to matrix elements of Ea

1 that
do not vanish in D ¼ 4. Explicit calculation demonstrates
that this possibility is realized. The nonvanishing one-loop
contributions are Oðε0Þ and arise from 1=ε̄ poles in one-
loop integrals multiplied byOðεÞ-suppressed differences in
Dirac algebra for the two terms on the rhs of Eq. (30). In a
naive definition of the MS renormalization scheme, matrix
elements of RG evolved physical operators will include
nonvanishing contributions from renormalized evanescent
operators.
Following Ref. [59], we adopt a definition of the MS

renormalization scheme in which the renormalized evan-
escent operators EI mixing withQI under RG evolution are
defined to include finite Oðε0Þ counterterms. These coun-
terterms are chosen to make loop-level matrix elements of
EI vanish in D ¼ 4 at a particular scale μ. It is proven in
Refs. [83,84] that this is sufficient to make renormalized
matrix elements of generic four-quark evanescent operators
vanish at all scales. Extension of this proof to six-quark
operators is straightforward and is discussed in Sec. VI.
The basis used here for the EI needed as one-loop
counterterms for QI is explicitly presented in
Appendix C. Physical observables are independent of
the evanescent basis, but renormalized Wilson coefficients
and matrix elements separately are not. It is therefore
imperative that this same basis is used for loop-level BSM
matching calculations. This subtlety is irrelevant for tree-
level BSM matching calculations.
Inclusion of MS counterterms in this scheme is equiv-

alent to replacing all terms involving σ ⊗ σ=ε̄ with their
D ¼ 4 Fierz transforms plus the evanescent operators of
Appendix C, for instance

1

ε̄
ðψCPRσμνiτ2ψÞðψCPRσμνiτ2ψÞðψCPRiτ2τþÞTSSS

þ ðMScountertermÞ ¼ 1

ε̄
12Q1 þ

1

ε̄
Ea
1: ð31Þ

Inclusion of these counterterms leads to mixing betweenQI
and EI and we must enlarge our basis of renormalized
operators to

0
BB@

QIðμÞ
EIðμÞ

..

.

1
CCA ¼

0
BB@

ZIIðμÞ ZIEI
ðμÞ � � �

ZEIIðμÞ ZEIEI
ðμÞ

..

. . .
.

1
CCA
0
BB@

Q0
I

E0
I

..

.

1
CCA

¼ ẐIðμÞ

0
BB@

Q0
I

E0
I

..

.

1
CCA; ð32Þ

where the ellipses indicate that increasingly many evan-
escent operators are required to form a complete basis
for RG evolution at increasingly high loop order. We are
specializing to the case of no mixing between the QI or
between the EI , extension to the general case is
straightforward.

The one-loop vertex function Λð1Þ
I can now be expressed

in terms of Λð0Þ
I , tree-level vertex functions Λð0Þ

EI
built from

EI , operator counterterms δð1ÞII , and vertex functions
ΦIðp; μÞ built from the nonlocal finite terms in Eqs. (26)
and (27) including γμp ⊗ pγμ and lnðp2=μ2Þ,

Λð1Þ
I ðp; μÞ ¼

�
Lð1Þ;1
II

ε̄
þ Lð1Þ;0

II þ δð1ÞII

�
Λð0Þ
I

þ
�
Lð1Þ;1
IEI

ε̄
þ δð1ÞIEI

�
Λð0Þ
EI

þ Lð1Þ;0
IΦI

ΦIðp; μÞ

þOðεÞ; ð33Þ

where all the loop diagram coefficients Lð1Þ are pure
numbers independent of μ, p, and ε:Lð1Þ and ΦIðp; μÞ
are simply obtained by expressing vertex functions con-
structed from Eqs. (26) and (27) in the form of Eq. (33).

The one-loop vertex function Λð1Þ
EI

for EI can similarly be
expressed as

Λð1Þ
EI
ðp; μÞ ¼

�
Lð1Þ;1
EIEI

ε̄
þ δð1ÞEIEI

�
Λð0Þ
EI

þ ðLð1Þ;0
EII

þ δð1ÞEII
ÞΛð0Þ

I

þ
�
Lð1Þ;1
EIFI

ε̄
þ δð1ÞEIFI

�
Λð0Þ
FI

þOðεÞ; ð34Þ
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where FI is a new evanescent operator not included in the EI that should be included in the …’s in Eq. (32). MS
counterterms can be defined as

δMS;ð1Þ
II ¼−

Lð1Þ;1
II

ε̄
; δMS;ð1Þ

IEI
¼−

Lð1Þ;1
IEI

ε̄
; δMS;ð1Þ

EII
¼−Lð1Þ;0

EII
: ð35Þ

The bare operator Q0
I includes UV singularities due to the presence of six bare quark fields as well as the vertex function

singularities above. In order to remove all UV singularities from QIðμÞ, define

ZMS
II ðμÞ ¼ ðZMS

q ðμÞÞ−3
�
1þ δMS;ð1Þ

II

�
αsðμÞ
4π

�
þ δMS;ð2Þ

II

�
αsðμÞ
4π

�
2

þOðα3sÞ
�
; ð36Þ

where δMS;ð2Þ
II represents two-loop counterterms that will be explicitly constructed in Sec. VI. For future use, define

ZMS
IEI

ðμÞ ¼ ðZMS
q ðμÞÞ−3

�
δMS;ð1Þ
IEI

�
αsðμÞ
4π

�
þ δMS;ð2Þ

IEI

�
αsðμÞ
4π

�
2

þOðα3sÞ
�
;

ZMS
EII

ðμÞ ¼ ðZMS
q ðμÞÞ−3

�
δMS;ð1Þ
EII

�
αsðμÞ
4π

�
þ δMS;ð1Þ

EII

�
αsðμÞ
4π

�
2

þOðα3sÞ
�
;

ZMS
EIEI

ðμÞ ¼ ðZMS
q ðμÞÞ−3

�
1þ δMS;ð1Þ

EIEI

�
αsðμÞ
4π

�
þ δMS;ð2Þ

EIEI

�
αsðμÞ
4π

�
2

þOðα3sÞ
�
: ð37Þ

This completes our definition of MS operator renormaliza-
tion factors in terms of diagrammatic counterterms.
The RI-MOM operator renormalization condition should

also be modified so that RI-MOM renormalized evanescent
operators have vanishing matrix elements in D ¼ 4. This is
accomplished by adding a supplemental RI-MOM renorm-
alization condition

TrðPIΛEJ
Þ ¼ 0: ð38Þ

Combining this with the RI-MOM condition equation (20)
expanded to OðαsÞ gives

δRI;ð1ÞII ¼ −
Lð1Þ;1
II

ε̄
− Lð1Þ;0

II − Lð1Þ;0
IΦI

Tr½PIΦIðp0; μ ¼ p0Þ�;
ð39Þ

where in analogy to Eq. (36),

ZRI
II ðμÞ ¼ ðZRI

q ðμÞÞ−3
�
1þ δRI;ð1ÞII

�
αsðμÞ
4π

�
þOðα2sÞ

�
:

ð40Þ

The one-loop-matching factor rð0ÞI defined in Eq. (23)
therefore has the diagrammatic expansion

rð0ÞI ¼ δRI;ð1ÞII − δMS;ð1Þ
II − 3ZRI;ð1Þ

q ðp0Þ þ 3ZMS;ð1Þ
q ðp0Þ

¼ −Lð1Þ;0
II − Lð1Þ;0

IΦI
Tr½PIΦIðp0; μ ¼ p0Þ�

− 3ZRI;ð1Þ
q ðp0Þ þ 3ZMS;ð1Þ

q ðp0Þ: ð41Þ

Applying the diagrammatic results of the last section
gives

rð0Þ1 ¼ 101

30
−
13ξ

15
þ 8

15
ln 2þ 8ξ

3
ln 2; ð42aÞ

rð0Þ2 ¼ −
31

6
−
7ξ

3
þ 88

15
ln 2þ 56ξ

15
ln 2; ð42bÞ

rð0Þ3 ¼ −
9

10
−
8ξ

5
þ 16

5
ln 2þ 16ξ

5
ln 2; ð42cÞ

rð0Þ4 ¼ 177

10
þ 14ξ

5
−
64

5
ln 2; ð42dÞ

rð0Þ5 ¼ 49

10
þ 3ξ

5
−
24

5
ln 2þ 8ξ

5
ln 2; ð42eÞ

~rð0Þ1 ¼ −
109

30
−
13ξ

15
þ 8

15
ln 2þ 8ξ

3
ln 2; ð42fÞ

~rð0Þ3 ¼ −
79

10
−
8ξ

5
þ 16

5
ln 2þ 16ξ

5
ln 2: ð42gÞ

The final one-loop-matching results in Table I are
obtained after choosing the Landau gauge, ξ ¼ 0.

VI. TWO-LOOP RUNNING

In order to simultaneously remove large logarithms
from perturbative calculations of RI-MOM matching fac-
tors and BSM Wilson coefficients, RG evolution can be
used to relate Wilson coefficients calculated at different
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renormalization scales.7 We perform this RG evolution in
the MS scheme for simplicity, and all quantities in this
section with suppressed renormalization scheme labels are
in the MS scheme. The renormalization scale dependence
of the Wilson coefficients can be determined from the MS
anomalous dimension matrix

γIJðαsÞ ¼
1

CIðμÞ
d

d ln μ
CJðμÞ ¼

X
K

ZIKðμÞ
d

d ln μ
Z−1
KJðμÞ

≡ γð0ÞIJ

�
αsðμÞ
4π

�
þ γð1ÞIJ

�
αsðμÞ
4π

�
2

þOðα3sÞ; ð43Þ

where the first equality follows from renormalization scale
independence of Hnn̄

eff and the second defines the perturba-
tive expansion coefficients γð0Þ and γð1Þ appearing in
Eq. (2). The other factors appearing in Eq. (2) are related
to the QCD β function, defined by

d
d ln μ

αsðμÞ ¼ 2βðαs; εÞαsðμÞ ¼ ð−2εþ 2βðαsÞÞαsðμÞ

¼
�
−2ε − 2β0

αsðμÞ
4π

− 2β1

�
αsðμÞ
4π

�
2

þOðα3sÞ
�
αsðμÞ: ð44Þ

The D-independent piece of the β function has a perturba-
tive expansion that is conventionally written as

βðαsÞ ¼ −β0
�
αsðμÞ
4π

�
− β1

�
αsðμÞ
4π

�
2

þOðα3sÞ; ð45Þ

where for QCD with Nf active quark flavors the well-
known perturbative coefficients are [85–88]

β0 ¼ 11 −
2

3
Nf; β1 ¼ 102 −

38

3
Nf: ð46Þ

In MS and other minimal subtraction schemes, μ depend-
ence of ZIJ and γIJ only enters through dependence on
αsðμÞ. The differential equation in Eq. (43) can be readily
solved in a diagonal operator basis where γIJ ¼ δIJγI ,

CIðμ2Þ
CIðμ1Þ

¼ exp

�Z
μ2

μ1

γIðαsðμ0ÞÞ
dμ0

μ0

�

¼ exp

�Z
αsðμ2Þ

αsðμ1Þ

γIðα0sÞ
2βðα0sÞ

dα0s
α0s

�

¼
�
αsðμ2Þ
αsðμ1Þ

�
−γð0ÞI =ð2β0Þ�

1þ
�
β1γ

ð0Þ
I

2β20
−
γð1ÞI

2β0

�

×
αsðμ2Þ − αsðμ1Þ

4π
þOðα2sÞ

�
: ð47Þ

This equation can be used to RG evolve BSM-scale Wilson
coefficients between quark mass thresholds at which the
number of active flavors Nf decreases. In Sec. V we
introduced rIJðμÞ as the renormalization scheme matching

factor relating QMS
I and QRI

I . The renormalization scheme

invariance of Hnn̄
eff allows C

MS
I and CRI

I to be related using

rIJðμÞ. This allows us to express the U
Nf

I ðμ; p0Þ appearing
in Eq. (2) as

U
Nf

I ðμ;p0Þ ¼
CRI
I ðp0Þ

CMS
I ðμÞ

¼ CMS
I ðp0Þ
CMS
I ðμÞ

�
1− rð0ÞI

αsðp0Þ
4π

þOðα2sÞ
�

¼
�
αsðp0Þ
αsðμÞ

�
−γð0ÞI =2β0

�
1− rð0ÞI

αsðp0Þ
4π

þ
�
β1γ

ð0Þ
I

2β20
−
γð1ÞI

2β0

�
αsðp0Þ− αsðμÞ

4π
þOðα2sÞ

�
:

ð48Þ

The remainder of this section discusses the diagrammatic

evaluation of γð0ÞI , γð1ÞI .
In Sec. V B we discussed the need to remove dimen-

sional regularization artifacts by adding finite counterterms
proportional to evanescent operators EI to physical oper-
ators QI and vice versa. Without these counterterms the
renormalized EI would contribute to physical observables
and therefore to BSM matching calculations of Wilson
coefficients. With these counterterms, QI mixes under
renormalization with EI and the assumption of a diagonal
anomalous dimension matrix taken above is invalidated.
We must instead consider the renormalization scale
dependence of the infinite dimensional matrix of
Eq. (32) and define

γ̂ ¼

0
BB@

γIJ γIEI
� � �

γEII γEIEI

..

. . .
.

