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Abstract The Lee-Wick Standard Model is a highly constrained model which solves the gauge hierarchy
problem at the expense of including states with negative norm. It appears to be macroscopically causal and
consistent. This model is extended by considering the two-Higgs doublet extension of the Lee-Wick model.
Rewriting the Lagrangian using auxiliary fields introduces two additional doublets of Lee-Wick partners.
The model is highly constrained, with only one or two additional parameters beyond that of the usual two-
Higgs doublet model, and yet there are four doublets. Mass relations are established by diagonalizing the
mass matrices and further constraints are established by studying results from B — 7v, neutral B-meson
mixing, and B — X,y. The prospects of detecting evidence for this model at the LHC are discussed.
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I. INTRODUCTION

Fifty years ago, T. D. Lee and G. C. Wick [1,2] proposed
a model in an attempt to soften the ultraviolet divergences
of QED. This model added a quartic kinetic energy term to
the Lagrangian. The resulting propagator has two poles,
resulting in two physical states, the effects of which cancel
quadratic divergences. Using an auxiliary field method, one
can show that the effective Lagrangian consists of only
operators of dimension less than or equal to four, with one
of the fields having a negative kinetic energy term, leading
to apparent violations of causality. Lee and Wick showed,
along with Cutkosky et al. [3] and Coleman [4], that while
microcausality is violated, unitarity is preserved and at the
macroscopic level there are no logical paradoxes.

Motivated by the cancelation of divergences, Grinstein,
O’Connell and Wise [5] constructed the Lee-Wick Standard
Model (LWSM). As in the original Lee-Wick model, all
particle states come with Lee-Wick partners which have
negative kinetic terms. These Lee-Wick partners cancel the
quadratic divergences in the scalar propagator, thus solving
the hierarchy problem in a manner similar to supersym-
metry. Grinstein et al. [6] also demonstrated that the
scattering of longitudinally polarized massive vector
bosons satisfied perturbative unitarity. Explicitly, they later
showed that unitarity and Lorentz invariance are preserved
in the S-matrix to all orders and that causality arises as an
emergent macroscopic phenomenon [7].

Since the Grinstein et al. papers, there have been
numerous phenomenological studies of the LWSM, includ-
ing, but not limited to the study of the possibility of
observing the microcausality violation at colliders [8—13],
the effects of the LWSM on precision electroweak mea-
surements [14—19], and finite-temperature effects [20-22].
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The LW partners of the light quarks and gluons must be
relatively heavy, O(10) TeV, in order to avoid detection.
However, the LW spectrum, as in the case of the Minimal
Super-Symmetric Model (MSSM), is not degenerate. Thus
one can have some states relatively heavy while others,
canceling quadratic divergences, can be lighter [23]. Just as
in the MSSM, one would expect the LW partners to the
electroweak gauge bosons, the Higgs, top quark, and left-
handed bottom quark to be in the effective low-energy
theory in order to avoid substantial fine-tuning of the
hierarchy. The focus here is on the Higgs sector.

The model consists of a two-Higgs doublet with only one
additional parameter beyond the Standard Model. As a
result, all additional scalar masses, the ratio of vacuum
expectation values and mixing angles are determined by
this parameter. The strongest bound on this parameter
comes from B physics [16], and gives typical scalar masses
lower bounds of approximately 450 GeV.

Given an N-Higgs doublet model, the Lee-Wick exten-
sion will be a 2N-Higgs doublet model. This article explores
the simplest extension of the Higgs sector, the two-Higgs
doublet model (2HDM), with the simplest LW extension
resulting in a four-Higgs doublet model, with only one
additional parameter beyond the 2HDM. The new model,
with only one additional parameter but eight additional
Higgs fields and their numerous couplings and mixings, will
then be very tightly constrained. The parameters of the
2HDM, in models with no tree-level flavor-changing neutral
currents, can be expressed in terms of the scalar masses and
mixings. In addition to the type-1 2HDM, the charged Higgs
can be light, close enough in mass to the top quark, and it will
be interesting to see if that can be maintained.

In the next section, the LWSM is presented, following
earlier works. Section III contains the Lee-Wick 2HDM
(LW2HDM), where the various constraints are presented.
The constraints from low-energy physics (primarily B
physics) are in Sec. IV, and the results at current and
prospects at future colliders are discussed in Sec. V. Mass
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matrices and coupling constant relations are given in the
Appendix.

