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A diboson excess has been observed—albeit with very limited statistical significance—inWW,WZ, and
ZZ final states at the LHC experiments using the accumulated 8 TeV data. Assuming that these signals are
due to resonances resulting from an extended symmetry breaking sector in the standard model and exact
custodial symmetry, we determine using unitarization methods the values of the relevant low-energy
constants in the corresponding effective Lagrangian. Unitarity arguments also predict the widths of these
resonances. We introduce unitarized form factors to allow for a proper treatment of the resonances in
Monte Carlo generators and a more precise comparison with experiment.
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I. INTRODUCTION

In a series of recent papers [1–6], the relation between
the coefficients of an effective Lagrangian parametrizing an
extended electroweak symmetry breaking sector (EWSBS)
and the appearance of narrow resonances in several isospin
and angular momentum channels involving the scattering
of longitudinally polarized W, Z bosons has been clearly
established. It was found that, except for a small set of
points in the space of parameters very close to the minimal
standard model (MSM) values, resonances with these
characteristics should appear. In fact, it was argued that
detecting such resonances, if ever found, could provide an
indirect but effective way of determining anomalous triple
and quartic gauge boson vertices.
The connection between resonances and coefficients of

the effective EWSBS Lagrangian is not based on a fully
rigorous mathematical theorem, but it is amply supported
by a wealth of experience on strong interactions and
unitarization techniques in effective theories [7]. In the
present context, results have been provided by two different
groups. In [1,3] some of the present authors found by using
the inverse amplitude method (IAM) of unitarization the
relation between the characteristics of the first resonance in
the various IJ channels (I ¼ custodial isospin) and the
value of the coefficients of the effective Lagrangian. The
analysis was done making only as minimal as possible
usage of the equivalence theorem [8,9] as this is known to
be prone to substantial corrections at low values of s. The
Madrid group [4–6] making use of the equivalence theorem
have also been able to determine the connection between
resonances and departures from the MSM at an effective
Lagrangian level. The agreement between the two inde-
pendent sets of calculations is excellent whenever they can
be compared. In addition, the Madrid group has done a
careful analysis of different unitarization methods [6].

Unitarization leads to various resonances depending on
the values of the effective couplings. There is also an ample
region of parameter space ruled out as viable effective
theories, something that is not a surprise to effective theory
practitioners [10]. While there is certainly some room for
some quantitative differences between different unitariza-
tion methods, the results are generally believed to be fairly
accurate.
In the present discussion, by unitarization we refer to the

reconstruction of a unitary amplitude using tree-level plus
one-loop results. Several works considering the so-called
tree-level unitarity (i.e., the requirement that amplitudes of the
kind considered here do not grow with s) already exist [11].
Recently, the experimental collaborations ATLAS and

CMS have reported [12,13] a modest excess of diboson
events peaking around the 2 TeV region. ATLAS looks for
the invariant mass distribution of a pair of jets that are
compatible with a highly boosted W or Z boson. CMS
combines dijet and final states with one or two leptons and
concludes that there is a small excess around 1.8 TeV but
with less statistical significance. In what follows, we shall
use the ATLAS results assuming a mass for a putative
resonance in the range 1.8 TeV < M < 2.2 TeV.
In hadronic decays such as the ones used by ATLAS, it is

not always possible to establish the nature of the jet (W or
Z) [14]. Yet the experimental collaboration feels confident
enough to claim that the signal is apparently present in the
three channels WW, WZ, and ZZ. Assuming exact custo-
dial symmetry, this would suggest that the resonance could
not have I ¼ 0, as this would not contribute in the s channel
to WZ scattering, where the signal appears to be stronger.
However, elementary isospin arguments forbid a resonant