1
CCA: ð49Þ

Equation (47) is preserved if and only if γEII ¼ 0 to two-
loop order. A proof that γEII vanishes to all orders for
generic four-quark operators is given in Refs. [83,84] and
applies to our six-quark operators as well. This is discussed
in detail at the end of this section.
Since μ dependence of Ẑ only enters through explicit

dependence on αsðμÞ, the anomalous dimension matrix γ̂ is
given by

7See Ref. [75] for a nice review of RG evolution for weak
matrix elements including a discussion of evanescent operators.
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γ̂ ¼ −
�
μ
d
dμ

Ẑ

�
· Ẑ−1

¼ −
�
2βðαs; εÞαsðμÞ

∂
∂αs Ẑ

�
· Ẑ−1; ð50Þ

where · denotes matrix multiplication. Perturbative coef-
ficients of Ẑ defined in analogy to Eq. (43) are given by

γ̂ð0Þ ¼ 2εẐð1Þ;

γ̂ð1Þ ¼ 4εẐð2Þ − 2εẐð1Þ · Ẑð1Þ þ 2β0Ẑ
ð1Þ: ð51Þ

The anomalous dimensions of the physical operatorsQI are
therefore

γð0ÞI ¼ 2εZð1Þ
II ;

γð1ÞI ¼ 4εZð2Þ
II − 2εðZð1Þ2

II þ Zð1Þ
IEI

Zð1Þ
EII

Þ þ 2β0Z
ð1Þ
II : ð52Þ

The nontrivial effect of evanescent-counterterm subtraction

is the appearance of Zð1Þ
IEI

Zð1Þ
EII

in γð1ÞI .
The factors above are simply related to diagrammatic

counterterms. The one-loop anomalous dimension is deter-
mined by the counterterms of Sec. V B as

γð0ÞI ¼ 2εðδð1ÞII − 3Zð1Þ
q Þ; ð53Þ

which is finite atD ¼ 4. Calculation of γð1ÞI requires the 1=ε̄
pole contributions to the two-loop QI vertex functions

Λð2Þ
I ðp; μÞ ¼

�
Lð2Þ;2
II

ε̄2
þ Lð2Þ;1

II

ε̄
þ δð2ÞII

�
Λð0Þ
I

þ
�
Lð2Þ;2
IEI

ε̄2

�
Λð0Þ
EI

þ
�
Lð2Þ;2
IFI

ε̄2

�
Λð0Þ
FI

þOðε0Þ:

ð54Þ

Including one-loop counterterm diagrams with insertions

of δð1ÞII as well as quark self-energy, gluon self-energy, and
quark-gluon-vertex counterterms ensures that nonlocal

divergences are canceled and Lð2Þ;1
II is a pure number.

The two-loop MS counterterm is then defined as

δð2ÞII ¼ −
Lð2Þ;2
II

ε̄2
−
Lð2Þ;1
II

ε̄
: ð55Þ

We can then use Eqs. (36) and (37) to express the Z factors
appearing in Eq. (52) in terms of these counterterms,

γð1ÞI ¼ 4εðδð2ÞII − 3Zð2Þ
q Þ − 2εðδð1Þ2II þ δð1ÞIEI

δð1ÞEII
− 3Zð1Þ2

q Þ
þ 2β0ðδð1ÞII − 3Zð1Þ

q Þ: ð56Þ

Two-loop counterterms include 1=ε̄2 contributions, so
the various terms in Eq. (56) are divergent in D ¼ 4.
Renormalizability of composite operators in the MS
scheme guarantees that matrix elements of QIðμÞ are
free of UV divergences at all renormalization scales and
therefore that γI is finite order by order [78]. This means
that divergences must cancel between the terms of
Eq. (56).8 After this cancellation, the anomalous dimension
is given by

γð1ÞI ¼ −4Lð2Þ;1
II − 12Zð2Þ;1

q þ 2Lð1Þ;1
IEI

Lð1Þ;0
EII

≡ −4½Ltot�ð2Þ;1II − 12Zð2Þ;1
q ; ð57Þ

where Zð2Þ;1
q is the 1=ε̄ piece of Eq. (16).

It was noticed in Ref. [59] that the finite contributions to

γð1ÞI from mixing with evanescent operators contribute
exactly like an additional counterterm diagrams apart from

the relative factor of ð−1=2Þ between Lð2Þ;1
II and Lð1Þ;1

IEI
Lð1Þ;0
EII

in Eq. (57). As discussed after Eq. (54), Lð2Þ
II includes

contributions with one-loop counterterm diagrams contain-

ing insertions of δð1ÞII . Suppose for each of these one-loop
counterterm diagrams we include an additional counterterm

diagram with an insertion of ð1=2Þδð1ÞEII
¼ ð−1=2ÞLð1Þ;0

EII
.

These diagrams make a 1=ε̄ pole contribution of

ð−1=2ÞLð1Þ;1
IEI

Lð1Þ;0
EII

=ε̄. Including these additional one-loop

counterterm diagrams with insertion of ð1=2Þδð1ÞEII
therefore

shifts the 1=ε̄ single-pole part of Λð2Þ
I to

½Ltot�ð2Þ;1II ¼ Lð2Þ;1
II −

1

2
Lð1Þ;1
IEI

Lð1Þ;0
EII

; ð58Þ

the factor appearing directly in Eq. (57).
To ensure a proper treatment of two-loop subdivergences

and verify cancellation of nonlocal divergences diagram by
diagram, each two-loop diagram should be combined with
a one-loop counterterm diagram in which any divergent
one-loop subdiagram present is replaced by a one-loop
counterterm that cancels the subdivergence. To provide this
cancellation diagram by diagram, the one-loop counterterm
must have the same color structure as the one-loop subdia-
gram. For subdiagrams with the topology of a one-loop
self-energy or vertex correction, the color structure of
the subdiagram is a simple multiple of the corresponding

8A potential point of confusion: if one naively takes Eq. (51)
with Ẑ replaced by Z−1

q as a formula for the two-loop quark field
anomalous dimension and inserts Eq. (16), 1=ε̄2 divergences do
not cancel. The subtlety is that Zq depends on the gauge
parameter ξ, which in turn depends on the renormalization scale
[78]. When Eq. (50) is modified to include this additional source
of renormalization scale dependence, the resulting quark field
anomalous dimension is indeed finite.
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tree-level color structure, and this procedure is straightfor-
ward. For subdiagrams with the topology of a one-loop
operator correction d ¼ 1–3, the color structure of the
subdiagram differs from the tree-level operator color
structure, and care must be taken. In particular, the physical
operator counterterm associated with each d ¼ 1–3 subdia-
gram must precisely reproduce that subdiagram’s contri-

bution to δð1ÞII inD dimensions. This means that the operator
used for each physical operator counterterm must be
proportional to QI in D dimensions.
To produce physical operator counterterms proportional

to QI in D dimensions, it is necessary but not sufficient
that all appearances of σ ⊗ σ in d ¼ 1–3 subdiagrams are
replaced in one-loop counterterm diagrams by trivial spin
structures containing only the identity matrix. A convenient
prescription that meets this necessary criterion is to use
Eq. (29) with a1 ¼ a2 ¼ 0. This prescription amounts to
replacing all appearances of σ ⊗ σ in d ¼ 1–3 subdiagrams
with their D ¼ 4 Fierz transforms and clearly produces
one-loop counterterm diagrams with the same color struc-
tures as each two-loop diagram. However, one-loop coun-
terterms defined by this prescription are not proportional
to QI in D dimensions and instead differ by terms propor-
tional to ðQ1 − ~Q1Þ and ðQ3 − ~Q3Þ. Applying the pre-
scription of Eq. (29) with a1 ¼ a2 ¼ 0 to the one-loop
amplitude defines a basis E0

I different from the one-loop
counterterm basis EI . For example, the operator Ea0

1 is
given by

ðψCPRσμνiτ2ψÞðψCPRσμνiτ2ψÞðψCPRiτ2τþψÞTSSS

≡ 8ðψα½CPR�αδiτ2ψβÞðψγ½CPR�γβiτ2ψδÞ
× ðψη½CPR�ηζiτ2τþψζÞTSSS þ Ea0

1

¼ 12Q1 − 6ðQ1 − ~Q1Þ þ Ea0
1 ; ð59Þ

where the last equality follows from color-flavor algebra.
Operators Ea0

1 , E
a0
3 , ~E

0
1, and ~E0

3 differ from their unprimed
counterparts by factors of ðQ1 − ~Q1Þ and ðQ3 − ~Q3Þ as
seen for Ea0

1 by comparing Eqs. (59) and (30). The
remaining operators needed to define the E0

I basis and
its relation to the EI basis are explicitly presented in
Appendix C.
In the E0

I basis, the total physical plus evanescent one-
loop operator counterterm associated with two-loop dia-
grams d ¼ 4–6, 16–24, and 32–45 containing d ¼ 1–3
subdiagrams is simply given by minus the pole part of the
subdiagram with appearances of σ ⊗ σ replaced by

σ ⊗ σ →
1

2
ðσ ⊗ σ þ F½σ ⊗ σ�Þ; ð60Þ

where F½σ ⊗ σ� is given by the rhs of Eq. (29) with
a1 ¼ a2 ¼ 0. The total 1=ε̄ single-pole contribution given
by a diagrammatic two-loop calculation using this

prescription we denote ½L0
tot�ð2Þ;1II and is related to

½Ltot�ð2Þ;1II by

½Ltot�ð2Þ;1ÞII ¼ ½L0
tot�ð2Þ;1II −

1

2
Lð1Þ
IEI

ðLð1Þ;0
EII

− Lð1Þ;0
E0
II

Þ: ð61Þ

The change of evanescent basis factors appearing in
Eq. (61) can be immediately obtained from one-loop

results for ðrð0Þ1 − ~rð0Þ1 Þ and ðrð0Þ3 − ~rð0Þ3 Þ and are given in
Appendix C. We have explicitly verified that after includ-
ing these change of evanescent basis factors the total
contribution of one-loop physical operator counterterm
diagrams is equal to the sum of one-loop counterterm

diagrams with insertions of δð1ÞII .
With this evanescent-counterterm diagram prescriptions

in hand, diagrammatic calculation of the E0
I basis contri-

butions to γð1ÞI proceeds as described in Sec. VA and
Appendixes A–D. There are 320 contributing two-loop
diagrams, organized into independent classes d ¼ 4–46
in Fig. 1. The total number of two-loop diagrams can be
determined through straightforward combinatoric argu-
ments, for example there are ð6

3
Þ ¼ 20 diagrams involving

a three-gluon vertex with gluon lines attached to three
separate quark lines and ð6

2
Þ2 − 1

2
ð6
2
Þð4

2
Þ ¼ 180 diagrams

involving planar one-gluon exchange between two quark
pairs. The remaining diagram types can be grouped in
multiples of ð6

2
Þ ¼ 15, the number of one-loop diagrams. As

a check on the completeness of the set of diagrams included
in this work, we have verified that the number of diagrams
in all classes shown in Fig. 1 agrees with the results of
the automated Feynman diagram generation program
QGRAF [82].9

Diagrams 4–31 contribute to NNLO renormalization of
scalar four-quark operators, and many also contribute to
renormalization of three-quark operators. We have adopted
the same numbering scheme for these diagrams used
in Refs. [59,61], and have verified that our results for
these diagrams agree with the scalar four-quark operator
results of Ref. [61] after changing to the appropriate
evanescent operator basis (the “Greek projection” basis,
see Appendix A). Diagrams 32–46 are new. For future

9For reference, we note that a two-loop QGRAF analysis of a
process with six incoming quark fields interacting with standard
QCD Feynman rules plus a six-quark vertex provides 350 one-
particle-irreducible diagrams excluding “tadpoles” and “snails.”
Forty-five of these are gluon-self-energy diagrams that are only
counted as 15 diagrams, each containing an insertion of the
complete one-loop gluon-self-energy bubble, in Fig. 1. Organ-
izing a QGRAF analysis with three incoming quarks and three
incoming conjugate antiquarks requires more care; a QGRAF

analysis including three incoming quarks and three incoming
antiquarks interacting with a six-point vertex produces an
additional 90 spurious penguin diagrams with baryon-number-
violating quark-conjugate-antiquark annihilation into gluons.
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TABLE III. NDR 1=ε̄ pole structure of the diagram amplitudes in Feynman gauge without color factors. d labels the diagrams classes
of Fig. 1, Nd is the number of diagrams within class d, δχ ≡ δχ1χ2 , and Δχ ≡ δχ1χ2δχ2χ3 . Evanescent counterterms in the E0

I basis defined
by applying Eq. (60) to divergent subdiagrams are included in these results.