II. THE LEE-WICK STANDARD MODEL
HIGGS SECTOR

The Higgs sector of the LWSM is given by a Lagrangian
with a higher-derivative kinetic term [5]

1 . 5 .
—— (D,D*H)"(D,D*H) — V(H).

Lup = (D,H)(D*H)

=

(1)
The potential takes the usual form
P Y N T
VH)=>(HH-— 2
tn = (f-%) @)

To eliminate the higher-derivative term, an auxiliary field H
is introduced, giving the Lagrangian
Lar = (D,H)"(D'H) + (D,H)"(D'H) + (D,H)"(D"H)
2t a
+m;H'H V(H). (3)

The higher-derivative Lagrangian is reproduced by sub-
stituting the equation of motion for the auxiliary field. The

kinetic terms are diagonalized by redefining H=H-H:
L = (D,H)"(D"H) — (D,H)"(D"H)
2EE ~
+m;H H—-V(H-H). (4)

The higher-derivative term has been eliminated by intro-

ducing the LW field H which has the opposite-sign kinetic
term of the usual particle.
A gauge is chosen so that

0 N ht
H=1 ., | H=1;p (5)
V2 V2

where v =~ 246 GeV, the Higgs vacuum expectation value.
The neutral scalar mass matrix must now be diagonal-
ized. It is of the form

—mj ms —my

Normally, when one chooses to diagonalize a scalar mass
matrix, an orthogonal representation is used since that will
not affect the structure of the kinetic terms. However, in this
case, one of the kinetic terms has a negative coefficient, and
an orthogonal transformation will not preserve this form.
Instead, a symplectic transformation must be used:
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(h) (coshn sinhr]> <h0> )
h)  \ sinh n coshy izo ’

where the subscript O indicates a mass eigenstate. The
mixing angle 7 satisfies

—Zm%/m}gl mio

tanh2y = ————"5 or tanhp=—— (8)
1 —2my, /m m;
0

with mass eigenvalues

m? 4m?
h h
My =g\t |
h
2
m; 4m?
2 __h _h
m =2 | | 9)

It is easy to see that the LW pseudoscalar P and the LW

charged scalar h* have the same mass and that the heavier
of the neutral scalars has the negative kinetic energy term.
The masses of the neutral scalars are related to the mass of
the charged scalar by

mp, + m%o =m3. (10)

The ratio of the couplings of the neutral Higgs bosons to
their value in the Standard Model, gyy, are [19]

Gnott = Gnobb = Jnyre = € (11)
Ihoww = Ghyzz = coshn, (12)
Jioit = Iigob = Jigee = —€ > (13)
Giyww = Giyzz = Sinhn. (14)

An important property of these couplings is that the
coupling of the light Higgs to the SM gauge bosons is
greater than those in the SM. In most extensions of the SM,
the couplings are suppressed, but this is an exception.

Note that this model is similar to a type-II 2HDM, with
tanf = 1 and some minus signs in the vertices and propa-
gators. As a result, a single parameter, the Lee-Wick scale,
gives all mixing angles, Yukawa couplings, masses and
interactions of the LW Higgs bosons. This makes the model
very predictive. In Refs. [16] and [19], bounds on the
model from B-meson and Z decays and LHC studies of the
light Higgs boson were examined. The strongest of
these constraints comes from radiative B decays and gives
a lower bound on the heavy neutral (charged) scalar of
445 (463) GeV.

The LW2HDM can be expected to have the same number
of parameters as the standard 2HDMs, with the addition of
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the Lee-Wick scale. Given the larger number of states in
this model, it will also be highly predictive.

III. THE LW TWO-HIGGS DOUBLET MODEL

It is straightforward to generalize the LW higher-
derivative Lagrangian from the previous section:

Luyp = (Dﬂl:ll)T(D”ﬁll) oz (DﬂD”I:Il)(DDD”Itll)
h
+ (D, ) (D) = — (D, D! fy)(D, DI,
)
~V(H,.H,). (15)