contribution with I ¼ 1 in processes with a ZZ final state.
Therefore, assuming exact custodial symmetry, whether the
resonance has either I ¼ 0 or I ¼ 1, one of the “observed”
channels must have necessarily been misidentified [14].
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The alternative to accepting Oð1Þ custodial breaking would
be to contemplate a resonant I ¼ 2 state (contributes to all
final states), but we regard this as unlikely for the reasons
described in detail in [3,15] (but see [16] where an
elementary I ¼ 2 state is introduced).
As previously mentioned, the IAM and other unitarization

prescriptions are widely used in strong interactions to derive
poles in the S matrix that are not reachable in perturbation
theory. Given a set of low-energy constants accompanying
the higher-dimensional operators in chiral perturbation
theory, one is able to predict different resonances with great
precision. In addition, the unitarization method also gives
predictions for their widths and production cross sections. Of
course, one could follow a second avenue: If the lowest-lying
resonances are provided in the different channels and their
decay constants are also known, one can integrate these
resonances out and derive the low-energy constants in the
effective chiral Lagrangian (as was, for instance, done in
[17]). If one uses these values for the low-energy constants
and unitarizes, the initial resonances masses, decay con-
stants, and widths are approximately recovered [7].
When considering physics beyond the standard model

(BSM), one does not know the masses or coupling
constants of the new states or resonances presumed to
exist (either fundamental or composite), and, therefore, the
values of the low-energy constants are a priori unknown
unless one resorts to specific models [18]. Therefore, the
second avenue is not open to us unless one proceeds model
by model (and even in this case, if the BSM model is
strongly interacting, the coupling constants and masses are
output rather than input and, therefore, in general not
known precisely). Does this mean that one cannot relate
possible poles in the S matrix to the effective theory?
Obviously, nothing prevents us from carrying out the same
program that one usually does in strong interactions (that
works equally well for weakly coupled theories). The IAM
provides a direct connection between the poles of the S
matrix and the low-energy constants of the effective theory.
This relation can be read either way, and while it is
normally used to predict resonances given a set of coef-
ficients, we plan to use the information obtained from
possible resonances in WW scattering (or the absence
thereof) to constrain the effective Lagrangian.
This procedure is possible because in the nonlinear

realization in the custodial limit, there are only two
independent next-to-leading operators, and projecting on
specific channels allows us to constrain two different
combinations of the low-energy constants.1 In addition,
the method is capable of providing from the mere knowl-
edge of the masses of the lowest-lying resonances their

widths, production cross sections, and decay constants (this
last prediction is presented in this paper for the first time in
the present BSM context, we believe).
In this article, we shall contemplate the hypothesis that

the resonant behavior apparently seen at the LHC is due
either to an I ¼ 0; J ¼ 0 resonance and/or an I ¼ 1; J ¼ 1
one and make use of the IAM to derive very restrictive
bounds on a combination of two coefficients of the effective
Lagrangian. In addition, we will be able to approximately
determine the widths of these putative resonances. The
allowed regions in parameter space partly overlap; namely,
there are regions with both a scalar and vector resonances
(this would, of course, help to explain the excess in all
channels). We will comment on the respective possible
widths and masses. We will see that the range of masses
contemplated here would lead to a severe reduction in the
range of variation of the low-energy constants providing
precious information to disentangle the class of underlying
physics that one could be contemplating.
It should be mentioned that the method is of interest,

independent of whether or not the mentioned signal is
confirmed in the future. It is also worth emphasizing that
resonances in the TeV region do correspond to very
small values of the low-energy constants of the effective
Lagrangian. These values are in no way unnatural as simple
power-counting arguments suggest. These small low-
energy constants lead also to very small modifications of
the triple and quartic vector boson vertex, extremely hard to
determine otherwise.
One salient characteristic of the resonances found in the

mentioned unitarization analysis is that they are very
narrow, something that runs contrary to the intuition of
many practitioners in strongly interacting theories. This
comes about because of the strong but partial unitarization
that a Higgs at MH ¼ 125 GeV brings about. By con-
struction, these resonances couple only toW and Z bosons.
Together with the assumption of exact custodial symmetry,
this is the only hypothesis in our analysis.

