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The ATLAS Collaboration (and also CMS) has recently reported an excess over Standard Model
expectations for gauge boson pair production in the invariant mass region 1.8–2.2 TeV. In light of these
results, we argue that such a signal might be the first manifestation of the production and further decay of a
heavy CP-even Higgs resulting from a type-I two Higgs doublet model. We demonstrate that in the
presence of colored vectorlike fermions, its gluon fusion production cross section is strongly enhanced,
with the enhancement depending on the color representation of the new fermion states. Our findings show
that barring the color triplet case, any QCD “exotic” representation can fit the ATLAS result in fairly large
portions of the parameter space. We have found that if the diboson excess is confirmed and this mechanism
is indeed responsible for it, then the LHC Run-2 should find (i) a CP-odd scalar with mass below
∼2.3 TeV, (ii) new colored states with masses below ∼2 TeV, (iii) no statistically significant diboson
events in the W�Z channel, (iv) events in the triboson channels W�W∓Z and ZZZ with invariant mass
amounting to the mass of the CP-odd scalar.
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I. INTRODUCTION

The ATLAS Collaboration has recently reported an
excess over the Standard Model (SM) expectations for
gauge boson pair production in the invariant mass region of
1.8–2.2 TeV [1]. The statistical significance of the excess
observed by ATLAS is 3.4σ, 2.6σ and 2.9σ in theWZ,WW
and ZZ channels, respectively, although the hadronic nature
of the search makes it hard to distinguish gauge bosons
implying some overlap between these channels. The CMS
Collaboration has also reported some moderate excesses in
diboson searches both in hadronic channels [2] and in
semileptonic channels [3], again at invariant masses around
2.0 TeV. Although the statistical significance is lower in
this case (1 − 2σ), the fact that these excesses occur at
roughly the same invariant mass value has made the
diboson excess a hot subject in the community.
Although further data from the LHC Run-2 is required to

confirm a diboson overproduction at 1.8–2.2 TeV, it is
tempting to speculate about new physics scenarios where

these hints would be naturally explained. The obvious
explanation to the ATLAS and CMS hints is a bosonic
resonance that decays into a pair of SM gauge bosons. In
order to be able to explain the LHC data, the hypothetical
candidate must face two requirements [1] (see also [4–6]
for general analyses of the ATLAS data): (i) it has to be
produced with a relatively high cross section in the
∼1–10 fb ballpark, and (ii) it should be a narrow resonance
(with Γ≲ 200 GeV) decaying dominantly to a diboson
final state. Many candidates with these properties have
been already proposed.1 Although most references focus on
spin-1 candidates, such as W0=Z0 states in extended gauge
models [4,11–41], other alternatives are perfectly viable.
Examples of such alternatives are spin-2 states [42] and
triboson production [43]. Finally, spin-0 particles are
among the simplest candidates to explain the diboson
excess and have been considered in [34,42,44–53].
In this paper we propose the heavy Higgs (H) of a type-I

two Higgs doublet model (2HDM) as the resonance behind
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1Other recent works related to the diboson excess include an
effective theory approach to the anomaly [7] and implications on
dark matter searches [8], grand unification [9] or neutrinoless
double beta decay and lepton flavor violation [10].

PHYSICAL REVIEW D 93, 015012 (2016)

2470-0010=2016=93(1)=015012(12) 015012-1 © 2016 American Physical Society

http://dx.doi.org/10.1103/PhysRevD.93.015012
http://dx.doi.org/10.1103/PhysRevD.93.015012
http://dx.doi.org/10.1103/PhysRevD.93.015012
http://dx.doi.org/10.1103/PhysRevD.93.015012


the diboson excess. Its production cross section at the LHC
is dominated by the standard gluon fusion process, strongly
enhanced by the presence of new vectorlike (VL) colored
fermions. Furthermore, a large production cross section for
the heavy Higgs naturally implies negligible VL contribu-
tions to the gluon fusion cross section for the light Higgs
(h), which remains SM-like. Once produced, the heavy
Higgs decays to WW and ZZ final states, leading to the
diboson excesses found by ATLAS and CMS. Regarding
the VL states responsible for the heavy Higgs production,
we consider several SUð3Þc representations: 3, 6, 8, 10 and
15. QCD exotics [nontriplet SUð3Þc representations] are
well motivated in this context due to their large contribu-
tions to the gluon fusion cross section [54].
Another model with an extended scalar sector and VL

colored states has been put forward as an explanation to the
diboson excess in [53]. Our setup differs from the one
considered in this reference in several aspects. First, in our
case the heavy Higgs resonance is embedded in a 2HDM
framework which constrains its couplings and decay modes.
Second, we go beyond the fundamental representation and
explore the phenomenology induced by higher SUð3Þc
multiplets. In fact, we will show that a heavy scalar produced
in gluon fusion driven by SUð3Þc triplets cannot account for
the diboson excess. One needs the enhancement coming
from a larger color factor in order to achieve production
cross sections of the required size. Finally, we will also
comment on some technical differences in the phenomeno-
logical analysis.
The rest of the manuscript is organized as follows. In

Sec. II, we discuss the features of extra VL colored
fermions, the structure of the scalar sector, the colored
VL fermions mass matrices and the relevant couplings. In
Sec. III, we study the phenomenological aspects of our
scenario, in particular we discuss the different relevant
aspects of the heavy Higgs production cross section: group
theory factors, αS RGE running and VL fermion mass
limits. In Sec. III C, we present our main findings. Finally,
in Sec. IV we present our conclusions.

