
Kaon BSM B-parameters using improved staggered fermions
from Nf ¼ 2þ 1 unquenched QCD

Benjamin J. Choi,1 Yong-Chull Jang,1 Chulwoo Jung,2,* Hwancheol Jeong,1 Jangho Kim,3 Jongjeong Kim,1

Sunghee Kim,1 Weonjong Lee,1,† Jaehoon Leem,1 Jeonghwan Pak,1 Sungwoo Park,1

Stephen R. Sharpe,4,‡ and Boram Yoon5

(SWME Collaboration)

1Lattice Gauge Theory Research Center, FPRD, and CTP, Department of Physics and Astronomy,
Seoul National University, Seoul 08826, South Korea

2Physics Department, Brookhaven National Laboratory, Upton, New York 11973, USA
3National Institute of SupercomputingandNetworking,Korea Institute of ScienceandTechnology Information,

Daejeon 34141, South Korea
4Physics Department, University of Washington, Seattle, Washington 98195-1560, USA

5LosAlamosNationalLaboratory, TheoreticalDivisionT-2,MSB283, LosAlamos,NewMexico87545,USA
(Received 7 September 2015; published 28 January 2016)

We present results for the matrix elements of the additional ΔS ¼ 2 operators that appear in models of
physics beyond the Standard Model (BSM), expressed in terms of four BSM B-parameters. Combined with
experimental results for ΔMK and ϵK , these constrain the parameters of BSM models. We use improved
staggered fermions, with valence hypercubic blocking transfromation (HYP)-smeared quarks and Nf ¼
2þ 1 flavors of “asqtad” sea quarks. The configurations have been generated by the MILC Collaboration.
The matching between lattice and continuum four-fermion operators and bilinears is done perturbatively at
one-loop order. We use three lattice spacings for the continuum extrapolation: a ≈ 0.09, 0.06 and 0.045 fm.
Valence light-quark masses range down to ≈mphys

s =13 while the light sea-quark masses range down to
≈mphys

s =20. Compared to our previous published work, we have added four additional lattice ensembles,
leading to better controlled extrapolations in the lattice spacing and sea-quark masses. We report final
results for two renormalization scales, μ ¼ 2 and 3 GeV, and compare them to those obtained by other
collaborations. Agreement is found for two of the four BSM B-parameters (B2 and BSUSY

3 ). The other two
(B4 and B5) differ significantly from those obtained using regularization independent momentum
subtraction (RI-MOM) renormalization as an intermediate scheme, but are in agreement with recent
preliminary results obtained by the RBC-UKQCD Collaboration using regularization independent
symmetric momentum subtraction (RI-SMOM) intermediate schemes.
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I. INTRODUCTION

Neutral kaon mixing and the associated indirect CP
violation have long provided an important window into
physics at high energy scales. In the Standard Model (SM),
for example, the measured CP-violating parameter ϵK is
sensitive to scales up to the top-quark mass. To determine
whether the measured value is consistent with the SM,
however, requires knowledge of the hadronic matrix
element parametrized by the kaon B-parameter, BK .
Recently, lattice QCD calculations have matured to the
point that such matrix elements can be determined from first
principles with percent-level accuracy.1 Specifically, results
forBK fromRefs. [2–9] are such that the average has an error

of ∼1.3% [1]. This is accurate enough to provide strong
constraints on SM parameters (see, e.g., Refs. [10,11]).
Ultimately, lattice calculations will also be able to use the
KL − KS mass difference, ΔMK, to test the SM [12].
Physics beyond the SM (BSM) will, in general, con-

tribute to flavor changing neutral processes such as kaon
mixing. Indeed, unless there is some cancellation akin to
the Glashow-Iliopoulos-Maiani (GIM) mechanism, rough
estimates show that the scale of new physics must be
≳105 TeV in order to avoid overly large contributions to
ΔMK and ϵK [13]. In fact, many BSM models have partial
cancellations such that the scale of new physics is acces-
sible at the Large Hadron Collider (LHC), but often such
models are pushing against the constraints from kaon
mixing. If evidence for new physics is discovered at the
LHC in the coming years, then, in order to sift through the
available models, it will be essential to turn the constraints
from kaon mixing into precision tools. To do this it is
necessary to calculate the hadronic matrix elements of the
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full basis ofΔS ¼ 2 four-fermion operators that can appear.
Illustrations of how these matrix elements constrain BSM
models are given in Refs. [14–17].
In the SM, four-fermion operators in the effectiveΔS ¼ 2