II. CONSTRAINING THE EFFECTIVE
LAGRANGIAN COEFFICIENTS

The effective Lagrangian whose unitarized amplitudes
we will consider is

L ¼ −
1

2
TrWμνWμν −

1

4
TrBμνBμν þ 1

2
∂μh∂μh −

M2
H

2
h2

− d3ðλvÞh3 − d4
λ

4
h4

þ v2

4

�
1þ 2a

�
h
v

�
þ b

�
h
v

�
2

þ � � �
�

× TrDμU†DμU þ
X

aiOi; ð1Þ

where

1The IAM method could, in principle, provide information for
higher-order terms in the effective Lagrangian from excited
resonances, but this requires knowledge of higher powers of s
in the corresponding amplitudes, i.e., higher loops.
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U ¼ exp

�
i
w · τ
v

�
and

DμU ¼ ∂μU þ 1

2
igWi

μτ
iU −

1

2
ig0Bi

μUτ3: ð2Þ

The w’s are the three Goldstone of the global group
SUð2ÞL × SUð2ÞR → SUð2ÞV . This symmetry breaking
is the minimal pattern to provide the longitudinal compo-
nents to theW� and Z and emerging from phenomenology.
The Higgs field h is a gauge and SUð2ÞL × SUð2ÞR singlet,
and the Oi is a set of higher-dimensional operators. In an
energy expansion and at the next-to-leading order, it is
sufficient to consider theOðp4Þ operators. This formulation
is strictly equivalent to others where the Higgs is introduced
as part of a complex doublet, as S-matrix elements are
independent of the parametrization.
The operators Oi include the complete set of operators

defined, e.g., in [1,19,20]. We will be interested in WW
scattering and work in the strict custodial limit. Therefore,
only a restrict number of operators have to be considered;
namely, of the possible 13 Oðp4Þ operators, only two O4

andO5 will contribute toWLWL scattering2 in the custodial
limit:

O4 ¼ Tr½VμVν�Tr½VμVν�; O5 ¼ Tr½VμVμ�Tr½VνVν�;
ð3Þ

where Vμ ¼ ðDμUÞU†. We could easily extend the analysis
to include noncustodial contributions, but we see little or no
reason to do so at present.
The parameters a and b control the coupling of the Higgs

to the gauge sector [21]. Couplings containing higher
powers of h=v do not enter WW scattering, and they have
not been included in (1). The two additional parameters d3
and d4 parametrize the three- and four-point interactions of
the Higgs field.3 The MSM case corresponds to setting a ¼
b ¼ d3 ¼ d4 ¼ 1 in Eq. (1). Current LHC results give the
following bounds for a, a4;5:

a ¼ ½0.67; 1.33�; a4 ¼ ½−0.094; 0.10�;
a5 ¼ ½−0.23; 0.26� 90% C:L:; ð4Þ

see [22,23]. Present data clearly favor values of a close to
the MSM value (a ¼ 1). We shall consider here only this
case, leaving the consideration of other values of a to a
forthcoming publication.4 The parameter b is almost totally
undetermined at present and actually does not play a very
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FIG. 1. For a ¼ 1 and b ¼ 1: (a) Allowed values for a4, a5 corresponding to a vector resonance with a mass between 1.8 and 2.2 TeV.
Note the extremely limited range of variation that is allowed in the figure for the low-energy constants. (b) The corresponding widths as
predicted by unitarity using the IAMmethod. The characteristic value is 20 GeV—quite narrow for such a large mass. The dashed area is
excluded on causality grounds stemming from the I ¼ 2 channel.

2Actually, there are other custodial invariant operators (see,
e.g., the Appendix in [1] for comments and notation). Of these,
only the one corresponding to the coefficient a3 actually appears
in WLWL scattering. It acts by modifying the value of the
diagrams where aW or Z is exchanged with an overall factor that
for the range of values of the low-energy constants contemplated
here is way too small to be of any influence. Detailed formulas
can be found in [1,9]. Only a4 and a5 really matter.