II. VECTORLIKE COLORED FERMIONS

The setup we consider involves extra VL colored
fermions (nVL VL generations) with the following
ðSUð3Þc; SUð2ÞLÞUð1ÞY transformation properties:

QL ¼ ðdR; 2Þ1
6
; QR ¼ ðdR; 2Þ1

6
;

UL ¼ ðdR; 1Þ2
3
; UR ¼ ðdR; 1Þ2

3
;

DL ¼ ðdR; 1Þ−1
3
; DR ¼ ðdR; 1Þ−1

3
; ð1Þ

where dR ¼ 3, 6, 8, 10 and 15. We decompose the SUð2ÞL
doublets as

QL;R ¼
�

~U
~D

�
L;R

; ð2Þ

such that Qð ~UÞ ¼ 2=3 and Qð ~DÞ ¼ −1=3. In addition to
these states and the usual SM fermions, the scalar sector
involves two hypercharge þ1 scalar electroweak doublets,
H1 and H2.
The resulting 2HDM must of course yield a scalar

with SM-like properties, something that in the absence
of the VL states is readily achievable by moving
towards the decoupling limit [55]. However, in the
presence of the new VL colored states this condition
is not sufficient: the couplings to the VL states can
potentially modify the SM Higgs production cross
section. Thus, in order to guarantee phenomenological
consistency we endow our setup with an additional Z2

symmetry under which

XSM → XSM; Q → Q;

ðU;DÞ → −ðU;DÞ; HA → ð−1ÞAHA: ð3Þ

Under these transformations one is left with basically
two Z2-conserving sectors: one chiral (SM sector) and
another VL, each one with its own scalar doublet. Thus,
in this sense the SM and VL sectors are “orthogonal” up
to scalar mixing, which can always be taken such that
both sectors are decoupled. Note that in the absence of
the VL fermions the resulting model would be a type-I
2HDM (see e.g. Ref. [56] for further details).
It is well known that chiral-VL quark mixing is subject to

several (stringent) constraints: In the up sector, these
mixings induce e.g. deviations in the Zqq couplings
which are severely constrained. First and second gener-
ation mixing are constrained by atomic parity violation
experiments [57] and measurements of Rc ¼ ΓðZ → c̄cÞ=
ΓðZ → hadronsÞ at LEP [57,58], and are by far more
stringent than those found for the third generation [59].
In the down sector the most severe constraints are derived
from measurements of Rb ¼ ΓðZ → b̄bÞ=ΓðZ → hadronsÞ,
and so are stronger for the third generation [59]. First and
second down-type quark mixing are however severely
constrained by meson mixing and decays [60]. In our
setup, only color triplets enable writing Z2-invariant
renormalizable chiral-VL mixing terms. Indeed, an appeal-
ing feature of QCD exotics (dR ¼ 6, 8, 10, 15) is the
intrinsic absence of renormalizable-induced chiral-VL
mixing, assured by color invariance. Thus, in the triplet
case, and only in that case, one has to worry about the size
of the couplings controlling chiral-VL mixing. Two simple
ways can be envisaged: either their values are phenom-
enologically fixed (can be fixed to zero) or the Z2

symmetry is promoted to a Z4 symmetry under which
the SM fields and H2 are neutral, while Q → −iQ,
ðU;DÞ → iðU;DÞ and H1 → −H1.

2 In what follows

2For chiral quarks in the color triplet representation, a setup
resembling in some aspects this one has been considered in
Ref. [61].
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whenever referring to the color triplet we will assume the
former.
Under the above working assumptions, the SM quarks

combined with the H2 doublet induce the following
Z2-invariant Yukawa interactions,

−LSM
Y ¼ q̄L · hu · uR ~H2 þ q̄L · hd · dRH2

þ l̄L · he · eRH2 þ H:c:; ð4Þ

where hu;d;e are the usual 3 × 3 Yukawa matrices in flavor
space (we will denote matrices in boldface). In turn, the VL
fermions combined with H1 induce

−LVL
Y ¼ Q̄L · yU ·UR

~H1 þ Q̄R · ~yU ·UL
~H1

þ Q̄L · yD ·DRH1 þ Q̄R · ~yD ·DLH1 þH:c:; ð5Þ

where yU;D and ~yU;D are nVL × nVL matrices in the VL
flavor space. Explicit mass terms are given in turn by

−Lm ¼ Q̄L · m̂Q ·QR þ ŪL · m̂U ·UR

þ D̄L · m̂D ·DR þ H:c:; ð6Þ

where m̂Q, m̂U and m̂D are nVL × nVL matrices in the VL
flavor space which can be chosen to be diagonal without
loss of generality.
Leading order (LO) VL fermion effects are controlled by

the Z2-invariant renormalizable interactions in (4)–(6).
Higher-order explicit Z2-breaking effects are determined
by nonrenormalizable operators. For dR ¼ 3, 6, 15 those
effects are determined by the dimension-six operators [62]3:

Oð1Þ
6 ¼ Cð1Þ

6

Λ2
XdRqqq̄; Oð2Þ

6 ¼ Cð2Þ
6

Λ2
XdRqq̄ q̄; ð7Þ

where XdR stands for the VL colored fermion in the dR
representation and q refers to SM quark SUð2ÞL doublets
or singlets, depending on the electroweak charges of XdR .
For dR ¼ 8, 10, instead, effective LO effects are given
by [62]

Oð1Þ0
6 ¼ Cð1Þ0

6

Λ2
XdRqqq; Oð2Þ0

6 ¼ Cð2Þ0
6

Λ2
XdRq̄ q̄ q̄ : ð8Þ

These operators are essential as they induce VL fermion
decays, and so are responsible for the signatures one could
expect at the LHC (see Sec. III). Note however that when
writing the effective operators in (7) and (8) one is implicitly
assuming that the UV completion can indeed lead to
such effective interactions, so to a large extent such an
effective approach is at any rate model dependent. If the LO

effective effects are instead determined by a different set of
higher-order effective operators (beyond six), the resulting
picture will of course be different.
A further constraint of the new states that one has to bear

in mind has to do with their contributions to electroweak
precision data. Such contributions have been studied in
Ref. [63], where it has been shown—for the triplet case—
that consistency with data is always achievable. In the case
of higher-order color representations one does not expect
these conclusions to change since these contributions are
color-blind.
At the scalar level, the presence of the Z2 symmetry

constraints the scalar potential to have the form

V ¼ m2
11H

†
1H1 þm2

22H
†
2H2 þ

λ1
2
ðH†

1H1Þ2 þ
λ2
2
ðH†

2H2Þ2

þ λ3ðH†
1H1ÞðH†

2H2Þ þ λ4ðH†
1H2ÞðH†

2H1Þ

þ
�
λ5
2
ðH†

1H2Þ2 þ H:c:

�
: ð9Þ

A. The CP-even Higgs mass matrix

We start by parametrizing the Higgs doublets according
to

H1;2 ¼
�Hþ

1;2

H0
1;2

�
; ð10Þ

where the neutral components are given by

H0
1;2 ¼

1ffiffiffi
2

p ðφ0
1;2 þ iσ01;2 þ v1;2Þ; ð11Þ

with hH0
1;2i ¼ v1;2=

ffiffiffi
2

p
, and v2 ¼ v21 þ v22 ≃ 246 GeV.

