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We study W boson scattering in the same- and opposite-sign channels under the assumption that no
resonances are present in the collider processes pp → l�νll�νljj and pp → l�νll∓νljj, respectively. Basic
selection cuts together with a restriction on the combination of the final lepton and jet momenta (the
Warsaw cut) make it possible to argue that at the LHC a luminosity of 100 fb−1 and a center-of-mass energy
of

ffiffiffi
s

p ¼ 13 TeV will allow us to constrain the leading effective Lagrangian coefficients at the permil level.
We also discuss limits on the other coefficients of the effective Lagrangian as well as stronger constraints
provided by higher energy and luminosity.
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I. INTRODUCTION

Vector boson scattering (VBS) at the LHC provides a
direct window on the mechanism responsibile for the
breaking of the electroweak (EW) symmetry. The tree-
level amplitude for VBS is the combination of seven
subprocesses in which gauge and Higgs bosons are
exchanged. In the standard model (SM), the terms leading
in energy cancel, leaving an amplitude and a cross section
consistent with unitary. If any or all among the trilinear and
quartic gauge couplings and the Higgs boson coupling to
the vector bosons are modified, these delicate cancellations
fail, and tree-level unitarity is lost. In particular, if either the
trilinear or the quartic gauge couplings are changed, terms
proportional to the fourth power of the c.m. energy will be
present.
After the existence of the Higgs boson has been con-

firmed [1], we know that this particle plays a role in EW
symmetry breaking, but the details may differ from the
basic scenario in which the Higgs boson is linearly
and minimally coupled. If the gauge couplings are left
unchanged but the Higgs boson couplings to the vector
bosons are modified, terms proportional to the square of the
c.m. energy will be present in the amplitude for VBS.
All these potential departures from the SM

represent signals for new physics. Since there are many
possibilities—ranging from an extended Higgs sector to
strong dynamics—they are best described by means of an
effective field theory.

Terms in the amplitude growing with the c.m. energy
arise when considering the scattering among the longi-
tudinal components of the vector bosons. Using the
equivalence theorem [2], these components can be identi-
fied with the Goldstone bosons of the EW symmetry
breaking and behave as scalar particles with derivative
couplings: their scattering amplitudes are similar to those
for ππ scattering in QCD, and the same techniques can be
used. The transverse components give rise to terms in the
amplitude that are not growing with the c.m. energy and
therefore they can be considered subleading—for all
practical purposes, they are part of the background. The
natural language for computing the relevant amplitudes is
that of the effective nonlinear (chiral) EW Lagrangian first
introduced in Ref. [3].
Depending on the symmetry group used, there exist

different effective Lagrangians which are equivalent but
differ in the order-by-order terms and therefore in the
dimension and field content of the operators. Compared to
other effective Lagrangians based on the linear theory and
the full symmetry group, the chiral EW Lagrangian has the
advantage of being optimized for VBS.
The loss of tree-level unitarity suggests the presence of a

strongly interacting sector.We expect unitarity to be restored
by the presence of resonances. Barring the spectacular case
of the LHC actually seeing one or more of these resonances,
this loss and its eventual restoration can be studied by the
effective EW Lagrangian in terms of bounds of its coef-
ficients. Because we now know that the theory also contains
a Higgs boson, such a Lagrangian must be completed by the
introduction of this field [4,5]—the effect of which is
parametrized in terms of additional coefficients.
The same-sign W�W� → W�W� channel stands out in

this search because of the suppressed QCD background and
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the reduced contribution from channels where transverse
and longitudinal gauge bosons are mixed. It is a channel in
which it is easier to single out the scattering of the
longitudinal components of the gauge bosons and the most
likely place to look for possible deviations from the SM.
Possible resonances in this channel are expected to be

either present in the t channel (and therefore leading to
only a decrease of the cross section) or carrying isospin 2
and doubly charged and therefore heavier than those in
other decay channels. Under the assumption that no
resonance has been seen in this or other channels, it
is reasonable to unitarize the amplitude by the simplest
and model-independent means without worrying about
the value of the resonances’ masses and widths.
Experimental cross sections for the process pp →
l�νll�νljj can then be compared with the SM and
provide the means to constrain the coefficients of the
effective Lagrangian and the physics behind the EW
symmetry breaking.
Even in the same-sign WW channel, the extraction of

the coefficients is challenging. Appropriated selection
cuts are required to isolate the VBS process from other,
often larger backgrounds. In addition, we want to isolate
the longitudinally from the transversally polarized vector
boson. The former is mostly produced together with a
final quark, which is more forward than in the case in
which the W is transversally polarized. These require-
ments provide a standard set of selection rules to which
we add a final requirement (the Warsaw cut [6]) on the
size and direction of the final transverse momenta of jets
and leptons which has been shown to be effective in
disentangling longitudinal and transverse vector boson
polarizations.
The opposite-sign W�W∓ → W�W∓ channel is less

clean mainly because of the large background generated by
the production of tt̄ pairs. It would be best to do without it.
Whereas we find that it is possible to establish the most
stringent constraints by means of only the same-sign
channel if the coefficients are varied one at the time, both
channels are required if the coefficients are varied
simultaneously.
The study of the cross sections σðpp → l�νll�νljjÞ and

σðpp → l�νll∓νljjÞ at the LHC can lead to either the
discovery or the exclusion of the terms in the effective
Lagrangian at the permil level. This is the size of these
coefficients expected on dimensional grounds. For the first
time, we will be able to study the breaking of the EW
symmetry at its fundamental level.
In this Introduction, we recall the relevant literature in

Sec. I A, introduce the notation in Sec. I B, discuss
coefficients size and higher-order terms in Sec. I C, and
compare the nonlinear (chiral) Lagrangian with the linear
and anomalous couplings formulations to provide a dic-
tionary for the relevant coefficients in Sec. I D. We collect
the existing limits and estimates in Sec. I E.

A. Story so far

The importance of VBS in the study of the EW
symmetry breaking was recognized early on [2,7]. The
unique role played by the same-sign channel was singled
out in Ref. [8], and the identification of the central jet veto
to distinguish the EW signal from the QCD background
was first introduced in Ref. [9] where the purely leptonic
“gold-plated” decay channels were also identified. In
Ref. [10], the study was extended to semileptonic decay
modes.
More recently, with the coming of the LHC, many

different groups and authors have discussed VBS from
different points of view. Of relevance for the present work,
the papers in Refs. [11] and [12] have provided new
insights on both the gold-plated and the semileptonic decay
channel as well as the determination of resonances and the
coefficients of the effective Lagrangian. In a parallel
development, the extraction of bounds on anomalous triple
and quartic gauge couplings from the LHC data was
discussed in Ref. [13].
The parametrization of the experimental results in terms

of the effective chiral Lagrangians was begun in Ref. [14]
and further discussed in Refs. [4,5,15,16]. The analysis in
Ref. [17] provides an estimate of the possible limits at the
LHC on the leading effective Lagrangian coefficients. With
respect to this work, we introduce improved selection cuts,
we extend the study by including the other coefficients of
the effective Lagrangian, and we update the limits for
expected LHC luminosities.
For a more comprehensive review of the literature, the

interested reader is referred to Ref. [18].

B. Notation

In this work, we choose to adopt the nonlinear para-
metrization for the EW symmetry breaking sector. This
choice is particularly suitable for our purposes, since the
nonlinear formulation puts the longitudinal degrees of
freedom of the EW gauge bosons—dominant in the
VBS processes we are interested in—in the foreground
position.
The effective nonlinear Lagrangian that describes the

dynamics of the Goldstone bosons associated to the
SUð2ÞL ×Uð1ÞY → Uð1Þem symmetry breaking pattern
is organized as an expansion in powers of Goldstone
bosons momenta and the ratio h=v of a light Higgs field
over the EW vacuum v ¼ 246 GeV; the number of possible
operators is restricted by Lorentz, gauge, charge, and parity
symmetry. The leading term of Oðp2Þ can be written as

L0 ¼
v2

4

�
1þ 2a

h
v
þ b

�
h
v

�
2
�
Tr½ðDμUÞ†ðDμUÞ�

þ 1

2
∂μh∂μh − VðhÞ; ð1Þ
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where a and b are coefficients parametrizing the Higgs
interactions with the gauge bosons. The Goldstone bosons
πa ða ¼ 1; 2; 3Þ are encoded into the matrix