3This is not the most general form of the Higgs potential, and,
in fact, additional counterterms are needed beyond the standard
model [4], but this does not affect the subsequent discussion for
WLWL scattering.

4It should be mentioned at this point that considering a < 1
leaves the vector cross section almost unchanged (although the
range of a4 a5 is somewhat modified), it does increase noticeably
the scalar cross section.
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relevant role in the present discussion. We will assume b ¼
a2 without further ado.
Determining the range of parameters a4 and a5 allowed

by assuming a scalar and/or vector resonance in the range
1.8 TeV < M < 2.2 TeV is the main purpose of the
present analysis. It should be mentioned that these two
low-energy constants do not affect at all oblique corrections
(quite constrained; see, e.g., [24]) or the triple gauge boson
coupling: a1, a2, and a3 are the relevant couplings in the

custodial limit to consider in these contexts. The effective
EWSBS Lagrangian nicely disentangles the two kinds of
constraints.
We shall not provide here the technical details of the

unitarization method we use, as they have been described in
detail elsewhere [1,3].
After requiring a resonance in the vector channel with a

mass in the quoted range, one gets in an a4-a5 plane the
region shown on the left in Fig. 1 for a ¼ 1. An analogous
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FIG. 2. For a ¼ 1 and b ¼ 1: (a) Allowed values for a4, a5 corresponding to a scalar resonance with a mass between 1.8 and 2.2 TeV.
(b) The corresponding widths as predicted by unitarity using the IAM method; characteristic values are in the 70–100 GeV range.
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FIG. 3. (a) The existence of a resonance in the 1.8 TeV < M < 2.2 TeV range constraints a lot the allowed values of the low-energy
constants of the EWSBS effective Lagrangian. The dashed area is excluded on causality grounds. (b) Blowup of the region
of overlap where vector and scalar resonances may coexist. The broad strip shows the region of admissible vector resonances
with masses in the 1.8–2.2 TeV range. The shaded area in the upper-right part contains scalar resonances of mass
> 1 TeV.
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procedure, but assuming that the resonance is the I ¼ 0,
J ¼ 0 channel, results in the allowed region in the a4-a5
plane depicted in Fig. 2.
We would like to emphasize the very limited range of

variation for the parameters that is shown in Figs. 1 and 2.
The constants a4 and a5 lie in the small region ja4j; ja5j <
5 × 10−4 (this region includes, of course, the MSM value
a4 ¼ a5 ¼ 0, but, obviously, there are no resonances there).
In order to convey a picture of the sort of predictive

power of unitarization techniques, we plot in Fig. 3 the
allowed bands in the broader range ja4j; ja5j < 0.01 that
was considered in a previous work [1] as still being
phenomenologically acceptable. Indeed, setting even a
relatively loose bound for the mass of the resonance
restricts the range of variation of the relevant low-energy
constants enormously. In the same Fig. 3, we show a
blowup of the region where both a scalar and a vector
resonance in this mass range may coexist. The dashed area
is excluded as acceptable for effective EWSBS theories (see
[3]). In Fig. 4 we show viable scalar and vector resonances
in the a4-a5 plan.

III. EXPERIMENTAL VISIBILITY
OF THE RESONANCES

The statistics so far available from the LHC experiments
are limited. Searching for new particles in the LHC
environment is extremely challenging, and analyzing the
contribution of possible resonances to an experimental
signal is not easy without a well-defined theoretical model
with definite predictions for the couplings, form factors,
etc. The IAM method is not only able to predict resonance
masses and widths but also their couplings to theWLWL. In
[1,3], the experimental signal of the different resonances