Hamiltonian are composed of left-handed currents. Generic
BSM physics, by contrast, also includes heavy virtual
particles coupling to right-handed quarks. Because of this,
the single “left-left” ΔS ¼ 2 four-fermion operator is aug-
mented by four additional operators. Our aim in the present
work is to provide fully controlled results for the corre-
sponding additional mixing matrix elements.
Calculations of such matrix elements using lattice QCD

have a fairly long history. Initial results were obtained starting
in the late 1990s in the quenched approximation [18–20].
Then, in 2012, first results with unquenched light quarks
were presented by the ETM [13] and RBC-UKQCD
Collaborations [21]. These calculations used, respectively,
twisted-mass and domain-wall lattice fermions. Both per-
formed the matching of lattice and continuum operators using
nonperturbative renormalization (NPR) [22] and the regu-
larization independent momentum subtraction (RI-MOM)
scheme. The results for all four BSM B-parameters were
consistent between the two calculations.
In 2013, we presented results from a first calculation of

the BSM B-parameters using improved staggered fermions
and one-loop perturbative matching of lattice and con-
tinuum operators [23]. Our results disagreed significantly
for two of the four B-parameters with those from
Refs. [13,21]. In 2014, we discovered a minor error in
our analysis that changed our results by ∼5%. We also
extended the range of lattice ensembles studied, so that the
continuum and chiral extrapolations were better controlled.
Preliminary results correcting the analysis and incorporat-
ing the new ensembles were presented in Ref. [24]. The
discrepancy with Refs. [13,21] remained at about the 3σ
level for two of the B-parameters.
The purpose of the present paper is provide a detailed

description of our calculation along with our final results. In
fact, these results are very close to the preliminary numbers
presented in Ref. [24], but there are many details not
provided in either Ref. [23] or [24] that we present here.
A further motivation for this work is provided by the recent
results from the ETM and RBC-UKQCD Collaborations,
presented in Ref. [3] and at Lattice 2015 [25,26], respec-
tively. The former work (which extends the Nf ¼ 2 simu-
lations of Ref. [13] toNf ¼ 2þ 1þ 1) essentially confirms
the earlier results of Ref. [13], and thus continues to disagree
with our results. The latter calculation, Ref. [25], presents an
investigation of the origin of the discrepancies by repeating
their computationwith a second lattice spacing and perform-
ing the renormalization with various schemes, including
regularization independent symmetric momentum subtrac-
tion (RI-SMOM) schemes with nonexceptional kinematics
[27]. Although the discretization artifacts are found to be
larger than previously anticipated, themost important effects

come from the renormalization procedure. The preliminary
results of RBC-UKQCD with the new SMOM schemes are
in approximate agreement with those presented here [26].
Given this complicated and confusing situation, it is impor-
tant to have a clear description of the details of all the
calculations.
Our work relies on several auxiliary theoretical calcu-

lations. For the chiral extrapolations we need results from
SU(2) staggered chiral perturbation theory (SChPT), and
these are provided in Ref. [28]. We also need to know
how to set up the calculation using staggered fermions
(i.e. dealing with the extra valence tastes) as well as one-
loop matching factors. These results are provided in
Refs. [29,30]. Finally, we need to evolve matrix elements
using the continuum renormalization group for ΔS ¼ 2
operators. The required two-loop anomalous dimensions
were calculated in Ref. [31], and some additional technical
details are worked out in Ref. [30].
This paper is organized as follows. In Sec. II, we describe

the basis of ΔS ¼ 2 four-quark operators that we use, and
the corresponding B-parameters and gold-plated combina-
tions. In Sec. III, we describe the details of the lattice
calculation. We next turn to the analysis. Section IV
explains how we extrapolate valence quark masses to their
physical values, while Sec. V describes the combined
extrapolation to the continuum limit and to physical sea-
quark masses. We present our final results and error budget
in Sec. VI, and compare these to the above-mentioned
results that use other fermion discretizations in Sec. VII.

II. ΔS ¼ 2 FOUR-QUARK OPERATORS
AND BAG PARAMETERS

We use the operator basis (Buras’s basis) of Ref. [31], in
which the ΔS ¼ 2 four-quark operators are

Q1 ¼ ½s̄aγμð1 − γ5Þda�½s̄bγμð1 − γ5Þdb�;
Q2 ¼ ½s̄að1 − γ5Þda�½s̄bð1 − γ5Þdb�;
Q3 ¼ ½s̄aσμνð1 − γ5Þda�½s̄bσμνð1 − γ5Þdb�;
Q4 ¼ ½s̄að1 − γ5Þda�½s̄bð1þ γ5Þdb�;
Q5 ¼ ½s̄aγμð1 − γ5Þda�½s̄bγμð1þ γ5Þdb�: ð1Þ

Here the operators have been written in Euclidean space,
with a and b being color indices. Q1 is the operator
corresponding to BK , whileQ2;3;4;5 are the BSM operators.2