U ¼ expðiπaσa=vÞ; ð2Þ

where σa are the Pauli matrices. The Goldstone
matrix U has well-defined transformation properties under
SUð2ÞL ×Uð1ÞY : U → GLUG†

R with GL ¼ expðiαjσj=2Þ ∈
SUð2ÞL and GR ¼ expðiαYσ3=2Þ ∈ Uð1ÞY . It constitutes
the building-block for the effective Lagrangian with broken
(nonlinearly realized) EW symmetry. In Eq. (1), the
covariant derivative is given by

DμU ¼ ∂μU þ igŴμU − ig0UB̂μ; ð3Þ
where Ŵμ ≡ σaWa

μ=2 and B̂μ ≡ σ3Bμ=2. The fieldsWa
μ and

Bμ are the SUð2ÞL ×Uð1ÞY gauge fields with standard
kinetic terms

Lgauge ¼ −
1

2
TrŴμνŴ

μν −
1

2
TrB̂μνB̂

μν; ð4Þ

where Ŵμν ¼ ∂μŴν − ∂νŴμ þ ig½Ŵμ; Ŵν� and B̂μν ¼
∂μB̂ν − ∂νB̂μ.
In Eq. (1), the quantity VðhÞ is the Higgs boson

potential with the generic structure VðhÞ ¼ 1
2
m2

hh
2 þ

d3ðm2
h=2vÞh3 þ d4ðm2

h=8v
2Þh4, where the parameters d3

and d4 are related to the triple and quartic Higgs self-
interactions, respectively.
We extend the Lagrangian in Eq. (1) by adding a set of

higher-dimensional operators parametrizing the Oðp4Þ
Lagrangian,

L1 ¼
1

2
a1gg0BμνTrðTŴμνÞ þ i

2
a2g0BμνTrðT½Vμ; Vν�Þ

þ 2ia3gTrðŴμν½Vμ; Vν�Þ
þ a4½TrðVμVνÞ�2 þ a5½TrðVμVμÞ�2; ð5Þ

where Vμ ¼ ðDμUÞU† and T ≡Uσ3U†. The complete list
of operators entering in the chiral Lagrangian at Oðp4Þ can
be found in Ref. [3]. Here, we restrict to a subset of those
given by Eq. (5) because we are interested only in operators
that modify triple and quartic gauge boson couplings and
are relevant for VBS processes. In particular, the coef-
ficients a1 modifies the vertices with both two and three
gauge, a2 modifies those with three gauge bosons, a3
modifies those with three and four gauge bosons, a4 and a5
modify only vertices with four gauge bosons. In principle,
since the Higgs boson is a singlet, we can add a multipli-
cative function of h in front of all the operators of Eq. (5),
a function similar to the one between squared brackets
of Eq. (1) but with different coefficients, as shown in
Ref. [16]. Here, we assume these corrections to be sub-
leading and neglect them.

In the framework we have introduced, the SM corre-
sponds to the choice a ¼ b ¼ d3 ¼ d4 ¼ 1 and a1 ¼ a2 ¼
a3 ¼ a4 ¼ a5 ¼ 0. Any departure from these values can be
interpreted as the presence of new physics.

C. Coefficients size and higher-order terms

The effective field theory approach to physics beyond the
SM is made into an even more powerful tool after a few
assumptions on the UV physics are made. Without such,
admittedly, speculative arguments, it remains a mere
classification of effective operators without offering any
particular physical insight.
The use of a nonlinear realization of the electroweak

symmetry naturally emerges by assuming the existence of a
new strongly interacting sector responsible for its breaking.
The new sector can be characterized by two parameters: a
coupling, g�, and a mass scale, Λ. The latter identifies the
mass of the heavy states populating the new sector.
Furthermore—in the spirit of the nonlinear σ model used
in Eq. (1)—it is natural to assume that the Goldstone
bosons originate from the spontaneous breaking of a global
symmetry of the strong sector; in this regard, the σ-model
scale v is linked to the parameter of the strong sector via the
relation g�v ≈ Λ. Having in mind a cutoff scale Λ of a few
TeVs, the relation g�v ≈ Λ points toward a maximally
strongly coupled sector in which one expects g� ≈ 4π. In
this picture, the Higgs boson emerges as a light resonance
of the strong sector.
The size of the effective operators generated integrating

out the heavy resonances of the strong sector can be
estimated by means of the so-called naive dimensional
analysis (NDA) [19]. Integrating out heavy fields at the tree
level in the strong sector, the effective Lagrangian takes the
general form

Leff ¼
Λ4

g2�
L̂
�∂μ

Λ
;
g�h
Λ

;
g�πa

Λ
;
gAμ

Λ
;
gAμν

Λ2

�
; ð6Þ

where Aμ (Aμν) denotes a generic gauge field (field
strength) while L̂ is a dimensionless functional. For
simplicity, we neglect fermionic contributions since they
are not important in our setup. The most relevant informa-
tion in Eq. (6) is that the Goldstone bosons and the Higgs
are always accompanied by an insertion of g� since they are
directly coupled to the strong sector they belong to.
We can now analyze by power counting the effective

operators, written in Eq. (5), relevant for theWW scattering
process we are interested in:

(i) The effective operators a4½TrðVμVνÞ�2 and
a5½TrðVμVμÞ�2 generate the quadrilinear vertex
involving four Goldstone boson derivatives. Using
the rules of NDA, we find the corresponding WW
scattering amplitude to be proportional to g2�ðE=ΛÞ4,
where E is the characteristic center-of-mass energy
of the process (for the sake of simplicity, we do not
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distinguish here between different WW channels,
since we are simply interested in an order-of-
magnitude estimate of the amplitude).

(ii) The operator a3TrðŴμν½Vμ; Vν�Þ generates the tri-
linear coupling

ϵkABð∂μWk
ν − ∂νWk

μÞð∂μπA∂νπB − ∂νπA∂μπBÞ: ð7Þ

The corresponding WW scattering amplitude in-
volves the s-, t-, and u-channel exchanges of the
EW gauge bosons Wk¼1;2;3, and from NDA, we
obtain an amplitude proportional to g2ðE=ΛÞ4.

(iii) The operator a2BμνTrðT½Vμ; Vν�Þ generates the tri-
linear coupling

ϵ3ABð∂μBν − ∂νBμÞð∂μπA∂νπB − ∂νπA∂μπBÞ: ð8Þ

The corresponding WW scattering amplitude in-
volves the s-, t-, and u-channel exchanges of the
EW gauge boson B, and from NDA, we obtain an
amplitude proportional to g02ðE=ΛÞ4.

(iv) The operator a1gg0BμνTrðTŴμνÞ gives rise to an
amplitude proportional to gg0ðE=ΛÞ2. We do not
study this operator because, as discussed below, it is
already severely constrained.

(v) Finally, the σ-model operator Tr½ðDμUÞ†ðDμUÞ�
generates the trilinear structures

ϵkABWk
μ½ð∂μπAÞπB − ð∂μπBÞπA� and

ϵ3ABBμ½ð∂μπAÞπB − ð∂μπBÞπA�: ð9Þ

By combining these vertices with the trilinear
interactions extracted before from a3TrðŴμν ×
½Vμ; Vν�Þ and a2BμνTrðT½Vμ; Vν�Þ, we find an am-
plitude proportional to, respectively, g2ðE=ΛÞ2
and g02ðE=ΛÞ2.

Notice that the energy dependence of these amplitudes—
obtained here by dimensional analysis—will be confirmed
by means of a direct computation in Sec. II D.
We can now compare the amplitude proportional

to a4;5 against that proportional to a2. Both these ampli-
tudes grow with E4; however, the contribution coming
from the operators a4½TrðVμVνÞ�2 and a5½TrðVμVμÞ�2 is

parametrically enhanced since it is proportional to g2�.
Similarly, we can compare the same amplitude against
that proportional to a3. The former dominates if the
condition g�ðE=ΛÞ > g is satisfied. Since g�v ≈ Λ, it
implies E > gv, a condition easily satisfied at typical
LHC energies.
It therefore seemsnatural to expect that in the presenceof a

genuinely strongly coupled new sector the most relevant
contribution to the WW scattering arises from the pure
Goldstone operators a4½TrðVμVνÞ�2 and a5½TrðVμVμÞ�2. For
this reason, in Sec. II,wewill focus ourMonteCarlo analysis
on the two coefficients a4 and a5, setting a2 ¼ a3 ¼ 0.
Finally, notice that the sameNDAargument canbe used in

order to estimate the contribution of Oðp6Þ (or higher)
operators. For definiteness, let us consider the Oðp6Þ
operator ϵABCðWAÞνμðWBÞνρðWCÞρμ. It generates the quadri-
linear vertex

ϵABCϵAB0C0 ð∂μWB;ν − ∂νWB
μ Þð∂νWC

ρ − ∂ρWC
ν ÞWB0;ρWC0;μ;

ð10Þ
which contributes to theWW (transverse) scattering accord-
ing to g2ðg2=g2�ÞðE=ΛÞ2.1 As evident from the previous
discussion, the maximally strongly coupled limit g� ≈ 4π
suppresses this contribution that in principle could interfere
with the perturbative expansion.