was compared to that of a MSM Higgs with an identical
mass. Because the decay modes are similar (in the vector
boson channels that is) and limits on different Higgs masses
are very documented, this was a rather intuitive way of
presenting the cross section for possible EWSBS resonan-
ces, but it is not that useful for heavy resonances as the
signal of a hypothetical Higgs of analogous mass becomes
very broad and diluted. This point and several others were
discussed in detail in [1]. Here we shall give very simple
estimates of some cross sections based on the effective W
approximation (EWA) [25] in a couple of channels. These
estimates should be taken as extremely tentative and only
relevant to establish comparisons between different masses
and channels. In the last section, we will introduce form
factors and vertex functions to allow for a proper com-
parison with experiment. Please note that amplitudes where
scalars contribute the contribution of the 125 GeV Higgs
are also included.
Some results for the cross sections are depicted in Fig. 5

for the processesWþ
LW

−
L → Wþ

LW
−
L and ZLZL → ZLZL. In

the first case, we quote the contribution from a possible
vector resonance only (a scalar resonance is also possible in
this process). In the second case, only scalar exchange is
possible. Note that both diboson production modes are
subdominant at the LHC with respect to gluon production
mediated by a top-quark loop and that the possible
resonances in the scenario discussed here couple only to
dibosons.
Compared to the preliminary experimental indications,

the results quoted for the cross sections of these two
specific processes are low, particularly for vector resonan-
ces, but there are several caveats. First of all, the EWA tends
to underestimate the cross sections, and it is difficult to
assess its validity in the present kinematical situation.
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FIG. 4. (a) Viable scalar resonance masses in the region of interest in the a4-a5 plane for a ¼ 1 assuming a vector resonance in the
1.8 TeV < M < 2.2 TeV range. (b) The reverse situation: assuming a scalar mass in the 1.8 TeV < M < 2.2 TeV range and depicting
the possible values for a vector resonance compatible with it.
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Second, in this region of parameter space, the cross sections
do change very quickly with only small changes of the
parameters, thus, adding an element of uncertainty. Finally,
the quoted cross sections correspond to considering only
the interval s ∈ ½M − 2Γ;M þ 2Γ� so as to have some
intuition on the contribution of the resonance itself. It
should also be mentioned that, as discussed in [1], there is
an enhancement in the WþW− → WþW− channel when
both the vector and scalar resonances become nearly
degenerate; this is possible in a limited region of parameter
space. Also, as previously stated, the scalar channel is
enhanced if a < 1.
Interesting as partial waves for a given process may be,

they are not that useful to implement unitarization in a
Monte Carlo generator in order to make a detailed
quantitative comparison with experiment. One would need
to implement diagrammatically, and for that, one needs
vertex functions and propagators wherewith to construct
and compute the contribution from different topologies.
Our proposal to tackle this problem is presented next.

IV. INTRODUCING FORM FACTORS

The amplitude AðWa
LðpaÞ þWb

LðpbÞ → WcðpcÞL þ
WdðpdÞLÞ will be denoted by Aabcdðpa; pb; pc; pdÞ.
Using isospin and Bose symmetries, this amplitude can
be expressed in terms of a universal function as

Aabcdðpa; pb; pc; pdÞ ¼ δabδcdAðs; t; uÞ þ δacδbdAðt; s; uÞ
þ δadδbcAðu; t; sÞ; ð5Þ

with Aðs; t; uÞ ¼ Aþ−00ðpþ; p−; p0; p00Þ. The fixed-isospin
amplitudes are given by the following combinations:

T0ðs; t; uÞ ¼ 3Aðs; t; uÞ þ Aðt; s; uÞ þ Aðu; t; sÞ;
T1ðs; t; uÞ ¼ Aðt; s; uÞ − Aðu; t; sÞ;
T2ðs; t; uÞ ¼ Aðt; s; uÞ þ Aðu; t; sÞ: ð6Þ

In writing these expressions, we assume exact crossing
symmetry.5 We also write the reciprocal relations (also
assuming exact crossing symmetry)