1 ⊗ 1 ⊗ 1 σ ⊗ σ ⊗ 1 1 ⊗ σ ⊗ σ σ ⊗ 1 ⊗ σ σ ⊗ σ ⊗ σ

d Nd 1=ε̄2 1=ε̄ 1=ε̄2 1=ε̄ 1=ε̄2 1=ε̄ 1=ε̄2 1=ε̄ 1=ε̄2 1=ε̄

1 3 � � � −4 � � � 0 � � � 0 � � � 0 � � � 0
2 6 � � � −1 � � � 1=4 � � � 0 � � � 0 � � � 0
3 6 � � � −1 � � � −1=4 � � � 0 � � � 0 � � � 0
4 3 −8 8 0 0 0 0 0 0 0 0
5 6 ð−1 − 3δχÞ=2 ð5þ 3δχÞ=4 1=2 −1=2 0 0 0 0 0 0
6 6 ð−1 − 3δχÞ=2 ð5þ 10δχÞ=4 −1=2 15=16 0 0 0 0 0 0
7 3 0 −2 0 0 0 0 0 0 0 0
8 6 0 −2þ 3δχ 0 1=4 0 0 0 0 0 0
9 6 0 −2þ 3δχ 0 −1=4 0 0 0 0 0 0
10 6 2 2 0 0 0 0 0 0 0 0
11 12 1=2 0 −1=8 −5=16 0 0 0 0 0 0
12 12 1=2 0 1=8 5=16 0 0 0 0 0 0
13 6 −2 1 0 0 0 0 0 0 0 0
14 12 −1=2 0 1=8 1=16 0 0 0 0 0 0
15 12 −1=2 0 −1=8 −1=16 0 0 0 0 0 0
16 12 −2 1þ 7δχ=4 0 −1=16 0 0 0 0 0 0
17 12 −2 −1 1=2 1=2 0 0 0 0 0 0
18 12 −2 1 − 7δχ=4 0 1=16 0 0 0 0 0 0
19 12 −2 −1 −1=2 −1=2 0 0 0 0 0 0
20 12 −1=2þ 3δχ=2 ð3 − 3δχÞ=4 −1=4 1=8 0 0 0 0 0 0
21 12 −1=2þ 3δχ=2 ð3 − 10δχÞ=4 1=4 −9=16 0 0 0 0 0 0
22 3 −16 0 0 0 0 0 0 0 0 0
23 3 −1 − 3δχ 0 1 0 0 0 0 0 0 0
24 3 −1 − 3δχ 7δχ=2 −1 7=8 0 0 0 0 0 0
25 6 −6 5 0 0 0 0 0 0 0 0
26 12 −3=2 1=2 3=8 1=16 0 0 0 0 0 0
27 12 −3=2 1=2 −3=8 −1=16 0 0 0 0 0 0
28 12 0 0 0 3=4 0 0 0 0 0 0
29 3 15=2 − Nf −13þ 4Nf=3 0 0 0 0 0 0 0 0
30 6 0 0 −5=8þ Nf=12 17=48 − Nf=72 0 0 0 0 0 0
31 6 0 0 5=8 − Nf=12 −17=48þ Nf=72 0 0 0 0 0 0
32 6 −4 0 1 0 0 0 0 0 0 0
33 6 −4 0 −1 0 0 0 0 0 0 0
34 6 −1=2 0 1=8 1=16 −Δχ=8 −1=16þ Δχ=16 1=8 −1=16 −1=8 0
35 6 −1=2 0 1=8 1=16 Δχ=8 1=16 − Δχ=16 −1=8 1=16 1=8 0
36 6 −1=2 0 1=8 1=16 −Δχ=8 −1=16þ Δχ=16 1=8 −1=16 1=8 0
37 6 −1=2 0 1=8 1=16 Δχ=8 1=16 − Δχ=16 −1=8 1=16 −1=8 0
38 6 −1=2 0 −1=8 −1=16 −Δχ=8 −1=16þ Δχ=16 −1=8 1=16 −1=8 0
39 6 −1=2 0 −1=8 −1=16 Δχ=8 1=16 − Δχ=16 1=8 −1=16 1=8 0
40 6 −1=2 0 −1=8 −1=16 −Δχ=8 −1=16þ Δχ=16 −1=8 1=16 1=8 0
41 6 −1=2 0 −1=8 −1=16 Δχ=8 1=16 − Δχ=16 1=8 −1=16 −1=8 0
42 6 −1 0 1=4 0 −Δχ=4 0 1=4 0 −1=4 0
43 6 −1 0 1=4 0 Δχ=4 0 −1=4 0 1=4 0
44 6 −1 0 −1=4 0 Δχ=4 0 1=4 0 1=4 0
45 6 −1 0 −1=4 0 −Δχ=4 0 −1=4 0 −1=4 0
46 8 0 0 0 0 0 0 0 0 0 3=8
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calculations, it is interesting to note that there are no
additional two-loop diagram classes appearing for oper-
ators with more than six quarks. In principle the two-loop
anomalous dimension of any ΔB ¼ N operator composed
of a product of scalar diquarks could be computed from the
results of Table III, combinatorics, and group theory.
After including all appropriate one-loop counterterms,

including the E0
I evanescent counterterms defined by

Eq. (60), the 1=ε̄ pole part of each diagram can be
decomposed into a color factor for each diagram times a
linear combination of Dirac structures that is identical up to
diquark permutations for all diagrams in the class. The pole
parts of these Dirac structures are shown in Table III, and
the corresponding color factor for a representative diagram
is shown in Table IV. The 1=ε̄ pole coefficients of the
combined spin-color tensors with nonvanishing contribu-
tions to TAAS operators are shown in Table V. The
corresponding pole coefficients contributing to TSSS oper-
ators are shown in Table VI. After reintroducing quark
fields and flavor tensors for a given operator by Eq. (25),
the resulting pole structures for each operator are related
by Eq. (C1) to a multiple of the original operator plus

irrelevant contributions to Lð2Þ;2
IEI

.
When the dust settles, these diagrammatic contributions

sum to Lð2Þ;2
II =ε̄2 þ ½L0

tot�ð2Þ;1II =ε̄. We have explicitly verified

that the 1=ε̄2 contributions to δð2ÞII cancel with the other
divergent terms in Eq. (56). This provides a highly non-
trivial check on the calculation. The physical anomalous
dimensions are then given by Eq. (57) as

γð1Þ1 ¼ 335

3
−
34Nf

9
; ð62aÞ

γð1Þ2 ¼ 91

3
−
26Nf

9
; ð62bÞ

γð1Þ3 ¼ 64 −
10Nf

3
; ð62cÞ

γð1Þ4 ¼ 229 −
46Nf

3
; ð62dÞ

γð1Þ5 ¼ 238 − 14Nf; ð62eÞ

~γð1Þ1 ¼ 797

3
−
118Nf

9
; ð62fÞ

~γð1Þ3 ¼ 218 −
38Nf

3
: ð62gÞ

In the MS scheme used in this work, Fierz-conjugate
operators Q1, ~Q1 and Q3, ~Q3 are equal in D ¼ 4 but
do not have identical two-loop anomalous dimensions.
Conversely, to be regularization independent the RI-MOM

TABLE IV. Single diagram color factors corresponding to the
explicit diagrams in Fig. 1. This table alleviates potential sign and
coefficient ambiguity in Table III due to the choice of color terms
factored out. TðijÞðklÞfmng represents TAAS

½ij�½kl�fmng or TSSS
fijgfklgfmng

depending on which operator is inserted in the diagram.

d Color Factor

1 1
2
½TðjiÞðklÞfmng − 1

3
TðijÞðklÞfmng�

2 1
2
½TðilÞðkjÞfmng − 1

3
TðijÞðklÞfmng�

3 1
2
½TðikÞðjlÞfmng − 1

3
TðijÞðklÞfmng�

4 1
4
½− 2

3
TðjiÞðklÞfmng þ 10

9
TðijÞðklÞfmng�

5 1
4
½− 2

3
TðilÞðkjÞfmng þ 10

9
TðijÞðklÞfmng�

6 1
4
½− 2

3
TðikÞðjlÞfmng þ 10

9
TðijÞðklÞfmng�

7 1
4
½7
3
TðjiÞðklÞfmng þ 1

9
TðijÞðklÞfmng�

8 1
4
½7
3
TðilÞðkjÞfmng þ 1

9
TðijÞðklÞfmng�

9 1
4
½7
3
TðikÞðjlÞfmng þ 1

9
TðijÞðklÞfmng�

10 − 1
12
½TðjiÞðklÞfmng − 1

3
TðijÞðklÞfmng�

11 − 1
12
½TðilÞðkjÞfmng − 1

3
TðijÞðklÞfmng�

12 − 1
12
½TðikÞðjlÞfmng − 1

3
TðijÞðklÞfmng�

13 2
3
½TðjiÞðklÞfmng − 1

3
TðijÞðklÞfmng�

14 2
3
½TðilÞðkjÞfmng − 1

3
TðijÞðklÞfmng�

15 2
3
½TðikÞðjlÞfmng − 1

3
TðijÞðklÞfmng�

16 1
4
½TðjlÞðkiÞfmng − 1

3
TðjiÞðklÞfmng − 1

3
TðilÞðkjÞfmng þ 1

9
TðijÞðklÞfmng�

17 1
4
½TðliÞðkjÞfmng − 1

3
TðjiÞðklÞfmng − 1

3
TðilÞðkjÞfmng þ 1

9
TðijÞðklÞfmng�

18 1
4
½TðjkÞðilÞfmng − 1

3
TðjiÞðklÞfmng − 1

3
TðikÞðjlÞfmng þ 1

9
TðijÞðklÞfmng�

19 1
4
½TðkiÞðjlÞfmng − 1

3
TðjiÞðklÞfmng − 1

3
TðikÞðjlÞfmng þ 1

9
TðijÞðklÞfmng�

20 1
4
½TðikÞðljÞfmng − 1

3
TðikÞðjlÞfmng − 1

3
TðilÞðkjÞfmng þ 1

9
TðijÞðklÞfmng�

21 1
4
½TðilÞðjkÞfmng − 1

3
TðikÞðjlÞfmng − 1

3
TðilÞðkjÞfmng þ 1

9
TðijÞðklÞfmng�

22 1
4
½TðjiÞðlkÞfmng − 1

3
TðijÞðlkÞfmng − 1

3
TðjiÞðklÞfmng þ 1

9
TðijÞðklÞfmng�

23 1
4
½TðklÞðijÞfmng − 1

3
TðilÞðkjÞfmng − 1

3
TðkjÞðilÞfmng þ 1

9
TðijÞðklÞfmng�

24 1
4
½TðlkÞðjiÞfmng − 1

3
TðljÞðkiÞfmng − 1

3
TðikÞðjlÞfmng þ 1

9
TðijÞðklÞfmng�

25 − 3
4
½TðjiÞðklÞfmng − 1

3
TðijÞðklÞfmng�

26 − 3
4
½TðilÞðkjÞfmng − 1

3
TðijÞðklÞfmng�

27 − 3
4
½TðikÞðjlÞfmng − 1

3
TðijÞðklÞfmng�

28 1
4
½TðjlÞðkiÞfmng − TðliÞðkjÞfmng�

29 1
2
½TðjiÞðklÞfmng − 1

3
TðijÞðklÞfmng�

30 1
2
½TðilÞðkjÞfmng − 1

3
TðijÞðklÞfmng�

31 1
2
½TðikÞðjlÞfmng − 1

3
TðijÞðklÞfmng�

32 1
4
½TðilÞðkjÞfnmg − 1

3
TðilÞðkjÞfmng − 1

3
TðijÞðklÞfnmg þ 1

9
TðijÞðklÞfmng�

33 1
4
½TðljÞðkiÞfnmg − 1

3
TðljÞðkiÞfmng − 1

3
TðijÞðklÞfnmg þ 1

9
TðijÞðklÞfmng�

34 1
4
½TðinÞðkjÞfmlg − 1

3
TðilÞðkjÞfmng − 1

3
TðinÞðklÞfmjg þ 1

9
TðijÞðklÞfmng�

35 1
4
½TðimÞðkjÞflng − 1

3
TðilÞðkjÞfmng − 1

3
TðimÞðklÞfjng þ 1

9
TðijÞðklÞfmng�

36 1
4
½TðmjÞðilÞfkng − 1

3
TðkjÞðilÞfmng − 1

3
TðmjÞðklÞfing þ 1

9
TðijÞðklÞfmng�

37 1
4
½TðnjÞðilÞfmkg − 1

3
TðkjÞðilÞfmng − 1

3
TðnjÞðklÞfmig þ 1

9
TðijÞðklÞfmng�

38 1
4
½TðimÞðjlÞfkng − 1

3
TðikÞðjlÞfmng − 1

3
TðimÞðklÞfjng þ 1

9
TðijÞðklÞfmng�

39 1
4
½TðinÞðjlÞfmkg − 1

3
TðikÞðjlÞfmng − 1

3
TðinÞðklÞfmjg þ 1

9
TðijÞðklÞfmng�

40 1
4
½TðnjÞðkiÞfmlg − 1

3
TðljÞðkiÞfmng − 1

3
TðnjÞðklÞfmig þ 1

9
TðijÞðklÞfmng�

41 1
4
½TðmjÞðkiÞflng − 1

3
TðljÞðkiÞfmng − 1

3
TðmjÞðklÞfing þ 1

9
TðijÞðklÞfmng�

42 1
4
½TðmlÞðkjÞfing − 1

3
TðilÞðkjÞfmng − 1

3
TðmjÞðklÞfing þ 1

9
TðijÞðklÞfmng�

43 1
4
½TðnlÞðkjÞfmig − 1

3
TðilÞðkjÞfmng − 1

3
TðnjÞðklÞfmig þ 1

9
TðijÞðklÞfmng�

44 1
4
½TðmkÞðjlÞfing − 1

3
TðikÞðjlÞfmng − 1

3
TðmjÞðklÞfing þ 1

9
TðijÞðklÞfmng�

45 1
4
½TðnkÞðjlÞfmig − 1

3
TðikÞðjlÞfmng − 1

3
TðnjÞðklÞfmig þ 1

9
TðijÞðklÞfmng�

46 1
4
½TðinÞðkjÞfmlg − TðilÞðknÞfmjg�
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TABLE V. Pole structure for TAAS operators Q1, Q2, Q3 in the E0
I evanescent basis. As before, d labels the diagram class. Unlike