The hadronic matrix elements of the ΔS ¼ 2 four-quark
operators can be parametrized by so-called kaon bag param-
eters (orB-parameters). These are conventionally defined by

2This basis is complete in four dimensions aside from the need
to add the parity conjugates ofQ1 −Q3. We do not consider these
additional operators, however, since they have the same positive
parity parts asQ1 −Q3, and the matrix element we consider picks
out the positive parity parts.
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BK ¼ hK0jQ1jK0i
8
3
hK0js̄γμγ5dj0ih0js̄γμγ5djK0i

ð2Þ

Bj ¼
hK0jQjjK0i

NjhK0js̄γ5dj0ih0js̄γ5djK0i
; ð3Þ

where j ¼ 2 − 5, and

ðN2; N3; N4; N5Þ ¼ ð5=3; 4;−2; 4=3Þ ð4Þ
are factors arising in thevacuumsaturationapproximation. In
the following,wewill often refer collectively to “theBi,” and
this will indicate all five of the B-parameters, i.e. the index i
runs over i ¼ K, 2, 3, 4, 5.
In our lattice calculation, we find it more convenient to

evaluate the B-parameters rather than the corresponding
matrix elements, hK̄0jQijK0i. This avoids the need to
determine the overlap of our sources with the K̄0 and
K0 states, reduces the dependence on the scale, a, since the
B-parameters are dimensionless, cancels some of statistical
and systematic errors, and simplifies chiral expansions,
since the SChPT expressions are simpler [28].
We also make extensive use of “gold-plated” combina-

tions of the B-parameters. These are combinations chosen
to be free of chiral logarithms at next-to-leading order
(NLO) in SU(2) chiral perturbation theory [28]:

G21 ≡ B2

BK
; G23 ≡ B2

B3

;

G24 ≡ B2 · B4; G45 ≡ B4

B5

: ð5Þ

In this paper, the subindex i of the Gi runs over i ¼ 21, 23,
24, 45.
As described below, it turns out that the combined

extrapolation in a2 and sea-quark masses is much better
controlled for the Gi and BK than for B2−5. Thus our final
results for the BSM B-parameters are obtained using BK
and the Gi in the following way:

BG
2 ¼ BK ·G21;

BG
3 ¼ BK ·

G21

G23

;

BG
4 ¼ G24

BK ·G21

;

BG
5 ¼ G24

BK ·G21 · G45

: ð6Þ

The superscript G indicates that we use gold-plated
combinations to reconstruct the B-parameters.

III. LATTICES AND MEASUREMENTS

We use the MILC ensembles listed in Table I. These are
generated with Nf ¼ 2þ 1 flavors of staggered fermions
using the “asqtad” fermion action. Details of the configu-
ration generation are given in Ref. [32]. To convert our data

to physical units, we use the values of r1=a obtained by the
MILC Collaboration. [32,33], and set r1 ¼ 0.3117ð22Þ fm,
following Refs. [33,34].3 We stress that the values of a
listed in the table are nominal. The actual values (deter-
mined from r1=a) differ slightly from the nominal values,
and it is the former that we use in our analysis. In the
following, we sometimes use MILC terminology and refer
to the sets of ensembles with nominal lattice spacings of
a ¼ 0.12, 0.09, 0.06 and 0.045 fm as coarse, fine, superfine
and ultrafine lattices, respectively.
Compared to the results presented in Ref. [23], the

additional ensembles are F6, F7, F9 and S5. These
additions significantly improve the reliability of the chiral
extrapolations, as we now explain. On all ensembles except
F6 and F7, the strange sea-quark masses lie close to, but not
exactly at, the physical value. Adding in F6 and F7, which
have lighter strange sea quarks, allows us to correct for the
offset. Adding S5 ensures that on both fine and superfine
lattices the average up/down sea-quark mass, ml, ranges
down to ≈mphys

s =10, so that the chiral extrapolation is
relatively short. Finally, adding in F9 provides us with a
light sea-quark mass, ml ≈mphys

s =20, that lies much closer
to the physical value.