Aþ0þ0ðs; t; uÞ ¼ 1

2
T1ðs; t; uÞ þ

1

2
T2ðs; t; uÞ;

Aþ−þ−ðs; t; uÞ ¼ 1

3
T0ðs; t; uÞþ

1

2
T1ðs; t; uÞþ

1

6
T2ðs; t; uÞ;

Aþþþþðs; t; uÞ ¼ T2ðs; t; uÞ;

A0000ðs; t; uÞ ¼ 1

3
T0ðs; t; uÞ þ

2

3
T2ðs; t; uÞ: ð7Þ

Other amplitudes [such as, e.g., Aþ−00ðs; t; uÞ] can be
obtained trivially from the previous ones using obvious
symmetries (and crossing symmetry too).
The partial wave amplitudes for fixed isospin I and total

angular momentum J are defined by

tIJðsÞ ¼
1

64π

Z
1

−1
dðcos θÞPJðcos θÞTIðs; t; uÞ; ð8Þ

where the PJðxÞ are the Legendre polynomials and
t ¼ ð1 − cos θÞð4M2

W − sÞ=2, u¼ð1þ cosθÞð4M2
W −sÞ=2
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FIG. 5. Experimental signal of resonances for a ¼ 1: The resonance cross sections are given in fb, the LHC energy has been taken to
be 8 TeV, and the EWA approximation is assumed in this calculation. Left: Estimated cross section for the processWLWL → WLWL as a
function of the parameters a4, a5 due to a vector resonance. Right: Cross section for the process ZLZL → ZLZL due to a scalar
resonance. The contribution from the 125 GeV Higgs is also included in both cases.

5This remark is pertinent because amplitudes involving lon-
gitudinally polarized bosons are not crossing symmetric. The
formulas can be easily extended to this case but become some-
what more involved and will not be reported here. See [1].
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with MW being the W, Z mass, and t00, t11, and t20 are the
first nonvanishing partial waves in the present case. The
poles in the respective unitarized partial wave amplitudes
dictate the presence or absence of EWSBS resonances in
the different channels.
We would like to express any amplitude as the sum of

exchanges of resonances in the s, t, and u channels, as it is
diagrammatically expressed in Fig. 6. That is, we decom-
pose, say, Aþ0þ0,

Aþ0þ0 ¼
X
IJ

ðAIJ
s þ AIJ

t þ AIJ
u Þ: ð9Þ

Not all IJ’s receive contributions from all three channels.
For example, in the case Aþ0;þ0 a possible scalar resonance
only contributes to the t channel. In addition, not all
processes are resonant in all regions of parameter space,
so the above decomposition assumes resonance saturation.
Let us now define the vector form factor as6

hWi
Lðp1ÞWj

Lðp2ÞjJkμj0i ¼ ðp1 − p2ÞμFVðsÞϵijk; ð10Þ

where Jμk is the interpolating vector current with isospin
index k that creates the resonance ρ, and FVðsÞ is the vector
form factor. From this form factor, we derive a vector vertex
function Kμ via the relation

Kμðp1; p2Þ ¼ ðp1 − p2ÞμFVðsÞðs −M2
poleÞ: ð11Þ

Let us focus, for instance, on the amplitude Aþ0þ0 that
potentially has contributions from a vector and a tensor.
The IAM does exclude the I ¼ 2 contribution [3], so let us
consider A11

s for this process. It can be expressed as

A11
s ¼ Kμ

gμν −
kμkν
k2

s −M2
pole

K�ν ¼ jFVðsÞj2ðs −M�2
poleÞð−2t − sÞ

¼ jFVðsÞj2ðs −M�2
poleÞð−s cos θÞ; ð12Þ

whereMpole ¼ M − iΓ=2. Analogous decompositions exist
for A11

t and A11
u . In fact, we do not need to consider A11

t and
A11
u at all because assuming exact isospin symmetry,

A11ðs; t; uÞ ¼ ð−1ÞIA11ðs; u; tÞ. Here we assume, and it
is a necessary ingredient of the present approach, that
external lines are on shell.
On the other hand, from unitarization we know that