Table III, the remaining columns include the total contribution from all diagrams in the class. Only spin-color tensors with index
symmetries appropriate for these operators are shown. δ1A ≡ δχ1χ2 , δ

2
A ≡ δχ2χ3 þ δχ1χ3 .

ð1 ⊗ 1 ⊗ 1ÞTAAS ðσ ⊗ σ ⊗ 1ÞTSSS ð1 ⊗ σ ⊗ σÞTASA þ ðσ ⊗ 1 ⊗ σÞTSAA

d 1=ε̄2 1=ε̄ 1=ε̄2 1=ε̄ 1=ε̄2 1=ε̄

1 � � � 4 � � � 0 � � � 0
2 � � � 3=2 � � � −1=8 � � � −1=8
3 � � � 3=2 � � � −1=8 � � � −1=8
4 −8 8 0 0 0 0
5 ð−11 − 7δ1A − 13δ2AÞ=12 ð55þ 7δ1A þ 13δ2AÞ=24 1=12 −1=12 1=12 −1=12
6 ð−11 − 7δ1A − 13δ2AÞ=12 ð165þ 70δ1A þ 130δ2AÞ=72 1=12 −5=32 1=12 −5=32
7 0 1 0 0 0 0
8 0 ð10þ 23δ1A − 19δ2AÞ=12 0 −7=48 0 −7=48
9 0 ð10þ 23δ1A − 19δ2AÞ=12 0 −7=48 0 −7=48
10 2=3 2=3 0 0 0 0
11 1=4 0 −1=48 −5=96 −1=48 −5=96
12 1=4 0 −1=48 −5=96 −1=48 −5=96
13 16=3 −8=3 0 0 0 0
14 2 0 −1=6 −1=12 −1=6 −1=12
15 2 0 −1=6 −1=12 −1=6 −1=12
16 −2=3 ð24 − 28δ1A þ 35δ2AÞ=72 0 1=48 0 −1=96
17 −2=3 −1=3 1=3 1=3 1=12 1=12
18 −2=3 ð24þ 28δ1A − 35δ2AÞ=72 0 1=48 0 −1=96
19 −2=3 −1=3 1=3 1=3 1=12 1=12
20 ð−1 − 13δ1A þ 8δ2AÞ=12 ð3þ 13δ1A − 8δ2AÞ=24 1=8 −1=16 0 0
21 ð−1 − 13δ1A þ 8δ2AÞ=12 ð9þ 130δ1A − 80δ2AÞ=72 1=8 −9=32 0 0
22 0 0 0 0 0 0
23 ð−5 − 7δ1A − 4δ2AÞ 0 1=12 0 1=3 0
24 ð−5 − 7δ1A − 4δ2AÞ ð49δ1A þ 28δ2AÞ=72 1=12 −7=96 1=3 −7=24
25 −18 15 0 0 0 0
26 −27=4 9=4 9=16 3=32 9=16 3=32
27 −27=4 9=4 9=16 3=32 9=16 3=32
28 0 0 0 −3=4 0 0
29 −15=2þ Nf 13 − 4Nf=3 0 0 0 0
30 0 0 5=16 − Nf=24 −17=96þ Nf=144 5=16 − Nf=24 −17=96þ Nf=144
31 0 0 5=16 − Nf=24 −17=96þ Nf=144 5=16 − Nf=24 −17=96þ Nf=144
32 −14=3 0 −1=6 0 1=3 0
33 −14=3 0 −1=6 0 1=3 0
34 1=48 0 ð10 − 3ΔχÞ=192 ð−1þ ΔχÞ=128 ð10 − 3ΔχÞ=192 ð−1þ ΔχÞ=128
35 1=48 0 ð10 − 3ΔχÞ=192 ð−1þ ΔχÞ=128 ð10 − 3ΔχÞ=192 ð−1þ ΔχÞ=128
36 1=48 0 ð10 − 3ΔχÞ=192 ð−1þ ΔχÞ=128 ð10 − 3ΔχÞ=192 ð−1þ ΔχÞ=128
37 1=48 0 ð10 − 3ΔχÞ=192 ð−1þ ΔχÞ=128 ð10 − 3ΔχÞ=192 ð−1þ ΔχÞ=128
38 1=48 0 ð10 − 3ΔχÞ=192 ð−1þ ΔχÞ=128 ð10 − 3ΔχÞ=192 ð−1þ ΔχÞ=128
39 1=48 0 ð10 − 3ΔχÞ=192 ð−1þ ΔχÞ=128 ð10 − 3ΔχÞ=192 ð−1þ ΔχÞ=128
40 1=48 0 ð10 − 3ΔχÞ=192 ð−1þ ΔχÞ=128 ð10 − 3ΔχÞ=192 ð−1þ ΔχÞ=128
41 1=48 0 ð10 − 3ΔχÞ=192 ð−1þ ΔχÞ=128 ð10 − 3ΔχÞ=192 ð−1þ ΔχÞ=128
42 −11=24 0 ð10 − 3ΔχÞ=96 0 ð−2 − 9ΔχÞ=96 0
43 −11=24 0 ð10 − 3ΔχÞ=96 0 ð−2 − 9ΔχÞ=96 0
44 −11=24 0 ð10 − 3ΔχÞ=96 0 ð−2 − 9ΔχÞ=96 0
45 −11=24 0 ð10 − 3ΔχÞ=96 0 ð−2 − 9ΔχÞ=96 0
46 0 0 0 0 0 0
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TABLE VI. Pole structure for TSSS operators Q4, Q5, ~Q1, ~Q3 analogous to Table V. δS ≡ δχ1χ2 þ δχ2χ3 þ δχ1χ3 .

ð1 ⊗ 1 ⊗ 1ÞTSSS ðσ ⊗ σ ⊗ 1ÞTAAS þ ð1 ⊗ σ ⊗ σÞTSAA þ ðσ ⊗ 1 ⊗ σÞTASA ðσ ⊗ σ ⊗ σÞTAAA

d 1=ε̄2 1=ε̄ 1=ε̄2 1=ε̄ 1=ε̄2 1=ε̄

1 � � � −4 � � � 0 � � � 0
2 � � � 5=2 � � � −3=8 � � � 0
3 � � � 5=2 � � � −3=8 � � � 0
4 −8=3 8=3 0 0 0 0
5 ð−13 − 13δSÞ=12 ð65þ 13δSÞ=24 1=4 −1=4 0 0
6 ð−13 − 13δSÞ=12 ð195þ 130δSÞ=72 1=4 −15=32 0 0
7 0 −11=3 0 0 0 0
8 0 ð38 − 19δSÞ=12 0 −7=16 0 0
9 0 ð38 − 19δSÞ=12 0 −7=16 0 0
10 −2=3 −2=3 0 0 0 0
11 5=12 0 −1=16 −5=32 0 0
12 5=12 0 −1=16 −5=32 0 0
13 −16=3 8=3 0 0 0 0
14 10=3 0 −1=2 −1=4 0 0
15 10=3 0 −1=2 −1=4 0 0
16 10=3 ð−60 − 35δSÞ=36 0 −1=8 0 0
17 10=3 5=3 −1=2 −1=2 0 0
18 10=3 ð−60þ 35δSÞ=36 0 −1=8 0 0
19 10=3 5=3 −1=2 −1=2 0 0
20 ð1 − δSÞ=12 ð−3þ δSÞ=24 −3=8 3=16 0 0
21 ð1 − δSÞ=12 ð−9þ 10δSÞ=72 −3=8 27=32 0 0
22 −16=3 0 0 0 0 0
23 ð−13 − 13δSÞ=12 0 1=4 0 0 0
24 ð−13 − 13δSÞ=12 91δS=72 1=4 −7=32 0 0
25 18 −15 0 0 0 0
26 −45=4 15=4 27=16 9=32 0 0
27 −45=4 15=4 27=16 9=32 0 0
28 0 0 0 9=4 0 0
29 15=2 − Nf −13þ 4Nf=3 0 0 0 0
30 0 0 15=16 − Nf=8 −17=32þ Nf=48 0 0
31 0 0 15=16 − Nf=8 −17=32þ Nf=48 0 0
32 10=3 0 −1=2 0 0 0
33 10=3 0 −1=2 0 0 0
34 −25=48 0 ð10 − 3ΔχÞ=64 ð−3þ 3ΔχÞ=128 −9=32 0
35 −25=48 0 ð10 − 3ΔχÞ=64 ð−3þ 3ΔχÞ=128 −9=32 0
36 −25=48 0 ð10 − 3ΔχÞ=64 ð−3þ 3ΔχÞ=128 −9=32 0
37 −25=48 0 ð10 − 3ΔχÞ=64 ð−3þ 3ΔχÞ=128 −9=32 0
38 −25=48 0 ð10 − 3ΔχÞ=64 ð−3þ 3ΔχÞ=128 −9=32 0
39 −25=48 0 ð10 − 3ΔχÞ=64 ð−3þ 3ΔχÞ=128 −9=32 0
40 −25=48 0 ð10 − 3ΔχÞ=64 ð−3þ 3ΔχÞ=128 −9=32 0
41 −25=48 0 ð10 − 3ΔχÞ=64 ð−3þ 3ΔχÞ=128 −9=32 0
42 −25=24 0 ð10 − 3ΔχÞ=32 0 −9=16 0
43 −25=24 0 ð10 − 3ΔχÞ=32 0 −9=16 0
44 −25=24 0 ð10 − 3ΔχÞ=32 0 −9=16 0
45 −25=24 0 ð10 − 3ΔχÞ=32 0 −9=16 0
46 0 0 0 0 0 9=4
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scheme cannot assign different anomalous dimensions to
operators identical in D ¼ 4.10 Two-loop RI-MOM anoma-
lous dimensions are gauge dependent and depend on the
external state appearing in the RI-MOM renormalization

condition, but γð1Þ;RII should be independent of evanescent
basis and equal for Fierz-conjugate operators. The two-loop
RI-MOM anomalous dimension

γð1Þ;RII ¼ γð1Þ;MS
I þ 2β0r

ð0Þ
I ð63Þ

can be shown to be independent of the renormalization
scheme and evanescent basis used to define counterterms
[75,89]. This provides a pair of consistency conditions,

γRI;ð1Þ1 ¼ ~γRI;ð1Þ1 ; γRI;ð1Þ3 ¼ ~γRI;ð1Þ3 ; ð64Þ

that can be readily verified to hold for the results of
Eqs. (42) and (62) in a general Rξ gauge. Equation (64)
provides a useful check on our calculation, and particularly

on evanescent contributions to γð1ÞI that cannot spoil the
1=ε̄2 cancellation consistency check. In particular, we
observe that violations of Eq. (64) and the 1=ε̄2 poles
cancel independently from the following sets of diagrams:
f4–6; 16–24; 32–45g containing d ¼ 1–3 subdiagrams;
f7–9g containing crossed gluon lines; f28; 46g containing
three-gluon vertices and no divergent subdiagrams; and
f10–15; 25–27; 29–31g combined with the one-loop con-

tribution 2β0r
ð0Þ
I and one- and two-loop wave function

renormalization.
It remains to verify that γEII ¼ 0. At one-loop order

γð0ÞEII
¼ 2εδð1ÞEII

: ð65Þ

Since δð1ÞEII
¼ −Lð1Þ;0

EII
is a finite counterterm, γð0ÞEII

trivially
vanishes at D ¼ 4. At two-loop order

γð1ÞEII
¼ 4εδð2ÞEII

− 2εðδð1ÞEII
δð1ÞII þ δð1ÞEIEI

δð1ÞEII
Þ þ 2β0δ

ð1Þ
EII

: ð66Þ

Vanishing of γð1ÞEII
is less trivial. References [83,84] prove

that for generic four-quark operators a strictly stronger
statement is in fact true: the analog of γ̂ is upper triangular
to all orders. The argument of Herrlich and Nierste in
Ref. [84] is quite general and only relies on cancellation of
nonlocal divergences and OðεÞ suppression of diagrams
with evanescent operator insertions. We briefly review their
argument to demonstrate that it applies to our six-quark
operators without modification.
The evanescent operators EI vanish in D ¼ 4 by

spin-color-flavor Fierz transformations. The one-loop

counterterm δð1ÞEII
therefore includesOðεÞ-suppressed tensor

algebra and can only include contributions nonvanishing in
D ¼ 4 from terms that have received a 1=ε̄ enhancement

from loop integrals. δð1ÞEII
is therefore Oðε0Þ, and one-loop

counterterm diagrams with insertions of δð1ÞEII
only make 1=ε̄

pole contributions to γð1ÞEII
from terms that receive additional

1=ε̄ integral enhancements. This implies that the only 1=ε̄

pole contributions to γð1ÞEII
from δð1ÞEII

δð1ÞII and δð1ÞEIEI
δð1ÞEII

are
single poles and arise from integral contributions with
1=ε̄2 double-pole enhancements and OðεÞ tensor-algebra
suppression. The sum of these one-loop counterterm
diagram contributions is explicitly given by

ðμ2=p2Þεðδð1ÞEII
δð1ÞII þ δð1ÞEIEI

δð1ÞEII
− δð1ÞEII

β0=ε̄Þ. Without the
OðεÞ-suppressed tensor algebra, this expression would
include nonlocal divergences arising from 1=ε̄2 factors
multiplied by ðμ2=p2Þε. Cancellation of nonlocal divergen-
ces is independent of the tensor structure of operator
insertions, and these would-be nonlocal divergences must
cancel with 1=ε̄2 two-loop integrals multiplied by ðμ2=p2Þ2ε
and the same OðεÞ-suppressed tensor-algebra factors.