TABLE I. MILC ensembles used in our numerical study. Here
“ens” represents the number of gauge configurations,“meas” is
the number of measurements per configuration, and ID is a label.
aml and ams are, respectively, the light- and strange sea-quark
masses in lattice units. The values of a are nominal.

a (fm) aml=ams Size ens × meas ID

0.12 0.03=0.05 203 × 64 564 × 9 C1
0.12 0.02=0.05 203 × 64 486 × 9 C2
0.12 0.01=0.05 203 × 64 671 × 9 C3
0.12 0.01=0.05 283 × 64 274 × 8 C3-2
0.12 0.007=0.05 203 × 64 651 × 10 C4
0.12 0.005=0.05 243 × 64 509 × 9 C5

0.09 0.0062=0.031 283 × 96 995 × 9 F1
0.09 0.0031=0.031 403 × 96 959 × 9 F2
0.09 0.0093=0.031 283 × 96 949 × 9 F3
0.09 0.0124=0.031 283 × 96 1995 × 9 F4
0.09 0.00465=0.031 323 × 96 651 × 9 F5
0.09 0.0062=0.0186 283 × 96 950 × 9 F6
0.09 0.0031=0.0186 403 × 96 701 × 9 F7
0.09 0.00155=0.031 643 × 96 790 × 9 F9

0.06 0.0036=0.018 483 × 144 749 × 9 S1
0.06 0.0025=0.018 563 × 144 799 × 9 S2
0.06 0.0072=0.018 483 × 144 593 × 9 S3
0.06 0.0054=0.018 483 × 144 582 × 9 S4
0.06 0.0018=0.018 643 × 144 572 × 9 S5

0.045 0.0028=0.014 643 × 192 747 × 1 U1

3Some values of r1=a are updated compared to Ref. [32]; these
are F2: 3.6987, F3: 3.7036, F4: 3.7086, F5:3.6993, F7: 3.7000,
F9: 3.6984, S4: 5.2825, S5: 5.2836 [33].
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We use hypercubic blocking transfromation (HYP)-
smeared staggered fermions [35] as valence quarks.
Parameters for the HYP smearing are chosen to remove
Oða2Þ taste-symmetry breaking at tree level [36]. We use
10 different valence quark masses on each lattice:

mx;my ¼ mnom
s ×

n
10

with n ¼ 1; 2; 3;…; 10; ð7Þ

where mnom
s is the nominal strange-quark mass given in

Table II. We have labeled the valence masses mx and my,
the former corresponding to the valence d quark and the
latter to the valence s quark.
As explained in the next section, mx and my will be

extrapolated to their physical values, mphys
d and mphys

s ,
respectively. To determine these physical values on each
ensemble use the same method as in Ref. [7]. First, the
flavor nonsinglet yȳ “pion” mass is extrapolated until it
equalsMss;phys ¼ 0.6858ð40Þ GeV, which is the “physical”
value determined in Ref. [37]. This determines mphys

s .
Second, mx is extrapolated (with my at its now-determined
physical value) such that the xȳ “kaon” has a mass equal to
that of the physical K0. These extrapolations are done
separately on each ensemble. For illustration, we show in
Table II the resulting physical values (as well as the valence
masses we use in the simulations) for the ensembles having
ml=ms ¼ 1=5. We see that our lightest valence quark
masses are roughly twice mphys

d , while our heaviest lie
somewhat below mphys

s .
We calculate the valence xx̄ pion and xȳ kaon masses in

standard fashion using the same wall sources as described
below. The statistical errors on these results are very small.
In Table III we quote some representative values to indicate
the range of pion masses in physical units. Note that
mπðval;maxÞ is the mass of the heaviest pion that we use in
our chiral extrapolation to the physical valence d quark.
This extrapolation is discussed in the following section. We
also include values for the lightest sea-quark pion for the
fine, superfine and ultrafine lattices, as well as for the
coarse ensemble that we use to study finite-volume (FV)
effects.
We use essentially the same methodology for calculating

the BSM B-parameters as we employed in the calculation
of BK in Ref. [7]. Thus we give only a brief discussion here,

while for BK we refer to Ref. [7]. In terms of lattice
operators, the BSM B-parameters are

BjðtÞ ¼
2hK0

P1jzjkQLat
k ðtÞjK0

P2i
NjhK0

P1jzPOLat
P ðtÞj0ih0jzPOLat

P ðtÞjK0
P2i

; ð8Þ

whereQLat
k are lattice four-fermion operators andOLat

P is the
taste-ξ5 pseudoscalar bilinear. zjk and zP are one-loop
matching factors that convert lattice operators to their
continuum counterparts, the latter defined in the M̄S
scheme using naive dimensional regularization. We use
the mean-field improved lattice operators defined in
Refs. [29,30]. The one-loop matching is quite involved
as one must ensure that the continuum basis is extended to
d ¼ 4 − 2ϵ dimensions using the same definition of evan-
escent operators as in Ref. [31]. The matching factors have
been worked out and described in detail in Ref. [30],
building on the earlier work of Ref. [29], and we do not
repeat them here. They depend on the renormalization scale
μ of the continuum operator and on αs. The latter is chosen
to be in the M̄S scheme and is evaluated at the same scale μ.
In our initial matching we take μ ¼ 1=a and then evolve the
results in the continuum to a common renormalization
scale. In the numerical evaluation of the matching coef-
ficients we use four loop running to determine αsðμÞ, using
as input αsðMZÞ ¼ 0.118.
To produce the kaons and antikaons, we place U(1)-noise