A11 ≃ 96πt11ðsÞ cos θ; ð13Þ

so neglecting further partial waves, it is natural to identify

jFVðsÞj2 ¼ −
96πt11ðsÞ

sðs −M�2
poleÞ

; ð14Þ

where for tIJ we can use the IAM approximation

tIJ ≈
tð0ÞIJ

1 − tð2ÞIJ =t
ð0Þ
IJ

: ð15Þ

Although jFV j2 should, of course, be real and positive,
when using the identification above we get a tiny imaginary
part (ImjFV j2 ∼ 10−2RejFV j2) due to the fact that we are
missing possible channels (including nonresonant contri-
butions) and terms in the partial wave expansion. However,
we can regard the description of the amplitude via vertex
functions and resonance propagators as quite satisfactory in
the regions where resonances are present.
Neglecting the gauge boson mass (quite justified at

2 TeV), unitarity requires the form factor to obey the
following relation within a vector-dominance region [20]

ImFVðsÞ ¼ t�11ðsÞFVðsÞ: ð16Þ

Equation (16) allows us to extract the phase of FVðsÞ. Thus,
combining the phase and the modulus, we obtain the vector
form factor

FVðsÞ ¼ jFVðsÞj exp
�
i arctan

Ret11
1 − Imt11

�
: ð17Þ

Similar techniques could allow us to define a unitarized
scalar form factor FSðsÞ and a vertex function directly
derived from the unitarized amplitude that in this channel is

A00 ≃ 32πt00ðsÞ ð18Þ
and assuming resonance dominance. In Fig. 7, we plot the
vertex functions KVðsÞ and KSðsÞ obtained by the method
just described:

FIG. 6. Decomposition of a process in (unitarized) form factors and resonance propagators.

6Current vector conversation has been used.
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jKVðsÞj ∼ jFVðsÞ∥s −M2
polej;

jKSðsÞj ∼ jFSðsÞ∥s −M2
polej: ð19Þ

Note that the function KVðsÞ is dimensionless while KSðsÞ
has units of energy. However, for vector resonances, the
effective coupling is typically KVðsÞ

ffiffiffi
s

p
(see the expression

for the form factor and the associated Feynman rule). In the
last figure, we plot these effective couplings normalized to
the scale v. The contribution to the form factor from the
125 GeV Higgs is negligible around the scalar resonance
at 2 TeV.
We notice that, not unexpectedly, the effective couplings

are momentum dependent, even though the dependence
seems mild in a relatively large region around the reso-
nance. It is not difficult to extract the value of the effective
coupling constant at the resonance value. If one assumes an
effective operator coupling, the vector resonance to the
Goldstone bosons given by the only operator possible of
dimensionality four

∼gVϵijkwi∂μwkVk
μ; ð20Þ

the following value is obtained: gVð
ffiffiffi
s

p ¼ 2 TeVÞ≃ 1.6;
namely the coupling is certainly nonperturbative but not
enormously large.
In a resonance model dominated by vector meson

exchange (similar to the one described in [17] in the
context of QCD), the couplings a4 and a5 would be
expected to be of order g2VðMW

MV
Þ2 (plus radiative corrections)

where gV would be the (dimensionless) coupling constant
introduced above andMV the mass of the vector resonance.
Introducing the value of gV found and settingMV ¼ 2 TeV,
one gets coefficients of order 10−4 as favored by the direct
unitarity analysis. Notice that in the IAM approach, every-
thing in the vector channel depends to a very good
approximation on the single combination a4 − 2a5 (and
gV is an output), whereas using a phenomenological
resonance model, one needs to know separately gV and

