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We discuss the strong couplings gPPV and gVVP for vector (V) and pseudoscalar (P) mesons, at least one
of which is a charmonium state J=ψ or ηc. The strong couplings are obtained as residues at the poles of
suitable form factors, calculated in a broad range of momentum transfers using a dispersion formulation of
the relativistic constituent quark model. The form factors obtained in this approach satisfy all constraints
known for these quantities in the heavy-quark limit. Our results suggest sizably higher values for the strong
meson couplings than those reported in the literature from QCD sum rules.
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I. INTRODUCTION

Strong couplings involving three mesons are compli-
cated objects posing a great challenge for their theoretical
study. The D�Dπ coupling, for which most theoretical
analyses predicted values sizably smaller than the one later
measured by CLEO [1], illustrates this statement very well.
In this paper, we address the strong three-meson couplings
involving J=ψ and ηc states. These quantities cannot be
measured directly in strong J=ψ and ηc decays, but they are
important for our understanding of the J=ψ and ηc proper-
ties in a hadronic medium [2].
Most results for charmonium couplings arose from rather

detailed QCD sum-rule calculations [3–6]. In the past,
however, the application of QCD sum rules to three-meson
couplings faced a great problem: QCD sum rules strongly
underestimated the D�Dπ coupling (see, e.g., [7]) and the
origin of this discrepancy has not been fully clarified. We
thus present an alternative analysis of the family of J=ψ and
ηc couplings using the relativistic dispersion approach [8],
one of the approaches which managed to predict correctly
the D�Dπ coupling [9,10] before the CLEO measurement.
The strong couplings in the focus of our interest, gPV 0V

and gPP0V , are defined by

hP0ðp2ÞVðqÞjPðp1Þi ¼ −
1

2
gPP0Vðp1 þ p2Þμε�μðqÞ;

hV 0ðp2ÞVðqÞjPðp1Þi ¼ −ϵε�ðqÞε�ðp2Þp1p2
gPV 0V; ð1:1Þ

withmomentum transferq ¼ p1 − p2. Accordingly, gPP0V is
dimensionless whereas gPV 0V has inverse mass dimension.
These strong couplings are related to the residues of the

poles in the transition form factors at timelike momentum
transfer arising from contributions of intermediate meson
states in the transition amplitudes’ q2 channel. We study the

form factors FP→P0
þ ðq2Þ, VP→Vðq2Þ, and AP→V

0 ðq2Þ, related
to the transition amplitudes induced by vector quark
currents q̄2γμq1 or axial-vector quark currents q̄2γμγ5q1:

hP0ðp2Þjq̄2γμq1jPðp1Þi¼FP→P0
þ ðq2Þðp1þp2Þμþ�� � ;

hVðp2Þjq̄2γμq1jPðp1Þi¼
2VP→Vðq2Þ
MPþMV

ϵμε�ðp2Þp1p2
;

hVðp2Þjq̄2γμγ5q1jPðp1Þi¼ iqμðε�ðp2Þp1Þ
2MV

q2
AP→V
0 ðq2Þ

þ �� � ;

where the dots stand for other Lorentz structures. The poles
in the above form factors are of the form

FP→P0
þ ðq2Þ ¼ gPP0VR

fVR

2MVR

1

1 − q2=M2
VR

þ � � � ;

VP→Vðq2Þ ¼ ðMV þMPÞgPVVR
fVR

2MVR

1

1 − q2=M2
VR

þ � � � ;

AP→V
0 ðq2Þ ¼ gPPRVfPR

2MV

1

1 − q2=M2
PR

þ � � � : ð1:2Þ

In these relations, PR and VR label pseudoscalar and vector
resonances with appropriate quantum numbers; fP and fV
are the leptonic decay constants of the pseudoscalar and
vector mesons, respectively, defined in terms of the
amplitude of the meson-to-vacuum transition induced by
the axial-vector or vector quark currents according to

h0jq̄1γμγ5q2jPðpÞi ¼ ifPpμ;

h0jq̄1γμq2jVðpÞi ¼ fVMVεμðpÞ:
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II. DISPERSION FORMULATION OF THE
RELATIVISTIC CONSTITUENT QUARK MODEL

