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We consider a supersymmetric version of the inert Higgs doublet model, whose motivation is to
explain smallness of neutrino masses and existence of dark matter. In this supersymmetric model, due to
the presence of discrete symmetries, neutrinos acquire masses at loop level. After computing these
neutrino masses, in order to fit the neutrino oscillation data, we show that by tuning some supersymmetry-
breaking soft parameters of the model, neutrino Yukawa couplings can be unsuppressed. In the above-
mentioned parameter space, we compute the branching ratio of the decay μ → eγ. To be consistent with the
current experimental upper bound on Brðμ → eγÞ, we obtain constraints on the right-handed neutrino mass
of this model.

DOI: 10.1103/PhysRevD.93.015008

I. INTRODUCTION

There are many indications for physics beyond the
standard model (SM) [1]. One among them is the existence
of nonzero neutrino masses [2]. Some of the indications
for new physics can be successfully explained in super-
symmetric models [3]. For this reason, neutrino masses
have been addressed in supersymmetry. In a neutrino
mass model, there is a possibility for lepton flavor
violation (LFV) [4], for which there is no direct evidence.
Experiments have put upper bounds on the branching ratios
of these LFV processes [5–7]. Due to the Glashow-
Iliopoulos-Maiani cancellation mechanism, these processes
are highly suppressed in the SM and the above-mentioned
upper bounds are obviously satisfied in it. However, a
signal for any LFV process with an appreciable branching
ratio gives a confirmation for new physics.
In this work, we study LFV processes of the form li →

ljγ in a supersymmetrized model for neutrino masses [8].
Here, li; i ¼ 1, 2, 3, are charged leptons. The above-
mentioned model arises after supersymmetrizing the inert
Higgs doublet model [9,10]. The inert Higgs doublet model
[9] offers an explanation for neutrino masses and dark
matter. In this model [9], dark matter is stable due to an
exact Z2 symmetry and the neutrinos acquire masses at the
one-loop level. This model has been extensively studied
and some recent works on this can be seen in Ref. [11].
Supersymmetrizing this model could bring new features
and this was done in Ref. [8]. In the supersymmetrization of
the inert Higgs doublet model [8], the discrete symmetry is
extended to Z2 × Z0

2. In this model, dark matter can be
multipartite [12] due to the presence of R parity and the Z0

2

symmetry. Some variations of this model were also
presented in Refs. [13,14]. In the model of Ref. [8], gauge
coupling unification is possible by embedding it in a

supersymmetric SU(5) structure [15]. The origin of the
discrete symmetry Z2 × Z0

2, which is described above, is
also explained by realizing it as a residual symmetry from a
U(1) gauged symmetry [16].
In this work we consider the model of Ref. [8] and

present the expression for neutrino masses, which arises
from two one-loop diagrams. We will demonstrate that
neutrino masses are tiny in this model if either the
neutrino Yukawa couplings are suppressed or some
certain soft parameters of the scalar potential are fine-
tuned. We consider the latter case, in which the neutrino
Yukawa couplings can be Oð1Þ, and they can drive LFV
processes such as μ → eγ. In our work we assume that
the slepton mass matrices and the A-terms of sleptons are
flavor diagonal. Hence, in our model, lepton flavor
violation is happening due to nondiagonal Yukawa
couplings. Under the above-mentioned scenario, we
compute the branching ratio for the decays li → ljγ.
Among these decays, we show that μ → eγ can give
stringent constraints on model parameters, especially
on the right-handed neutrino mass. Early calculations
on μ → eγ in a lepton-number-violating supersymmetric
model can be seen in Ref. [17].
In the model of Ref. [8], apart from μ → eγ there can also

be an LFV decay of μ → 3e. In a type-II seesaw mechanism
for neutrino masses, the decay μ → 3e can take place at tree
level, due to the presence of a triplet Higgs boson. In our
model [8], there are no triplet Higgses, and hence the decay
μ → 3e will take place at loop level. The current exper-
imental upper limit on Brðμ → 3eÞ is 1 × 10−12 [18], which
is about 2 times larger than that of Brðμ → eγÞ. So we can
expect Brðμ → eγÞ to put somewhat tighter constraints on
model parameters than that due to Brðμ → 3eÞ. Hence, in
this work we focus on the computation of Brðμ → eγÞ. It
may happen that Brðμ → 3eÞ and Brðμ → eγÞ may put
some additional constraints on model parameters, but we
study these in a separate work.*rshundi@iith.ac.in
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This paper is organized as follows. In the next section,
we describe the model of Ref. [8]. In Sec. III, we present
the expressions for neutrino masses and branching ratios
for the decays li → ljγ. In Sec. IV, we give numerical
results on neutrino masses and μ → eγ. We conclude
in Sec. V.