wall sources on time slices t1 and t2, with t2 > t1. These
produce taste-ξ5 kaons and antikaons having zero spatial
momenta. The four-quark operators are placed between the
sources at time t (i.e. t1 < t < t2). When t is far enough
from the sources, so that excited state contamination is
small, the three-point correlators should be independent of
t, and can be fit to a constant. To determine the fit range, we
use the two-point correlator from the wall source to the
taste-ξ5 axial current. From the effective mass plot for this
correlator, we find the distance from the source, tL, for
which the contamination from excited states becomes

TABLE II. Physical values of valence quark masses on repre-
sentative ensembles, in lattice units. For comparison, we also
show the range of valence masses used in simulations.

Ensemble amphys
d amphys

s amx and amy

C3 0.00213(2) 0.05204(5) 0.005–0.05
F1 0.00146(2) 0.03542(5) 0.003–0.03
S1 0.00104(1) 0.02372(3) 0.0018–0.018
U1 0.00076(1) 0.01693(3) 0.0014–0.014

TABLE III. Valence and sea pion masses (in GeV) on repre-
sentative ensembles. mπðval;minÞ and mπðval;maxÞ are the
minimum and maximum valence pion masses used in our valence
chiral extrapolation. The values for these quantities on other
coarse, fine and superfine ensembles are very similar to those on
ensembles C3, F9 and S5, respectively. For the fine, superfine and
ultrafine lattices, we show the sea-quark pion mass on the
ensemble with the smallest value of this quantity. For the coarse
lattices, we pick the ensemble used to estimate finite-volume
effects.

Ensemble mπðval;minÞ mπðval;maxÞ mπðseaÞ
C3 0.222 0.430 0.372
F9 0.206 0.401 0.174
S5 0.195 0.379 0.222
U1 0.206 0.397 0.316
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negligibly small. Then we fit from t ¼ t1 þ tL to t ¼ t1 þ
tR ¼ t2 − tL − 1 (which is a symmetrical range since our
operators extend over the two time slices t and tþ 1). Our
choices of tL and tR are given in Table IV. Note that we
chooseΔt ¼ t2 − t1 to be less than half of the time extent of
the lattice to avoid “around the world” contributions.
Further details concerning sources and time ranges are
given in Ref. [7].
The plateaus resulting from the above-described pro-

cedure are reasonable. Examples are shown for the gold-
plated combinations G23 and G45 in Figs. 1 and 2. Here we
show cases with light valence quark masses (mx=my ¼
1=10 withml=ms ¼ 1=5) for which the statistical errors are
larger. The fits to a constant are performed ignoring
correlations between time slices (diagonal approximation
for the covariance matrix) in order to avoid instabilities due
to the small eigenvalues of the covariance matrix [38].
Fitting errors are estimated using the jackknife method.
To increase statistics, we do multiple measurements on

each configuration. For each measurement, the source
position t1 is chosen randomly, with t2 determined by
t2 ¼ t1 þ Δt, where Δt is the wall-source separation listed
in Table IV. In addition, we use different random numbers
for the wall sources for each measurement. The number of
measurements for each gauge configuration is listed in
Table I.

To study autocorrelations we bin adjacent lattices in the
Markov chain and study the dependence of the nominal
statistical error on bin size. Examples of the results are
shown in Fig. 3. The notation for the operators used in this
figure is explained in Refs. [29,30]. We find that the
autocorrelations increase as the lattice spacing decreases.
As one can see from Fig. 3, the autocorrelation effect is
about 100% for the MILC superfine lattice S1, while it is
about 25% for the MILC fine lattice F1. In order to greatly
reduce the effects of autocorrelations, we use bins of size 5
throughout our analysis.

IV. CHIRAL EXTRAPOLATION

Our analysis follows the same steps as in Refs. [9,23].
The first step is the chiral extrapolation of the valence quark
masses to their physical values. We extrapolate mx to the

TABLE IV. Choices for the wall-source separation,Δt¼ t2− t1,
and its ratio to the temporal length of the lattices, T, as well as the
parameters determining the fitting range.