Here, V(H,, H,) is the standard two-Higgs doublet model

potential (see Ref. [24]), where H; and H, are the two-

Higgs doublets. The potential contains

V(ﬁ],ﬁ]z) :m%ll:lil:ll +m%21211'f{1 —m%z(ﬁ'{fiz ‘I‘ﬁ];f{l)
1

NN 1 PPN
+§/11(HIH1)2 +§/12(H12H2)2

+ B H B, + 0, HHHH

1 NN NN
+§/15((HTH2)2+(H;H1)2) (16)
where the 4; terms are then the coupling constants between
the Higgs fields.

Note that there are two different Lee-Wick scales in this
Lagrangian. As will be seen, the mass matrices can easily
be diagonalized if these scales are equal. This assumption

|

0 0 0
0 — (0] 4 v3)(v1v2(Ag + A5) — 2m7,)
21}1'[)2
2
0 0 —m
0 (v} 4+ 3) (V102 (A4 + As) — 2m3,)

2’[)1 Uy
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will be made here, and the possible consequences of
relaxing the assumption will be discussed later.
Following the same procedure as before, by introducing
auxiliary fields, then redefining the fields in order to
diagonalize the kinetic energy terms, the new Lagrangian is

L= (DﬂH1)+(DﬂH1) - (Dﬂﬁll)T(Dﬂl:Il)
+ (DyHy) (D' Hy) — (D, H,) ' (D' Hy)
+m2(H{H, + HyH,) — V(H, — H,, Hy — ).
(17)

Minimizing the potential, then evaluating the second
derivatives with respect to each field gives the mass
matrices for this model. The generated matrices are in
the Appendix. As expected, there are four neutral scalars,
four pseudoscalars and four charged scalars. The charged
and pseudoscalars have a zero diagonal element when they
are diagonalized, corresponding to the Goldstone bosons.
These diagonal elements are not necessarily eigenvalues
obtained from solving the secular determinant, since a
symplectic transformation does not preserve the form of the
kinetic terms.

To diagonalize the mass matrices, an orthogonal trans-
formation is applied to the upper 2 x 2 and lower 2 x 2
blocks. For the charged and pseudoscalar mass matrices,
these transformations are both just a rotation by f (as in the
usual two-Higgs doublet model). For the neutral scalar
mass matrix, the rotation is defined as a. Upon performing
these transformations, the charged Higgs mass matrix is

0
(v1 + v3)(v102(Ag + 45) — 2mi,)
21)11]2
0

2m, (03 + v3) — 010y (2m2 + (0] + 03) (4 + 45))

21}11}2

(18)

Note the zero (indicating the presence of the Goldstone boson) on the diagonal. One mass is the Lee-Wick scale (resulting
from the negative kinetic term, and positive mass-squared term). The remaining 2 x 2 submatrix is precisely of the form of
Eq. (6), and thus can be diagonalized with a symplectic transformation, resulting in

0
0
diag(0, ng, —m%%i, —m%) =10
0

01

0 0 0
2
— mA=1) 0 0
0 —m2 0 ’ (19)
h
I
2
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m=
h

2 _ g2

210 (02 (44-HAs)—2M>
where A = \/ 2t 4J2r s) ‘2>. The three masses clearly

obey the relation m = mZ

Hi Hi H/i
masses have precisely the same relatlonshlp The scalars
obey a similar relationship, with masses mj —m: =

ho
2 _ 2
My, — My These

relations are absolute predictions of the model.

The symplectic transformations in each case, similar to
the LWSM case, are given by tanh @ = —m3 /m3, where my
and m, are the physical masses. In the case of the charged
Higgs, for example, the mixing angle of the symplectic
transformation that diagonalizes the mass matrix is given by
tanh 0 = mH,i /m2,.. For the pseudoscalar case, a similar

The pseudoscalar

which are given in the Appendix.

H/:t
result is found For the neutral scalar case, there are two
symplectic rotations needed to diagonalize the mass matrix.
The neutral scalar masses and scalar couplings can be found
in terms of the masses and mixing angles in the Appendix.

In the two-Higgs doublet model, the observed scalar at
125 GeV has couplings to the W* and Z which are
sin(ff — a) times that of the SM. The dual scalar, H, has
couplings which are cos(a — f) times that of the SM. The
pseudoscalar and charged scalar have no tree-level cou-
plings to gauge bosons. Similarly, in this model the
couplings to the gauge bosons are

hoZZ = hyWTW~ = cosh(y,) sin(f — a), (20)
hoZZ = hyWrW~ = sinh(y,) sin(f — a), (21)
HyZZ = hyW*W~ = cosh (22)

)

HoZZ = hyWtW~ = sinh

w») cos(a — ),
ya)cos(a—p) (23

where v, y, are the symplectic transformation angles for
the neutral scalars.