From the interactions in Eq. (9), the CP-even mass matrix
in the basis (φ0

1, φ
0
2) can be written as

M2
H ¼

 
m2

H11
m2

H12

m2
H12

m2
H22

!
; ð12Þ

with the different entries, assuming λ5 to be real, given by

m2
H11

¼ m2
11 þ

1

2
½3λ1v21 þ v22ðλ3 þ λ4 þ λ5Þ�;

m2
H12

¼ v1v2ðλ3 þ λ4 þ λ5Þ;

m2
H22

¼ m2
22 þ

1

2
½3λ2v22 þ v21ðλ3 þ λ4 þ λ5Þ�: ð13Þ

Defining the mass eigenstate basis according to4

�
h

H

�
¼
�−sα cα

cα sα

��
φ1

φ2

�
≡ RS

�
φ1

φ2

�
; ð14Þ

3Higher-order effective operators involving gluons are possible
writing, see Ref. [62] for further details. 4In this notation h corresponds to the lightest CP-even state.
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where sα ≡ sin α and cα ≡ cos α, the diagonalization of the
matrix in Eq. (12) proceeds as follows:

RS ·M2
H · RS

† ¼ M̂2
H; ð15Þ

where the hat refers here and henceforth to diagonal
matrices. The mixing angle reads

tan 2α ¼ −2m2
H12

m2
H22

−m2
H11

; ð16Þ

while the mass eigenvalues are given by (assuming for
definiteness m2

H11
> m2

H22
)

m2
hðHÞ ¼

1

2

�
Δm2þ∓

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δm4

− þ 4m4
H12

q �
; ð17Þ

with Δm2
� defined according to

Δm2
� ¼ m2

H11
�m2

H22
: ð18Þ

Notice that in the limit m2
H11

≫ m2
H22

> m2
H12

we get

m2
h ≃m2

H22
−
m2

H12

m2
H11

; ð19Þ

m2
H ≃m2

H11
; ð20Þ

and small mixing angle α [see Eq. (16)], so that h ∼ φ2, and
H ∼ φ1. Finally, the CP-odd Higgs mass can be written as

m2
A0

¼ m2
H þ λ5v22: ð21Þ

We stress that in the following we will fix mh ¼ 125 GeV
and 1.8 < mH < 2.2 TeV.
As usual, the CP-odd Higgs mass matrix is diagon-

alized by a 2 × 2 unitary matrix parametrized with
tan β ¼ v2=v1. Of relevance for the process we will
consider in Sec. III the couplings for WWh, WWH,
ZZh and ZZH [55]:

gVVh ¼
2M2

V

v
sα−β; gVVH ¼ 2M2

V

v
cα−β: ð22Þ

B. VL quark mass matrices

In the presence of nVL VL fermion generations, the
2nVL × 2nVL mass matrix, written in the left-right bases,
with these bases defined as ðψU

L;RÞT ¼ ð ~UL;R; UL;RÞ, reads

MU ¼
� m̂Q m̄U

~̄mU
† m̂U

�
; ð23Þ

where the following notation has been used:

m̄U ¼ vffiffiffi
2

p cβyU; ~̄mU ¼ vffiffiffi
2

p cβ ~yU: ð24Þ

The down-type sector mass matrix, in the bases
ðψD

L;RÞT ¼ ð ~DL;R;DL;RÞ, follows the same structure,
namely

MD ¼
� m̂Q m̄D

~̄mD
† m̂D

�
: ð25Þ

The parameters m̄D and ~̄mD are given by those in (24) by
trading the subindex U → D.
Defining the mass eigenstate bases as

ΨðU;DÞ
L ¼ RðU;DÞ

L ψ ðU;DÞ
L ; ΨðU;DÞ

R ¼ RðU;DÞ
R ψ ðU;DÞ

R ; ð26Þ

both matrices can therefore be diagonalized through biuni-
tary transformations:

RðU;DÞ
L ·MðU;LÞ · RðU;DÞ†

R ¼ M̂ðU;LÞ: ð27Þ

C. Relevant Higgs couplings

Recasting the interactions in Eq. (5) in the mass
eigenstates bases for both the VL fermions and H1, one
gets for the LR couplings

LLR ¼
X2nVL
a;b¼1

Ψ̄U
La
OULR

ab κAΨU
Rb
SA

þ
X2nVL
a;b¼1

Ψ̄D
La
ODLR

ab κAΨD
Rb
SA þ H:c:; ð28Þ

where for A ¼ 1, κ1 ¼ −sα and S1 ¼ h, while for A ¼ 2,
κ2 ¼ cα and S2 ¼ H. The couplings for the up- and down-
type sectors are given by

OULR
ab ¼ RU

Lac
YUcd

RU�
Rbd

;

ODLR
ab ¼ RD

Lac
YDcd

RD�
Rbd

: ð29Þ

Here YXcd
are the elements of the 2nVL × 2nVL matrix

YX ¼
 
0nVL yX

~y†X 0nVL

!
; ð30Þ

with X ¼ U, D and 0nVL a 2nVL × 2nVL matrix with
vanishing elements. Summation over repeated indices is
assumed in Eq. (29).
A simple case of interest for our phenomenological

analysis is that where nVL ¼ 1. In that case, the couplings
yX and ~yX can be taken to be real without loss of generality.