MV and make a number of further assumptions (such as
assuming neglecting the momentum dependence of form
factors).
Once we feel confident that the combination of resonant

propagators and the vertex functions just given reproduces
very satisfactorily the unitarized amplitudes, we can pass
on this information to Monte Carlo generator practitioners
to implement these form factors in their favorite generator.
However, generators include the creation and propagation
of longitudinal (and transverse) W, not Goldstone bosons,
so the above result cannot be directly carried over and more
work is needed. This will be reported elsewhere in due
course. Note that the unitarization proposed is manifestly
crossing symmetric because crossed diagrams are included
manifestly with the replacements KðsÞ → KðtÞ, etc.
The expressions for Mpole, t00ðsÞ, and t11ðsÞ needed to

reproduce the diagrammatic expansion for the various values
of a and a4, a5 can be found in [1–3] (and [4,6] if a full use
of the equivalence theorem is made7). Further details will be
provided in a forthcoming extended publication.

V. CONCLUSIONS

To conclude, we extracted the values of the low-energy
constants a4 and a5 of the effective Lagrangian describing an
extended electroweak symmetry breaking sector assuming
(iso)vector dominance and/or (iso)scalar dominance with a
mass in the range 1.8 TeV < M < 2.2 TeV, as it would be
the case if one considers the preliminary results coming from
the LHC experiment to be a hint of the existence of new
WLWL interactions. The calculation was performed in the
framework of the inverse amplitude unitarization method.
We derived the widths of such resonances, which turn out to
be quite narrow. We also speculated on the possibility of
more than one resonance being present, compatible with the
derived bounds on a4 and a5 (something that is favored by
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FIG. 7. Left: Plot of the effective coupling of the vector resonance KVðsÞ
ffiffiffi
s

p
for the value M ¼ 1881 GeV corresponding to a ¼ 1,

a4 ¼ 0.0002, a5 ¼ −0.0001. Right: Plot of the effective coupling for a scalar resonance KSðsÞ corresponding to the same values of a4
and a5 that yields a scalar mass M ¼ 2064. Note that in both cases the coupling is quite large, certainly nonperturbative. In fact, on the
scalar resonance, the effective coupling is ∼30 times the coupling of a MSM Higgs with identical mass.

7Please note that t-channelW exchange is not included in some
of these works.
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custodial symmetry considerations). The given range of
masses restricts enormously the admissible values for a4 and
a5, surely a consequence of this mass scale being relatively
close to the natural cutoff of the effective theory (∼3 TeV).
The cross sections obtained using the effective W approxi-
mation are, however, too low, particularly for vector reso-
nances, and this may eventually prove bad news for
resonances of the kind considered here. However, we regard
estimates based on the EWA as being too preliminary at
this point.
To overcome this difficulty, we proposed a diagrammatic

method to deal with resonances in regions of parameter
space in the effective Lagrangian where the former are
assumed to dominate. We derived the corresponding form
factors and vertex functions. The agreement with the full
amplitude is very good, and we understand that the
technique that we introduced here may be useful to deal
with the type of resonances that may emerge in EWSBS.
We hope that this will trigger interest from our experi-
mental colleagues to incorporate this seemingly consistent
unitary procedure in their generators to allow for a proper
theory-experiment comparison. In fact, having a reliable
estimate of the resonances cross sections in the region of
interest is probably the most urgent task.
The apparent signal coming from the LHC experiments

has triggered a flurry of activity that has mostly

concentrated on proposing specific models ranging from
introducing resonances [26], the obvious possibility of
excited or left-right symmetric W0, Z0 states to more exotic
models [27,28,29]. Our proposal is somewhat different: It is
not primarily aimed at advancing a definite ad hoc proposal
but rather to help understand if the signal is there in the first
place and at trying to elucidate the properties of the
resonance (or resonances) that might be present in an
extended electroweak symmetry breaking sector in WW
scattering. We regard the restriction on some coefficients of
the effective Lagrangian provided by unitarity consider-
ations as nontrivial and, if confirmed, would undoubtedly
play a relevant role in constraining the underlying model.
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