This gives δð2ÞEII
¼ 1

2
ðδð1ÞEII

δð1ÞII þ δð1ÞEIEI
δð1ÞEII

− δð1ÞEII
β0=ε̄Þ, which

when inserted in Eq. (66) gives γð1ÞEII
¼ 0. The remaining

inductive step needed to prove that γ̂ is upper triangular to all
orders does not rely on a particular evanescent operator
definition [83,84] and applies here as well.

VII. PHENOMENOLOGICAL APPLICATIONS:
AN ILLUSTRATIVE EXAMPLE

The phenomenological consequences of neutron-
antineutron operator renormalization are encoded in the
effective Hamiltonian Hnn̄

eff of Eq. (2) and the operator

renormalization factors γð0ÞI , γð1ÞI , and rð0ÞI collected in
Table I. These operator renormalization factors govern
the relations between matrix elements of QI with different
renormalization scheme and scale choices. Nonperturbative
lattice QCD determinations of the renormalized QCD
matrix elements11 hn̄jQRI

I ðp0Þjni can be combined with
these operator renormalization factors to determine QCD
matrix elements hn̄jQM̄S

I ðμÞjni at high scales μ, where BSM
physics is usually assumed to be perturbative. Once high-
scale QCD matrix elements have been calculated with fully
quantified uncertainties, perturbative BSM matching for a
particular BSM theory of interest can be used to predict nn̄
transition matrix elements

10We thank Sergey Syritsyn for bringing this point to our
attention.

11Lattice matching scales of p0 ≃ 2 GeV are typically large
enough for matching to be perturbative but small enough that
unphysical UV cutoff effects are minimal (ΛQCD < p0 < a−1,
where a is the lattice spacing).
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1

τnn̄
¼ δm ¼ hn̄jHnn̄

eff jni; ð67Þ

in terms of basic BSM parameters. Experimental constrains
on the neutron-antineutron vacuum transition probability
Pnn̄ðtÞ ¼ sin2ðjδmjtÞ then unambiguously constrain the
parameter space of BSM theories predicting neutron-
antineutron transitions.
The extraction of phenomenological predictions from

Eq. (2) is best explained via an example of one specific
BSM model. Several broad classes of simplified models
with classical baryon number violation but no proton decay
were recently discussed by Arnold, Fornal, and Wise [25].
The BSM field content of these models consists of a pair of
colored scalar fields that carry noninteger baryon or lepton
number. For illustrative purposes, we will use the simplified
model discussed most heavily (model 1 in Ref. [25]), which
we will call the AFW1 model, to perform our calculation.
Identical steps can be used to make predictions for other,
more complicated BSM theories once a six-quark effective
Hamiltonian Hnn̄

eff has been determined for those theories.
The AFW1 model adds two new scalars to the Standard

Model, X1 and X2, which transform as X1 ∈ ð6̄; 1;−1=3Þ
and X2 ∈ ð6̄; 1; 2=3Þ under SUð3Þc × SUð2ÞL ×Uð1ÞY.
The X1 and X2 couplings to the SM right-handed fermions
are given by g01 and g2, respectively, and an additional three-
scalar coupling between two X1 and one X2 is given by λ.
This model allows neutron-antineutron transitions at tree
level. The Hamiltonian operatorHnn̄

eff is found by evaluating
a tree-level Feynman diagram connecting six external
quarks all carrying zero momentum. The resulting Hnn̄

eff
for the AFW1 model is presented in terms of fixed-flavor
quark fields uαi , d

α
i in Eq. (12) of Ref. [25], neglecting

scalar couplings to left-handed quarks for simplicity. In the
fixed-flavor and chiral operator bases, this Hamiltonian is
given at tree level by

Hnn̄
eff ¼ −

ðg0111 Þ2g112 λ

4M4
1M

2
2

O2
RRR

¼ ðg0111 Þ2g112 λ

16M4
1M

2
2

�
Q4 þ

3

5
~Q1

�
; ð68Þ

where g0111 ¼ g112 are dimensionless couplings assumed to
beOð1Þ at a high-scaleM and λ,M1,M2 massive couplings
assumed to be OðMÞ. Perturbative corrections to this
expression include the lnðμ2=M2Þ factors, and so to allow
the validity of tree-level BSM matching just described
μ ¼ M is chosen. RG evolution is simplest in minimal
subtraction schemes such as MS and, as a result, we
formally prescribe that these corrections should be calcu-
lated in the MS scheme. With these renormalization choices
and BSM naturalness assumptions, the AFW1 Hamiltonian
can be expressed as

Hnn̄
eff ¼

1

16M5

�
QMS

4 ðMÞ þ 3

5
~QMS
1 ðMÞ

�
: ð69Þ

The operator renormalization results of this work then
allow the AFW1 Hamiltonian to be expressed as

Hnn̄
eff ¼

1

16M5

�
U4ðM;p0ÞQRI

4 ðp0Þþ
3

5
~U1ðM;p0Þ ~QRI

1 ðp0Þ
�
;

ð70Þ

where UIðμ; p0Þ is the RG evolution and renormalization
scheme matching factor appearing in Eq. (2). Explicit
evaluation of UIðμ; p0Þ for arbitrary μ, p0 requires an
accurate parametrization of αsðμÞ. For this we take the four-
loop parametrization of αsðμÞ in terms of ΛMS

Nf
and known

β-function coefficients presented in Ref. [76]. The full RG
evolution between μ and p0 is included through a product

of factorsU
Nf

I ðμ1; μ2ÞwhereNf is varied across each quark
mass threshold. Implicit Nf dependence in the parametri-

zation of αsðμÞ in terms of the fit parameters ΛMS
Nf

must be

included along with explicit Nf dependence in β0, β1,

and γð1ÞI .
Preliminary lattice QCD neutron-antineutron simula-

tions have been performed [54] on anisotropic Wilson
lattices with 390 MeV pions. Updated values from these
anisotropic lattices are given by12

hn̄jQRI
4 ðp0Þjni ¼ ð0.00� 2.06Þ × 10−5 GeV6;

hn̄j ~QRI
1 ðp0Þjni ¼ ð−56.13� 2.42Þ × 10−5 GeV6; ð71Þ

where the errors shown are purely statistical and fitting
errors. It is important to note that these preliminary results
include several significant sources of systematic uncer-
tainty that have not been quantified at this time. These
sources of systematics are the absence of RI-MOM non-
perturbative renormalization,13 unphysically large quark
masses (pion masses of roughly 400 MeV), lattice spacing
artifacts (which unphysically break chiral symmetry), and
finite spatial extent artifacts. All of these systematic
uncertainties can be quantified and reduced with increased
computing.14 For this reason, these results should only be

12Lattice calculations with a chiral fermion discretization (do-
main-wall fermions) at near-physical pion masses (140 MeV) have
been performed [80,90] and a paper presenting these results is in
progress [91]. There is currently no plan to publish the updated
anisotropic Wilson lattice results due to the high level of computa-
tional complexity of the nonperturbative renormalization on these
lattices.

13Renormalization approximated by tadpole improved tree-
level renormalization [92,93].

14The required computational resources are expected to be
similar to those used for lattice calculations of BK with physical
pions and chiral fermion discretization [94].
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viewed as an illustrative example of how to combine the
perturbative QCD operator renormalization results of this
paper, BSM calculations of Wilson coefficients, and non-
perturbatively renormalized lattice QCDmatrix elements to
arrive at a physical quantity that can be measured/bounded
by an experiment.
The experimental limit on δm determined from Super-K

measurements of τO16 is [41,43]

jδmj < 2 × 10−33 GeV: ð72Þ

Reference [25] uses this limit and an estimate for the QCD
matrix elements to relate this to a limit on the AFW1 model
scale,

M ≳ 500 TeV: ð73Þ

Using the operator renormalization factors of Table I and
Eq. (71), it is possible to express matrix elements of
Eq. (70) in terms of M and known parameters.
Substituting M ¼ 500 TeV into Eq. (70),

jδmj ¼ ð6.74|{z}
LO

−2.44|fflffl{zfflffl}
NLO

þ0.33|fflffl{zfflffl}
NNLOmatching

−0.94|fflffl{zfflffl}
NNLO running

�0.16|fflffl{zfflffl}
Lattice statistical

Þ

× 10−34 GeV

¼ ð3.68� 0.16Þ × 10−34 GeV; ð74Þ

gives rise to a nn̄ vacuum transition time for the AFW1
model more than five times longer than the τnn̄ predicted by
the QCD matrix element estimate used in Ref. [25]. Note
that NLO one-loop running provides a multiplicative
correction to the LO matrix element and is shown as an
additive correction above only to illustrate the size of the
correction for this example. Corrections beyond NLO can
be organized as a perturbative power series in αsðp0Þ. This
perturbative series for jδmj appears to be converging nicely,
with Oðαsðp0ÞÞ NNLO corrections changing the NLO
result by 7%. Assuming further corrections have the same
rate of convergence, we expect unknown Oðαsðp0Þ2Þ
N3LO corrections to modify the NNLO result by ∼2%.
A constraint on M can be derived by inverting the

experimental bound equation (72),

M > ð402|{z}
LO

−34|{z}
NLO

þ5|{z}
NNLOmatching

−16|{z}
NNLO running

�3|{z}
Lattice statistical

Þ TeV;

M > 357� 3 TeV: ð75Þ

This constraint is nearly one-third weaker than the con-
straint estimated in Ref. [25].

VIII. CONCLUSION

To determine which BSM theories are able to produce
the observed baryon asymmetry of our Universe, it is

essential that each make reliable predictions for CP
violating and baryon-number-violating processes that can
be probed experimentally. Theories with ΔB ¼ 2 inter-
actions can provide viable baryogenesis mechanisms while
avoiding stringent experimental bounds on ΔB ¼ 1 proton
decay rates. Some of these theories predict new physics in
the 100–1000 TeV range that induce nn̄ transitions that are
just outside the reach of current experimental bounds. If
these theories can be reliably constrained by experimental
measurements of the nn̄ vacuum transition time τnn̄, next-
generation nn̄ experiments can search for new physics
appearing at scales comparable to, or higher than, scales
probed in next-generation collider experiments.
Reliable predictions for δm ¼ 1=τnn̄, the parameter

governing the neutron-antineutron vacuum transition prob-
ability Pnn̄ ¼ sin2ðjδmjtÞ, can be made by perturbatively
matching BSM theories to an effective field theory con-
taining Standard Model operators. The six-quark operator
matrix elements contributing to δm can be calculated with
lattice QCD at computationally accessible lattice matching
scales of 2 GeV, and large logarithmic strong interaction
corrections can be included using perturbative operator
renormalization. At NLO, operator renormalization intro-
duces known multiplicative corrections to six-quark oper-
ator matrix elements [50]. Further operator renormalization
corrections are organized as a perturbative series in which
the largest contributions arise from NNLO two-loop-
running and one-loop-matching effects. These effects are
calculated for the first time here and are summarized in
Table I. In addition, operator projectors needed for non-
perturbative renormalization of nn̄ operators and the chiral
transformation properties of nn̄ operators are presented.
Section VII discusses the calculation of δm in a sim-

plified model from Ref. [25] in order to illustrate how
perturbative operator renormalization results are combined
with lattice QCD six-quark operator matrix elements and
experimental bounds on δm to constrain the scale of new
baryon-number-violating physics. For fixed BSM param-
eters, the nn̄ vacuum transition time calculated with the
perturbative operator renormalization results of this work
and preliminary lattice QCD results is found to be more
than a factor of 5 longer than was previously estimated.
Several features of this simple example have generic
implications for more complicated BSM theories and
deserve explicit mention:
(a) Hnn̄

eff is described by a linear combination of multiple
chiral basis operators that make very different con-
tributions to nn̄ matrix elements. Color and flavor
structure matters when calculating the nn̄ vacuum
transition time predicted by a particular model.

(b) Q4 has a large positive anomalous dimension and its
contributions to δm are suppressed compared to other
operators.

(c) Q2 is the only chiral basis operator with a negative
anomalous dimension and its contributions are
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enhanced compared to those of other operators. It does
not contribute in the simplified model considered.

(d) ~Q1 arises in real models. Q1 and ~Q1 should be treated

on equal footing, and QMS
1 ðμÞ ≠ ~QMS

1 ðμÞ must be
remembered during BSMmatching calculations. Iden-
tical considerations apply to Q3 and ~Q3.

(e) Q5, Q6, and Q7 violate electroweak gauge invariance.
They do not appear in the simplified model con-
sidered.

(f) Assuming Hnn̄
eff can be expressed as linear combina-

tions of Q1;…; Q7; ~Q1; ~Q3 and their parity conjugates
without the use of (spin) Fierz relations, evanescent
operators do not need to be explicitly included in tree-
level BSM matching calculations.

(g) At a fixed BSM scale of 500 TeV, NNLO effects
correct the NLOþ LO δm prediction by 14%, within
the generic range of < 26%. Assuming that further
perturbative corrections have the same rate of con-
vergence, unknown N3LO corrections are estimated
to change the NNLOþ NLOþ LO δm prediction by
2%, within the generic estimate of < 7%.