II. THE MODEL

The model of Ref. [8] is an extension of the minimal
supersymmetric standard model (MSSM). The additional
superfields of this model are as follows: (i) three right-
handed neutrino fields, N̂i, i ¼ 1, 2, 3; (ii) two electro-
weak doublets η̂1 ¼ ðη̂01; η̂−1 Þ, η̂2 ¼ ðη̂þ2 ; η̂02Þ; (iii) a singlet
field χ̂. Under the electroweak gauge group SUð2ÞL×
Uð1ÞY , the charges of these additional superfields are
given in Table I. The model of Ref. [8] contains the
discrete symmetry Z2 × Z0

2, under which all the quark
and Higgs superfields can be taken to be even. The
leptons and the additional fields described above are
charged nontrivially under this discrete symmetry [8].
The purpose of this symmetry is to disallow the Yukawa
term L̂iĤuN̂j in the superpotential of the model, and as a
result the neutrino remains massless at tree level. Here,
L̂i ¼ ðν̂i; l̂iÞ, i ¼ 1, 2, 3 are the lepton doublet super-
fields. The singlet charged lepton superfield is repre-
sented by Êc

i , i ¼ 1, 2, 3. We denote up- and down-type
Higgs superfields as Ĥu and Ĥd, respectively.
The superpotential of our model consisting of electro-

weak fields can be written as [8]

W ¼ ðYEÞijL̂iĤdÊ
c
j þ ðYνÞijL̂iη̂2N̂j þ λ1Ĥdη̂2χ̂

þ λ2Ĥuη̂1χ̂ þ μĤuĤd þ μηη̂2η̂1 þ
1

2
μχχ̂ χ̂

þ 1

2
MijN̂iN̂j: ð1Þ

Here, there is a summation over indices i; j which run
from 1 to 3. The first and second terms in the above
equation are Yukawa terms for charged leptons and
neutrinos, respectively. But, as described before, η̂2 is
odd under the discrete symmetry of the model and
hence the scalar component of it does not acquire a
vacuum expectation value [8]. So neutrinos are still
massless at tree level. Apart from the superpotential of
Eq. (1), we should consider the scalar potential. The
relevant terms in the scalar potential are given below:

V ¼ ðm2
LÞij ~L†

i
~Lj þm2

η1η
†
1η1 þm2

η2η
†
2η2 þm2

χχ
�χ

þ ðm2
NÞij ~N�

i
~Nj þ

�
ðAYνÞij ~Liη2 ~Nj þ ðAλÞ1Hdη2χ

þ ðAλÞ2Huη1χþbηη2η1 þ
1

2
bχχχ

þ 1

2
ðbMÞij ~Ni

~Nj þ c:c:

�
: ð2Þ

As we have explained before, our motivation is to study
LFV processes in the above-described model. The LFV
processes can be driven by charged sleptons. For instance,
the off-diagonal elements of soft parameters, ðm2

LÞij, can
drive LFV processes. Similarly, we can write soft mass
terms for singlet charged sleptons, ~Ei; i ¼ 1, 2, 3, in the
scalar potential. Also, there can exist A-terms connecting ~Li

and ~Ej. The off-diagonal terms of the above-mentioned
soft terms can drive LFV processes, which actually exist in
the MSSM. Since our model [8] is an extension of the
MSSM, we are interested in LFV processes generated
by the additional fields of this model. Hence, we assume
that the off-diagonal terms of the soft terms (which are
described above) are zero.
For simplicity, we assume that the parameters of the

superpotential and scalar potential of our model are real.
Then, by an orthogonal transformation among the neutrino
superfields N̂i, we can make the following parameters
diagonal:

Mij ¼ Miδij; ðm2
NÞij ¼ ðm2

NÞiδij; ðbMÞij ¼ ðbMÞiδij:
ð3Þ

By going to an appropriate basis of L̂i and Êj, we can get
the Yukawa couplings for charged leptons to be diagonal.
After doing this, we are left with no freedom and hence the
neutrino Yukawa couplings ðYνÞij can be nondiagonal.
These nondiagonal Yukawa couplings can drive LFV
processes such as li → ljγ. These LFV processes are
driven at the one-loop level, which we describe in the next
section. As explained before, neutrinos also acquire masses
at the one-loop level in this model [8]. To calculate these
loop diagrams we need to know the mass eigenstates of the
scalar and fermionic partners of the fields shown in Table I,
since these fields enter into the loop processes. Expressions
for these mass eigenstates are given in Ref. [19]. However,
our notations and conventions are different from those of
Ref. [19]. Hence, for the sake of completeness we present
them below.
The charged components of η̂1; η̂2 can be fermionic and

scalar, which can be written as ð~η−1 ; ~ηþ2 Þ and ðη−1 ; ηþ2 Þ,
respectively. The two charged fermions represent chargino-
type fields whose mass is μη, whereas the charged scalars,
in the basis ΦTþ ¼ ðηþ2 ; η−�1 Þ, will have a mass matrix which
is given below:

TABLE I. Charge assignments of additional superfields of the
model under the electroweak gauge group.