D. Mapping to other formulations

It is useful to map the nonlinear formalism into other
popular parametrizations—thus providing a dictionary
through which to translate all the available bounds. In the
following, we briefly discuss the relations with i) the
phenomenological Lagrangian commonly used to parame-
trize triple and quartic anomalous gauge boson couplings
and ii) the higher-dimensional effectiveLagrangianobtained
by imposing the additional assumption that the Higgs field h
is part of a SUð2ÞL doublet that breaks the EW symmetry.

1. Anomalous triple and quartic gauge couplings

Traditionally, bounds on triple gauge boson couplings
(TGCs) have been expressed in terms of anomalous
coefficients [20], according to the phenomenological
Lagrangian

LTGC ¼ ie

�
gγ1AμðW−

νWþμν −Wþ
ν W−μνÞ þ κγW−

μWþ
ν Aμν þ λγ

m2
W
W−ν

μ Wþ
νρAρμ

�

þ iecW
sW

�
gZ1ZμðW−

νWþμν −Wþ
ν W−μνÞ þ κZW−

μWþ
ν Zμν þ λZ

m2
W
W−ν

μ Wþ
νρZρμ

�
; ð11Þ

where W�
μν ≡ ∂μW�

ν − ∂νW�
μ , Vμν ≡ ∂μVν − ∂νVμ, with V ¼ A; Z. The SM corresponds to gγ;Z1 ¼ κγ;Z ¼ 1, λγ;Z ¼ 0.

1A further loop suppression g�=ð4πÞ2 is expected, since this operator cannot be generated by integrating out at the tree level any
resonance with spin less than 2. However, since we have in mind the limit g� ≈ 4π, the presence of this extra factor does not change our
estimate.
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In our case, κZ, κγ, and gZ1 (gγ1 is fixed to be 1 by gauge
invariance) are modified by the presence of the operators in
Eq. (5). By inspection, we can identify the following
identities:

ΔgZ1 ¼ g02

c2W − s2W
a1 þ

2g2

c2W
a3;

Δκγ ¼ g2ða2 − a1Þ þ 2g2a3;

ΔκZ ¼ g02

c2W − s2W
a1 − g02ða2 − a1Þ þ 2g2a3:

ð12Þ

Furthermore, it follows thatΔκZ ¼ ΔgZ1 − ðg02=g2ÞΔκγ . For
illustrative purposes, we can take a1 ¼ 0, as suggested by
the stringent fit of LEP data of Ref. [21]. In this case, the
previous relations simplify to

ΔgZ1 ¼ 2g2

c2W
a3; Δκγ − ΔκZ ¼ ðg2 þ g02Þa2: ð13Þ

As far as the anomalous quartic gauge couplings (QGC) are
concerned, they are usually parametrized as

LQGC ¼ e2gWWVV ½gVV1 VμVνW−
μWþ

ν − gVV2 VμVμW−νWþ
ν �

þ e2cW
sW

½gγZ1 AμZνðW−
μWþ

ν þWþ
μ W−

ν Þ − 2gγZ2 AμZμW−νWþ
ν �

þ e2

2s2W
½gWW

1 W−μWþνW−
μWþ

ν − gWW
2 ðW−μWþ

μ Þ2� þ
e2

4s2Wc
4
W
hZZðZμZμÞ2; ð14Þ

with gWWγγ ¼ 1, gWWZZ ¼ c2W=s
2
W . The SM corresponds to gVV

0
1=2 ¼ 1, hZZ ¼ 0. The effective operators of Eq. (5) produce

the following corrections:

ΔgγZ1 ¼ ΔgγZ2 ¼ g2

c2W
a3; ΔgZZ2 ¼ 2ΔgγZ1 −

g2

c4W
a5; ð15Þ

ΔgZZ1 ¼ 2ΔgγZ1 þ g2

c4W
a4; ΔgWW

1 ¼ 2c2WΔg
γZ
1 þ g2a4; ð16Þ

hZZ ¼ g2ða4 þ a5Þ; ΔgWW
2 ¼ 2c2WΔg

γZ
1 − g2ða4 þ 2a5Þ: ð17Þ

2. Comparison with the linear realization

At dimension 6, the bosonic operators relevant for our discussion are [22]

OWB ¼ gκWB

4m2
W
BμνWk

μνH†σkH; O3W ¼ gκ3W
6m2

W
ϵijkWi

μνW
jν
ρ Wkρμ; OH ¼ κH

v2
∂μðH†HÞ∂μðH†HÞ;

OHW ¼ igκHW

m2
W

ðDμHÞ†σkðDνHÞWk
μν; OW ¼ igκW

2m2
W
H†σkD

↔

μHðDνWkμνÞ; OWW ¼ g2κWW

4m2
W

ðH†HÞWk
μνWkμν;

OHB ¼ ig0κHB

m2
W

ðDμHÞ†ðDνHÞBμν; OB ¼ ig0κB
2m2

W
H†D

↔

μHð∂νBμνÞ; OBB ¼ g02κBB
4m2

W
ðH†HÞBμνBμν;

O2W ¼ g2κ2W
16m2

W
ðDρWk

μνÞ2; O2B ¼ g02κ2B
16m2

W
ðDρBμνÞ2; ð18Þ

with H†D
↔

μH ¼ H†ðDμHÞ − ðDμHÞ†H. H is the Higgs
doublet of the SM with hypercharge YH ¼ 1=2. The
operators OH;WW;BB in the last column affect only
Higgs physics, while the remaining ones affect the
electroweak precision observables. Three operators
O3W , OWW , and OW enter in WW vector boson
scattering.

Notice that there is a redundancy in this list, since it is
possible to remove some of these operators using the equation
of motion of the gauge fields and the operator identities
OHB¼OB−OWB−OBB and OHW ¼OW−OWB−OWW .

2

2In Ref. [23] [using the notation of Eq. (18)], the subset
fOH;O3W;OHW;OHB;OWW;OBBg was considered.
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For instance, in the strongly interacting light Higgs basis
used in Ref. [24], the operators O2W;2B;WB;WW are dropped,3

while in the so-called Warsaw basis [25], the operators
O2W;2B;W;B;HW;HB are dropped. By comparing the anomalous
TGCs, we find

ΔgZ1 ¼ g2
�

s2W
c2W − s2W

a1 þ
2a3
c2W

�
¼ κW þ κHW;

Δκγ ¼ g2ða2 − a1 þ 2a3Þ ¼ −κWB þ κHW þ κHB: ð20Þ

There are 18 operators of dimension 8, but only two,

OS;0 ¼
fS;0
Λ4

½ðDμHÞ†DνH�½ðDμHÞ†DνH�;

OS;1 ¼
fS;1
Λ4

½ðDμHÞ†DμH�½ðDνHÞ†DνH�; ð21Þ

are relevant for us. The other 16 operators of dimension 8—
five of which enter WW scattering—have derivative terms
in the vector bosons in addition to those with the Higgs
field and would have to be matched to higher-order terms in
the chiral Lagrangian. For the WW channel we are
interested in, we find [23]

a4 ¼
fS;0
Λ4

v4

8
; and a4 þ 2a5 ¼

fS;1
Λ4

v4

8
: ð22Þ

E. Current and estimated bounds

Current bounds on the coefficients of the operators in
Eq. (5) come from EW precision measurements performed
at LEP-I and LEP-II and from data collected at LHC run 1.
Estimated bounds are meant to be for LHC run 2.