(h) Perturbative corrections to BSM-scale constraints are
smaller than corrections to δm. In the simplified model
considered, NNLO effects change the NLOþ LO
BSM-scale constraint by 3%.

Without knowledge of NNLO two-loop-running and
one-loop-matching factors, perturbative operator renorm-
alization effects contribute large unquantified systematic
uncertainties to BSM nn̄ vacuum transition time predic-
tions. Including NNLO effects and estimating the size of
unknown N3LO corrections turns perturbative operator
renormalization into a few-percent-level uncertainty. This
places perturbative QCD corrections to τnn̄ firmly under
control. Electromagnetic one-loop-running corrections
have also been calculated in Ref. [50], though a complete
electroweak one-loop-running calculation has not been
performed.
A complete lattice QCD determination of the nn̄ matrix

elements with controlled systematic uncertainties is neces-
sary to remove the largest remaining Standard Model
uncertainties present in BSM predictions of τnn̄ [54,91].
In particular, RI-MOM scheme nonperturbative renormal-
ization factors should be calculated, continuum and infinite
volume extrapolations should be performed, and nn̄ matrix
element calculations should be repeated with physical or
near-physical pion masses. All of these systematic uncer-
tainties can be removed using existing lattice QCD tech-
nology and computational resources available in the near
future.
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APPENDIX A: TENSOR ALGEBRA

This appendix presents Fierz-type relations useful for
resolving complicated spin, color, and flavor tensors in a
desired tensor basis. All relations are derived using a well-
known tensor reduction strategy: write the tensor tab under
consideration as a linear combination of chosen basis
tensors Bab

1 ; Bab
2 ;… with unknown coefficients c1; c2;…,

e.g.

tab ¼ c1Bab
1 þ c2Bab

2 : ðA1Þ

It is often useful to choose basis tensors with definite
index exchange symmetries. Contracting both sides of this
equation with each basis tensor gives a system of equations

�
Bab
1 tab

Bab
2 tab

�
¼

�
Bab
1 Bab

1 Bab
1 Bab

2

Bab
2 Bab

1 Bab
2 Bab

2

��
c1
c2

�
ðA2Þ

that can be readily solved for c1, c2.

1. Color algebra

There are five independent suð3ÞC tensors that can
combine six quarks into color singlet operators,

TSSS
fijgfklgfmng; TAAS

½ij�½kl�fmng; TASA
½ij�fklg½mn�;

TSAA
fijg½kl�½mn�; TAAA

½ij�½kl�½mn�: ðA3Þ

These five basis tensors are constructed from

TSSS
fijgfklgfmng ¼ εikmεjln þ εjkmεiln þ εilmεjkn þ εiknεjlm;

TAAS
½ij�½kl�fmng ¼ εijmεkln þ εijnεklm;

TAAA
½ij�½kl�½mn� ¼ εijmεkln − εijnεklm; ðA4Þ
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where εijk is the completely antisymmetric Levi-Civita
tensor for suð3Þ. Each tensor is symmetrized f g or
antisymmetrized ½ � in the three index pairs shown. This
corresponds to combining the six 3 quarks as products
of symmetrized 6 or antisymmetrized 3̄ diquarks. These
tensors also obey the diquark exchange symmetries

TSSS
fijgfklgfmng ¼ TSSS

fklgfijgfmng ¼ TSSS
fmngfklgfijg

TAAS
½ij�½kl�fmng ¼ TAAS

½kl�½ij�fmng
TAAA
½ij�½kl�½mn� ¼ −TAAA

½kl�½ij�½mn� ¼ −TAAA
½ij�½mn�½kl�: ðA5Þ

The remaining basis tensors are defined by

TASA
½ij�fklg½mn� ¼ TAAS

½ij�½mn�fklg; TSAA
fijg½kl�½mn� ¼ TAAS

½mn�½kl�fijg:

ðA6Þ

When evaluating Feynman diagrams, one encounters
contractions of the color tensors TAAS and TSSS present in
QI with the suð3Þ generators tA. The resulting color tensors
can always be expressed in terms of index permutations
of the original color tensors. For most diagrams this is
accomplished through the textbook identity

tAi0it
A
j0j ¼

1

2

�
δi0jδj0i −

1

3
δi0iδj0j

�
; ðA7Þ

where we assume the normalization TrðtAtBÞ ¼ 1
2
δAB.

Certain classes of diagrams involving three-gluon inter-
actions require the additional identity

fABCtAi0it
B
j0jt

C
k0k ¼

i
4
ðδi0kδj0iδk0j − δi0jδj0kδk0iÞ; ðA8Þ

which we have derived by performing the tensor reduction
of Eq. (A2) for a basis of Kronecker-delta products. The
color structure produced by any diagram can therefore be
determined from the relations of the generators above and
color Fierz identities relating index-permuted tensors to the
five basis tensors.
The symmetrized color tensor obeys the Fierz identity

TSSS
fkjgfilgfmng ¼ −

1

2
TSSS
fijgfklgfmng −

3

2
TAAS
½ij�½kl�fmng: ðA9Þ

The corresponding relations for interchange of any other
index pair follow from the symmetries above. The mixed
symmetry color tensor obeys the Fierz identities

TAAS
½kj�½il�fmng ¼ −

1

2
TSSS
fijgfklgfmng þ

1

2
TAAS
½ij�½kl�fmng

TAAS
½ij�½ml�fkng ¼ −

1

2
TAAS
½ij�½kl�fmng −

1

2
TASA
½ij�½mn�fklg þ TAAA

½ij�½kl�½mn�:

All other index exchange relations follow by symmetry.
The antisymmetrized color tensor obeys the Fierz identity

TAAA
½kj�½il�½mn� ¼

1

2
TASA
½ij�½mn�fklg −

1

2
TSAA
½mn�½kl�fijg; ðA10Þ

with all other relations again following by symmetry.
Color factors produced by any diagram can be expressed

in this basis through repeated application of these Fierz
identities or alternatively by direct tensor reduction of color
factors in the forms of Table IV. We find the second
approach more convenient at the two-loop level because it
can be readily automated in a computer algebra program
such as Mathematica.

2. Dirac algebra

QCD loop diagrams introduce additional factors of
γμγν… into each diquark. In a theory with massless quarks
perturbative corrections will not modify the chirality of
each diquark. We can therefore express any Dirac structure
produced by a loop diagram as CPχ1Γ1 ⊗ CPχ2Γ2 ⊗
CPχ3Γ3, where the chirality labels are identical to those
of the tree-level operator in question. In D ¼ 4, a suitable
basis of chirality preserving Γ1 ⊗ Γ2 ⊗ Γ3 independent of
quark momenta is given by

1 ⊗ 1 ⊗ 1; σμν ⊗ σμν ⊗ 1; 1 ⊗ σμν ⊗ σμν;

σμν ⊗ 1 ⊗ σμν; iσμν ⊗ σμρ ⊗ σνρ; ðA11Þ

where σμν ¼ i
2
½γμ; γν� and 1 represents the 4 × 4 identity

matrix. An additional independent structure σμνσρτ ⊗
σμρ ⊗ σντ is not produced in the diagrams considered here.
When discussing these basis tensors we will often omit
the Lorentz indices and write shorthand expressions like
σ ⊗ σ ⊗ 1 and σ ⊗ σ ⊗ σ.
These basis structures provide a convenient orthogonal

basis for tensor decompositions of two-loop Dirac struc-
tures. Operators built from these basis structures are not
explicitly included in our physical operator basis. Using
spin Fierz relations, each basis tensor can be related to a
combination of index permutations of 1 ⊗ 1 ⊗ 1 and
therefore to the physical basis structures. Different tech-
niques are required to find basis decompositions for Dirac
structures produced in loop diagrams that are valid in D
dimensions. Useful discussions on the D-dimensional
Dirac algebra needed for three- and four-quark operator
renormalization can be found in Refs. [67,72,74,75], and in
particular many results and techniques for D-dimensional
tensor reduction can be found in Refs. [83,96].
As discussed at length in Sec. V B, spin Fierz relations

are broken in dimensional regularization since the 16 Dirac
matrices f1; γ5; γμ; σμνg (with μ < ν) are not a complete
basis for Dirac matrices in general D. Spin Fierz relations
should instead be considered prescriptions for defining
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evanescent operators built from the difference between the
lhs and rhs of these identities, see Refs. [59,75]. One has the
freedom to add OðεÞ terms in defining this prescription, for
example

½CPχσμν�αβ½CPχ0σμν�γδ → δχχ0 ðð8þ a1εÞ½CPχ �αδ½CPχ �γβ
− ð4þ a2εÞ½CPχ �αβ½CPχ �γδÞ:

ðA12Þ

The Oðε0Þ coefficients can be calculated by performing a
tensor reduction inD ¼ 4. Our basis of evanescent operators
is explicitly defined in Appendix C. When applying pre-
scriptions such as Eq. (A12) to define evanescent operators,
finite matching factors and Wilson coefficients will depend
on the chosen a1; a2. Basis dependence cancels so that
physical quantities such as Hnn̄

eff are independent of a1, a2.
Relations between renormalized matrix elements calculated
with different one-loop evanescent bases follow from general
considerations of renormalization scheme dependence, see
Refs. [60,84]. Alternative schemes for defining evanescent
operators can be found in Refs. [67,72,83].
Additional Dirac structures appear in two-loop diagrams

that are independent in general D. These must be treated
with analogous spin Fierz evanescent operator prescrip-
tions, such as

CPχσρτσμν⊗CPχ0σμνσρτ → δχχ0 ðð48þb1εÞCPχ ⊗CPχ

þð8þb2εÞCPχσμν⊗CPχσμνÞ;
ðA13Þ

where b1 and b2 are arbitrary parameters used to specify a
basis for two-loop evanescent counterterms. Freedom to
specify b1, b2 and other two-loop spin Fierz prescriptions
suggests there is an additional ambiguity in γð1Þ besides the
choice of a1, a2 that determines the one-loop evanescent
counterterms. This suggestion is false.15 Since one-loop-
matching factors are independent of the b’s, there is no way
for γð1Þ to depend on the b’s while keeping Hnn̄

eff

independent of this arbitrary basis choice. Independence

of γð1ÞI on the b’s is proven for four-quark operators in
Ref. [84]. The proof only relies on cancellation of nonlocal
divergences and the factor of 1=2 multiplying evanescent
counterterm diagrams in Eq. (60) and applies to our six-
quark operators without modification. We have explicitly
verified that cancellation of the b’s dependence occurs
diagram by diagram between two-loop diagrams and one-
loop evanescent-counterterm diagrams in our calculation.
In addition to Eq. (A13), two-loop diagram evaluation

requires the D ¼ 4 spin Fierz identities

CPχ1σρτσμν ⊗ CPχ2σρτ ⊗ CPχ3σμν

¼D¼4Δχð4CPχ ⊗ CPχσμν ⊗ CPχσμν

−4iCPχσμν ⊗ CPχσμρ ⊗ CPχσνρÞ; ðA14Þ

where
Δχ ≡ δχ1χ2δχ2χ3 ðA15Þ

vanishes unless all three diquarks have identical chirality.
Relating the above Dirac basis tensors to permutations of
1 ⊗ 1 ⊗ 1 also requires

i½CPχ1σμν�αβ½CPχ2σμρ�γδ½CPχ3σνρ�ηζ

¼D¼4Δχð16½CPχ �αζ½CPχ �γβ½CPχ �ηδ
− 8½CPχ �αδ½CPχ �γβ½CPχ �ηζ − 8½CPχ �αβ½CPχ �γζ½CPχ �ηδ
−8½CPχ �αζ½CPχ �γδ½CPχ �ηβ þ 8½CPχ �αβ½CPχ �γδ½CPχ �ηζÞ:

ðA16Þ

Other useful formulas are derived by combining
Eqs. (A12)–(A16). A particularly useful identity is

δχ1χ21
αδσγβσηζ ¼D¼4Δχ

�
1

2
1 ⊗ σ ⊗ σ þ 1

2
σ ⊗ 1 ⊗ σ

−
1

2
σ ⊗ σ ⊗ σ

�
αβγδηζ

: ðA17Þ

Fierz relations involving p are also useful when comput-
ing evanescent-counterterm diagrams

δχχ0
1

p2
ðCPχγμpÞ⊗ðCPχpγμÞ

¼D¼4
δχχ0 ðCPχÞ⊗ðCPχÞþ

1

4
ðCPχσμνÞ⊗ðCPχσμνÞ; ðA18aÞ

1

p2
ðCPχσμνγλpÞ ⊗ ðCPχ0σμνpγλÞ

¼D¼4
12δχχ0 ðCPχÞ ⊗ ðCPχ0 Þ − ðCPχσμνÞ ⊗ ðCPχ0σμνÞ;

ðA18bÞ

15It is for this reason that we do not consider a tensor reduction
technique such as the Greek projections used in Ref. [75] that
commutes with algebraic relations valid in D dimensions. The
Greek projections provide algebraically consistent continuations of
spin Fierz relations between Dirac structures of the form Γ ⊗ Γ0 to
D dimensions and for example specify b1 ¼ −80, b2 ¼ −12 in
Eq. (A13). Straightforward generalizations of the Greek projec-
tions can relate structures of the form Γ1 ⊗ Γ2 ⊗ Γ3. However,
there is no straightforward extension of the Greek projections for
Eq. (A12) unless σ ⊗ σ operators are included in the physical basis
as in Ref. [61]. Since the nn̄ basis of interest for many BSMmodels
includes the scalar diquark operators considered here, Greek
projections do not give us a useful way to define our one-loop
evanescent-counterterm basis. After choosing this one-loop evan-
escent basis, γð1Þ is fully determined and we have no further need to
establish concrete evanescent basis conventions.
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1

p2
ðCPχσμνγλpÞ ⊗ ðCPχ0pγλσμνÞ

¼D¼4
12δχχ0 ðCPχÞ ⊗ ðCPχ0 Þ þ 3ðCPχσμνÞ ⊗ ðCPχ0σμνÞ:

ðA18cÞ

Additional Fierz relations are useful for diagram classes
34–45, in particular

Pαζ
χ ½Pχ0γμp�γδ½Pχpγμ�ηβ

¼D¼4 1

2
½Pχγμp�αβ½Pχ0pγμ�γδPηζ

χ

þ 1

8
½Pχσμνγρp�αβ½Pχ0pγρ�γδ½Pχσμν�ηζ; ðA19aÞ

½γμpPχ �αζ½Pχ0pγμ�γδPηβ
χ

¼D¼4 1

2
½Pχγμp�αβ½Pχ0pγμ�γδPηζ

χ

þ 1

8
½Pχγρpσμν�αβ½Pχ0pγρ�γδ½Pχσμν�ηζ: ðA19bÞ

Additional identities are found by permutation of the tensor
product structures Γ1 ⊗ Γ2 ⊗ Γ3 appearing on both sides
of the above equations. For example, applying the permu-
tation Γ1 ⊗ Γ2 ⊗ Γ3 → Γ2 ⊗ Γ1 ⊗ Γ3 to the lhs of either
equation leads to a new identity with the rhs modified by
1 ⊗ σ ⊗ σ↔σ ⊗ 1 ⊗ σ, 1 ⊗ 1 ⊗ 1 and σ ⊗ σ ⊗ 1 left
unchanged, and σ ⊗ σ ⊗ σ → −σ ⊗ σ ⊗ σ. Identities
involving general permutations of Γ1 ⊗ Γ2 ⊗ Γ3 are con-
structed analogously, and in particular σ ⊗ σ ⊗ σ will
change sign under any permutation of Γ1 ⊗ Γ2 ⊗ Γ3 with
an odd signature. All other Dirac structures produced by
two-loop diagrams can be related to those above and our
basis structures by algebra valid in general D.

3. Flavor algebra

A convenient basis for suð2Þχ tensors is given by

τ2; τ2τA; τ2τAτB;…; ðA20Þ

where the τA’s are normalized as Pauli matrices
TrðτAτBÞ ¼ 2.
After applying the σ ⊗ σ spin Fierz identity of

Eq. (A12), the resulting spin-singlet diquarks no longer
have their flavor indices contracted with one of the basis
structures above. Flavor (as well as color) Fierz relations
are useful in relating the resulting structures to the original
operator basis. One-loop diagrams involving flavor singlet
diquarks require

τ2adτ
2
cb ¼

1

2
τ2abτ

2
cd þ

1

2
ðτ2τAÞabðτ2τAÞcd: ðA21Þ

Similarly, flavor vector-singlet structures require

τ2adðτ2τAÞcb ¼
1

2
τ2abðτ2τAÞcd þ

1

2
ðτ2τBÞabðτ2τAτBÞcd:

ðA22Þ

Finally, flavor vector-vector structures require

ðτ2τAÞadðτ2τBÞcb ¼
1

2
fðτ2τAÞabðτ2τBÞcd þ ðτ2τBÞabðτ2τAÞcd

þ iεABC½ðτ2τCÞabτ2cd − τ2abðτ2τCÞcd�
þ δAB½τ2abτ2cd − ðτ2τCÞabðτ2τCÞcd�g:

ðA23Þ

Equation (A23) implies in particular that symmetric trace-
less tensors are Fierz self-conjugate.

APPENDIX B: TWO-LOOP INTEGRALS

When evaluating simple Feynman diagrams, one can
often perform Dirac “numerator algebra” that reduces the
diagram to a simple product of a Dirac structure times a
scalar integral. When evaluating diagrams with gluon
propagators connecting quarks in separate spin-singlet
diquarks, this is not possible. One is forced to work with
tensor integrals that contain free Lorentz indices contracted
with structures such as σμν ⊗ σρτ. In this case, tensor
reduction techniques similar to those described in
Appendix A can be used to express tensor integrals in
terms of linear combinations of scalar integrals. In our
calculation of the diagrams of Fig. 1, the complete set of
two-loop tensor integrals appearing in these diagrams was
organized according to the propagator powers and loop-
momentum vectors appearing. Each tensor integral was
then expressed as a linear combination of basic tensors and
two-loop scalar integrals by tensor reduction techniques.
The two-loop scalar integrals were recursively evaluated as
described below and the results tabled for use in tensor
integral evaluation. Computer algebra was essential for this
process and performed using Mathematica scripts written
by the authors.
There exists a vast literature on the evaluation of multi-

loop tensor and scalar integrals. References to reviews
and original literature are given below, and it should be
emphasized that none of the techniques reviewed in this
appendix are novel. Our aim is simply to consolidate
known techniques needed for two-loop anomalous dimen-
sion calculations without detailing the additional compli-
cations and generalizations needed for more complex
higher-order calculations.

1. Two-loop scalar integrals

We are only concerned here with calculating the 1=ε̄
single- and double-pole pieces of two-loop diagrams. This
allows for substantial simplifications. In particular, external
momenta can be freely chosen diagram by diagram. To see
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this, note that in a renormalizable theory, these pole pieces
can be at most polynomial in external momenta. After
factoring out possible overall dimensionful factors
common to all diagrams, this means the pole pieces are
independent of external momenta. This holds for individual
diagrams as long as they contain no subdivergences, and
therefore for general two-loop diagrams as long as one-loop
counterterm diagrams canceling all subdivergences are
included [78]. We may therefore freely choose a different
momentum routing convenient for each two-loop diagram
under consideration as long as the same routing is used in
all corresponding one-loop counterterm diagrams.
The only caveat to this statement is that the choice of

external momentum routing must not introduce IR diver-
gences. For instance, if in a massless theory one sets all
external momenta to zero then all integrals vanish identi-
cally in dimensional regularization. This means IR diver-
gences have been introduced that are regulated as 1=ε̄
poles and cancel all of the original UV divergences [97].
We are interested in the counterterms needed to cancel UV
divergences only, and so we must use care to choose
momentum routings free of IR divergences. See Ref. [98]
for a detailed review of this “infrared rearrangement” trick;

for our purposes it is enough to note that IR divergences can
be found and avoided through standard power counting
arguments used to determine a diagram’s degree of UV
divergence [78].
For all diagrams in Fig. 1, a momentum routing can be

chosen so that the only scalar integrals appearing are of the
form

Tðn1; n2; n3; n4; n5Þ

¼ μ4ε
Z

dDkdDq
ð2πÞ2D

1

ðpþ kÞ2n1ðpþ qÞ2n2k2n3q2n4ðk − qÞ2n5 ;

ðB1Þ

where p is an arbitrary external momenta that serves as
an IR regulator and we are suppressing omnipresent iϵ
terms in factors such as ðk2 þ iϵÞn3 . If one of the propagator
factors does not appear (one ni equals zero), then the two-
loop integral can be expressed as a product of one-loop
integrals. The second loop includes noninteger propagator
powers, but can still be evaluated through the textbook
formula

Iðα; βÞ ¼ μ2ε
Z

dDk
ð2πÞD

1

ðpþ kÞ2αk2β ¼
ðp2Þ2−α−β−ε
ð4πÞ2−ε

�
Γðαþ β − 2þ εÞΓð2 − α − εÞΓð2 − β − εÞ

Γð4 − α − β − 2εÞΓðαÞΓðβÞ
�
: ðB2Þ

Scalar two-loop integrals with (at least) one zero argument are given by

Tðn1; n2; n3; n4; 0Þ ¼ Iðn3; n1ÞIðn4; n2Þ;
Tð0; n2; n3; n4; n5Þ ¼ ðp2Þn3þn5−2þεIðn3; n5ÞIðn3 þ n4 þ n5 − 2þ ε; n2Þ;
Tðn1; n2; 0; n4; n5Þ ¼ ðp2Þn1þn5−2þεIðn1; n5ÞIðn4; n1 þ n2 þ n5 − 2þ εÞ: ðB3Þ

The cases of n2 ¼ 0 and n4 ¼ 0 can be found by the
ðn1; n3Þ↔ðn2; n4Þ symmetry of Tðn1; n2; n3; n4; n5Þ.
This leaves the case of nonvanishing n1;…; n5. This

case can be evaluated recursively through the “integration
by parts” technique of Refs. [99,100], see Ref. [101] for a
review. The starting point for this technique is the
observation that there are no surface terms when inte-
grating a total derivative in dimensional regularization
[78], that is,

0 ¼ μ4ε
Z

dDkdDq
ð2πÞ2D

� ∂
∂qμ a

μðk; q; pÞ
�
; ðB4Þ

where aμðk; q; pÞ is an arbitrary vector that may
depend on loop and external momenta. Useful identities
are generated by taking aμ to be a loop-momentum
vector times the integrand of Eq. (B1). Consider in
particular

∂
∂qμ

� ðk − qÞμ
ðpþ kÞ2n1ðpþ qÞ2n2k2n3q2n4ðk − qÞ2n5

�

¼
�
−D −

2n2ðk − qÞ · ðpþ qÞ
ðpþ qÞ2 −

2n4ðk − qÞ · q
q2

þ 2n5

�

×
1

ðpþ kÞ2n1ðpþ qÞ2n2k2n3q2n4ðk − qÞ2n5 : ðB5Þ

Next, rewrite all scalar products appearing in Eq. (B5)
in terms of linear combinations of p2 and denominator
factors, for instance

2ðk − qÞ · ðpþ qÞ ¼ ðkþ pÞ2 − ðk − qÞ2 − ðpþ qÞ2;
2ðk − qÞ · q ¼ k2 − ðk − qÞ2 − q2: ðB6Þ

This allows us to express Eq. (B4) as
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0 ¼ ½2n5 þ n2 þ n4 −Dþ n22þð5− − 1−Þ
þ n44þð5− − 3−Þ�Tðn1; n2; n3; n4; n5Þ; ðB7Þ

where we define

1�Tðn1; n2; n3; n4; n5Þ ¼ Tðn1 � 1; n2; n3; n4; n5Þ; ðB8Þ

etc. This identity is sufficient to derive a recursive
solution for Tðn1; n2; n3; n4; n5Þ with all ni’s nonzero,

Tðn1; n2; n3; n4; n5Þ

¼ 1

D − n2 − n4 − 2n5
½n22þð5− − 1−Þ þ n44þð5− − 3−Þ�

× Tðn1; n2; n3; n4; n5Þ: ðB9Þ

This recursion terminates when each integral on the rhs
has at least one ni zero and the base case Eq. (B3) can
be applied. Many other integration by parts identities
and more powerful recursive algorithms can be con-
structed but are not needed for the calculation at hand.
For further discussions of more general one-loop scalar
integrals see Refs. [102,103]. For further discussions of
two-loop scalar integral evaluation see Refs. [104,105]
and the review Ref. [101].

2. Two-loop tensor integrals

Two-loop tensor integrals can be expressed in terms of
scalar integrals through tensor reduction techniques.
Consider for example the rank 2 integral

T2
μνðn1; n2; n3; n4; n5Þ

¼ μ4ε
Z

dDkdDq
ð2πÞ2D

kμkν
ðpþ kÞ2n1ðpþ qÞ2n2k2n3q2n4ðk − qÞ2n5 :

ðB10Þ

By Lorentz invariance, the integral can be expressed as a
linear combination,

T2
μν ¼ T2

δgμν þ T2
α
1

p2
pμpν: ðB11Þ

Contracting both sides with these same tensors gives the
system of equations

�
T2
δ

T2
α

�
¼

�
4 − 2ε 1

1 1

�−1� gμνT2
μν

1
p2 pμpνT2

μν

�
: ðB12Þ

The contractions of the rhs can be reduced to linear
combinations of scalar integrals by rewriting tensor
products in terms of differences of propagator factors as
before,

gμνT2
μνðn1; n2; n3; n4; n5Þ

¼ 3−Tðn1; n2; n3; n4; n5Þ
1

p2
pμpνT2

μνðn1; n2; n3; n4; n5Þ

¼ 1

2p2
pμ½1− − 3− − p2�T1

μðn1; n2; n3; n4; n5Þ: ðB13Þ

This final formula does not apply to the cases of n1 ¼ 0 and
n3 ¼ 0. These must be treated separately, and a general
method can be constructed by first performing a tensor
reduction of a one-loop subintegral. This problem is
systematically considered in Ref. [106]. The following
recipe is sufficient for the integrals considered in this work:
first evaluate the one-loop integral for the loop momentum
that only appears in two propagators by a one-loop tensor
reduction. A change of variables may be useful to ensure
there is only one “external momentum” scale (which may
be a linear combination of pμ and the other loop momen-
tum) that needs to be included in the one-loop tensor
reduction. The second integral will then be another one-
loop tensor integral involving a single scale that can be
readily evaluated. For further discussion of tensor integral
reduction techniques, see Refs. [107,108] and for a review
see Ref. [109].