Field N̂i η̂1 η̂2 χ̂

SUð2ÞL × Uð1ÞY (1, 0) (2, −1=2) (2, 1=2) (1, 0)
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L∋ − Φ†
þ

 
μ2η þm2

η2 þ g2−g02
4

v2 cosð2βÞ bη

bη μ2η þm2
η1 −

g2−g02
4

v2 cosð2βÞ

!
Φþ: ð4Þ

Here, g; g0 are the gauge couplings of SUð2ÞL and Uð1ÞY ,
respectively. β is defined as tan β ¼ v2

v1
¼ hH0

ui
hH0

di
and

v2 ¼ v21 þ v22. We can diagonalize the above mass matrix
by taking Φþ as

Φþ ¼
�
cos θ − sin θ

sin θ cos θ

��
ηþm2

ηþm1

�
;

tan 2θ ¼ 2bη
m2

η2 −m2
η1 þ ðg2 − g02Þv2 cosð2βÞ=2 : ð5Þ

Here, ηþm1 and η
þ
m2 are mass eigenstates of the charged scalar

fields and we denote their mass eigenvalues by m1þ and
m2þ, respectively.
The neutral fermionic and scalar components of η̂1; η̂2; χ̂

can be written as ΨT ¼ ð~η01; ~η02; ~χÞ and ΦT
0 ¼ ðη01; η02; χÞ,

respectively. The neutral fermionic fields will have a
mixing mass matrix, which is given below:

L∋ −
1

2
ΨTMηΨ; Mη ¼

0
B@

0 −μη −λ2v2
−μη 0 λ1v1
−λ2v2 λ1v1 μχ

1
CA:

ð6Þ

The above mixing matrix can be diagonalized by an
orthogonal matrix as

UT
ηMηUη ¼ diagðm~η1 ; m~η2 ; m~η3Þ: ð7Þ

The neutral scalar fields of Φ0 can be written as

Φ0 ¼
1ffiffiffi
2

p ΦR þ iffiffiffi
2

p ΦI ¼
1ffiffiffi
2

p

0
B@

η01R
η02R
χR

1
CAþ iffiffiffi

2
p

0
B@

η01I
η02I
χI

1
CA: ð8Þ

The mixing matrix among these fields can be written as

L∋ −
1

2
ΦT

Rm
2
ηRΦR −

1

2
ΦT

I m
2
ηIΦI: ð9Þ

Here, the mixing matrices m2
ηR ; m

2
ηI can be obtained from

the following matrix:

m2
ηðϵÞ ¼

0
B@

m2
11 m2

12 m2
13

m2
12 m2

22 m2
23

m2
13 m2

23 m2
33

1
CA; m2

11 ¼ μ2η þm2
η1 þ λ22v

2
2 þ

g2 þ g02

4
v2 cosð2βÞ;

m2
22 ¼ μ2η þm2

η2 þ λ21v
2
1 −

g2 þ g02

4
v2 cosð2βÞ; m2

33 ¼ μ2χ þm2
χ þ λ21v

2
1 þ λ22v

2
2 þ ϵbχ ;

m2
12 ¼ −λ1λ2v1v2 − ϵbη; m2

13 ¼ −λ1v1μη − λ2v2μχ − ϵ½ðAλÞ2v2 − μλ2v1�;
m2

23 ¼ λ1v1μχ þ λ2v2μη þ ϵ½ðAλÞ1v1 − μλ1v2�: ð10Þ

Here, ϵ can take þ1 or −1. We have m2
ηR ¼ m2

ηðþ1Þ and
m2

ηI ¼ m2
ηð−1Þ. These two mixing mass matrices can be

diagonalized by orthogonal matrices UR and UI, which are
defined below:

UT
Rm

2
ηRUR ¼ diagðm2

ηR1 ; m
2
ηR2 ; m

2
ηR3Þ;

UT
I m

2
ηIUI ¼ diagðm2

ηI1 ; m
2
ηI2 ; m

2
ηI3Þ:

ð11Þ

At last, the fermionic and scalar components of right-
handed neutrino superfields, N̂i, can be denoted by Ni and
~Ni, respectively. The fermionic components have masses

Mi. The scalar components can be decomposed into mass
eigenstates as

~Ni ¼
1ffiffiffi
2

p ð ~NRi þ i ~NIiÞ: ð12Þ

The masses squared of ~NRi and ~NIi, respectively, are

m2
Ri ¼ M2

i þ ðm2
NÞi þ ðbMÞi;

m2
Ii ¼ M2

i þ ðm2
NÞi − ðbMÞi:

ð13Þ
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III. NEUTRINO MASSES AND LFV PROCESSES

As described before, in the model of Ref. [8] neutrinos are massless at tree level due to the presence of the discrete
symmetry Z2 × Z0

2. However, in this model neutrinos acquire masses at the one-loop level, whose diagrams are shown in
Fig. 1 [8]. After computing these one-loop diagrams, we find the following mass matrix for neutrinos:

ðmνÞij ¼
X3
k;l¼1

ðYνÞikðYνÞjk
16π2

Mk

�
½URð2; lÞ�2

m2
ηRl

m2
ηRl −M2

k

ln
m2

ηRl

M2
k

− ½UIð2; lÞ�2
m2

ηIl

m2
ηIl −M2

k

ln
m2

ηIl

M2
k

�

þ
X3
k;l¼1

ðYνÞikðYνÞjk
16π2

½Uηð2; lÞ�2m~ηl

�
m2

Rk

m2
Rk −m2

~ηl

ln
m2

Rk

m2
~ηl

−
m2

Ik

m2
Ik −m2

~ηl

ln
m2

Ik

m2
~ηl

�
: ð14Þ

It is to be noticed that the first and second lines of the above
equation arise from the left- and right-hand diagrams of
Fig. 1.
In our work we assume supersymmetry breaking to be