Relativistic constituent quark models [11] proved to
constitute an efficient tool for the study of hadron properties,
in particular of meson decay constants and transition form
factors.Anessential featureof the constituent quarkpicture is
the appropriatematching of the quark currents inQCD(q̄γμq,
q̄γμγ5q, etc.) and the associated currents formulated in terms
of constituent quarks (Q̄γμQ, Q̄γμγ5Q, etc.). For light quarks,
for instance, partial conservation of the axial-vector current
requires the appearance of the pseudoscalar structure in the
axial-vector current of the constituent quarks, similar to
the case of the axial-vector current of the nucleon [12]. For
the currents containing heavy quarks, the matching con-
ditions are simpler:

q̄1γμq2 ¼ gVQ̄1γμQ2 þ � � � ;
q̄1γμγ5q2 ¼ gAQ̄1γμγ5Q2 þ � � � ;

where the dots indicate contributions of other possible
Lorentz structures [12]. Constituent quarks Q1 and Q2 have
masses m1 and m2, respectively. In general, the form
factors gV and gA depend on the momentum transfer.
Vector-current conservation requires gV ¼ 1 at zero momen-
tum transfer for the elastic current and at zero recoil for the
heavy-to-heavy quark transition. The specific values of the

form factors gV and gA and their momentum dependences
belong to the parameters of the model, as well as the quark
masses and the wave functions of mesons regarded as
relativistic quark-antiquark bound states. A relativistic treat-
ment of two-particle contributions to the bound-state structure
maybe consistently formulatedwithin a relativistic dispersion
approach which takes into account only two-particle inter-
mediate quark-antiquark states in Feynman diagrams [13].
Such a formulation is explicitly relativistic invariant: hadron
observables like form factors or decay constants are given by
spectral representations over the invariant masses of the
quark-antiquark intermediate states. Application of the
dispersion formulation of the constituent quark picture to
heavy-to-light meson form factors has convincingly demon-
strated the reliability of this approach [10].

A. Meson decay constants and form factors
as spectral integrals

Within the dispersion formulation of the constituent
quark model, the decay constants fP and fV of pseudo-
scalar and vector mesons are expressed in the form of
relativistic spectral representations, over the invariant
masses of the intermediate quark-antiquark states, of the
spectral densities involving the nonperturbative meson
wave functions ϕPðsÞ and ϕVðsÞ, respectively [8]:

fP ¼
ffiffiffiffiffiffi

Nc

p

Z

∞

ðm1þmÞ2
dsϕPðsÞðm1 þmÞ λ

1=2ðs;m2
1; m

2Þ
8π2s

s − ðm1 −mÞ2
s

;

fV ¼
ffiffiffiffiffiffi

Nc

p

Z

∞

ðm1þmÞ2
dsϕVðsÞ

2
ffiffiffi

s
p þm1 þm

3

λ1=2ðs;m2
1; m

2Þ
8π2s

s − ðm1 −mÞ2
s

; ð2:1Þ

with λða; b; cÞ≡ ðaþ b − cÞ2 − 4ab. The wave functions ϕiðsÞ, i ¼ P, V, can be written as

ϕiðsÞ ¼
π
ffiffiffi

2
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

s2 − ðm2
1 −m2Þ2

p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

s − ðm1 −mÞ2
p

wiðk2Þ
s3=4

; k2 ¼ λðs;m2
1; m

2Þ
4s

; ð2:2Þ

with wiðk2Þ normalized according to
Z

dkk2w2
i ðk2Þ ¼ 1: ð2:3Þ

Notice that Eq. (2.1) may be rewritten as the Fourier
transform of the meson relativistic wave function at the
origin.
Similarly, the M1ðp1Þ → M2ðp2Þ transition form factors

induced by the constituent quark transition current Q̄1ÔQ2

in the kinematical region −∞ < q2 ≤ ðm2 −m1Þ2 is given
by the double spectral representation