1. Electroweak precision tests

The coefficient a1 is strongly constrained by LEP-I and
LEP-II data because it contributes at tree level to the S
parameter

ΔS ¼ −16πa1: ð23Þ
In Fig. 1 a simple fit of LEP data [21] performed including
the correction in Eq. (23) shows that

a1 ¼ ð1.0� 0.7Þ × 10−3: ð24Þ
On the other hand, the other coefficients a2, a3, a4, and a5
contribute to the S, T, U parameters only at at one loop. In
particular, the one-loop contributions of a4 and a5 to EW
precision measurements lead to the following (rather weak)
bounds on these coefficients at 90% C.L. [16]:

−0.094 < a4 < 0.10 and − 0.23 < a5 < 0.26: ð25Þ
The combined LEP bounds on TGCs [26] are

−0.054 < ΔgZ1 < 0.021 − 0.074 < ΔκZ < 0.051

−0.099 < Δκγ < 0.066 ð95% C:L:Þ: ð26Þ

By means of the relations in Eq. (13), we can translate the
above bounds into limits on the coefficients a2 and a3,

−0.27 < a2 < 0.25 and − 0.05 < a3 < 0.02; ð27Þ
which are in agreement with the ones found in Ref. [16].

2. LHC run 1 and run 2

New bounds on TGCs have been obtained at run 1 of the
LHC [27,28]:

−0.047 < ΔgZ1 < 0.022 − 0.043 < ΔκZ < 0.033

−0.13 < Δκγ < 0.095 ð95% C:L:Þ: ð28Þ

By combining the best limits in Eqs. (26) and (28), we have
that

−0.24 < a2 < 0.20 and − 0.04 < a3 < 0.02: ð29Þ

0.004 0.002 0.000 0.002 0.004
0

2

4

6

8

10

a1

2

LEP I & LEP II, 1 parameter fit

3

2

1a1 1.0 0.7 10 3

FIG. 1. Δχ2 plot for the limit on the coefficient a1 from LEP I
and II precision tests.

3At first glance, there seems to be an inconsistency between
different bases since in the Warsaw basis one is left with fewer
deformations in the bosonic sector. The point is that the
equivalence between the two bases is realized including—in
addition to the effective operators made of bosons listed before—
the effective operators made out of fermions. This point can be
understood by looking at the equations of motion of the gauge
fields, i.e.,

1

g2
DνWi

μν ¼
1

2
H†σiD

↔

μH þ 1

2

X
f

f̄ σiσ̄μf; ð19Þ

where the mapping between the two sets of operators is manifest.
From a phenomenological perspective, this implies that a
comprehensive analysis of dimension-6 operators must include
experimental bounds both on TGCs (measured at LEP-II and
constraining the effective operators made of bosons) and Z=W
couplings to fermions (measured at LEP-I and constraining the
effective operators made of fermions).
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Current experimental limits on a4 and a5 based on LHC
run 1 are still rather weak and comparable to those in
Eq. (25) coming from EW precision measurements.
ATLAS and CMS find [29]

−0.14 < a4 < 0.16 and − 0.23 < a5 < 0.24 ð30Þ

at the 95% C.L. and with a luminosity of 20.3 fb−1 (c.m.
energy of 8 TeV). These bounds are obtained by studying
the double charged channel (after unitarization by means of
the K-matrix method).
The estimated bound on a4 at the LHC run 2 presented in

Ref. [30] is obtained at 95% C.L. and for a luminosity of
300 fb−1 (c.m. energy of 14 TeV):

a4 ≤ 0.066: ð31Þ
This limit is rather weak because only the opposite-sign
channel is considered and the selection cuts appear not to
be optimized.
The best existing estimated limit is obtained in Ref. [17]

where they combine same- and opposite-sign channels.
They find

−22 <
f0
Λ4

ðTeV−4Þ < 24 and

−25 <
f1
Λ4

ðTeV−4Þ < 25 ð32Þ

at the 99% C.L. and for a luminosity of 100 fb−1 (c.m.
energy of 14 TeV). These bounds are equivalent by means
of Eq. (22) to

−0.01 < a4 < 0.01 and − 0.01 < a5 < 0.01: ð33Þ
Recent data on the Higgs boson decays indicate a value

for the Higgs coupling to the gauge bosons very close to the
SM value, namely [31],

a ¼ 1.03� 0.06: ð34Þ
No dramatic improvement on this limit is expected from
future LHC runs due to systematic errors [32].

3. Analyticity and causality

The causal and analytic structure of the amplitudes leads
to theoretical bounds on the possible values the two
coefficients a4 and a5 can assume [15,33]. The most
stringent of these comes from the requirement that the
underlying theory respects causality,

a4ðμÞ ≥
1

12

1

ð4πÞ2 log
Λ2

μ2
and

a4ðμÞ þ a5ðμÞ ≥
1

8

1

ð4πÞ2 log
Λ2

μ2
; ð35Þ

where Λ represents the cutoff of the effective theory and
μ < Λ the scale at which the amplitude is evaluated. For
most practical proposes, we can neglect the logarithms and
take

a4 > 0 and a4 þ a5 > 0 ð36Þ
as our causality bounds. A violation of the above con-
straints implies a breakdown of the effective theory
expansion caused by the presence of low-lying resonances.

II. METHODS

In Sec. II A, we present some details about the
Monte Carlo simulation we have implemented in order to
generate the VBS processes we are interested in. In Sec. II B,
we describe the selection cuts we have employed. The
statistical framework and the estimation of the effects of
systematic errors are presented in Sec. II C. Finally, in
Sec. II D, we discuss the violation of unitarity that can
potentially arise and explain the unitarization procedure we
have applied.

A. Monte Carlo simulation

We have modeled the effective Lagrangian consisting of
the sum of the terms in Eqs. (1), (4), and (5) by means of
FeynRules [34] V2.0.28 in order to create the Universal
FeynRules output module that is used in MadGraph5 [35]
V2.2.3 to simulate signal and background events related to
the VBS processes we are interested in.
Pure EW same-sign (SS) WW events in pp →

W�W�jj → l�νll�νljj and EW opposite-sign (OS) WW
events in pp → W�W∓jj → l�νll∓νljj areOðα6WÞ. Mixed
QCD/EW SS and OS WW events are Oðα4Wα2sÞ.
The relevant diagrams for probing the symmetry

breaking dynamics must contain direct interactions of
longitudinal W bosons. They are only a small fraction of
the whole set in pure EW events—which are dominated by
diagrams in which the W bosons are radiated from the
incoming quarks and do not interact or interact but have
predominantly a transverse polarization. Mixed QCD/EW
events—in which the vector bosons are produced from
strongly scattered quarks—only contain diagrams in
which the W bosons do not interact. These two processes
constitute the main irreducible background for our analysis.
Events in which the final leptons do not come from the s-

channel decay of the gauge bosons should also in principle
be included, but we verified that they give a small
contribution (their contribution to the total cross section
is 7% before cuts, and it reduces to 1.5% after the
application of central jet veto cut) and can be neglected
in the Monte Carlo simulation—where their inclusion
would otherwise imply a substantial increase of CPU time.
Other background processes that contribute to SS and

OS WW channels are the following:
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(i) Z þ jets: Events from this process can easily enter
the OS channel and even the SS channel if the sign
of one lepton is misidentified.

(ii) tt̄: The same considerations apply as for Z þ jets, but
this kind of events are expected to be harder to
suppress due to the higher probability of having more
energetic jet and lepton pairs with large angular
separation (and therefore higher invariant masses).

(iii) WZ þ jets, tt̄W, tt̄Z, and tt̄H: Events from these
processes can originate high-energy jets together
with two or more charged leptons, which can even
enter the SS leptons selection, in case of three or
more leptons or one lepton from the tt̄ decay and
another one from the associated boson decay.

(iv) Single-leptonþ jet (e.g., from W þ jets): These
events can enter any of the two channels if
a jet is misidentified as an additional isolated
lepton.

Among the processes listed above, we have included the
WZ þ jets background in the study of the SS channel and
the tt̄ background in that of the OS channel. The other
processes are highly suppressed by the selection cuts,
resulting in negligible effects in the analysis. We are aware
that this suppression depends on our Monte Carlo simu-
lation which does not predict correctly the effects of lepton
charge misidentification and jets reconstructed as leptons in
the detector.
The simulated events have been showered using Pythia

6.4 [36] and subsequently processed through Delphes [37]
in order to simulate the response of a generic LHC detector.
All the settings for both Pythia and Delphes have been kept
as default (i.e., leaving the default options when installing
the software through the Madgraph5 interface).
The number of events from each process has been then

rescaled according to the leading-order cross section and the
expected integrated luminosity in each of the considered
cases, to obtain an expected yield after the event selection.