around 1 TeV. Hence, we can take all the supersymmetric
(SUSY) particle masses to be around a few hundred GeV.
With this assumption, we can estimate the neutrino
Yukawa couplings by requiring the neutrino mass scale
to be around 0.1 eV [2]. With this requirement, we find that
ðYνÞij ∼ 10−5. Here there are six different Yukawa cou-
plings, which need to be suppressed toOð10−5Þ. This could
be one possibility in this model in order to explain the
correct magnitude for neutrino masses. However, in this
case, since the Yukawa couplings are suppressed, LFV
processes such as li → ljγ would also be suppressed.
These LFV processes will be searched in future experi-
ments [20], and hence it is worth considering the case
where these processes can have a substantial contribution in
this model. In other words, we have to look for a parameter
region where we can have ðYνÞij ∼Oð1Þ.
From Eq. (14), it can observed that each diagram of

Fig. 1 contributes positive and negative quantities to the
neutrino mass matrix. Without suppressing Yukawa cou-
plings, by fine-tuning the masses of SUSY particles we
may achieve partial cancellation between the positive and
negative contributions of Eq. (14) and end up with tiny
masses for neutrinos. To demonstrate this explicitly, using
Eq. (13) we can notice that in the limit ðbMÞi → 0 we get
m2

Ri −m2
Ii → 0, and hence the second line of Eq. (14)

would give a tiny contribution. The first line of Eq. (14) can
give a very small value in the following limiting process:
URð2; lÞ −UIð2; lÞ → 0 and mηRl −mηIl → 0. To achieve
this limiting process we have to make sure that the elements

of the matrices m2
ηR and m2

ηI are close to each other. From
the discussion around Eq. (10), we can observe that the
elements of m2

ηR and m2
ηI can differ by quantities which are

proportional to ϵ. These quantities depend on the following
parameters: bχ , bη, ðAλÞ1, and ðAλÞ2. By taking the limit
ðAλÞ1 − λ1μv2=v1 → 0, ðAλÞ2 − λ2μv1=v2 → 0, bη → 0,
bχ → 0 we can get a tiny contribution from the first line
of Eq. (14). To sum up the above discussion, without
suppressing the neutrino Yukawa couplings we can fine-
tune the following seven parameters, in order to get very
small neutrino masses in this model:

ðbMÞi; i ¼ 1; 2; 3; bη; bχ ; ðAλÞ1; ðAλÞ2:
ð15Þ

Apparently, the above parameters are SUSY-breaking soft
parameters of the scalar potential of this model. A study of
neutrino masses depending on SUSY-breaking soft param-
eters can be seen in Ref. [21].
In the previous paragraph we have argued that Majorana

masses for neutrinos are vanishingly small when we
fine-tune certain soft parameters of the model. We can
understand these features from symmetry arguments. For
instance, when lepton number is conserved, neutrinos
cannot have Majorana masses. For lepton number, we
can propose a group Uð1ÞL, under which the following
fields are assigned the corresponding charges and the rest of
the superfields are singlets:

L̂i ↦ þ1; Êc
i ↦ −1; N̂i ↦ −1: ð16Þ

With the above-mentioned charges, we can see that the last
terms in Eqs. (1) and (2) are forbidden. In fact, in the limit
Mi → 0 and ðbMÞi → 0, the two diagrams of Fig. 1 give
zero masses to neutrinos. Hence, in order to get Majorana
masses for neutrinos, we have softly broken the lepton
number symmetry. Now, even if we have Mi ≠ 0, we have
described in the previous paragraph that the left-hand
diagram of Fig. 1 can still give vanishingly small masses
by fine-tuning some soft parameters. This suggests that
apart from Uð1ÞL there can exist some additionalFIG. 1. Radiative masses for neutrinos.
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symmetries. Suppose we set ðAλÞ1v1 − λ1μv2 ¼ 0,
ðAλÞ2v2 − λ2μv1 ¼ 0. Then (as argued previously) the
left-hand diagram of Fig. 1 gives zero neutrino masses
for bη → 0 and bχ → 0, even if Mi ≠ 0. This case can be
understood by proposing an additional symmetry Uð1Þη,
under which the following fields have nontrivial charges
and the rest of the fields are singlets:

L̂i ↦ þ1; Êc
i ↦ −1; η̂1 ↦ −1;

η̂2 ↦ −1; χ̂ ↦ þ1: ð17Þ

Using the above charges, we can notice that μη and μχ terms
in Eq. (1) and bη and bχ terms in Eq. (2) are forbidden.
Thus, the additional symmetry Uð1Þη can forbid the
Majorana masses for neutrinos in the left-hand diagram
of Fig. 1. Finally, one may ask how the relations
ðAλÞ1v1 − λ1μv2 ¼ 0, ðAλÞ2v2 − λ2μv1 ¼ 0 can be satis-
fied. In these two relations, SUSY-breaking soft masses are
related to the SUSY-conserving mass μ. These relations
may be achieved my proposing certain symmetries in the
mechanism for SUSY breaking, which is beyond the reach
of our present work.
Previously, we have motivated a parameter region where

the neutrino Yukawa couplings can be Oð1Þ. For these
values of the neutrino Yukawa couplings, LFV processes
such as li → ljγ can have substantial contributions in our
model, and it is worth computing them. The Feynman
diagrams for li → ljγ are given in Fig. 2.
The general form of the amplitude for li → ljγ is as

follows:

M ¼ eϵ�μðqÞūjðp − qÞ
�
AðijÞ
L

1 − γ5
2

þ AðijÞ
R

1þ γ5
2

�
× iσμνqνuiðpÞ: ð18Þ

It is to be noted that in the above equation, there is no

summation over the indices i; j. The quantities AðijÞ
L;R of the

above equation can be found from the one-loop diagrams of
Fig. 2, which we give below:

AðijÞ
L ¼ AðijÞmj; AðijÞ

R ¼ AðijÞmi;

AðijÞ ¼
X3
k¼1

ðYνÞikðYνÞjk
16π2

�
1

4μ2η
½f2ðxRkÞ þ f2ðxIkÞ�

−
�
cos2θ

f2ðxk2Þ
2m2

2þ
þ sin2θ

f2ðxk1Þ
2m2

1þ

��
;

xRk ¼
m2

Rk

μ2η
; xIk ¼

m2
Ik

μ2η
; xk2 ¼

M2
k

m2
2þ

; xk1 ¼
M2

k

m2
1þ

;

f2ðxÞ ¼
1

ð1 − xÞ4
�
1

6
− xþ 1

2
x2 þ 1

3
x3 − x2 lnðxÞ

�
: ð19Þ

From the above expressions, we can notice that in the curly
brackets of AðijÞ, the first two and last two terms arise from
the left- and right-hand diagrams of Fig. 2, respectively.
Moreover, there is a relative minus sign in the contribution
from these two diagrams.
Among the various decays of the form li → ljγ, the

upper bound on the branching ratio of μ → eγ is found to be
stringent [5]. Moreover, we have Brðμ → eν̄eνμÞ ≈ 100%.
Using this and neglecting the electron mass, the branching
ratio of μ → eγ is found to be

Brðμ → eγÞ ¼ 3α

16πG2
F

				X3
k¼1

ðYνÞ1kðYνÞ2k

×

�
1

4μ2η
½f2ðxRkÞ þ f2ðxIkÞ�

−
�
cos2θ

f2ðxk2Þ
2m2

2þ
þ sin2θ

f2ðxk1Þ
2m2

1þ

��				2:
ð20Þ

Here, α ¼ e2
4π and GF is the Fermi constant.

Here we compare our work with that of Ref. [14]. The
model in Ref. [14] is similar to that of Ref. [8]. But, in
Ref. [14] a theory at a high scale with an anomalous Uð1ÞX
symmetry was assumed. The Uð1ÞX symmetry breaks into
Z2 symmetry at a low scale. Due to these differences, there
exist three one-loop diagrams for neutrinos in Ref. [14],
whereas only two diagrams generate neutrino masses in
Ref. [8]. The diagrams for the LFV processes of li → ljγ
in Ref. [14] are similar to the diagrams given in this paper
(see Fig. 2). But the expression for Brðμ → eγÞ, which is
given in Eq. (20), is found to be different from that in
Ref. [14]. We hope that these differences might have arisen
because the model in Ref. [14] has a different origin than
that of Ref. [8].
Although the main motivation of this paper is to study

the correlation between neutrino masses and Brðμ → eγÞ,
below we mention muon g − 2 in our model. It is known
that the theoretical [22] and experimental [23] values of
muon g − 2 differ by about 3σ. However, there are hadronic
uncertainties to muon g − 2, which need to be improved
[22]. Hence, the above-mentioned result is still an indica-
tion for a new physics signal. In our model [8], muon g − 2
get contributions from MSSM fields [24] as well as from
additional fields, which are shown in Table I. The con-
tribution from MSSM fields can fit the 3σ discrepancy of

FIG. 2. Lepton-flavor-violating decays of the form li → ljγ.
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muon g − 2.1 Hence, in our model [8], it is interesting to
know how large the contribution from the additional fields
of this model would be. The contribution from these
additional fields can be found from the amplitude of
Eq. (18), which is

Δaμ ¼
m2

μ

16π2
X3
k¼1

½ðYνÞ2k�2
�

1

2μ2η
½f2ðxRkÞ þ f2ðxIkÞ�

−
�
cos2θ

f2ðxk2Þ
m2

2þ
þ sin2θ

f2ðxk1Þ
m2

1þ

��
: ð21Þ

Here, mμ is mass of the muon.