Fiðq2Þ ¼
Z

ds1ϕ1ðs1Þ
Z

ds2ϕ2ðs2ÞΔiðs1; s2; q2Þ: ð2:4Þ

The function Δiðs1; s2; q2Þ is the double spectral density of
the relevant Feynman diagrams with constituent quarks in
the loop (Fig. 1). It contains the θ functions corresponding
to the quark-antiquark thresholds and a specific constraint
coming from the triangle Feynman diagram. The explicit
expressions for Δiðs1; s2; q2Þ are given in Sec. III.2 of [8]
and will not be reproduced here. We point out that at
q2 < 0, the form factors obtained within the dispersion
formulation are equal to the form factors of the light-front
relativistic constituent quark model (Cardarelli et al. [11]).
Correspondingly, the double spectral representation (2.4) at
q2 < 0 may be rewritten as the convolution of the light-
cone wave functions of the initial and final hadrons [see
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Eq. (2.86) of [8]], or, equivalently, as the Fourier transform
in the transverse variables of the overlap of these wave
functions. The merit of having explicitly relativistically
invariant spectral representations compared to other for-
mulations is the possibility to obtain the form factors in the
decay region 0 < q2 ≤ ðm2 −m1Þ2 by the analytic con-
tinuation in q2 which was shown to lead to the appearance
of the anomalous cut [14]. Notably, both the normal and the
anomalous contributions involve the s1 and s2 integrations
over the corresponding two-particle cuts, i.e., for k21 > 0

and k22 > 0, with k1;2 given by (2.2). As a result, the form
factors in a broad kinematical region −∞ < q2 ≤ ðm2 −
m1Þ2 are expressed in terms of the relativistic wave
functions of the participating mesons w1ðk21Þ and w2ðk22Þ,
with k21 > 0 and k22 > 0. In this region, the precise form of
the wave functions wiðk2Þ is not crucial; essential is only
that the confinement effects have been taken into account.
That is why, as shown in the applications to meson
transition form factors [10], a simple Gaussian parametri-
zation can be adopted:

wiðk2Þ ∝ expð−k2=2β2i Þ: ð2:5Þ
The spectral representation (2.4) is based on constituent
quark degrees of freedom and we apply it to calculate the
form factors in the region q2 < ðm2 −m1Þ2. We then
numerically interpolate the results of our calculations
and use the obtained parametrizations to study the form
factors at q2 > ðm1 −m2Þ2, where one expects the appear-
ance of a meson resonance at q2 ¼ M2

R.
The use of the dispersion formulation of the constituent

quark model allows us to reveal the intimate connection
between different decay modes and to perform the calcu-
lations in a broad range of q2 which includes the scattering
region q2 < 0 and the physical region of the quark weak
decay 0 < q2 < ðm2 −m1Þ2. In fact, quark models are the
only approach that leads to relations between the decays of
different mesons through the meson wave functions and
provides the form factors in the q2 range indicated above. It
is important to emphasize that the form factors (2.4)
reproduce correctly the structure of the heavy-quark
expansion in QCD for heavy-to-heavy and heavy-to-light
transitions if the radial wave functions wiðk2Þ are localized
in a region of the order of the confinement scale Λ, i.e.,
k2 ≤ Λ2 [14].