The determination of the neutral scalars coupling to the
weak gauge bosons allows for the Yukawa couplings to be
resolved. In the 2HDM, the Yukawa couplings are depen-
dent upon the type of 2HDM being studied. The Higgs
doublets take the form

¢;
(I)j = < vi+pjtin; ) . (24)

V2

(
(

In the type-I 2HDM, ®, couples to both u} and d%, while
in the type-1I model ®, couples to u%, and ®; couples to dk.
Considering the LW extensions of these two models, the
Yukawa interactions take the form

P i (Z :f;,ffH—zzsﬁ;ffA)

fond Ao,
- Z udu ué?{ + PL
H = lfr
iy iy
+ mq&d . Pg)dH' + H.c.] (25)
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where the expressions for the parameters & are found in
Table 1. The Yukawa couplings of the neutral scalar
Higgs and associated LW neutral scalar Higgs to the
quarks only differ by a sign. This same feature exists in
the LWSM. In general, the sign difference is also present
for the pseudoscalar and charged Higgs. When the LW
scale goes to infinity, one recovers usual 2HDM
couplings.

For simplicity, it was assumed that the Lee-Wick scales
in Eq. (15) were equal. We know of no principle or
symmetry that would lead to this equality, although
one would not expect qualitative differences. Suppose
this assumption is relaxed. Consider the charged
Higgs mass matrix. Applying orthogonal transformations
to the upper and lower 2 x 2 blocks gives the mass
matrix

TABLE 1. Yukawa couplings of the quarks to the Higgs bosons.
Angles y; and y, are the symplectic rotations needed to
diagonalize the two-neutral-scalar mass matrix, ¢ is the rotation
angle to diagonalize the pseudoscalar mass matrix and @ is the
angle which diagonalizes the charged scalar mass matrix. These
angles are all determined in terms of the physical particle masses,
as described in the text.

Type 1 Type I

&, e V1 cos(a) csc(p) e V1 cos(a) csc(p)
& e™V1 cos(a) csc(f) —e Vi cos(a) sec(p)
530 —e "1 cos(a) csc(f) —e "1 cos(a) csc(ff)
5210 —e "1 cos(a) csc(f) e cos(a) sec(f)
578 e sin(a) csc(p) e 2 sin(a) csc(f)
g%o e 2 sin(a) csc(f) e V2 sin(a) sec(f)
f“ﬁo —e "2 sin(a) csc(f) —e "2 sin(a) csc(f)
5‘}!}0 —e "2 sin(a) csc(f) —e "2 sin(a) sec(p)
&, e cot(p) e cot(p)
&4, —e~? cot(f) e~ tan(p)
&, —e~? cot(p) —e~? cot(p)
éi{o e~ cot(p) —e~? tan(f)
g -1 -1
é 1 1

e e’ cot(p) e’ cot(p)

zg —e % cot(p) ~0 tan(p)
& —e % cot(B) —e % cot(B)

2_1 e ?cot(p) I tan(f)
52; ~1 —1
e, ! !
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0
0 Mi—3(k+4s5)0?
0 0 —cosz(ﬁ)m%l1 - sinz(ﬂ)m}%2
0 —(Mh—1(+45)0)  cos(p)sin(B)(m2 —m?)

One sees that in the limit in which the scales are equal,
this reduces to the previous result. There is no simple
hyperbolic rotation that diagonalizes this mass matrix.
However, one can first consider the case in which the
Lee-Wick scales are close together, so that the 3-4 and 4-3
elements of the mass matrix are much smaller than the other
terms. In that case, one can find the masses explicitly and
they are given by (with, as before, the charged Higgs mass-

; 2 2 2 2 2 i
squared being denoted m H§) ms,., m= cos” 3+ m; sin s

HE "
and mg,. +m: sin’>fi 4+ m3 cos® .
0 1 2

Of course, long before these particles are discovered, it is
likely that tan will have been determined, and thus the
Lee-Wick charged scalar masses will determine the two
Lee-Wick scales. However, once those scales are deter-
mined, the masses and mixings of the neutral LW scalars
and pseudoscalars are completely determined. This is not a
surprise, since we have added an extra parameter, and thus
the masses of the charged scalars no longer have the simple
relationship from before. However, the model remains
highly predictive, since all of the other LW scalar masses
and their mixing angles are then determined. Note also that
these facts are expected to be true even when the mass
splitting is not small, although then there is no simple
analytic expression for these masses and mixings.