Thus, the matrices RðU;DÞ
L;R can be parametrized according to
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RðXÞ
L;R ¼

� cos θXL;R sin θXL;R
− sin θXL;R cos θXL;R

�
ðX ¼ U;DÞ; ð31Þ

with the corresponding mixing angles given by

tan 2θXL ¼ −2
mQ ~̄mX þmXm̄X

m2
X −m2

Q − m̄2
X þ ~̄m2

X

;

tan 2θXR ¼ −2
mQm̄X þmX ~̄mX

m2
X −m2

Q − ~̄m2
X þ m̄2

X

: ð32Þ

With the aid of Eq. (31), the interactions in Eq. (28) written
in the mass eigenstate basis are given by

LU ¼ κAffiffiffi
2

p ðYU
11
~U 0

L
~U0
R þ YU

12Ū
0
L
~U0
R

þ YU
21
~U 0

LU0
R þ YU

22Ū
0
LU

0
RÞSA þ H:c:; ð33Þ

where the different couplings read

YU
11 ¼ yU cos θUL sin θUR þ ~yU cos θUR sin θUL ; ð34Þ

YU
12 ¼ yU cos θUL cos θUR − ~yU sin θUL sin θUR ; ð35Þ

YU
21 ¼ −yU sin θUL sin θUR þ ~yU cos θUL cos θUR ; ð36Þ

YU
22 ¼ −ðyU sin θUL cos θUR þ ~yU cos θUL sin θUR Þ: ð37Þ

Those in the down-type sector have the form

LD ¼ κAffiffiffi
2

p ðYD
11
~D 0

L
~D0
R þ YD

12D̄
0
L
~D0
R

þ YD
21
~D 0

LD0
R þ YD

22D̄
0
LD

0
RÞSA þ H:c:; ð38Þ

with the down-type sector couplings given as in (34)–(37)
trading U → D. The primes refer to the fields written in the
mass basis.
As we have already pointed out, the symmetry trans-

formations in Eq. (3) allow the chiral (SM) and VL sectors
to be decoupled in such a way that VL couplings cannot
sizably affect the SM Higgs single production cross
section. This can be seen in Table I, where we have listed
the couplings of both sectors according to the interactions
in (33) and (38). In the limit sin α → 0 any such contri-
bution will vanish, while those related with the heavy CP-
even scalar H will be enhanced. This is, in our opinion, an
interesting feature of our setup: the condition of large
contributions to the H single production cross section
assures negligible (or even vanishing) contributions to
the SM h single production.

III. PHENOMENOLOGICAL ANALYSIS

Higgs properties derived from production and decay
mode analyses at LHC have placed stringent bounds on
2HDMs [64–66]. Although consistency with data still
allows for certain freedom, favored regions in parameter
space are those corresponding to the decoupling limit [64],
in which apart from h (whose mass is fixed to ∼125 GeV
[67,68]) the remaining part of the scalar mass spectrum is
heavy [55]. In terms of the scalar sector mixing angles, this
translates into small cosðα − βÞ, with the possible values for
tan β depending on the model itself [66,69]. For the type-I
2HDM, which corresponds in our case to the SM sector,
values of sinðα − βÞ close to 1 do not necessarily demand
large values of tan β, as it turns out to be e.g. in the type-II
2HDM [69].
The heavier CP-even state H can be produced solely

through SM interactions, as can be noted from Table I.
However, the corresponding cross section in that case is
expected in general to be small, as can be seen by going to
the decoupling limit. Since in that case α ¼ β þ π=2, gtth
matches the SM coupling. The coupling gttH, instead,
becomes ðmt=vÞ cot β, which even for moderate values
of tan β implies a suppressed production cross section.
Thus, sizable production of H is only possible through the
VL couplings. As can be seen in Table I, both gFFh and
gFFH in that case are not sensitive to values of tan β,
suppressed (enhanced) production of h (H) can be achieved
solely through small (large) values of sα (cα). Thus, one can
consistently get enhanced H production without consid-
erably affecting h production.
The gluon fusion H production cross section strongly

depends on the VL fermion mass spectrum. The depend-
ence enters in two ways. First, the loop function combined
with the fact that in this case the Yukawa couplings are not
directly related with the VL fermion masses induces a
decoupling behavior which for heavy VL mass spectra
strongly suppresses the cross section. Secondly, depending
on the VL and scalar mass spectra, the new states can

TABLE I. Yukawa couplings for SM and VL up- and down-
type quarks. Note that enhanced gFiFjH couplings (cα → 1)
guarantee negligible gFiFjh parameters.

Standard Model

Couplings u sector (f ¼ u) d sector (f ¼ d)

gfifih ðmui=vÞðcα=sβÞ ðmdi=vÞðcα=sβÞ
gfifiH ðmui=vÞðsα=sβÞ ðmdi=vÞðsα=sβÞ

Vectorlike

Couplings U sector (F ¼ U) D sector (F ¼ D)
gFiFjh YU

ijsα YD
ijsα

gFiFjH YU
ijcα YD

ijcα
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sizably contribute to the running of αs, largely changing its
value (for more details see Sec. III A).
In summary, as what regards H production, consistency

with data requires being close to the decoupling limit. This
condition implies suppressed gffH couplings which then
demands H production through VL couplings. The contri-
butions of these couplings to the gluon fusion h production
cross section are small (or can even vanish), so it is possible
to achieve a consistent picture of “large” H production.
CP-odd scalar production proceeds in the same way,

controlled by the same set of parameters. The only difference
resides in the mass difference between the heavy CP-even
and the CP-odd scalar, which due to the constraints implied
by the scalar potential is small: taking the nonperturbative
limit value λ5 ¼ 4π, one gets the bound [see Eq. (21)]

mA ≲ 2.3 TeV; ð39Þ
a value in agreement with electroweak precision data.