B. Parameters of the model

For the wave functions, we make use of the simple
Gaussian wave-function ansatz which satisfies the localiza-
tion requirement for β≃ ΛQCD and proved to provide a
reliable picture of a large class of transition form factors [10].
Notably, the quark-model double spectral representations

take into account long-range QCD effects but not the short-
range perturbative corrections. However, the parameters of
the model (quark masses and nonperturbative meson wave
functions corresponding to the choice of the constituent
quark couplings gV ¼ 1 and gA ¼ 1) are assumed such that
our dispersion approach reproduces the observables (decay
constants and some “well-measured” form factors from
lattice QCD); therefore, radiative corrections to the quark
propagators and to the vertices at the moderate momentum
transfers considered are effectively taken care of by the use of
constituent quark masses1 and the meson wave functions.
We employ the same values of the constituent quark

masses and couplings that have been obtained in [10]:

gV ¼ gA ¼ 1; md ¼ mu ¼ 0.23 GeV;

ms ¼ 0.35 GeV; mc ¼ 1.45 GeV: ð2:6Þ
With the above quark couplings and masses, and the meson
wave-function parameters β collected in Table I, the decay
constants from our dispersion approach reproduce the best-
known decay constants of pseudoscalar and vector mesons,
also summarized in Table I.
Using the parameter values (2.6) and Table I, the spectral

representations (2.4) yield the form factors numerically. We
then interpolate our numerical results by a simple physi-
cally motivated formula,

Fðq2Þ ¼ Fð0Þ
ð1 − q2=M2

RÞð1 − σ1q2=M2
R þ σ2q4=M4

RÞ
; ð2:7Þ

where MR ¼ MV for Fþ and V, and MR ¼ MP for A0. We
may use the parameters Fð0Þ, σ1;2, and MR as parameters
for our fitting procedures. It turns out that for all form
factors considered in this work, the value of MR obtained

,

c c

c
_

cη ψJ/cη

μγc c
_

D

μγc c
_

c c
_
d

D,D*

d

c
_

d

c

cη ,  J/ψ D,D*

μγc
_

(a) (b) (c)

FIG. 1. Feynman diagrams for the transitions under consideration induced by the quark vector currents Q̄γμQ: (a) ηc → ηc; J=ψ
induced by the current c̄γμc, (b) D → D, D� induced by the current c̄γμc, and (c) ηc; J=ψ → D, D� induced by the current c̄γμd.

1Indications of the appearance of the effective constituent
quark masses in the soft region come from several different
approaches [15].
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by the fit turns out to be very close (within a few percent
accuracy) to the mass of the resonance with the appropriate
quantum numbers. This property opens the possibility of
using the obtained parametrization (2.7) up to q2 ¼ M2

R
and estimating the pole residues. In what follows, we set
MR equal to the known mass of the physical resonance
and use the remaining parameters Fð0Þ and σ1;2 as
parameters of the fit. The parameters in (2.7) are related
to the pole residue via

ResFðq2 ¼ M2
RÞ ¼

Fð0Þ
1 − σ1 þ σ2

: ð2:8Þ

The residue is given by products of the (known) weak and
the strong couplings g to be determined. Finally, our fit
parameters are Fð0Þ, σ1, and the strong coupling g related
to ResFðq2 ¼ M2

RÞ. In some cases, the residues of different
form factors involve the same strong coupling; for such
form-factor sets a constrained interpolation will be done.

III. THE ηcηcJ=ψ AND ηcJ=ψJ=ψ
STRONG COUPLINGS

The double spectral representations enable us to calcu-
late the necessary form factors as soon as the vertex
functions of ηc and J=ψ are given. We fix the wave-
function slope parameters βi such that the decay constants
of ηc and J=ψ are reproduced by the spectral representa-
tions (2.1). Using for ηc the lattice finding fηc ¼ ð394.7�
2.4Þ MeV [20] and for J=ψ the experimental result fψ ¼
ð407� 5Þ MeV [16]—which agrees excellently with the
lattice determination fψ ¼ ð405� 6� 2Þ MeV [21]—
yields the wave-function parameters βηc ¼ 0.77 GeV and
βψ ¼ 0.68 GeV. As soon as these are fixed, we calculate
the form factors Fþðηc → ηcÞ, Vðηc→ψÞ, and A0ðηc → ψÞ
in the kinematical region q2 < 0 by using the dispersion
representations (2.4).