IV. LOW-ENERGY CONSTRAINTS

In the analysis of the LWSM, Carone et al. [16] showed
that constraints from B physics give the strongest bounds

1.000000

0.999995

- 3
S| =
“ +>
R
| s 0999990
Blg
0.999985
. .
I 200 300 400 500
mH.O
FIG. 1.
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0
_<M%2 —3(A + /15)”2)
cos(p) sin(/)’)(m%l] - m%lz)

Miy =5 (A4 + 25)v* — Sinz(ﬂ)m%l — cos*(B)m}.

(26)

|

on the model. With the above Yukawa couplings, the
constraints can similarly be calculated. In this section,
constraints from B™ — v, B;B, mixing, and B — X,y
are explored, leading to lower bounds for the mass of the
charged Higgs, m HE> and its Lee-Wick partners.

A. Bt - 7y,

For large tanf, the strongest bounds come from the
branching ratio of B* — t7v,. In the 2HDM the rate is

B(B" = ttv,) <1 m%Ci>2
B(B™ = t7v;)gm m%lg

where C; = cot? Bis the coefficient from the type-12HDM,
and C, = tan? 3 is the coefficient from the type-Il 2HDM.
There are now two additional charged Higgs in the model,
making the 2HDM result have an additional two Feynman
diagrams resulting in,

(27)

BBt —ttv,) (l_m%ezeci_i_m%ezeci m3, >2

B(BT =t v, )gm a m

+
HO

Note the difference in sign in the latter two terms on the
left-hand side of the above equation. This is a result of the
opposite sign in the propagators of the LW particles. Taking
the limit of the LW scale, m; — oo, recovers the 2HDM

1.0000 -
0.9999 [
=| .2 09998 |
(9 +>
mE — 2my,
= | @ 09997 F
x|z 4
) my 0
0.9996 —— BMy,
— 8my+
0.9995 Ho
n n n n 1 n n n n 1 n n n n 1 n n n n 1
100 200 300 400 500

My

Branching ratio, B(B* — "), in the type-Il LW2HDM normalized with the Standard Model result for various LW scales.

Left plot shows result for tan# = 2 and the right plot for tan§ = 5.
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result. Plots of the branching ratio for BT — v, for the
type-II model are below in Fig. 1.

The Heavy Flavor Averaging Group [25] combined the
results from the experiments BELLE [26,27] and BABAR
[28] to find the B(B™ — z'v) branching ratio to be
(1.64 +0.34) x 10~*. Dividing the HFAG experimental
result by the Standard Model predicted result [29] gives
1.37 £ 0.39. This lower bound on the mass of the charged
Higgs in the type-II LW2HDM was established at the
95% confidence level and is shown in the summary plot at
the end of this section, Fig. 5.

B. B;B, mixing
In the 2HDM, the result for the mass splitting between B
and B is identical for both type-I and Il 2HDMs. It has been
shown that the mass splitting at leading order (LO) in QCD
is [30]

2
F 2 202 13
672 mW|thVt*b| fBBquB

X (Iyw + cot?Blyy + cot*flyy).

AmBZHDM =

(29)

where Iy is the contribution from a 2 W* exchange, Iy
is the contribution from a single charged Higgs exchange,
and Iyy is the contribution from a two-charged-Higgs
exchange. Explicitly,

X 9 6 6/ x \3
IWW:Z<1+(1—x)_(1—x)2_;<1—x) lnx>,
/ _ﬂ[_ 8 —2x 6xInx

A -0y (1=xP—x)
(2x—8y)lny]
1=y =x)]
(I+y)  2ylny

J

fn =7 [<1 Ty

107 x Amg,

40l
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where x = m}/mj, and y = m}/m?,.. Making the follow-
ing modifications allows one to accommodate the addi-
tional Higgs into the calculation of Amyp:
cotBlyy(y = yo)
ot Blyy(y = Fo) — Lwu(y = 3p),

(31)

CotzﬂIWH d 6_20

—e

cot' Bl (y = yo)
+ e *cot*Blyy (y = Yo) + Iuu(y = ¥0)
(32)