A. Production cross section and VL fermion mass limits

In the case nVL ¼ 1 there are two different contributions
to σðpp → HÞ for both the up- and down-type VL sectors.
The contributions are determined by the first and fourth
terms in Eqs. (33) and (38). The gluon fusion cross section
then has the form

σ̂ðgg → HÞ ¼ κα2s
64π

cos2α

				TR

X
X¼U;D
i¼1;2

YX
iiffiffiffi
2

p Aðm2
H=m

2
Xi
Þ

mXi

				2
× τ0δðτ − τ0Þ: ð40Þ

Here we have included a κ factor to account for NLO
corrections and defined τ ¼ s=S and τ0 ¼ m2

H=S, where s
and S are the parton-parton and proton-proton center of
mass energies, respectively. In our numerical analysis we
will fix

ffiffiffi
S

p ¼ 8 TeV. The “effective” couplings YU;D
ii are

given by Eqs. (34) and (37) and encode the dependence of
the cross section upon the VL Yukawa couplings and VL
fermion mixing. The loop function Aðm2

H=m
2
Xi
Þ reads

Aðm2
H=m

2
Xi
Þ ¼

Z
1

0

dy
Z

1−y

0

dz
1 − 4yz

1 − ðm2
H=m

2
Xi
Þyz ; ð41Þ

and match after integration the standard one-loop functions
for Higgs production via gluon fusion (see e.g. Ref. [70]).
The physical cross section at the LHC requires integra-

tion over the parton distribution functions gðxÞ:

σðpp → HÞ ¼
Z

1

τ0

dx1

Z
1

τ0=x1

dx2gðx1Þgðx2Þσ̂ðgg → HÞ:

ð42Þ
Some words are in order regarding the group theory

factors TR. The gluon-VL-VL coupling structure is

determined by the SUð3Þc generators taR, which in turn
depend upon the VL irreducible representation R, assumed
to be of rank ðλ1; λ2Þ. The amplitude for the gluon fusion
process, therefore, involves TrðtaRtbRÞ, whose value is given
by the trace normalization condition:

TrðtaRtbRÞ ¼
CRdR
dA

δab ¼ TRδ
ab; ð43Þ

where dR and dA refer to the dimensions of the represen-
tation R and the adjoint (A ¼ 8), and CR is the constant that
defines the quadratic Casimir, namely

dR ¼ 1

2
ðλ1 þ 1Þðλ2 þ 1Þðλ1 þ λ2 þ 2Þ;

CR ¼ 1

3
ðλ21 þ λ22 þ λ1λ2 þ 3λ1 þ 3λ2Þ: ð44Þ

Bearing in mind that the adjoint is rank (1,1), TR is entirely
determined by the rank of the corresponding represen-
tation, namely, 3 ¼ ð1; 0Þ, 6 ¼ ð2; 0Þ, 10 ¼ ð3; 0Þ and
15 ¼ ð2; 1Þ. Values for dR, CR and TR for the lower-
dimensional SUð3Þ representations are given in Table II.
We discuss now the evolution of αs under the renorm-

alization group equations (RGEs). In the absence of the
new colored states (SM alone) we find αsðMZÞ=αsðmHÞ ¼
f1.40; 1.42; 1.43g for mH ¼ f1.8; 2.0; 2.2g TeV (the val-
ues used in our numerical treatment). The VL fermions, in
particular those belonging to higher-order color represen-
tations, can substantially change those values through their
non-negligible positive contributions to the RGE running.
Whether this is the case depends on the corresponding VL
mass spectrum. For spectra heavier than mH there is no
contribution; thus the values previously quoted are the ones
to be used. For spectra with at least one VL state with mass
below mH, the αs RGE running should be accounted for, as
it may have a non-negligible numerical impact on the
resulting H production cross section. The αs RGE reads

TABLE II. Dimension dR, quadratic Casimir operators coef-
ficient (CR) and trace factor (TR) for lower-dimensional color
representations. The coefficient εHgg refers to the enhancement of
the heavy Higgs gluon fusion cross section for representations
R ¼ 6, 8, 10, 15, relative to the fundamental representation

(F ¼ 3). The other coefficient εðF;XÞgg refers instead to the enhance-
ment of the VL pair production cross section σðgg → XX̄Þ. Note
that, in the Higgs gluon fusion enhancement coefficient, αs has
been evaluated at mH . See text for further details.

SUð3Þc representations
dR 3 6 8 10 5
CR 4=3 10=3 3 6 16=3
TR 1=2 5=2 3 15=2 10
εHgg × α2S;F=α

2
S;R 1 25 36 225 400

εðR;FÞgg
1 25=2 27=2 135=2 80
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μ
dαs
dμ

¼ αs
X
i

βi

�
αs
π

�
i
; ð45Þ

with the one- and two-loop β functions given by [71,72]

β1 ¼ −
11

6
CA þ 2

3

X
R

nRTR; ð46Þ

β2 ¼ −
17

12
C2
A þ 1

6

X
R

nRTRð5CA þ 3CRÞ; ð47Þ

where nR is the number of quark flavors in the representa-
tion R. Clearly, the higher the rank of the representation
(large TR and CR), the larger the contribution of the VL
states to αs. Indeed, it can be noted that for higher rank
representations a Landau pole will be reached rapidly,
implying in those cases the need for further color states
with order-TeV masses, to assure a good UV behavior.
Having accounted for all the relevant effects, it becomes

clear that the gluon fusion Higgs production cross sections
for different representations differ solely by the group
theory factor and the value of αs at mH. Thus, as soon as its
value is determined for a particular representation, values
for the others can be straightforwardly derived by rescaling
by the appropriate factors. Relative to the fundamental
representation, F ¼ 3, these factors are

εHgg ≡ σRðgg → HÞ
σFðgg → HÞ ¼

T2
R

T2
F

α2s;R
α2s;F

: ð48Þ

Table II shows the group theory enhancements for the
irreducible representations of interest, from which it can be
seen that large cross sections are expected for higher-rank
representations. This is however subtle, since large cross
sections demand not too heavy VL states for which one
could expect the most stringent bounds on their masses.
This statement is, however, to a large extent, model-
dependent. Bounds are derived assuming certain VL
fermion decay modes, which in the absence of chiral-VL
mixing entirely depend upon the effective operator
assumed, as we now discuss.
VL fermions’ pair production is mainly driven by

gg → XX̄. At leading order in m2
X=S, the production cross

sections for representations Ra and Rb differ by [54]