The ηc elastic form factor is normalized to Fηc→ηcþ ð0Þ ¼ 1
by elastic vector-current conservation. Our determination
of the ψ → ηc transition form factor Vηc→ψð0Þ ¼ 1.80,
describing the ψ → ηcγ radiative transition, is in reasonable
agreement with both the data [22] and the lattice-QCD
result [23], in spite of some tension between these two
findings: Vexpð0Þ ¼ 1.68� 0.14 vs V latð0Þ¼ 1.92�0.03�
0.02. N.B.: In the limit mc → ∞, the heavy-quarkonium
transition form factor approaches the value Vð0Þ ¼ 2.
Next, we interpolate the results of our form-factor

calculations performed for −M2
ψ < q2 < 0, by the fit for-

mula (2.7). The residues of the form factorsFþðηc → ηcÞ and
A0ðηc → ψÞ are given in terms of one and the same coupling
gηcηcψ :

ResFþðq2 ¼ M2
ψÞ ¼ gηcηcψfψ=2Mψ ;

ResA0ðq2 ¼ M2
ηcÞ ¼ gηcηcψfηc=2Mψ :

Hence, we perform a combined fit to the two form factors
Fþðηc → ηcÞ and A0ðηc → ψÞ, regarding gηcηcψ , A

ηc→ψ
0 ð0Þ

and the parameters σ1 for Fþðηc → ηcÞ and A0ðηc → ψÞ as
the fit parameters [recall that Fηc→ηcþ ð0Þ ¼ 1 due to current
conservation]. The corresponding results are given in
Table II. These fits reproduce the numerical outcomes with
a fantastic accuracy—better than 0.2%—in the full q2 range
considered. This lends strong support to the reliability of our
approach to charmonia, in spite of the approximate form of
our wave-function model.
The excellent description of our calculated form factors

by the interpolation formula (2.7) suggests that this para-
metrization may be extended up to q2 ¼ M2

R and used to
calculate the strong couplings from the residue of the pole
at q2 ¼ M2

R in (2.7).
The statistical uncertainty reflects merely the accuracy of

the description of the calculation outcomes by the fit
formula, but does not take into account the systematic
uncertainties related to the approximate character of the

TABLE I. Masses [16], leptonic decay constants, and corresponding wave-function parameters β of charmed mesons and charmonia.

D D� Ds D�
s ηc J=ψ

M (GeV) 1.87 2.010 1.97 2.11 2.980 3.097
f (MeV) 206� 8 [16,17] 260� 10 [18,19] 248� 2.5 [20] 311� 9 [21] 394.7� 2.4 [20] 405� 7 [16,21]
β (GeV) 0.475 0.48 0.545 0.54 0.77 0.68

TABLE II. Form factors describing the ηc → ηc and ηc → J=ψ transitions and the corresponding strong couplings.

Amplitude hηcjc̄γμcjηci hJ=ψ jc̄γμγ5cjηci hJ=ψ jc̄γμcjηci
Form factor Fþðηc → ηcÞ A0ðηc → J=ψÞ Vðηc → J=ψÞ
Fð0Þ 1 0.900� 0.004 1.80� 0.01
MR Mψ Mηc Mψ

σ1 0.60� 0.01 0.77� 0.02 0.73� 0.04
Strong coupling gηcηcψ ¼ 25.8� 1.7 gηcψψ ¼ ð10.6� 1.5Þ GeV−1
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model and the specific form of the interpolating formula.
The latter cannot be probed unambiguously. However,
comparison with the results of the experiment, or lattice
QCD in those cases where these results are available, shows
that the systematic uncertainty does not exceed the 10%–
15% level.
In the limitmc → ∞, we have Fþð0Þ ¼ 1 and Vð0Þ ¼ 2.

Consequently, the strong couplings of heavy quarkonia
satisfy gηcηcψ ¼ Mψgηcψψ, which is fulfilled with 20%
accuracy for the charmonium couplings.