Lattice spacing Δt Δt=T tL tR tL (fm)

0.12 fm 26 0.41 10 15 1.19
0.09 fm 40 0.42 14 25 1.18
0.06 fm 60 0.42 22 37 1.29
0.045 fm 80 0.42 26 53 1.14

 1.37

 1.38

 1.39

 1.4

 0  1  2  3

G
23

T(fm)

F1

 1.37

 1.38

 1.39

 1.4

 0  1  2  3

G
23

T(fm)

S1

 1.37

 1.38

 1.39

 1.4

 0  1  2  3

G
23

T(fm)

U1

FIG. 1. G23 evaluated at renormalization scale μ ¼ 1=a as a function of T ¼ t − t1. (a) Green diamonds show on the F1 ensemble with
ðamx; amyÞ ¼ ð0.003; 0.03Þ. (b) Blue pentagons are results from the S1 ensemble with ðamx; amyÞ ¼ ð0.0018; 0.018Þ. (c) Brown
squares are results on the U1 ensemble with ðamx; amyÞ ¼ ð0.0014; 0.014Þ. The fit ranges (and resulting central values and error bands)
are shown by the horizontal lines.

 1.15

 1.16

 1.17

 1.18

 1.19

 0  1  2  3

G
45

T(fm)

F1

S1

U1

FIG. 2. G45 as a function of T ¼ t − t1 at μ ¼ 1=a.
The convention for symbols is as in Fig. 1.
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mphys
d for fixed my using a fitting form based on SU(2)

SChPT, and then extrapolate my to mphys
s . For SU(2) ChPT

to be valid, we require that mx ≪ my. Hence, from the 10
valence quark masses listed in Eq. (7), we take the lightest
four for mx (e.g. mx ¼ f0.003; 0.006; 0.009; 0.012g on the
fine ensemble) and heaviest three for my (e.g. my ¼
f0.024; 0.027; 0.03g on the fine ensemble). In this way
we satisfy mx ≤ my=2.
We begin by considering the extrapolation in mx, which

we call the “X fit”. The actual extrapolation is done in
XP ¼ m2

xx;P, which is the squared mass of the xx̄ valence
pion with taste ξ5 (i.e. the Goldstone pion). For the physical
value of this quantity we take XP ¼ 2M2

K0;phys
−M2

ss;phys ¼
ð0.158 GeVÞ2. At NLO in SU(2) SChPT, the light valence
quark mass dependence of the B-parameters has been
worked out in Ref. [28], and is

BiðNLOÞ ¼ c1F0ðiÞ þ c2X; ð9Þ

where X ≡ XP
Λ2
χ
with Λχ ¼ 1 GeV, the cj are coefficients to

be determined, and

F0ðiÞ ¼ 1� 1

32π2f2

�
lðXIÞ þ ðLI − XIÞ ~lðXIÞ

−
1

16

X
B

lðXBÞ
�
; ð10Þ

is the chiral logarithm. Here XB (LB) is the squared mass of
the taste B, flavor nonsinglet, pion composed of two light
valence (sea) quarks: XB ¼ m2

xx;B (LB ¼ m2
ll;B). The func-

tions lðXÞ and ~lðXÞ are chiral logarithms defined, for
example, in Ref. [28]. In Eq. (10), the plus sign applies for
i ¼ K; 2; 3, and the minus sign for i ¼ 4, 5.

The NLO fitting function is not accurate enough to
describe the precise and highly correlated data. Hence, as in
all our recent analyses [8,9,23], we add higher-order terms
to the fitting function:

BjðNNNLOÞ ¼ c1F0ðjÞ þ c2X þ c3X2 þ c4X2ln2ðXÞ
þ c5X2 lnðXÞ þ c6X3: ð11Þ

The three terms X2, X2ln2ðXÞ and X2 lnðXÞ are the generic
NNLO terms in continuum chiral-perturbation theory. We
also add a single analytic NNNLO term proportional to X3.
We use a similar fitting function for the X fits of gold-plated
combinations, except that, by construction, there are no
NLO chiral logarithms:

GiðNNNLOÞ ¼ c1 þ c2X þ c3X2 þ c4X2ln2ðXÞ
þ c5X2 lnðXÞ þ c6X3: ð12Þ

We have found that adding yet higher-order terms in the
chiral expansion does not improve the fits to either the Bi
or Gi.
Since we have only four data points for the X fit, we use

the Bayesian method [39], and place constraints on the
three higher-order fitting parameters c4−6. Our prior infor-
mation is that these coefficients are of Oð1Þ. We thus first
impose the constraints c4−6 ¼ 0� 1. If the resulting fits
have χ2=d:o:f:≲ 1, then we accept them. If not, we try the
less restrictive constraints c4−6 ¼ 0� 2. Again, we accept
fits with χ2=d:o:f:≲ 1, but otherwise fit again using
c4−6 ¼ 0� 4. In all cases this leads to fits having
χ2=d:o:f:≲ 1. In this discussion, the χ2 that is minimized
is the augmented version:

χ2aug ¼ χ2 þ χ2prior; ð13Þ
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χ2prior ¼
X6
i¼4

ðci − aiÞ2
σ2i

; ð14Þ

where we set ai ¼ 0 and σi ¼ 1, 2, 4. These fits are done
using the full correlation matrix, and have acceptable values
of χ2.
Having determined the parameters c1−6, we extrapolate

the results to the physical point mx ¼ mphys
d , and simulta-

neously remove (by hand) the lattice artifacts that lead to
taste-symmetry breaking in pion masses. Specifically,
within the chiral logarithm F0ðiÞ we set XB and LI to
their physical values, as explained in Ref. [7]. In this way
we are using knowledge from SChPT to remove a signifi-
cant source of discretization errors. Note that this correction

applies to the Bi but not to the Gj, since the gold-plated
combinations have no chiral logarithms at NLO.
Examples of the X fits are shown in Figs. 4(a), 5(a), and

6(a), for BK, G23 and G45, respectively. In all these
fits it was sufficient to use the narrowest range of the
Bayesian priors (σi ¼ 1) in order to obtain good fits.
We note that the statistical errors appear larger in the
results for G23 because of the finer vertical scale. The
figures emphasize the fact that the extrapolation in XP is
relatively short. Thus the dependence on SChPT is rela-
tively mild, except for the taste-breaking correction that we
make to BK .
In order to estimate the systematic uncertainty in the X

fits we consider two variations in the fitting scheme. The
first error is obtained from the changes in the Bi and Gj
when the prior widths σa are doubled. The second is

 0.48

 0.5

 0.52

 0.54

 0.56

 0.58

 0  0.05  0.1  0.15  0.2

B
K

XP (GeV2)

F1
S1
U1

 0.46

 0.48

 0.5

 0.52

 0.54

 0.56

 0.25  0.3  0.35  0.4  0.45  0.5

B
K

YP (GeV2)

F1
S1
U1

FIG. 4. (a) X fits and (b) Y fits for BK evaluated at μ ¼ 1=a on the F1, S1 and U1 ensembles. The valence strange-quark masses are
amy ¼ 0.03, 0.018 and 0.014, respectively. Lattice results are shown with circles (green, blue and brown for F1, S1, and U1,
respectively) and are ordered vertically as shown in the legend. Extrapolated results are shown with [green] triangles (F1), [blue]
diamonds (S1) and [brown] pentagons (U1). For the X fit, the extrapolated results lie below the curves because of the removal of taste-
breaking effects, as described in the text.

 1.386

 1.388

 1.39

 1.392

 1.394

 1.396

 0  0.05  0.1  0.15  0.2

G
23

XP (GeV2)

F1
S1
U1

 1.386

 1.388

 1.39

 1.392

 1.394

 1.396

 0.25  0.3  0.35  0.4  0.45  0.5

G
23

YP (GeV2)

F1
S1
U1

FIG. 5. (a) X fits and (b) Y fits for G23. Notation as in Fig. 4, except that for the gold-plated combinations there is no taste-breaking
correction.

KAON BSM B-PARAMETERS USING IMPROVED … PHYSICAL REVIEW D 93, 014511 (2016)

014511-7



obtained by repeating the fits keeping only one NNLO
term,

BKðNNLOÞ ¼ c1F0ðKÞ þ c2X þ c3X2; ð15Þ
GiðNNLOÞ ¼ c1 þ c2X þ c3X2; ð16Þ

and using the eigenmode shift (ES) method introduced in
Ref. [38]. The ES method tunes the fitting function in the
direction of the eigenvectors of the covariance matrix
corresponding to the small eigenvalues, with small shifting
parameters η that are constrained by the Bayesian prior
condition: η ¼ 0� ση. We set ση from the size of the
neglected highest order term in the fitting function,

ση ¼ 0.006 ≈ X2ðlnðXÞÞ2; ð17Þ

where X ≈ 0.02.
The total systematic error from the X fits is then obtained

by adding these two error estimates in quadrature. The
resulting errors are discussed in Sec. VI.
We next extrapolate my to m

phys
s , using the three heaviest

values of the valence quark masses. This we denote the
“Y fit.” We expect the Bi and Gj to be smooth, analytic
functions of YP, since the strange quark is far from the
chiral limit. Empirically, linear fitting works very well, as
illustrated in Figs. 4(b), 5(b) and 6(b). To avoid the problem
of small eigenvalues, we use uncorrelated fitting for the Y
fits. In all cases, fits are stable and the fit parameters are
consistent across all lattices with a given nominal lattice
spacing (within the statistical uncertainties). To estimate the
systematic error in the results of the Y fits, we repeat the fits
using a quadratic function of YP. The changes in the final
results for Bi and Gj are then taken as the systematic error.