εðRa;RbÞ
gg ≡ σðgg → XaX̄aÞ

σðgg → XbX̄bÞ
≃ C2

Ra

C2
Rb

dRa

dRb

: ð49Þ

Such values are shown in Table II relative to the funda-
mental representation. With the aid of these rescaling
factors, bounds on the masses of different representations
can be indirectly estimated from experimental bounds on
the mass of a given one. Such an approach assumes the VL
fermions to be short lived, with lifetimes below 10 ns. For

lifetimes above this value (and below ∼100 s, as required
by cosmological and astrophysical constraints [73]), the VL
fermions would be stable or metastable depending on
whether they decay outside or inside the active detector
volume [74]. In that case, arguably, bounds on the different
VL fermions could be fixed by using current bounds on
charged heavy long-lived particles, for which current
bounds exclude masses below ∼1 TeV [74].
VL fermion lifetimes are determined by the effective

operator responsible for its decay (see Sec. II). Assuming
OðC6; C0

6Þ ∼ 1 and taking mX ¼ 1.5 TeV, we have found
that short-lived VL fermions are obtained for cutoff scales
obeying Λ≲ 107 GeV; stability at collider scales is instead
obtained for 107 GeV≲ Λ≲ 1010 GeV (where the upper
bound assures decay lifetimes below 100 s).
In the short-lived case, mass limits for the different

representations can be derived by using current bounds on
gluino masses in models with R-parity violation [75].
These limits, derived from searches for six jets stemming
from R-parity-violating gluino decays, have excluded
gluino masses below ∼900 GeV. Since the gluino is a
VL octet, these bounds combined with appropriate rescal-
ing factors can—in principle—be used to derive lower
limits on the remaining VL quark representations, provided
the VL decay modes yield a six jet topology. This is indeed
the case for decays induced by the effective operators in (7)
and (8). Thus, in that case for

εðF;AÞgg ¼ 2

25
; εð6;AÞgg ¼ 25

27
;

εð10;AÞgg ¼ 27

5
; εð15;AÞgg ¼ 32

5
; ð50Þ

we find no competitive bound for mX3
(so its lower value is

then fixed to 500 GeV [76]), for mX6
≳ 833 GeV and for

mX10;X15
≳ 4000 GeV. The latter, being at the LHC kin-

ematical threshold, is therefore expected to be somewhat
degraded.
Since the octet has a weaker mass bound and an expected

large cross section, it is probably the most suitable VL
fermion for addressing the ATLAS diboson excess (in the
case of short-lived VL fermions). Thus, most of our results
in Sec. III C will specialize to this case.
Finally, before closing this section it is worth pointing

out that the above limits imply a depletion of the gluon
fusion cross section for the different representations, apart
from the triplet for which less stringent bounds apply. This
is to be compared with the case where the states rather than
being VL are chiral, since constraints on a fourth chiral
quark generation are less restrictive, mchiral ≳ 600 GeV
[77],5 and the cross section does not exhibit a decoupling

5Within our setup, a fourth chiral generation coupling only to
H1 is absolutely viable, since its contribution to the SM Higgs
cross section is negligible or even vanishing.

DIBOSON ANOMALY: HEAVY HIGGS RESONANCE AND … PHYSICAL REVIEW D 93, 015012 (2016)

015012-7



behavior. Note, however, that in that case addressing the
diboson anomaly is not possible: the large Yukawa cou-
plings required to generate experimentally consistent chiral
masses necessarily lead to a heavy Higgs total decay width
above ∼200 GeV (see next section).

B. Partial decay widths

The dominantH decay modes areH → VV (V ¼ W, Z),
H → XiX̄j [see Eqs. (33) and (38)]. The partial decay
widths for these processes can be written as

ΓðH → VVÞ ¼ δVGF

16
ffiffiffi
2

p
π
m3

Hc
2
α−βGð1; r2VH; r4VHÞ; ð51Þ

ΓðH → XiX̄iÞ ¼
dR
8π

jYX
iij2
2

mHλ
3=2ð1; r2XiH

; r2XiH
Þ; ð52Þ

ΓðH → XiX̄jÞ ¼
dR
8π

jYX
ijj2
2

mHFð1; r2X1H
; r2X2H

Þ: ð53Þ

Here δV ¼ 2 for V ¼ W and δV ¼ 1 for V ¼ Z, i ¼ 1, 2
refer to the states in the up and down sector; YX

ij are the off-
diagonal couplings given in (35) and (36), rVH ¼ mV=mH,
rXiH ¼ mXi

=mH; and the kinematic functions read

G ¼ ð1 − 4r2VH þ 12r4VHÞλ1=2ð1; r2VH; r2VHÞ;
F ¼ ½1 − ðrx1H þ rx2HÞ2�λ1=2ð1; r2x1H; r2x2HÞ; ð54Þ

with λð1; a; bÞ ¼ 1þ ða − bÞ2 − 2ðaþ bÞ.
Depending on the relative size of cosðα − βÞ and the

“effective” couplings YU;D
ij (i ¼ 1, 2), the total decay width

is controlled either by gauge boson modes or fermion
decays. For higher representations, fermion decay domi-
nance is more pronounced due to the largest number of
color degrees of freedom. However, in general, for “effec-
tive” couplings YU;D

ij smaller than one the gauge boson
modes dominate, unless cosðα − βÞ≲ 0.01. On the con-
trary, for large “effective” couplings, fermion modes can
determine the total decay width, with the corresponding
value typically being well above ∼100 GeV.
Finally, some comments about the decay channels

H → gg and H → γγ are in order. First, we consider
the decay into gluons. Given the large enhancements that
QCD exotics induce in σ̂ðgg → HÞ, large enhancements in
ΓðH → ggÞ should take place as well, as the same 1-loop
coupling is involved in both observables. Thus the exist-
ence of this decay channel affects the heavy Higgs
branching ratio into pairs of gauge bosons, and in fact
one may naively expect a sizable reduction of the signal
rate σðpp→HÞ×BrðH→WþW−Þ. The relations between
the gluon-gluon fusion production and the decay into
gluons at leading order [78] is given by

ΓðH → ggÞ ¼ m3
H

8π2
σ̂ðgg → HÞ: ð55Þ

However, given the typical sizes of the gluon fusion cross
section σ̂ðgg → HÞ required to fit the observed diboson
excess, we find that BrðH → ggÞ is always smaller (and in
most regions much smaller than) ≲10−2, thus becoming
phenomenologically irrelevant for our analysis. We also
point out that the radiative decay H → γγ has a partial
decay width always below the one for H → gg, as it does
not profit from the large color factors which contribute to
the latter. Therefore, we will also safely neglect it in our
numerical discussion.