IV. STRONG COUPLINGS OF ηc AND J=ψ
TO D AND D�

Here, the couplings of interest may be extracted from the
residues of poles in form factors that describe two different

kinds of transitions: transitions between the charmed
mesons, induced by the currents c̄γμc and c̄γμγ5c
[Fig. 1(b)], and transitions between the charmonia and
the charmed mesons, induced by the currents c̄γμd and
c̄γμγ5d [Fig. 1(c)]. Our results for the form factors and the
corresponding couplings are presented in Tables III and IV.
Again, the small uncertainties of the obtained couplings do
not reflect possible systematic errors related to the approxi-
mate nature of the dispersion approach.
We emphasize that the excellent combined description of

the sets of form factors involving the same strong coupling
in their pole residues (with χ2=DOF ≤ 0.1 assigning a 1%
error to our form-factor results) lends strong support to the
reliability of our results. This is actually a highly nontrivial
feature. For instance, the coupling gDD�ψ is obtained from a

TABLE III. Strong couplings of J=ψ to D and D�.

Amplitude hDjc̄γμcjDi hJ=ψ jc̄γμγ5djDi hD�jc̄γμcjDi hJ=ψ jc̄γμdjDi
Form factor FþðD → DÞ A0ðD → ψÞ VðD → D�Þ VðD → ψÞ
Fð0Þ 1 0.545� 0.003 1.186� 0.003 1.517� 0.003
MR Mψ MD Mψ MD�

σ1 0.453� 0.017 0.58� 0.02 0.453� 0.013 0.59� 0.01
Strong coupling gDDψ ¼ 26.04� 1.43 gDD�ψ ¼ ð10.71� 0.39Þ GeV−1

TABLE IV. Strong couplings of ηc to D and D�.

Amplitude hDjd̄γμcjηci hD�jd̄γμγ5cjηci hD�jc̄γμγ5cjDi hD�jd̄γμcjηci
Form factor Fþðηc → DÞ A0ðηc → D�Þ A0ðD → D�Þ Vðηc → D�Þ
Fð0Þ 0.643� 0.002 0.491� 0.002 0.966� 0.004 1.503� 0.003
MR MD� MD Mηc MD�

σ1 0.466� 0.008 0.71� 0.01 0.39� 0.01 0.491� 0.008
Strong coupling gDD�ηc ¼ 15.51� 0.45 gD�D�ηc ¼ ð9.76� 0.32Þ GeV−1
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FIG. 2. The off-shell strong couplings. Left panel: gDD̂ψ ðxÞ ¼ 2Mψ

fD
ð1 − xÞAD→ψ

0 ðq2Þ, x ¼ q2=M2
D (blue squares and blue dotted line),

and gDDψ̂ ðxÞ ¼ 2Mψ

fψ
ð1 − xÞFD→Dþ ðq2Þ, x ¼ q2=M2

ψ (red triangles and red solid line), extracted from the form factors AD→ψ
0 ðq2Þ and

FD→Dþ ðq2Þ, respectively. Triangles and squares indicate the results computed numerically from the spectral representations, the dotted
and solid lines the fits interpolating the results and then used for extrapolation to the pole regions. Right panel: gDD̂�ψ ðxÞ obtained from
Fηc→D
þ (red solid line); gDD�ψ̂ ðxÞ obtained from AD→D�

0 (blue dotted line); gD̂D�ψ ðxÞ obtained from AD→D�
0 (green dashed line).
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combined description of VðD → D�Þ and VðD → ψÞ: the
vector states here have completely different structure and
properties and are described by rather different wave
functions. Also the vector resonances that appear in the
form factors at timelike momentum transfers differ: J=ψ in
VðD → D�Þ and D� in VðD → ψÞ. The excellent descrip-
tion of all sets of form factors strongly increases the
reliability of our findings. The behavior of the “off-shell
couplings” (viz., the suitably rescaled form factors equaling
the strong couplings at q2 ¼ M2

R) is depicted in Fig. 2.
In the limit mQ → ∞, the form factors FD→Dþ ðq2Þ and

VD→D� ðq2Þ are equal to each other. From (1.2), the
coupling constants thus satisfy the heavy-quark symmetry
relation gDDψ ¼ ðMD þMD�ÞgDD�ψ—fulfilled with 30%
accuracy.