C0t4ﬂIHH d 6_49

whereyo—mt/mm,yo m?/m? ., and ¥, = m?/m>

J2ped e

From here, the only terms not accounted for are those
from mixed charged Higgs exchanges. Making an approxi-
mation allows for solving of the mixed charged Higgs
exchanges. Averaging the masses gives

My —i—ml:lar My +m1:16+

m = m =

H, 2 ’ Hy, 2 ’
My+ ————

Hyy 2

and three additional Iy terms are added where the
intermediate Higgs are treated as the averaged masses of
the two Higgs being exchanged. The added terms take the
form

—et co® Sl (y = yi3)

(33)

Ocot’ flyp(y = yio) —e
+ e 0cot Bl (y = ya3),

2
5. If the values for the averaged masses are

HY

t
varied between the two masses being averaged, the change
in Amg, falls within the bounds of the uncertainty. The

same modifications were applied to the next-to-leading-
order (NLO) amplitudes in Ref. [31].

where y;; =

— 2mH*0
— 4my,
—— Bmy,

— 8my,

L L L L L Il
300 400 500

m,
Myt

200

L L L L L L L Il
200 300 400 500

FIG.2. Plots of Amg, in GeV given for various LW scales for tan # = 1 on left and tan # = 2 on right. Note that the plots all converge

to the Standard Model result in the limit of large M.
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FIG. 3.
II (type-I) LW2HDM for tan# = 1 and tan # = 2 respectively.

The theoretical uncertainty in Amy , is primarily domi-
nated by the QCD bag factor f%f?Bq, and is approximated
by 6 = 0.14Amp,. A y* test,

(O — oy
)(;2 = 2
0;

was used to obtain bounds on the charged Higgs mass,
my:, at the 95% confidence level, corresponding to
x> =3.84. An experimental value of Amp, = (3.337 +
0.033) x 107! MeV [32] was used. Plots of Amy_at NLO
in QCD are given in Fig. 2. Values used in the numerical
calculation are in the Appendix. Plots of the excluded
region for the charged Higgs mass are shown at the end of
the section in Fig. 5.

C.B - X,y

Now considering B — Xy, the LO contribution of the
B — X,y decay is [33]

V;Fs th 2
Vcb

6a,,,

nf(mz/mp)

B(B _)XSY) :B(B _)Xcelje) |Cg,SM

+CG el (34)

where C9 are Wilson coefficients. In the type-II 2HDM,
these coefficients are given by

L L L L
400 600 800 1000
Mgy

Branching ratio, B(B — X,y) shown for various LW scales. The upper (lower) left and right plots are calculated with the type-

x {—8x3 +3x2 4+ 12x =7+ (18x* — 12x)1n(x)}

7.5M ~ 54 (x— 1)4
(35)
L) 0
Conp = ECOt (B)CT su(x = ¥)
1 [-5y>+y—3+(6y—4)In(y)
— , (36
12| b-1) (0
where x = ::—2% and y = m"zl’z . For the LW extension of the
w HJ

type-1I 2HDM, this becomes

1
CInp= 5672900t2 (#) C(7).SM (x—=y)

1 [-5y*+y—3+(6y—4)In(y)
‘Ey[ G-1)° ]

OB (F)CY gy ()

1 [=5w?+w—3+(6w—4)In(w)
‘EW{ (w—1)° }

1 1
—§C9.5M(x—>Z)—EZ[

—5z2+z-3+ (6Z—4)ln(z)}
(z=1)° ’
(37)
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FIG. 4. Lower bounds on the mass of the charged Higgs, m HY
(GeV) from B = Xy in the type-I LW2HDM at various Lee-
Wick scales.

2 2
where W:m”;' and 7z = r;z, . The function f(tf), a

it i+
0 0
phase-space suppression factor from the semileptonic

decay rate, is

f(&) =1-85+85 — & — 1282 In(¢).

In order to compare to experimental data the calculation
is carried out to NLO in QCD. The modifications to the
amplitude are exactly the same as the above LO example.

(38)

°

& 400

A
I

g
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The NLO amplitudes given in Ref. [34] are those used
in the numerical analysis. Numerical values used in the
calculation are listed in the Appendix. Plots of the
branching ratio are shown in Fig. 3 for various LW scales
for the type-I and -II models.