B. Selection cuts

Asalreadydiscussed, thepureEWproductionofWW pairs
in associationwith two jets at theLHC is dominated by events
that have no direct relevance for the mechanism of electro-
weak symmetry breaking. Typically these events come from
soft collisions involving incoming partons which lead to soft
accompanying parton jets in the final state and can be rejected
by appropriate cuts on their rapidity. To suppress this
irreducible background and select events with hard WW
interactions, we apply the following selection criteria:

(i) small pseudorapidity and large transverse momen-
tum for the W gauge bosons,

(ii) two opposite tagging jets at large pseudorapidities
and relatively small transverse momentum.

Beside reducing the irreducible EW background, these cuts
also suppress the mixed EW/QCD one.

Subsequently, we have to impose additional cuts in order
to wean out the transversally polarized vector bosons—
which accounts for more than 90% of the total produced
W pairs—and select the longitudinally polarized ones.
At the parton level, the production of longitudinally
polarized W is characterized by the final quark which is
emitted more forward than in the case of the production
of transversally polarized W. Moreover, after being pro-
duced by bremsstrahlung, the WL (mostly) conserve their
polarization—as long as we stay above the on-shell
production threshold.
The complete set of cuts applied in the case of SS and OS

WW channels is summarized below.

1. Same-sign WW channel

We select events by applying the following set of cuts:
(i) two same-sign leptons with pl�

T > 20 GeV and
jηl�j < 2.5,

(ii) at least two jets (pj
T > 25 GeV and jηjj < 4.5) with

relative rapidity jΔyjjj > 2.4,
(iii) the two highest pT jets with an invariant

mass mjj > 500 GeV,
(iv) missing transverse energy Emiss

T > 25 GeV.
This combined set of cuts has been optimized for VBS at
the energy of 14 TeV, considering an integrated luminosity
of 300 fb−1, and is rather close to those already in use by
the LHC experimental collaborations.
The cuts above only partially succeed in singling out the

longitudinalW bosons, and a rather large pollution from the
transversally polarized ones is still present. To improve

FIG. 2. Distribution of final-state events obtained generating
the processes pp → W�W�jj → ðl�νlÞðl�νlÞjj at the LHC withffiffiffi
s

p ¼ 13 TeV. We show in blue (red) the events with leptons
coming from the decay of longitudinal (transverse) polarized W
bosons.
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further the selection efficiency of the longitudinal modes,
we add the Warsaw cut [6], defined as follows:

RpT
¼ pl1

T p
l2
T

pj1
T p

j2
T

> 3.5: ð37Þ

The RpT
variable contains the information about the

momenta of the final leptons and is very effective in
separating the transverse from the longitudinal modes.
The discriminating power of this cut is illustrated in the

left plot of Fig. 2. The red (blue) points represent the
distribution in the ½pl1

T p
l2
T ; p

j1
T p

j2
T � plane of pp→

W�W�jj→ l�νll�νljj events at the LHC (
ffiffiffi
s

p ¼13TeV)
containing transverse (longitudinally) polarized WW pairs.
By inspection, we see that the cut RpT

> 3.5 is very useful
in discriminating longitudinal from transverse polarized W
bosons. The power of this selection is even more evident
from the histogram shown in the right panel of Fig 2, where
the same distribution of events is plotted as a function of the
ratio RpT

.

In Ref. [17], the selection on theW polarization is carried
out by means of a selection on the lepton momentum
instead of the Warsaw cut. Figure 3 compares the two
choices, and Table I shows the upper limits for the
coefficients of the effective Lagrangian obtained by means
of the two possible selection cuts. We find the Warsaw cut
to be better in weaning out the transverse polarizations. In
any case, the similarity in the selection choice is reflected in
our final limits that turn out to be rather close to those of
Ref. [17] for comparable energies and luminosities.
Table II shows the effect of the various selection cuts on

the number of surviving events in the SS channel. Figure 4
shows the position of the cut selection for the variables
Δyjj, mjj, and RpT

for this channel.

2. Opposite-sign WW channel

The opposite-sign decay channel is less clean because
of the large reducible background coming from tt̄ pair
production. For this channel, in the process pp →
l�νll∓νljj, we use the following selection cuts:
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FIG. 3. Comparison of selection cuts: RpT
> 3.5 vs plep

T > 150 GeV. In red (white), the EW (QCD) contribution. The dashed lines
mark the number of events in the presence of nonvanishing coefficients of the effective Lagrangian
(a4 ¼ 0.003 and a5 ¼ 0.005).

TABLE I. Comparison of upper exclusion limits (at 95% and 99% C.L.) and discovery significance (at 3 and 5σ)
for the effective Lagrangian coefficients a4 and a5, for c.m. energy

ffiffiffi
s

p ¼ 14 TeV and luminosity 300 fb−1, using
the selection cut on RpT

and pT . Values for both coefficients obtained by only using the same-sign WW channel.

ffiffiffi
s

p ¼ 14 TeV, 300 fb−1

RpT
> 3.5 plep

T > 150 GeV

95% (99%) 3σ (5σ) 95% (99%) 3σ (5σ)

a4 0.0027 (0.0034) 0.0032 (0.0041) 0.0031 (0.0038) 0.0036 (0.0047)
a5 0.0055 (0.0068) 0.0064 (0.0084) 0.0063 (0.0078) 0.0074 (0.0097)
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(i) two opposite-sign leptons with pl�
T > 20 GeV and

jηl�j < 2.5,
(ii) missing transverse energy Emiss

T > 25 GeV,
(iii) the two highest pT jets with an invariant mass

mjj > 500 GeV,
(iv) two and only two jets (pj

T > 25 GeV and jηjj < 4.5)
with relative rapidity jΔyjjj > 2.4,

(v) RpT
> 3.5,

(vi) invariant transverse mass mWW
T > 800 GeV,

(vii) angular separation between the leptons in the
transverse plane jΔΦllj > 2.25,

(viii) b-quark veto (i.e., no jets tagged by the
b-tagging algorithm implemented in
Delphes).

The invariant tranverse mass in the cuts above is
defined as

mWW
T ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðpll

TÞ2 þm2
ll

q
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðEmiss

T Þ2 þm2
ll

q �2
− ð~pll

T þ ~pmiss
T Þ2

r
; ð38Þ

where ~pmiss
T is the missing transverse momentum vector, ~pll

T
is the transverse momentum of the dilepton pair, and mll is
its mass.
Table III shows the effect of the various selection cuts on

the number of surviving events in the OS channel. Figure 5
shows the position of the cut selection for the variables
ΔΦll, Δyjj, mjj, mll, and RpT

for this channel.

C. Statistical analysis

In the following, we will compute the expected discovery
significance and the expected exclusion limits for the
coefficients of the effective Lagrangian in Eqs. (1) and (5).

For a given set of selection cuts, we define the signal S as
the enhancement in the number ofWWjj events—obtained
for certain fixed values of the coefficients a, a2, a3, a4, and
a5—over the SM prediction (obtained for a ¼ 1,
a2 ¼ a3 ¼ a4 ¼ a5 ¼ 0)

S ¼ N evðpp → WWjjÞja;a2;a3;a4;a5
−N evðpp → WWjjÞja¼1;a2¼a3¼a4¼a5¼0: ð39Þ

The background B is given by the number of events
predicted by the SM,
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FIG. 4. Position of the cut selection for the three variables Δyjj, mjj, and RpT
in the SS channel. Distributions are shown with no cuts

except having only 2 SS leptons in the final states.

TABLE II. Cutflow (number of events for each process cut by cut) for the SS channel for c.m. energy
ffiffiffi
s

p ¼
14 TeV and luminosity 300 fb−1. Signal S is defined in Eq. (39) below.

ffiffiffi
s

p ¼ 14 TeV, 300 fb−1

Cut WZjj WWjj QCD WWjj EW S (a4 ¼ 0.02)

2 SS leptons 4474 778 1343 1289
Emiss
T > 25 GeV 3705 703 1225 1262

Δyjj > 2.4 536 181 746 900
mjj > 500 GeV 330 60 678 890
RpT

> 3.5 6.5 0.5 17 747
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B ¼ N evðpp → WWjjÞja¼1;a2¼a3¼a4¼a5¼0

þN evðpp → tt̄=WZjjÞja¼1;a2¼a3¼a4¼a5¼0: ð40Þ

The expected number of signal events S is compared
with the number of background events B using Poisson
statistics without considering any systematic uncertainty.
The Poisson probability density function is generalized to
noninteger event numbers through the use of the Gamma
function.