APPENDIX C: EVANESCENT OPERATORS

The MS and RI-MOM renormalization schemes are fully
defined by the renormalization conditions of Sec. IV and
specification of the one-loop evanescent counterterms
appearing in Sec. V B. Two-loop MS anomalous dimen-
sions, one-loop RI-MOM matching factors, and Wilson
coefficients from one-loop BSM matching all separately
depend on the basis chosen for evanescent operator
counterterms. In particular, loop-level BSM matching
calculations must use the same evanescent basis used in
this work. Our basis includes the following evanescent
operators needed as one-loop counterterms to QI:

Ea
1 ¼ ðψCPRσμνiτ2ψÞðψCPRσμνiτ2ψÞðψCPRiτ2τþψÞTSSS − 12Q1;

Eb
1 ¼ ðψCPRiτ2ψÞðψCPRσμνiτ2ψÞðψCPRσμνiτ2τþψÞTASA

þ ðψCPRσμνiτ2ψÞðψCPRiτ2ψÞðψCPRσμνiτ2τþψÞTSAA − 8Q1; ðC1aÞ
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Ea
2 ¼ ðψCPLσμνiτ2ψÞðψCPRσμνiτ2ψÞðψCPRiτ2τþψÞTSSS;

Eb
2 ¼ ðψCPLiτ2ψÞðψCPRσμνiτ2ψÞðψCPRσμνiτ2τþψÞTASA

þ ðψCPLσμνiτ2ψÞðψCPRiτ2ψÞðψCPRσμνiτ2τþψÞTSAA − 4Q2; ðC1bÞ

Ea
3 ¼ ðψCPLσμνiτ2ψÞðψCPLσμνiτ2ψÞðψCPRiτ2τþψÞTSSS − 12Q1;

Eb
3 ¼ ðψCPLiτ2ψÞðψCPLσμνiτ2ψÞðψCPRσμνiτ2τþψÞTASA

þ ðψCPLσμνiτ2ψÞðψCPLiτ2ψÞðψCPRσμνiτ2τþψÞTSAA; ðC1cÞ

E4 ¼ ðψCPRσμνiτ2τ3ψÞðψCPRσμνiτ2τ3ψÞðψCPRiτ2τþψÞTAAS

−
1

5
ðψCPRσμνiτ2τAψÞðψCPRσμνiτ2τAψÞðψCPRiτ2τþψÞTAAS

þ ðψCPRiτ2τ3ψÞðψCPRσμνiτ2τ3ψÞðψCPRσμνiτ2τþψÞTSAA

−
1

5
ðψCPRiτ2τAψÞðψCPRσμνiτ2τAψÞðψCPRσμνiτ2τþψÞTSAA

þ ðψCPRσμνiτ2τ3ψÞðψCPRiτ2τ3ψÞðψCPRσμνiτ2τþψÞTASA

−
1

5
ðψCPRσμνiτ2τ3ψÞðψCPRiτ2τ3ψÞðψCPRσμνiτ2τþψÞTASA − 12Q4; ðC1dÞ

E5 ¼ ðψCPRσμνiτ2τ−ψÞðψCPLσμνiτ2τþψÞðψCPLiτ2τþψÞTAAS

þ ðψCPRiτ2τ−ψÞðψCPLσμνiτ2τþψÞðψCPLσμνiτ2τþψÞTSAA

þ ðψCPRσμνiτ2τ−ψÞðψCPLiτ2τþψÞðψCPLσμνiτ2τþψÞTASA − 4Q5; ðC1eÞ

~E1 ¼
1

3
ðψCPRσμνiτ2τAψÞðψCPRσμνiτ2τAψÞðψCPRiτ2τþψÞTAAS

þ 1

3
ðψCPRiτ2τAψÞðψCPRσμνiτ2τAψÞðψCPRσμνiτ2τþψÞTSAA

þ 1

3
ðψCPRσμνiτ2τAψÞðψCPRiτ2τAψÞðψCPRσμνiτ2τþψÞTASA þ 4

3
~Q1; ðC1fÞ

~E3 ¼
1

3
ðψCPLσμνiτ2τAψÞðψCPLσμνiτ2τAψÞðψCPRiτ2τþψÞTAAS

þ 1

3
ðψCPLiτ2τAψÞðψCPLσμνiτ2τAψÞðψCPRσμνiτ2τþψÞTSAA

þ 1

3
ðψCPLσμνiτ2τAψÞðψCPLiτ2τAψÞðψCPRσμνiτ2τþψÞTASA þ 4 ~Q3: ðC1gÞ

Above we have grouped evanescent operators that make
similar contributions to one-loop counterterm diagrams, see
Tables V and VI.
The coefficients of QI appearing above are determined

by demanding that the rhs vanish in D ¼ 4. We have
calculated them using two independent methods for veri-
fication: first by pen and paper application of the spin-
color-flavor Fierz relations derived in Appendix A and
second by automated Mathematica application of the

operator projectors of Eq. (21) to explicit vertex functions
constructed for each structure. It is straightforward to verify
that all other structures produced in amplitudes for d ¼ 1–3
vanish by quark exchange antisymmetry.
When constructing one-loop counterterm diagrams for

two-loop diagrams d ¼ 4–6, 16–24, and 32–45 containing
d ¼ 1–3 subdiagrams, it is useful to employ a different
evanescent operator basis E0

I. The E0
I basis is defined by

demanding that the prescription
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½CPχσμν�αβ½CPχ0σμν�γδ ¼D¼4
δχχ0 ð8½CPχ �αδ½CPχ �γβ − 4½CPχ �αβ½CPχ �γδÞ ðC2Þ

always provides valid operator identities in general D when E0
I operators are included. Applying this prescription to the

amplitudes for d ¼ 1–3 provides an explicit construction of the E0
I operators

Ea0
1 ¼ ðψCPRσμνiτ2ψÞðψCPRσμνiτ2ψÞðψCPRiτ2τþψÞTSSS

− 8ðψα½CPR�αδiτ2ψβÞðψγ½CPR�γβiτ2ψδÞðψη½CPR�ηζiτ2τþψζÞTSSS

¼ Ea
1 þ 6ðQ1 − ~Q1Þ; ðC3aÞ

Ea0
3 ¼ ðψCPLσμνiτ2ψÞðψCPLσμνiτ2ψÞðψCPRiτ2τþψÞTSSS

− 8ðψα½CPL�αδiτ2ψβÞðψγ½CPL�γβiτ2ψδÞðψη½CPR�ηζiτ2τþψζÞTSSS

¼ Ea
3 þ 6ðQ3 − ~Q3Þ; ðC3bÞ

~E0
1 ¼

1

3
ðψCPRσμνiτ2τAψÞðψCPRσμνiτ2τAψÞðψCPRiτ2τþψÞTAAS

þ 1

3
ðψCPRiτ2τAψÞðψCPRσμνiτ2τAψÞðψCPRσμνiτ2τþψÞTSAA

þ 1

3
ðψCPRσμνiτ2τAψÞðψCPRiτ2τAψÞðψCPRσμνiτ2τþψÞTASA

−
8

3
ðψα½CPR�αδiτ2τAψβÞðψγ½CPR�γβiτ2τAψδÞðψη½CPR�ηζiτ2τþψζÞTAAS

−
8

3
ðψα½CPR�αβiτ2τAψβÞðψγ½CPR�γζiτ2τAψδÞðψη½CPR�ηδiτ2τþψζÞTSAA

−
8

3
ðψα½CPR�αζiτ2τAψβÞðψγ½CPR�γδiτ2τAψδÞðψη½CPR�ηβiτ2τþψζÞTASA

¼ ~E1 þ
10

3
ðQ1 − ~Q1Þ; ðC3cÞ

~E0
3 ¼

1

3
ðψCPLσμνiτ2τAψÞðψCPLσμνiτ2τAψÞðψCPRiτ2τþψÞTAAS

−
8

3
ðψα½CPL�αδiτ2τAψβÞðψγ½CPL�γβiτ2τAψδÞðψη½CPR�ηζiτ2τþψζÞTAAS

¼ ~E3 þ 2ðQ3 − ~Q3Þ; ðC3dÞ

with all other E0
I’s equal to the corresponding EI. The E0

I
basis is convenient for two-loop diagram evaluation, but is
cumbersome for RG evolution because it includes one-loop
mixing between Q1 and ~Q1 and between Q3 and ~Q3.
After evaluating two-loop diagrams in the E0

I basis to

determine the loop coefficients ½L0
tot�ð2Þ;1II defined in

Eq. (61), a change of basis to the EI basis can be performed

to recover the coefficients ½Ltot�ð2Þ;1II directly appearing in
the anomalous dimension formula equation (57). Reading

off the coefficients Lð1Þ
IEI

from the entries for d ¼ 1–3 in
Tables Vand VI, the necessary change of basis formulas to

recover ½Ltot�ð2Þ;1II from ½L0
tot�ð2Þ;1II are found to be

½Ltot�ð2Þ;111 ¼ ½L0
tot�ð2Þ;111 −

3

2
ðrð0Þ1 − ~rð0Þ1 Þ;

½Ltot�ð2Þ;133 ¼ ½L0
tot�ð2Þ;133 −

3

2
ðrð0Þ3 − ~rð0Þ3 Þ;

½ ~Ltot�ð2Þ;111 ¼ ½ ~L0
tot�ð2Þ;111 −

5

2
ðrð0Þ1 − ~rð0Þ1 Þ;

½ ~Ltot�ð2Þ;133 ¼ ½ ~L0
tot�ð2Þ;133 −

3

2
ðrð0Þ3 − ~rð0Þ3 Þ: ðC4Þ

One-loop matching results give rð0Þ1 − ~rð0Þ1 ¼ 7 ¼
rð0Þ3 − ~rð0Þ3 .
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APPENDIX D: DIAGRAM RESULTS

After choosing a convenient momentum routing, each
two-loop diagram in Fig. 1 and the associated counterterm
diagrams are evaluated in terms of a tensor integral
contracted with a Dirac tensor, as discussed in
Appendix B. The amplitude for each diagram is represented
by a complicated combination of color factors and Dirac
structures that can be simplified with the tensor reduction
techniques of Appendix A. We find it convenient to first
perform a Dirac tensor reduction using the prescription of
Eq. (29) with a1 ¼ a2 ¼ 0 (that is, working in the E0

I basis)
that allows us to express the diagrams in a given class as
individual color factors times a common combination of
Dirac basis structures. These Dirac structures are shown in
Table III. We then perform color tensor reductions of the
color factors of Table IV. This allows each diagram
amplitude to be expressed as a combined spin-color tensor.
While there are 25 distinct spin-color tensors that can be
built from the basis tensors of Appendix A, most vanish by
quark exchange antisymmetry when contracted with exter-
nal quark fields and flavor tensors to form operator
corrections.
When contracted with ðψiτ2ψÞðψiτ2ψÞðψiτ2τAψÞ, the

only spin-color tensors that give nonvanishing contribu-
tions are

ð1 ⊗ 1 ⊗ 1ÞTAAS; ðσ ⊗ σ ⊗ 1ÞTSSS;

ð1 ⊗ σ ⊗ σÞTASA; ðσ ⊗ 1 ⊗ σÞTAAS: ðD1Þ

The overall contribution from each diagram class to MA
d is

represented by a linear combination of these four spin-color
tensors in Table V. Analogously, when contracted with
ðψiτ2τAψÞðψiτ2τBψÞðψiτ2τCψÞ, the only spin-color ten-
sors that give nonvanishing contributions are

ð1 ⊗ 1 ⊗ 1ÞTSSS; ðσ ⊗ σ ⊗ 1ÞTAAS;

ð1 ⊗ σ ⊗ σÞTSAA; ðσ ⊗ 1 ⊗ σÞTASA;

ðσ ⊗ σ ⊗ σÞTAAA: ðD2Þ

The overall contribution from each diagram class to MS
d is

represented by a linear combination of these five spin-color
tensors in Table VI.
After adding the amplitudes MA

d and MS
d from each

diagram class, we consider each QI independently from
operator corrections by Eq. (25). The resulting operator
corrections can be expressed as a simple multiple of QI in
D ¼ 4 through application of either the operator projectors
of Eq. (22) or the relations of Appendix C and

i
3
ðψCPRiτ2τAσμνψÞðψCPRσμρiτ2τAψÞðψCPRσνρiτ2τþψÞTAAA

¼D¼4 −
8

3
ðψCPRiτ2τAψÞðψCPRiτ2τAψÞðψCPRiτ2τþψÞTSSS; ðD3Þ

and

iðψCPRiτ2τf3σμνψÞðψCPRσμρiτ2τ3ψÞðψCPRσνρiτ2τþgψÞTAAA

−
1

5
iðψCPRiτ2τfAσμνψÞðψCPRσμρiτ2τAψÞðψCPRσνρiτ2τþgψÞTAAA

¼D¼4
4½ðψCPRiτ2τf3σμνψÞðψCPRiτ2τ3ψÞðψCPRiτ2τþgψÞTSSS

−
1

5
ðψCPRiτ2τfAψÞðψCPRiτ2τAψÞðψCPRiτ2τþgψÞTSSS�: ðD4Þ

The result is an operator correction proportional to QI plus irrelevant evanescent contributions. The 1=ε̄ pole coefficient of

this amplitude represents Lð2Þ;2
II =ε̄2 þ ½L0

tot�ð2Þ;1II =ε̄. After including the change of evanescent basis factors in Eq. (C4), γð1ÞI is
immediately given by Eq. (57).
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