The detected value for the branching ratio is
B(B—X,y)=(3.5240.2340.09) x 10~* [35]. As in the
previous section, a x> text was used to establish lower
bounds for the mass of the charged Higgs. Plots of these
bounds are shown in Fig. 4 for the type-I model, and Fig. 5
for the type-II model. The bounds in the type-I model are
qualitatively different in the LW2HDM as compared to the
usual 2HDM result. An asymptote occurs in the bounds of

the model due to the couplings of the quarks to 1:16 being
independent of tan 5. Below, plots of the lower bounds on
the charged Higgs mass are shown for various Lee-Wick
scales.

These bounds all apply to the charged Higgs masses.
Bounds on neutral Higgs masses are much weaker. This is
because all of the neutral scalars in the model couple in a
flavor-diagonal way, and thus charged Higgs processes are
the only ones that change flavor. Bounds on flavor-
changing processes are much stronger than those from
flavor-conserving processes. One potential low-energy
effect is on the p parameter, which is sensitive to the mass
splitting within an isospin multiplet. However, in this

B B By-mixing
B B- Xgy

BB -1

tan B

FIG.5. Lower bounds placed on the charged Higgs mass, m H (GeV) from B-physics constraints in the type-Il LW2HDM. The plots
are calculated with the Lee-Wick scales equal to 2mH0+ in the upper-left, 4mH§ in the upper-right, and 8mH0+ on the bottom.
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model the charged and neutral Lee-Wick scalars have very
similar masses, and thus this splitting is negligible.

V. RESULTS AND FUTURE PROSPECTS

From the B-physics results of the last section, the LW
scale in the type-II model must exceed 800 GeV. In the
type-I model, the LW scale must exceed 400 GeV. Is there a
way to detect this at the LHC?

Two possibilities for determining the validity of this
theory exist. The first involves changing the branching
ratios of the 125 GeV Higgs boson, and the other involves
direct detection of LW states.

Carone et al. [16] studied the effects of the LWSM on the
decays of the Higgs boson and showed that current bounds
are weak, with a lower bound of 255 GeV on the LW scale.
They also noted that the bound will only become com-
petitive with the B-decay bounds after 400 inverse femto-
barns of integrated luminosity at the LHC. Furthermore, the
primary effect would be a slight increase in the H — 77
branching ratio, making it unlikely that this would be
interpreted as evidence for a LW sector. Reaching the
bound of 800 GeV, as in the type-II version of the
LW 2HDM above, would require an integrated luminosity
in excess of 4000 fb~!, which is unlikely to be achieved in
the next couple of decades.

Direct detection was discussed in detail by Figy and
Zwicky [11]. They wrote that the most likely discovery of
the LW Higgs boson at the LHC would be if the mass was

|

02 (V102 (A4 +As) —2m7,)
21)1

3(0102(A+25) —2m7,)

01(v105 (A4 +4s5) —2m,)
2U2

%(U102(14+/15)—2m%2)

0y (V102(A4+15) —2m7,)
21}1

m%z_%vlvz(/h‘f'/ls)

v1(v1v2(A4+1s)—2m3,)

mi, =300y (A4 +2s)

v

2 (0102 (A4 +As)—2m,)
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below the top pair production threshold (singular, since it is
the LW model, not the 2HDM). In addition, Figy and
Zwicky noted that the negative width gives a dip-peak
structure, instead of a peak-dip structure. In this model the
LW states are all above the top pair production threshold,
making direct detection extremely difficult. Detection of
the LW states would require a substantially more energetic
hadron collider or a multi-TeV linear collider.

Perhaps the best near-term hope for an indication of the
LW2HDM model would be to discover the ‘“normal”
particles of the 2HDM and study their decays. The above
Yukawa couplings differ from the conventional 2HDM. As
a result, analysis of the Yukawa LW Higgs-coupled decays
would provide evidence of the LW2HDM.
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APPENDIX: MASS MATRICES

The mass matrices in the Lee-Wick two-Higgs doublet
model, using the basis {H, H,, H|, H,} are as follows.
Charged Higgs

—m

2

ol

%(01”2(/144'/15)—2’"%2)

20, miy =300y (A4 +2s)

v1(v102(A4+1s5)—2m3,)
21}2

m%z—%vl Uz(ﬂq +/15)

0y (V102 (A4 +15) —2m7,)
21}1

30102 (A4 +25) —2m7,)