1. Discovery significance and exclusion limits

For each set of values of the effective couplings, the
expected discovery significance is obtained by computing
the probability of observing a number of events greater than
or equal to Sþ B assuming the background-only hypoth-
esis. This probability is then translated into a number of
Gaussian standard deviations: three (five) standard devia-
tions is considered as benchmark for an observation
(discovery). On the other hand, the expected exclusion
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FIG. 5. Position of the cut selection for the three variables ΔΦll, Δyjj,mjj,mWW
T , and RpT

in the OS channel. Distributions are shown
with no cuts except having only 2 OS leptons in the final states.

TABLE III. Cutflow (number of events for each process cut by cut) for the OS channel for c.m. energy
ffiffiffi
s

p ¼
14 TeV and luminosity 300 fb−1. Signal S is defined in Eq. (39) below.

ffiffiffi
s

p ¼ 14 TeV, 300 fb−1

Cut tt̄ WWjj QCD WWjj EW S (a5 ¼ 0.02)

2 OS leptons 1 975 270 68 884 3221 498
Emiss
T > 25 GeV 1 791 100 61 494 2927 488

mjj > 500 GeV 109 885 6761 1569 380
Δyjj > 2.4 78 144 4543 1369 394
RpT

> 3.5 1461 114 44 287
mWW

T > 800 GeV 504 40 19 231
ΔΦll > 2.25 453 34 19 231
b-tag veto 353 34 19 227
N jets < 3 21 14 11 148

VECTOR BOSON SCATTERING AT THE LHC: A STUDY … PHYSICAL REVIEW D 93, 015004 (2016)

015004-11



limits are obtained by computing the probability of
observing a number of events less than or equal to B
assuming the signal-plus-background hypothesis. The spe-
cific choice of the parameters is considered excluded at
95% (99%) C.L. if this probability is less than or equal than
5% (1%).
Notice that, for large values of B, the Poisson distribution

can be very well approximated by a Gaussian function. In
this case, the significance (expressed in terms of the
number of standard deviations) can be computed simply
as S=

ffiffiffiffi
B

p
. In the same limit, we can say that a set of

parameters is excluded at 95% (99%) C.L. if the quantity
S=

ffiffiffiffiffiffiffiffiffiffiffiffi
Sþ B

p
> 2 (> 3).

The difference between using the exact Poisson distri-
bution and the approximated formulas above can be gauged
in Fig. 6 where the χ2 test is run for the two possibilities. As
one can see by inspection, while for the case at

ffiffiffi
s

p ¼
13 TeV and luminosity 100 fb−1 the difference cannot be
ignored, there is no difference for the higher energy and
luminosity case. We employ in all cases the Poisson
probability distribution.

2. Systematic uncertainties

All the results reported in the following are obtained
neglecting any systematic uncertainty on the prediction for
the number of signal and background events (S and B)
because such uncertainties are mostly related to the
experimental techniques used to extract the results. To
have a feeling of the size of their effect on the results, we
have included a nonzero systematic uncertainty on B and
compared the limits and the significance with the case
without systematics. This comparison is done considering

the simplified statistics treatment described above—
that is, by considering the formulas S=

ffiffiffiffi
B

p
and

S=
ffiffiffiffiffiffiffiffiffiffiffiffi
Sþ B

p
. These two expressions are generalized to the

case with nonzero systematic uncertainty as
S=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Bþ δ2 · B2

p
and S=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Sþ Bþ δ2 · B2

p
, respectively,

where δ indicate the relative systematic uncertainty on
the expected number of background events B.
Table IV (and the corresponding plots in Figs. 7 and 8)

shows the result of this comparison, performed considering
two benchmark c.m. energy and luminosity scenarios for
the two coefficients a4 and a5 and a relative systematic
uncertainty on B of 10%. The smaller statistical error in the
case of c.m. energy

ffiffiffi
s

p ¼ 14 TeV and luminosity 3 ab−1

makes the systematic error—assumed to remain the same—
more important.
As expected, the effect is rather important, especially for

large values of integrated luminosity where the Gaussian
error is smaller, and one should bear that in mind. Of
course, an eventual reduction of such a systematic uncer-
tainty, for instance, down at 5%, would proportionally
reduce the effect, and depending on the size of this
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FIG. 6. Δχ2 plot for the coefficient a5 using the Poisson distribution and the simplified formulas. The plot on the right shows the
presence of a discrepancy at low luminosity (

ffiffiffi
s

p ¼ 13 TeV, luminosity 100 fb−1). The plot on the right shows that there is no
discrepancy at higher luminosity (

ffiffiffi
s

p ¼ 14 TeV, luminosity 3 ab−1) where it is impossible to discriminate the continuous from the
dashed lines.

TABLE IV. Upper limits (at 95% C.L.) for the effective
Lagrangian coefficients a4 and a5, for two representative c.m.
energies and luminosities, from the channel W�W�jj. Compari-
son with and without the inclusion of a systematic error of 10%.

ffiffiffi
s

p ¼ 13 TeV, 100 fb−1
ffiffiffi
s

p ¼ 14 TeV, 3 ab−1

Without With Without With

a4 0.0043 0.0043 0.0016 0.0021
a5 0.0088 0.0089 0.0032 0.0041
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uncertainty in a real experiment, selection cuts could be
further tightened to minimize its impact.

D. Unitarization

For values of the coefficients a, a2, a3, a4, and a5
which are different from the SM ones, the computation
of the cross section σðpp → WWjjÞ obtained using the
Lagrangian in Eqs. (1) and (5) cannot be trusted because
of a possible unitarity violation that can arise at the
level of some hard scattering diagrams, in particular, the
ones that involve longitudinal W bosons. In this case,
the cross section of the process WLWL → WLWL breaks

unitarity at energies larger than the TeV (the exact
violation energy depends on the specific values of the
coefficients).
This breakdown in unitarity can be understood by

looking at the longitudinal W bosons scattering amplitudes
in the same- and opposite-sign channels—computed using
the equivalence theorem in the isospin limit—which can be
written in terms of isospin amplitudes AIðs; tÞ as

AðW�
LW

�
L → W�

LW
�
L Þ ¼ A2 and

AðW�
LW

∓
L → W�

LW
∓
L Þ ¼

1

3
A0 þ

1

2
A1 þ

1

6
A2: ð41Þ
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FIG. 8. Δχ2 plot for the coefficient a4 (left) and a5 (right) with and without 10% of systematic uncertainty for c.m. energy
ffiffiffi
s

p ¼
13 TeV and luminosity 100 fb−1.
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FIG. 7. Δχ2 plot for the coefficient a4 (left) and a5 (right) with and without 10% of systematic uncertainty for c.m. energy
ffiffiffi
s

p ¼
14 TeV and luminosity 3 ab−1.
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The amplitudes AIðs; tÞ can be expanded in terms of partial
waves tIJðsÞ as

AIðs; tÞ ¼ 32π
X∞
J¼0

ð2J þ 1ÞPJðcos θÞtIJðsÞ; ð42Þ
where

tIJðsÞ ¼
1

64π

Z
1

−1
d cos θAIðs; tÞPJðcos θÞ: ð43Þ

In our case, at tree level, neglecting partial waves higher
than the leading J ¼ 0 wave, we have

t00 ¼
s

16πv2
ð1 − a2 þ 3g02a2 þ 12g2a3Þ

þ s2

12πv4
½11a5 þ 7a4 − 2g02a22 þ 16g2a23� ð44Þ

t20 ¼ −
s

32πv2
ð1 − a2 − 6g02a2 þ 12g2a3Þ

þ s2

6πv4
½a5 þ 2a4 − g02a22 − 4g2a23�: ð45Þ

The isospin amplitudes AIðs; tÞ can then be reobtained from
the partial waves computed above by means of Eq. (42).
In the approximation of neglecting partial waves higher
than J ¼ 0, we have very simple relations:

A0ðs; tÞ ¼ 32πt00; A1ðs; tÞ ¼ 0 and

A2ðs; tÞ ¼ 32πt20: ð46Þ

An example of such a unitarity violation (jtIJðsÞj > 1) is
shown in Fig. 9, where—for values of a4 ¼ a5 ¼ 0.001—it
occurs around 1.5 and 2 TeV for, respectively, the isospin
I ¼ 0 and I ¼ 2 component.
The amplitudes in Eq. (46) violate unitarity, and we

interpret them as an incomplete approximation to the true
amplitudes. One can deal with this problem either by
cutting off the collection of events at a given value of the
c.m. energy or by implementing a unitarization procedure.
As an example of the latter, let us look for unitary matrix

elements that provide a nonperturbative completion. By
inspection of the amplitudes, we see that the SS WW
channel can only contain double-charged I ¼ 2 resonances
in the s channel, the first two being of spin 0 and 2. We
assume that these states are sufficiently heavy to be outside
the energy reach of the LHC. By extension, we assume that
no resonance is present within the LHC energy range also
in the opposite-sign WW channel. Therefore, the most
appropriated unitarization procedure for our case in which
we do not expect resonances is the K-matrix prescription
[38]. The K-matrix ansatz consists in using the optical
theorem

ImtIJðsÞ ¼ jtIJðsÞj2 ð47Þ
in order to impose the following condition on the unitarized
partial wave t̂IJðsÞ:

Im
1

t̂IJðsÞ
¼ −1: ð48Þ

The K-matrix unitarized partial wave is then defined to be

t̂IJðsÞ ¼
tIJðsÞ

1 − itIJðsÞ
; ð49Þ

TABLE V. Comparison of upper exclusion limits (at 95% and 99% C.L.) and discovery significance (at 3 and 5σ)
for the effective Lagrangian coefficients a4 and a5, for c.m. energy

ffiffiffi
s

p ¼ 14 TeV and luminosity 300 fb−1, using
the K-matrix and the sharp cutoff unitarization procedures. Values are obtained by using the SS WW channel.

ffiffiffi
s

p ¼ 14 TeV, 300 fb−1

K matrix Sharp cutoff (EWW < 1.25 TeV)

95% (99%) 3σ (5σ) 95% (99%) 3σ (5σ)

a4 0.0028 (0.0038) 0.0035 (0.0053) 0.0027 (0.0034) 0.0032 (0.0041)
a5 0.0053 (0.0072) 0.0066 (0.0107) 0.0055 (0.0068) 0.0064 (0.0084)

FIG. 9. Cross sections for the scattering of longitudinal W
bosons as a function of the c.m. energy. In green (blue), the
contribution of the partial wave t20 (t00) for a4 ¼ a5 ¼ 0.001; in
cyan (red), the same result after unitarization by theK matrix. The
continuous black line marks the loss of unitarity for jtIJðsÞj > 1.
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where tIJðsÞ is the tree-level partial wave amplitude.
The quantity t̂IJðs; tÞ satisfies by construction the
optical theorem and is supposed to represent a resum-
mation of the higher-order terms of which the con-
tributions restore unitarity. The result of this
unitarization is shown in Fig. 9 and compared to the
tree-level result.
If we define the rescaling factor for the SS WW

events,

rþþðs; a3; a4; a5Þ ¼
jt̂20j2
jt20j2

; ð50Þ

we can use it to reweight the events that survive after
having applied all the selection cuts, in order to obtain a
result that satisfies the unitarity bound. This procedure

is reliable if the events that survive after the selection
cuts are dominated by the production of longitudinal
polarized W.
The K-matrix ansatz and the cutoff in energy are two

possible procedures to deal with the violation of
unitarity. Table V shows that the two procedures (for
an appropriate choice of cutoff) are substantially equiv-
alent. Their differences quantify the dependence on
the unitarization procedure of the limits and provide
an estimate of the impact of higher-order operators. The
actual uncertainty of the limits obtained by means of
the truncated effective theory is hard to gauge and
may be larger than that suggested by the numbers in
Table V.
Because it is more difficult to define a rescaling for

the OS channel as done above for the SS channel,

TABLE VI. Exclusion limits (at 95% and 99% C.L.) and discovery significance (at 3 and 5σ) for the effective Lagrangian coefficients
a5, a4, a3, a2, and a for c.m. energy

ffiffiffi
s

p ¼ 13 TeV and two benchmark luminosities for LHC run 2. Values are obtained by varying the
coefficients one at the time. All limits are obtained from the W�W�jj SS channel.

ffiffiffi
s

p ¼ 13 TeV (W�W�jj SS channel)

100 fb−1 300 fb−1

95% (99%) 3σ (5σ) 95% (99%) 3σ (5σ)

a5
þ0.0084ðþ0.0105Þ þ0.0095ðþ0.0126Þ þ0.0062ðþ0.0077Þ þ0.0072ðþ0.0094Þ
−0.007ð−0.0092Þ −0.0082ð−0.0113Þ −0.0049ð−0.0063Þ −0.0059ð−0.008Þ

a4
þ0.0041ðþ0.0052Þ þ0.0047ðþ0.0062Þ þ0.003ðþ0.0037Þ þ0.0035ðþ0.0046Þ
−0.0035ð−0.0046Þ −0.004ð−0.0056Þ −0.0024ð−0.0031Þ −0.0029ð−0.004Þ

a3
þ0.097ðþ0.121Þ þ0.109ðþ0.143Þ þ0.074ðþ0.089Þ þ0.085ðþ0.108Þ
−0.072ð−0.096Þ −0.085ð−0.118Þ −0.049ð−0.065Þ −0.060ð−0.083Þ

a2
þ1.63ðþ2.03Þ þ1.84ðþ2.41Þ þ1.24ðþ1.5Þ þ1.42ðþ1.82Þ
−1.21ð−1.61Þ −1.42ð−1.99Þ −0.82ð−1.09Þ −1.01ð−1.4Þ

a
þ1.52ðþ1.6Þ þ1.56ðþ1.68Þ þ1.43ðþ1.49Þ þ1.47ðþ1.56Þ
0.17ð−0.44Þ −0.11ð−1.57Þ 0.54 (0.31) 0.39ð−0.07Þ

TABLE VII. Exclusion limits (at 95% and 99% C.L.) and discovery significance (at 3 and 5σ) for the effective Lagrangian coefficients
a5, a4, a3, a2, and a for c.m. energy

ffiffiffi
s

p ¼ 14 TeV and two benchmark luminosities for LHC run 3. Values are obtained by varying the
coefficients one at the time. All limits are obtained from the W�W�jj SS channel.

ffiffiffi
s

p ¼ 14 TeV (W�W�jj SS channel)

300 fb−1 3 ab−1

95% (99%) 3σ (5σ) 95% (99%) 3σ (5σ)

a5
þ0.0055ðþ0.0068Þ þ0.0064ðþ0.0084Þ þ0.0032ðþ0.0039Þ þ0.0037ðþ0.0047Þ
−0.0045ð−0.0058Þ −0.0054ð−0.0074Þ −0.0022ð−0.0029Þ −0.0027ð−0.0036Þ

a4
þ0.0027ðþ0.0034Þ þ0.0032ðþ0.0041Þ þ0.0016ðþ0.0019Þ þ0.0019ðþ0.0023Þ
−0.0022ð−0.0028Þ −0.0026ð−0.0036Þ −0.0011ð−0.0014Þ −0.0013ð−0.0018Þ

a3
þ0.073ðþ0.089Þ þ0.084ðþ0.108Þ þ0.046ðþ0.054Þ þ0.052ðþ0.063Þ
−0.050ð−0.065Þ −0.061ð−0.084Þ −0.023ð−0.030Þ −0.028ð−0.039Þ

a2
þ1.14ðþ1.37Þ þ1.30ðþ1.64Þ þ0.75ðþ0.86Þ þ0.83ðþ0.99Þ
−0.70ð−0.93Þ −0.86ð−1.21Þ −0.31ð−0.42Þ −0.39ð−0.55Þ

a
þ1.37ðþ1.43Þ þ1.42ðþ1.5Þ þ1.27ðþ1.3Þ þ1.29ðþ1.33Þ
0.64 (0.47) 0.52 (0.22) 0.86 (0.81) 0.82 (0.73)
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and because of the additional assumptions entering the
K-matrix procedure, we follow the simplest procedure
and introduce a sharp cutoff in the data collection so as
to make the amplitudes unitary.
The cutoff must be chosen to be less than 4πv, the limit

for the chiral Lagrangian expansion, and below the range in
which the growth becomes too fast. We take mWW <
1.25 TeV for the SS channel and < 2 TeV for the OS
channel. It can be shown that for these values, as in Table V,
differences between the two unitarization procedures are
minimal.