IV. ANALYSIS AND RESULTS

As described in Sec. I, our motivation is to study the
correlation between neutrino masses and Brðμ → eγÞ. We
have given the expression for neutrino masses in Eq. (14).
We have explained in the previous section that to explain a
neutrino mass scale of 0.1 eV, we can make the neutrino
Yukawa couplings to be about Oð1Þ, but we need to fine-
tune certain SUSY-breaking soft parameters which are
given in Eq. (15). We consider this case, since for unsup-
pressed neutrino Yukawa couplings Brðμ → eγÞ can have
maximum values. As mentioned before, experiments
have found the following upper bound: Brðμ → eγÞ <
5.7 × 10−13 [5]. Hence, for the above-mentioned parameter
space, where neutrino Yukawa couplings are unsuppressed,
we compute Brðμ → eγÞ by fitting neutrino masses. We
check if the computed values for Brðμ → eγÞ satisfy the
experimental bound [5].
Before we compute Brðμ → eγÞ, we first need to ensure

that the neutrino Yukawa couplings can be unsuppressed in
our model. We can calculate these Yukawa couplings from
Eq. (14) by fitting to the neutrino oscillation data. The
neutrino mass matrix of Eq. (14) is related to neutrino mass
eigenvalues through the following relation:

mν ¼ U�
PMNSdiagðm1; m2; m3ÞU†

PMNS: ð22Þ

Here, m1;2;3 are the mass eigenvalues of neutrinos and
UPMNS is the Pontecorvo-Maki-Nakagawa-Sakata matrix.
The matrix UPMNS depends on three mixing angles
(θ12; θ23; θ13) and Dirac CP-violating phase, δCP. In the
above equation there is a possibility of Majarona phases,
which we have taken to be zero, for simplicity. We have
parametrized UPMNS in terms of mixing angles and δCP as it
is given in Ref. [7].
By fitting to various neutrino oscillation data, we know

solar and atmospheric neutrino mass-squared differences
and also about the neutrino mixing angles [26]. In the case

of normal hierarchy (NH) of neutrino masses, we have
taken the mass-squared differences as

Δm2
21 ¼ m2

2 −m2
1 ¼ 7.6 × 10−5 eV2;

jΔm2
31j ¼ jm2

3 −m2
1j ¼ 2.48 × 10−3 eV2:

ð23Þ

In the case of inverted hierarchy (IH) of neutrino masses,
the value of Δm2

21 remains the same as mentioned above,
but jΔm2

31j ¼ 2.38 × 10−3 eV2. In this work, the neutrino
mixing angles and CP-violating phase are chosen to be

sin θ12 ¼
1ffiffiffi
3

p ; sin θ23 ¼
1ffiffiffi
2

p ;

sin θ13 ¼ 0.15; δCP ¼ 0: ð24Þ

The above-mentioned neutrino mass-squared differences,
mixing angles, and the CP-violating phase are consistent
with the fitted values in Ref. [26]. From the mass-squared
differences, we can estimate neutrino mass eigenvalues
which are given below for the cases of NH and IH,
respectively:

m1 ¼ 0; m2 ¼
ffiffiffiffiffiffiffiffiffiffiffi
Δm2

21

q
; m3 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jΔm2

31j
q

; ð25Þ

m3 ¼ 0; m1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jΔm2

31j
q

; m2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δm2

21 þm2
1

q
:

ð26Þ

In the previous paragraph, we mentioned numerical
values of neutrino mass eigenvalues, mixing angles, and
the CP-violating phase. By plugging these values into
Eq. (22), we can compute the elements of the matrix mν,
which are related to neutrino Yukawa couplings and SUSY
parameters through Eq. (14). Using Eq. (14), we can
calculate the neutrino Yukawa couplings in order to satisfy
neutrino oscillation data. This calculation procedure would
be simplified if we assume degenerate masses for right-
handed neutrinos and right-handed sneutrinos. For i ¼ 1, 2,
3, we assume the following:

Mi ¼ M; ðm2
NÞi ¼ m2

N; ðbMÞi ¼ bM: ð27Þ

Under the above assumption, all three right-handed neu-
trinos have mass M. The corresponding sneutrinos have
real and imaginary components [see Eq. (12)], whose
masses would be

m2
R ¼ M2 þm2

N þ bM; m2
I ¼ M2 þm2

N − bM: ð28Þ

Under the above-mentioned assumption, the neutrino mass
matrix of Eq. (14) will be simplified to

1In Ref. [25], the discrepancy in muon g − 2 was fitted in a
supersymmetric model, where the contribution is actually from
the MSSM fields.
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ðmνÞij ¼
Sij
16π2

X3
l¼1

�
M

�
½URð2; lÞ�2

m2
ηRl

m2
ηRl −M2

ln
m2

ηRl

M2

− ½UIð2; lÞ�2
m2

ηIl

m2
ηIl −M2

ln
m2

ηIl

M2

�
þ ½Uηð2; lÞ�2m~ηl

×

�
m2

R

m2
R −m2

~ηl

ln
m2

R

m2
~ηl

−
m2

I

m2
I −m2

~ηl

ln
m2

I

m2
~ηl

��
; ð29Þ

Sij ¼
X3
k¼1

ðYνÞikðYνÞjk: ð30Þ

The elements Sij are quadratic in the neutrino Yukawa
couplings. From the above relation we can see that for
certain values of the SUSY parameters, Sij can be calcu-
lated from ðmνÞij. Using the above-mentioned assumption
of degenerate masses for right-handed neutrinos and right-
handed sneutrinos, we can see that Eqs. (20) and (21)
would give us Brðμ → eγÞ ∝ S221 and Δaμ ∝ S22.
In our model, there are plenty of SUSY para-

meters, and we need to fix some of them to simplify
our analysis. In our analysis, we choose the following
SUSY parameters:

μχ ¼ 600 GeV; mη1 ¼ 400 GeV; mη2 ¼ 500 GeV; mχ ¼ 600 GeV;

mN ¼ 700 GeV; λ1 ¼ 0.5; λ2 ¼ 0.6; tan β ¼ 10: ð31Þ

We freely vary the parameters μη and M. In the previous
section, we explained that we need to fine-tune the
parameters of Eq. (15) in order to get small neutrino
masses. Among these parameters, we take ðAλÞ1 ¼
λ1μv2=v1 and ðAλÞ2 ¼ λ2μv1=v2. The other parameters
of Eq. (15), without loss of generality, are taken to be
degenerate:

bM ¼ bη ¼ bχ ¼ bsusy: ð32Þ

We have explained before that we have assumed degen-
erate masses for right-handed neutrinos and right-handed
sneutrinos. Under this assumption, information about the
neutrino Yukawa couplings is contained in the quantities
Sij. Hence, it is worth plotting these quantities to under-
stand the neutrino Yukawa couplings. In Fig. 3, for the case
of NH, we plot S21 and S22 versus the right-handed neutrino
mass M for μη ¼ 1 TeV. The plots of Fig. 3 indicate that
S22 and S21 are around Oð1Þ. Since these quantities are the
sum of the squares of neutrino Yukawa couplings [see
Eq. (30)], we can expect that the neutrino Yukawa

couplings should be in the range of Oð1Þ. We do not
plot the values of S11, S31, etc. in Fig. 3, but we have
found that these will also be around Oð1Þ. We plot S21 and
S22 in Fig. 3, since these two determine Brðμ → eγÞ
and Δaμ.
From the plots of Fig. 3, we can notice that the values of

S22 are higher than those of S21. This fact follows from
Eq. (29), where we can see that Sij are proportional to
ðmνÞij, which are determined by neutrino oscillation
parameters. In the case of NH, we have seen that ðmνÞ22
is greater than ðmνÞ21 by a factor of 3.4, and hence S22 is
always found to be larger than S21. It is clear from the plots
of Fig. 3 that by increasing bsusy, S21 and S22 would
decrease. Again, this feature can be understood from
Eq. (29). As explained in the previous section, the square
brackets of Eq. (29) would tend to zero in the limit
bsusy → 0. So for a large value of bsusy there will be less
partial cancellation in the square brackets, and hence S21
and S22 would decrease. In both plots of Fig. 3 it is found
that the values of S21 and S22 initially decrease with M,
go to a minima, and then increase. The shape of these
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FIG. 3. The quantities S21, S22 are
plotted against the right-handed neutrino
mass for μη ¼ 1 TeV, in the case of NH.
In the left- and right-hand plots, bsusy is
taken to be ð3 × 10−2Þ2 GeV2 and
ð7 × 10−2Þ2 GeV2, respectively.
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curves can be understood by applying the approximation of
bsusy
M2 ≪ 1 in Eq. (29). In the limit bsusy → 0, we can take

m2
ηRl ¼ m2

ηlð1þ δRlÞ; m2
ηIl ¼ m2

ηlð1þ δIlÞ;
URð2; lÞ ≈UIð2; lÞ ¼ U0ð2; lÞ: ð33Þ

Here, δRl; δIl ≪ 1. Using the above-mentioned approxima-
tions in Eq. (29), we get

ðmνÞij ¼
Sij
16π2

X3
l¼1

�
½U0ð2; lÞ�2ðδRl − δIlÞM

m2
ηl

m2
ηl −M2

×

�
1 −

M2

m2
ηl −M2

ln
m2

ηl

M2

�

þ ½Uηð2; lÞ�2m~ηl

2bsusy
M2 þm2

N −m2
~ηl

×

�
1 −

m2
~ηl

M2 þm2
N −m2

~ηl

ln
M2 þm2

N

m2
~ηl

��
: ð34Þ

In the summation of the above equation, the first and
second lines arise due to the left- and right-hand diagrams
of Fig. 1. From the above equation, we can understand that
the contribution from the first line increases, reaches a
maximum, and then decreases with M, whereas, the
contribution from the second line of the above equation
decreases monotonically with M. It is this functional
dependence on M that determines the shape of the lines
in Fig. 3. Physically, in the limit bsusy → 0, the above
description suggests that the right-hand diagram of Fig. 1 is
significant only for very low values of M. For other values
of M, the left-hand diagram of Fig. 1 gives the dominant
contribution to neutrino masses. One remark about the plots
in Fig. 3 is that we have fixed μη ¼ 1 TeV in these figures.
We have varied μη from 500 GeV to 1.5 TeV and have
found that the plots in Fig. 3 would change quantitatively,
but qualitative features would remain same. Also, the plots
in Fig. 3 are for the case of NH. Again, these plots can
change quantitatively, if not qualitatively, for the case of IH.