Zm%zvl —02(2m%+1}%(/14+/15))

21]2 21}2
: (A1)
Neutral pseudoscalar Higgs
m, 2 mi, 2
0o (52— 245 V1 VaAs — mi, vy v2ds — 32 my, — v1vals
2 2
2 m 2 m
1)]1)2/15 —m12 ’[)l<0122_l)lﬂs) mlz—’l)ll)zls U](U]As —lez>
2 2
my 2 mi, 2 2 A2
vy (Uzﬂs - U—l) mi, —v10ds  a (7 - 02/15) —m; 01 VyAs — m, (42)
2 2
2 m > 2 m 2
miy = V1V4s 1}1(111/15 —Tl;) V125 — mi, Ul(??—mﬂs) —m;
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Neutral scalar Higgs

Uoym 1)3 mz v
2 12+U2/1] 1)11)2(13 +/14—|—/15)—m%2 —}%1122 m%z—’l)ll)z(ﬂg +/14+),5)
2 3 2
V102 (A3 + A4 + A5) — m, vlu—”:'z‘f'”%ﬂz miy — v102(As + Ay + 4s) —mﬁ#
_ﬂ%}]’nlzvz m%z — ’1)1’1)2(/13 + /14 + /15) LZ:T]Z m + Uzll ’[}1’1)2(/13 + /14 + /15) mlz ’
/3 mz 25 U
m%z—vlvz(/h +ﬂ4+ﬂ5) _/1212+U—21271 U1U2(ﬂ3 +ﬂ4 +/15)—m%2 11@—212—711}%!"‘1)%/12
. 2 1 2 .
vy = veos(ff), v, = vsin(f), miy, = §M12 sin(2f3). (A3)
Diagonalized pseudoscalar Higgs mass matrix
0 0 0 0
2 4A;v2+m2 4M3,

2 2
diag(0, mAi, M m;ﬁ)— 0 0 —m% 0 . (A4)

45507 +mz —4M2
—d t1
h

k= V —2M, 0% (A45Sin% (2) +c08(23) (1 €08* (B) — 205in% (§))) -+ M}, + 0 (23,5510% (28) + (A1c087 (B) — Asin* (£))?),

0 0 0 -

3
S

The diagonal elements of the neutral scalar Higgs mass matrix are

) 1 |m:+2K—=2M7, =207 (Asin*(B) + A cos? ()
m} =——m? 1], (AS)
0 2"k m}%
, 1, —2(K + M3, + v*(Apsin®(B) + A,cos*(B)))
mHO = —5 H 3 —1 s (A6)
"
2 2
1 m? + 2K — 2M3, — 20%(A,sin’(f) + A;cos*(B))
—m2 = =2 m? h . +1], (A7)
i
o1 [ 2k, + P asin() + dcosi(8)
—mpy == m; > +1 (A8)
ms=

h

where A3ys = 43 + A4 + 45. The scalar self-couplings are

sec?(f)(sin®(a)mj + cos*(a)my; ) — Mi,tan*()  sec(f)(sin*(a)mj + cos*(a)my, )

A= — , A9
1 1}2 vzm}% ( )

csc?(f)(cos*(a)my + sin®(@)my, ) — Miycot® () csc?(B)(cos?(a)my, + sin®(a)my; )
= = - s , (A10)
p
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sin(a) cos(a) csc(f) sec(f)(mj — mi; )

1345: 2 2
my
sin(2a) csc(28)(m%, —m? ) + M?
G, ) M
v?
m’; —2m +M mA 2mHi
Ay = 02 — o , (A12)
mt M? m>
As = ot 2 (A13)
v°m v
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where my, , my , my, My are the two scalar masses, the
pseudoscalar mass and the charged Higgs mass, respectively.

=171.24+2.1 GeV Gr = 1.16637 x 1075 GeV~2

mb( ,) = 427017 Gev a,(my) = 0.1176 % 0.0020
in.(m.) = 1.27°30] Gev mp, = 5279.53 £ 0.33 MeV

26
my = 104753 MeV fs1 /By =216+ 15 MeV [36]

my = 80.398 £ 0.025 GeV
myz = 91.1876 £ 0.021 GeV

o,k = 137.03599967
B(B - Xceﬁe)
= (10.74 £ 0.16)% [35]

Values used in calculations without explicit citation are
from take from Ref. [32].
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