C. Numerical results

No matter the color representation, the heavy Higgs
gluon fusion cross section depends on the VL mixing as
well as on the VL fermion mass spectrum (in both up- and
down-type sectors). Their values are to a large extent
correlated since they both depend upon the same set of
Lagrangian parameters, and although they depend differ-
ently there is no room for variations on the mixing giving a
mass spectrum. Thus, rather than treating mixing and
spectrum independently, in our analysis we used the
“fundamental” couplings, assuming common values for
both sectors. Such an assumption certainly simplifies the
numerical treatment, while capturing the main features of
the parameter space dependence. Our results are therefore
derived for fixed mH ¼ 1.8 TeV and

ffiffiffi
S

p ¼ 8 TeV and are
based on random scans of the following parameter space
regions:

mQ;X ⊂ ½500; 2500� GeV; y; ~y ⊂ ½10−1;
ffiffiffiffiffiffi
4π

p
�;

tan β ⊂ ½0.3; 10�; sinðα − βÞ ⊂ ½0.9; 1�: ð56Þ

For all points in the scan we have calculated (for each
representation) the exact value for αs making use of
Eqs. (45) and (46). In doing so, we have accounted for
the decoupling of the different VL fermions at their mass
thresholds. For higher representations, in particular for 10
and 15, a VL fermion mass way below mH can lead to
nonperturbative αs already at mH. Whenever those points
are found we just drop them from our analysis. If not
stated otherwise, all our points are subject to the cut
ΓH < 200 GeV, where ΓH is the heavy Higgs total decay
width. Finally, for the calculation of the cross section we
have used the MSTW PDFs at NNLO [79].
The different “effective” couplings entering in (40) are

weighted by different signs, with the sign difference
holding regardless of the region in parameter space, as
shown in Fig. 1. This effect leads to a certain degree of
cancellation of the different terms in the cross section,
something that happens as well in the presence of color
scalars as has been pointed out in [80]. As an illustration of
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this cancellation, one can look at the particular case of
yU ¼ ~yU ≡ y. In this case the mass matrix in Eq. (23) is
symmetric, and θUR ¼ θUL ≡ θ. Therefore, the effective
Yukawas entering Eq. (33) read YU

11 ¼ −YU
22 ¼

y sinð2θÞ=2. One can then clearly see that a cancellation
in both the up- and down-type sector contributions occurs
up to mass nondegeneracy.
Several factors, however, “compensate” for such can-

cellation, and can be sorted depending on whether they are
or are not representation dependent. Nonrepresentation-
dependent factors correspond to the size of the Yukawa
couplings and the VL fermion mass spectrum.6 Group
theory factors and αS running are, instead, representation
dependent, and are such that for representations beyond the
triplet they lead to sizable enhancements. It is worth
pointing out that for the fundamental representation, and
only for that representation, the “compensating” factors
do not suffice to render this possibility viable. However, if
not for this cancellation effect the fundamental color
representation alone could account for the diboson excess
anomaly.
The larger the Yukawa couplings (y and ~y) the larger the

expected cross section. We illustrate this in Fig. 2, where
we plot σðpp → HÞ × BrðH → WþW−Þ as a function of
the effective couplings Y1 (dashed orange) and Y2 (solid
brown), for octet VL fermions and ΓH ≲ 200 GeV. Note
that the Yukawas are typically Oð1Þ at mH.

7 Thus, their
RGE running could lead in some cases to nonperturbative
couplings or vacuum instabilities at scales not-too-far from
mH, as it turns out to be with αS. In that case, new degrees

of freedom would be needed to render our picture con-
sistent at high energies.
However, large Yukawa couplings not only enhance the

cross section but can potentially render the heavy Higgs
total decay width well above its maximum allowed value,
ΓH ∼ 200 GeV. The “narrow” width condition places a
strong constraint on the possible values of the Yukawa
couplings, with the effect being more pronounced for
higher representations. The reason is rather simple.
While only two Yukawa vertices contribute to the gluon
fusion cross section [first and fourth terms in Eqs. (33) and
(38), for A ¼ 2], four contribute to ΓH, determined by
partial decay widths weighted by final state multiplicities,
whose values scale with the dimension of the representa-
tion. In Fig. 3, we display results for the gluon fusion cross
section as a function of the two octet VL fermion masses:
the brown region is for the lightest and the orange for the
heaviest. The results correspond to two different cuts,
determined by ΓH < 100 GeV and ΓH < 200 GeV. This
shows that indeed the smaller ΓH is, the smaller the cross
section. Furthermore, the role of kinematically open/closed
Higgs fermion channels is also striking. In those regions of
“light” states (mX1

< mH=2) the cross section is small and
increases towards values approaching the fermion modes
kinematical threshold, reaching a maximum determined by
the loop function Aðm2

H=m
2
XÞ and decreasing due to the

expected decoupling behavior of the cross section.
Representation-dependent effects are obvious but

remarkable. As shown in Table II, the heavy gluon fusion
cross section rapidly increases with higher representations.
Thus, alone, the group theory factor could “overcome” the
cancellation effect. However, higher representations in turn
are, in the case of prompt decays, subject to more stringent
experimental constraints, and thus become more sensitive
to the cross-section decoupling behavior. With the bounds
we derived in Sec. III A for short-lived VL fermions, we
find that while the sextet and octet lead to a signal,

FIG. 1. Regions of heavy Higgs cross section as a function of
the effective couplings Y1 and Y2 for octet VL fermions. The
cross-section distribution over the plane is such that the larger the
“effective” couplings the larger the cross section.