V. STRONG COUPLINGS OF ηc
AND J=ψ TO Ds AND D�

s

The couplings of J=ψ and ηc to the charmed strange
mesons Ds and D�

s may be found from the residues of the
form factors entering the transition amplitudes induced by
the currents c̄γμc, c̄γμγ5c, d̄γμc, or d̄γμγ5c. The relevant
Feynman diagrams may be inferred from those shown in
Figs. 1(a) and 1(b) by replacing the d quark by the s quark.
Tables V and VI summarize the results of our analysis.
Again, we emphasize the excellent simultaneous descrip-
tion of the sets of form factors involving the same strong
coupling in the pole residues.

VI. SUMMARY AND CONCLUSIONS

We revisited the three-meson strong couplings involving
J=ψ and ηc within the dispersion formulation of the
relativistic constituent quark model. In this approach,

various hadron observables are given by relativistic spectral
integrals in terms of spectral densities of the relevant
Feynman diagrams and of relativistic hadron wave func-
tions. The hadron observables from this approach satisfy all
rigorous constraints emerging in QCD in the heavy-quark
limit if the hadron wave functions are localized in a region
of the order of the confinement radius. The basic param-
eters of the model, such as the effective constituent quark
masses, have been determined before in a study [10] of
heavy-meson transition form factors. Following [10], we
fix the wave-function parameters of J=ψ , ηc, and the
charmed and charmed strange mesons using the known
results for the leptonic decay constants of these mesons.
With these parameters at hand, the form factors of interest
are calculated in the spacelike region and the weak-decay
region using relativistic dispersion integrals.
Our results may be summarized as follows:
(1) As the dispersion integrals (2.4) are based on quark

degrees of freedom, all our calculations are carried
out far from the pole at q2 ¼ M2

R. However, the
numerical interpolation formulas turn out to be
excellently compatible with the pole at q2 ¼ M2

R
and therefore can be used up to q2 ¼ M2

R. This
feature allows us to extract the residues of these form
factors at q2 ¼ M2

R and to derive in this way the
three-meson couplings. We perform a combined
analysis of groups of form factors involving
the same strong couplings in the pole residues. In
all cases we arrive at an excellent combined de-
scription of these form factors (that is, with
χ2=degrees of freedom ðDOFÞ ≤ 0.1, assigning just
a 1% error to our form-factor results). This is a
highly nontrivial feature, as the same value of the
strong coupling is extracted from form factors

TABLE V. Strong couplings of J=ψ to Ds and D�
s .

Amplitude hDsjc̄γμcjDsi hJ=ψ jc̄γμγ5sjDsi hD�
s jc̄γμcjDsi hJ=ψ jc̄γμsjDsi

Form factor FþðDs → DsÞ A0ðDs → ψÞ VðDs → D�
sÞ VðDs → ψÞ

Fð0Þ 1 0.630� 0.004 1.23� 0.01 1.67� 0.01
MR Mψ MD�

s
Mψ MD�

s

σ1 0.39� 0.01 0.53� 0.01 0.39� 0.03 0.55� 0.02
Strong coupling gDsDsψ ¼ 23.83� 0.78 gDsD�

sψ ¼ ð9.60� 0.80Þ GeV−1

TABLE VI. Strong couplings of ηc to Ds and D�
s .