III. RESULTS

As discussed in Sec. II A, we have generated events in
which the coefficients of the effective Lagrangians in
Eqs. (1) and (5) of Sec. I B, parametrizing deviations
from the SM, were allowed to vary. We consider only

the coefficients a, a2, a3, a4, and a5 because the
coefficient a1 is already severely constrained by LEP
data, as discussed in Sec. I E, and we assume it
vanishing in our analysis. The coefficients a4 and a5,
according to our discussion in Sec. I C, are the leading
and most important ones. They should be searched first.
Once they have been constrained, the simulation for the
coefficients a2, a3, and a can be carried out after setting
a4 and a5 equal to zero.
We report in Tables VI–IX the results in terms of

exclusion limits (95 and 99% C.L.) and discovery signifi-
cance (3 and 5σ)—as discussed in Sec. II C—for the
benchmark luminosities of 100 and 300 fb−1 (at a c.m.
energy of

ffiffiffi
s

p ¼ 13 TeV) and 300 fb−1 and 3 ab−1 (atffiffiffi
s

p ¼ 14 TeV). All coefficients are varied here one at
the time.
As it can be seen from Tables VI–IX, the OS channel

does not provide stronger limits for any of the coefficients,

TABLE IX. Exclusion limits (at 95% and 99% C.L.) and discovery significance (at 3 and 5σ) for the effective Lagrangian coefficients
a5, a4, a3, a2, and a for c.m. energy

ffiffiffi
s

p ¼ 14 TeV and two benchmark luminosities for LHC run 3. Values are obtained by varying the
coefficients one at the time. All limits are obtained from the W�W∓jj OS channel.

ffiffiffi
s

p ¼ 14 TeV (W�W∓jj OS channel)

300 fb−1 3 ab−1

95% (99%) 3σ (5σ) 95% (99%) 3σ (5σ)

a5
þ0.0061ðþ0.0077Þ þ0.0073ðþ0.0097Þ þ0.0033ðþ0.0041Þ þ0.004ðþ0.0052Þ
−0.0062ð−0.0077Þ −0.0074ð−0.0098Þ −0.0034ð−0.0042Þ −0.0041ð−0.0052Þ

a4
þ0.0084ðþ0.0107Þ þ0.0102ðþ0.0136Þ þ0.0043ðþ0.0055Þ þ0.0053ðþ0.007Þ
−0.0097ð−0.012Þ −0.0115ð−0.0149Þ −0.0056ð−0.0068Þ −0.0066ð−0.0083Þ

a3
þ0.134ðþ0.165Þ þ0.158ðþ0.205Þ þ0.077ðþ0.094Þ þ0.091ðþ0.114Þ
−0.115ð−0.146Þ −0.140ð−0.187Þ −0.059ð−0.075Þ −0.072ð−0.096Þ

a2
þ0.75ðþ0.93Þ þ0.89ðþ1.17Þ þ0.42ðþ0.52Þ þ0.50ðþ0.64Þ
−0.71ð−0.89Þ −0.85ð−1.13Þ −0.38ð−0.47Þ −0.45ð−0.59Þ

a
þ1.56ðþ1.67Þ þ1.64ðþ1.81Þ þ1.36ðþ1.41Þ þ1.40ðþ1.49Þ
−0.50ð−1.35Þ −1.15ð−2.74Þ 0.55 (0.31) 0.36ð−0.06Þ

TABLE VIII. Exclusion limits (at 95% and 99% C.L.) and discovery significance (at 3 and 5σ) for the effective Lagrangian
coefficients a5, a4, a3, a2, and a for c.m. energy

ffiffiffi
s

p ¼ 13 TeV and two benchmark luminosities for LHC run 2. Values are obtained by
varying the coefficients one at the time. All limits are obtained from the W�W∓jj OS channel.

ffiffiffi
s

p ¼ 13 TeV (W�W∓jj OS channel)

100 fb−1 300 fb−1

95% (99%) 3σ (5σ) 95% (99%) 3σ (5σ)

a5
þ0.0089ðþ0.0114Þ þ0.0105ðþ0.0141Þ þ0.0064ðþ0.0081Þ þ0.0077ðþ0.0103Þ
−0.0095ð−0.012Þ −0.011ð−0.0147Þ −0.007ð−0.0087Þ −0.0083ð−0.0109Þ

a4
þ0.0141ðþ0.0179Þ þ0.0165ðþ0.0221Þ þ0.0103ðþ0.0129Þ þ0.0123ðþ0.0162Þ
−0.014ð−0.0178Þ −0.0164ð−0.022Þ −0.0102ð−0.0128Þ −0.0122ð−0.0161Þ

a3
þ0.198ðþ0.245Þ þ0.227ðþ0.295Þ þ0.152ðþ0.183Þ þ0.176ðþ0.224Þ
−0.149ð−0.195Þ −0.178ð−0.246Þ −0.103ð−0.134Þ −0.127ð−0.174Þ

a2
þ1.17ðþ1.48Þ þ1.36ðþ1.81Þ þ0.87ðþ1.07Þ þ1.03ðþ1.34Þ
−1.07ð−1.37Þ −1.26ð−1.70Þ −0.77ð−0.97Þ −0.92ð−1.24Þ

a
þ1.83ðþ2.08Þ þ1.99ðþ2.35Þ þ1.58ðþ1.75Þ þ1.71ðþ1.97Þ
−0.41ð−0.65Þ −0.56ð−0.92Þ −0.19ð−0.34Þ −0.30ð−0.54Þ
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and the SS channel is sufficient by itself in setting the most
stringent constraints as long as the coefficients are varied
one at the time.
Figures 10 and 11 show the exclusion limits (95% C.L.)

and discovery significance (5σ) for the coefficients a4 and
a5 obtained from the SS and OS WW channels for,
respectively, c.m. energy

ffiffiffi
s

p ¼ 13 and 14 TeV and the
benchmark luminosities. The coefficients a4 and a5 are
now varied simultaneously, and both channels contribute to

the limits if the causality constraints in Eq. (36) are not
assumed.

IV. DISCUSSION

While the presence of resonances is the most dramatic
signal for a strongly interacting sector, they may be too
heavy or broad to be clearly seen at the LHC. The discovery
of a nonvanishing coefficient of the effective Lagrangian in
Eq. (5), introduced in Sec. I B, is a more systematic way to
search for the presence of the strongly interacting sector
behind the breaking of the EW symmetry. In addition,
exclusion limits provide an indirect indication about the
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FIG. 10. Exclusion limits (at 95% C.L.) and discovery signifi-
cance (5σ) for the effective Lagrangian coefficients a4 and a5 at
c.m. energy

ffiffiffi
s

p ¼ 13 TeV from the same-sign (in yellow/orange)
and opposite-sign (in light green/blue) channels. The area where
causality would be violated is hatched in gray.
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FIG. 11. Same as in Fig. 10 for c.m. energy
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s

p ¼ 14 TeV.
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energy scale of the masses of those resonances that are
expected from such new interactions.
The identification of the most appropriated selection cuts

is crucial, but it is now well understood that—in addition to
the central jet veto necessary to remove the QCD back-
ground—the control of the large EW background can be
achieved by means of a selection on the transverse
momenta of the jets and final leptons.
We have shown that a significant improvement in both

discovery significance and exclusion limits for the chiral
effective Lagrangian coefficients a4 and a5 can be expected
from the current and the next run of the LHC. Already at
c.m. energy

ffiffiffi
s

p ¼ 13 TeV and a luminosity of 100 fb−1,
the limits will reach the permil precision, thus coming
within range of the values expected by purely dimensional
analysis. The results for a4 and a5 varied one at the time can
be obtained by studying the SSWW → WW channel alone.
The OS channel as well as the SS channel contribute to the
limits when the coefficients a4 and a5 are varied simulta-
neously if the causality constraints are not assumed.
The determination of the coefficient a3 within VBS—the

best limits for which come at the moment from precision
measurements—will become competitive already at LHC
run 2 when a luminosity of 300 fb−1 will be available. The
coefficient a2 gives rise to smaller deviations in VBS and is

determined with less precision; its constraints will be
competitive with those from TGC data only when higher
luminosities become available.
Finally, the coefficient a—controlling the coupling of

the Higgs to the vector bosons in Eq. (1) in Sec. I B—
remains best determined in the decay processes of the
Higgs boson. Only at future LHC runs will a comparable
limit be available from VBS.
While VBS remains our best laboratory to study EW

symmetry breaking, the presence of systematic errors hard
to reduce and even estimate will eventually limit the final
precision of the measurements that can be achieved at the
LHC. The same is true for the study of the Higgs boson
decays and the complementary determination of the coef-
ficient a, as defined in Eq. (1) in Sec. I B.
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