3 2 1 0 1 2 3

5

10

15

20

Effective Yukawas Y1,Y2

B
R

W
W

fb

FIG. 2. Signal σðpp → HÞ × BrðH → WþW−Þ as a function of
the effective couplings Y1 (dashed orange) and Y2 (solid brown)
for octet VL fermions.

6Note, however, that the constraints on the mass spectrum are
representation dependent, and so indirectly it features a repre-
sentation dependence.

7One has to bear in mind that in models with higher SUð3Þc
representations κ is expected to be larger than 2, and with larger κ
factors the Yukawa couplings will decrease accordingly.
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σðpp → HÞ × BrðH → WþW−Þ, in agreement with the
ATLAS reported excess, 10 and 15 do not. Such a statement
is only valid when those mass bounds hold; deviations from
those values will of course change the conclusion. For
example, if these representations are long lived their mass
limits will not be so stringent, allowing them to perfectly fit
the ATLAS anomaly (see the discussion in Sec. III A). For
that reason, we do not discard the possibility of 10 and 15
VL fermions a priori and calculate the signal for all the
representations listed in Table II.
Figure 4 shows the results for the five representations we

are considering. There relative values agree very well with
those expected from group theory; see Table II. This result
clearly shows that the fundamental representation cannot,
by any means, account for the ATLAS excess. Even relying
on the mass bounds derived for short-lived fermions, the
sextet and octet can readily address the ATLAS observation

provided mX6;8
≲ 1.5 TeV. The 10 and 15 can account for

the anomaly depending on their mass limits.8 For masses of
up to about ∼2.5 TeV, both representations can fit the
observed ATLAS signal (with a somewhat marginal fit at
2.5 TeV). For masses above those values the decoupling
effect is stringent and the signal is degraded below 1 fb,
way below the values indicated by ATLAS. For those
representations too, one may wonder about the extremely
“large” signal at low VL fermion masses: such values can
be fitted to those required to address the anomaly by
properly decreasing the values of the Yukawa couplings.
The heavy Higgs gluon fusion cross-section dependence

on mH is as well somewhat strong. Thus, since the results
presented so far are for mH ¼ 1.8 TeV, we have inves-
tigated up to which extent the octet and sextet can or cannot
account for the signal in the relevant experimental range,
[1.8, 2.2] TeV. Note that in the low mass region the 10 and
15 are expected to always be able to address the anomaly,
regardless of the Higgs mass. Figure 5 shows the results for
the octet case for three different values of mH:
1.8,2.0,2.2 TeV. Although the signal is depleted about an
order of magnitude when moving from 1.8 TeV to 2.2 TeV,
it is still possible to obtain a signal within the range
reported by ATLAS.

IV. CONCLUSIONS

We have shown that the diboson excess reported by
ATLAS (and CMS) might be due to the production and
further decay of a heavy Higgs, H, resulting from a type-I
2HDM. Production proceeds through gluon fusion,
enhanced by the presence of colored VL fermion. In
addition to “standard” color triplets, we have considered
as well higher-order color representations (QCD exotics)

FIG. 3. Gluon fusion cross section versus the two octet VL
fermion masses: the brown region is for the lightest and the
orange for the heaviest. The different shaded regions correspond
to the “cuts” ΓH < 100 GeV and ΓH < 200 GeV and show the
constraints on the cross section due to the condition of “narrow”
resonance.

FIG. 4. Signal σðpp → HÞ × BrðH → WþW−Þ as a function of
the lightest VL fermion for the five color representations we have
employed. The different shaded regions from bottom to top
correspond to 3, 6, 8, 10, 15.

FIG. 5. Signal σðpp → HÞ × BrðH → WþW−Þ as a function of
the lightest VL fermion for the octet. The different shaded regions
from top to bottom correspond to mH ¼ 1.8, 2 and 2.2 TeV.

8Note that even using the most stringent bounds they can yield
a consistent signal in the case nVL > 1.

D. ARISTIZABAL SIERRA et al. PHYSICAL REVIEW D 93, 015012 (2016)

015012-10



which we have taken to be 6, 8, 10 and 15. Our findings
show that barring the triplet case (in its minimal form), all
other representations lead to large cross sections in fairly
large portions of the parameter space.
Wehave studied constraints onVL fermionmasses,which

we have argued depend upon their lifetime. However, no
matter whether the new states are short or long lived we
have found that—in general—phenomenological consis-
tency requires their masses to be above 1 TeV. These limits
then translate into heavy Higgs decays dominated by gauge
boson modes, thus naturally yielding the W�W∓ and Z0Z0

diboson signal observed by ATLAS.
The different scenarios we have considered can be

regarded as minimal. Additional VL fermion generations
could be considered as well, and in those cases enhance-
ments of the cross section are expected. These nonminimal
scenarios are of particular interest in those cases where
constraints on the VL fermion masses are stringent. As we
have demonstrated, decoupling in such cases is severe and
strongly depletes the cross section. Thus, the inclusion of
additional generations can potentially open regions of
parameter space that otherwise are closed.
In addition to addressing the results reported by ATLAS,

the heavy Higgs resonance we have put forward leads
to several other remarkable predictions. First of all, the
to-some-extent small mass splitting between the heavy
CP-even and CP-odd states leads necessarily to triboson
signatures, W�W∓Z and ZZZ [43]. Secondly, charged
Higgs single production, being Cabibbo suppressed and

driven by SM couplings, is negligible. Thus, it is not
possible to generate an excess in the W�Z channel in this
setup. Finally, sufficiently large H cross sections require
vectorlike fermion masses below ∼3 TeV, hence being
potentially producible at LHC.
We conclude by emphasizing that if the ∼2 diboson

resonance were to be confirmed, LHC data should also tell
us soon whether the mechanism we have pointed out
here is responsible for such observations: the diboson
signal should be accompanied by a CP-odd Higgs whose
mass should not exceed ∼2.3 TeV, TeV-colored fer-
mions should be copiously produced, no statistically
significant diboson events in the W�Z channel should
be observed, and there should be a signal in the triboson
channels (W�W∓Z; ZZZ). Therefore, the model we have
discussed here will be soon subject to deep experimental
scrutiny.
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