Amplitude hDsjs̄γμcjηci hD�
s jc̄γμγ5sjηci hD�

s jc̄γμγ5cjDsi hD�
s jc̄γμsjηci

Form factor Fþðηc → DsÞ A0ðηc → D�
sÞ A0ðDs → D�

sÞ Vðηc → D�
sÞ

Fð0Þ 0.746� 0.002 0.576� 0.002 0.953� 0.004 1.66� 0.004
MR MD�

s
MDs

Mηc MD�
s

σ1 0.42� 0.01 0.61� 0.01 0.35� 0.01 0.45� 0.01
Strong coupling gDsD�

sηc ¼ 14.15� 0.52 gD�
sD�

sηc ¼ ð8.27� 0.37Þ GeV−1
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involving mesons which have entirely different wave
functions. Such an excellent description of all sets of
form factors gives strong support to the credibility of
our findings.
As a summary of our predictions, we report

(a) for the couplings involving J=ψ and ηc mesons,

gηcηcψ ¼ 25.8� 1.7;

gηcψψ ¼ ð10.6� 1.5Þ GeV−1;

(b) for the J=ψ and ηc couplings to charmed
mesons,

gDDψ ¼ 26.04� 1.43;

gDD�ψ ¼ ð10.7� 0.4Þ GeV−1;

gDD�ηc ¼ 15.51� 0.45;

gD�D�ηc ¼ ð9.76� 0.32Þ GeV−1;

(c) and, for the J=ψ and ηc couplings to charmed
strange mesons,

gDsDsψ ¼ 23.83� 0.78;

gDsD�
sψ ¼ ð9.6� 0.8Þ GeV−1;

gDsD�
sηc ¼ 14.15� 0.52;

gD�
sD�

sηc ¼ ð8.27� 0.37Þ GeV−1:

The uncertainties quoted in these results are merely
the statistical uncertainties related to the accuracy of
the description of our results by the fit formulas.
There are, of course, also systematic uncertainties
related to the approximate nature of the dispersion
approach to the form factors; these uncertainties are
very difficult to estimate unambiguously. Compari-
son of the couplings predicted by the dispersion
approach [9,10] with the results from experiment
[1,24] and lattice QCD [25] in those cases where
such results are available allows us to expect the

accuracy of our predictions to be not worse than
15%–20%.

(2) Our results considerably exceed the ones from QCD
sum rules (see the comparison in Table VII).
Both approaches follow the same strategy for
extracting the strong couplings: the form factors
are calculated in a kinematical region far away from
the pole and are then extrapolated to the pole region
in order to isolate the residue. The advantage of the
dispersion approach for the problem under consid-
eration is twofold: we predict the form factor in a
broader range of q2 and we consider q2 values closer
to the pole region than the region where QCD sum
rules may be applied. Therefore, we need to
extrapolate the form factors over much narrower
regions of the momentum transfer and thus believe
that the results of the dispersion approach are more
reliable.

(3) We also investigated the SUð3Þ-breaking effects in
the strong couplings. The replacement of the light
quark by the strange quark leads to the increase of
the considered transition form factors and of the
corresponding residues. At the same time, however,
the leptonic decay constants of the charmed strange
mesons also considerably exceed those of their
nonstrange counterparts. The three-meson strong
couplings are derived as ratios of the form-factor
residues and the leptonic decay constants, and,
eventually, the replacement of the nonstrange quark
by the strange quark leads to a reduction of the three-
meson couplings at the level of some 10%. In
contrast, QCD sum rules observe an enhancement
of the three-meson couplings when the light quark is
replaced by the strange one.
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TABLE VII. Comparison of our strong-coupling predictions with earlier results from QCD sum rules. For consistency with definition
(1.1), the PPV couplings from [4,5] have been multiplied by a factor of 2.

gDDψ gDD�ψ (GeV−1) gDsDsψ gDsD�
sψ (GeV−1)

This work 26.04� 1.43 10.7� 0.4 23.83� 0.78 9.6� 0.8
QCD sum rules 11.6� 1.8 [4] 4.0� 0.6 [4] 11.96� 1.34 [5] 4.30� 1.53 [6]
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