For this reason, below we present our results on Brðμ →
eγÞ and muon g − 2 for the case of NH only.
As described before, our motivation is to compute

Brðμ → eγÞ in the model of Ref. [8]. In Fig. 3 we show
that the neutrino Yukawa couplings in this model can be
Oð1Þ, and for these values of Yukawa couplings Brðμ →
eγÞ is unsuppressed. In the parameter space where the
neutrino Yukawa couplings are unsuppressed, we plot
Brðμ → eγÞ as a function of the right-handed neutrino
mass. These plots are shown in Fig. 4, where we also vary
μη from 500 GeV to 1.5 TeV. The horizontal line in these
plots indicates the current upper bound of Brðμ → eγÞ <
5.7 × 10−13. This upper bound would impose a lower
bound on the right-handed neutrino mass, as can be seen
in the plots of Fig. 4. In the left-hand plot of Fig. 4, for
μη ¼ 500 GeV, the right-handed neutrino mass is allowed
to be between about 650 to 950 GeV. In the same plot, for
μη ¼ 1 or 1.5 TeV, the right-handed neutrino mass has a
lower bound of about 1 TeV. In the right-hand plot of Fig. 4,
the lower bound on the right-handed neutrino mass is
within 500 GeV, even for a low value of μη ¼ 500 GeV.
The lower bounds on the right-handed neutrino mass M

are severe in the left-hand plot of Fig. 4. The reason is that
for a low value of bsusy, S21 would be high, and hence
Brðμ → eγÞ would be large. From Fig. 4, we can observe
that Brðμ → eγÞ initially decreases with M, goes to a
minimum, and then increases. For instance, in the left-hand
plot of Fig. 4, for μη ¼ 500 GeV, Brðμ → eγÞ goes to a
minimum around M ¼ 750 GeV, and then it has a local
maxima aroundM ¼ 1.5 TeV. The reason that Brðμ → eγÞ
initially decreases with M is due to the fact that the decay
μ → eγ is driven by right-handed neutrinos and right-
handed sneutrinos, as given in Fig. 2. The masses of
right-handed neutrinos and right-handed sneutrinos are
proportional to M, and hence Brðμ → eγÞ would be sup-
pressed with increasing M. After that, at a certain value of
M, Brðμ → eγÞ would tend to become zero. The reason for
this is that the sum of the two diagrams of Fig. 2 gives a
relative minus sign to the contribution of Brðμ → eγÞ,
which is given in Eq. (20). Hence, for a particular value of
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FIG. 4. Brðμ → eγÞ is plotted
against the right-handed neutrino
mass for different values of μη.
In the left- and right-hand plots,
bsusy is taken as ð3 × 10−2Þ2 GeV2

and ð7 × 10−2Þ2 GeV2, respectively.
The horizontal line indicates the cur-
rent upper bound on Brðμ → eγÞ.
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M, the contributions from both diagrams of Fig. 2 cancel
out and give a minimum for Brðμ → eγÞ. Also, Brðμ → eγÞ
can go to zero asymptotically when M → ∞, since in this
limit the masses of right-handed neutrinos and right-handed
sneutrinos would become infinitely large and suppress
Brðμ → eγÞ. Hence, Brðμ → eγÞ has two zeros on the M
axis. As Brðμ → eγÞ is a continuous function of M and is
always a positive quantity, it has a local maxima between
the two zeros on the M axis.
In the previous section we described muon g − 2. In

Eq. (21), we have given the contribution due to additional
fields (see Table I) of our model to the muon g − 2. Apart
from this contribution, the MSSM fields of our model also
contribute to muon g − 2 [24], and it is known that this
contribution fits the 3σ discrepancy of muon g − 2. Hence,
it is interesting to know if the additional contribution of
Eq. (21) could be as large as that of the MSSM contribution
to muon g − 2. In Fig. 5, we plot the contribution of
Eq. (21). In the plots of Fig. 5, we have chosen the
parameter region such that the neutrino oscillation data is
fitted. From the plots of Fig. 5, we can see that for low
values of M, Δaμ can be negative and it becomes positive
after a certain large value of M. From these plots we can
notice that the overall magnitude of Δaμ is not more than
about 10−12. This contribution is at least 2 orders of
magnitude smaller than the estimated discrepancy of muon
g − 2, which is ð29� 9Þ × 10−10 [22]. From this we can

conclude that the additional contribution to muon g − 2 in
our model [i.e., Eq. (21)] is insignificant compared to the
MSSM contribution to muon g − 2.

V. CONCLUSIONS

We have worked in a supersymmetric model where
neutrino masses arise at the one-loop level [8]. We have
computed these loop diagrams and obtained expressions
for neutrino masses. We have identified a parameter
region of this model, where the neutrino oscillation data
can be fitted without the need for suppressing the
neutrino Yukawa couplings. In our parameter region,
the SUSY-breaking soft parameters [such as bM, bη,
bχ , ðAλÞ1, and ðAλÞ2] need to be fine-tuned. In this
parameter region, the branching fraction of μ → eγ can
be unsuppressed, and hence we have computed
Brðμ → eγÞ. We have shown that the current upper
bound on Brðμ → eγÞ can put lower bounds on the mass
of the right-handed neutrino field. Depending on the
parametric choice, we have found that this lower bound
can be about 1 TeV. We have also computed the
contribution to muon g − 2 arising from additional fields
of this model, which are given in Table I. We have shown
that, in the region where neutrino oscillation data is fitted,
the above-mentioned contribution is 2 orders smaller than
the discrepancy in muon g − 2.
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