V. CONTINUUM-CHIRAL EXTRAPOLATION

The outputs of the extrapolations in valence masses are
values for the B-parameters and gold-plated combinations

on each ensemble, for continuum operators evaluated at the
renormalization scale μ ¼ 1=a. In order to compare these
results and extrapolate them to the continuum limit, and to
physical sea-quark masses, we must use renormalization
group (RG) evolution to evolve to a common scale. The
standard choices for this scale in the literature are μ ¼
2 GeV and μ ¼ 3 GeV, and we present results for both.
Since we use one-loop matching, to do the running
consistently we need the continuum two-loop anomalous
dimension matrix. This has been calculated in Ref. [31] for
a particular choice of evanescent operators. Because of this,
it is essential that our lattice-continuum matching uses the
same set of evanescent operators, as is indeed the case in
Ref. [30]. Some technical issues arise in the RG running;
these are described in Ref. [30] along with our resolutions.
We present our results for BK and the gold-plated

combinations Gi at the two renormalization scales in
Tables V and VI. Statistical errors range from the percent
level to an order of magnitude smaller. We have also
obtained results for the Bj (j ¼ 2 − 5) but do not show
these as they are not used in our final analysis.
The final step of our analysis is to do a simultaneous

extrapolation to the physical values of the sea-quark masses
and to the continuum limit. We call this procedure “the
continuum-chiral extrapolation,” although this name is
slightly misleading as the valence chiral extrapolation
has already been done. As substitutes for sea-quark masses,
we use LP and SP, which are, respectively, the squared
masses of taste-ξ5 (Goldstone) pions composed of two
light sea quarks (ll̄) and two strange sea quarks (ss̄). They
are extrapolated to their physical values, which we take to
be m2

π0 ¼ ð0.1349766 GeVÞ2 for LP and M2
ss;phys ¼

ð0.6858 GeVÞ2 for SP [37].
We expect the dependence of the Bi and Gj on LP, SP

and a2 to be analytic, with terms organized according to
standard SChPT power counting. At NLO, the only term in
SChPT that could violate this expectation is the chiral
logarithm. This is absent for theGj. For the Bi, as shown by
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Eq. (10), the only logarithms that appear have the sche-
matic dependence ðLP þ a2Þ logXB and XB logXB. Since
XB is set by hand to its physical value, the a2 dependence it
contains is removed. The remaining dependence on LP and

a2 is analytic, and in fact also is removed by hand when we
set LP to its physical value and a2 to zero. Chiral logarithms
of higher order can lead to nonanalyticities, or large
derivatives, but these are numerically suppressed. Thus,

TABLE V. BK and gold-plated combinations for μ ¼ 2 GeV on each lattice listed in Table I. The superscripts
indicate whether broadened Bayesian priors have been used in the X fits: a implying c4−6 ¼ 0� 2, while b implying
c4−6 ¼ 0� 4. Results without superscripts are obtained with c4−6 ¼ 0� 1.

ID BK G21 G23 G24 G45

C1 0.5484(55) 0.995ð11Þa 1.4140(10) 0.6205(19) 1.1836(7)
C2 0.5528(56) 0.993ð11Þa 1.4119(11) 0.6232(22) 1.1824(8)
C3 0.5673(52) 0.975ð10Þb 1.4098(9) 0.6256(20) 1.1819(7)
C3-2 0.5715(51) 0.974ð9Þa 1.4105(9) 0.6229(16) 1.1823(6)
C4 0.5641(54) 0.987ð11Þb 1.4113(9) 0.6291(19) 1.1822(6)
C5 0.5677(46) 0.976ð8Þa 1.4082(8) 0.6264(15) 1.1834(5)

F1 0.5294(43) 1.0451(69) 1.4000(10) 0.6092(19) 1.2003(9)
F2 0.5451(35) 1.0281(59) 1.3985(6) 0.6088(11) 1.1993(5)
F3 0.5226(49) 1.053ð10Þa 1.4015(11) 0.6119(21) 1.1991(10)
F4 0.5255(30) 1.0366ð64Þb 1.4033(7) 0.6050(12) 1.2008(6)
F5 0.5388(43) 1.0322ð84Þa 1.3995(9) 0.6101(17) 1.1997(8)
F6 0.5472ð59Þa 1.014ð11Þb 1.3991(13) 0.6123(23) 1.2018(9)
F7 0.5392(35) 1.0394(59) 1.3953(7) 0.6130(12) 1.1992(6)
F9 0.5501(16) 1.0258(30) 1.3976(3) 0.6093(6) 1.1991(3)

S1 0.5359(38) 1.0531(55) 1.4140(10) 0.5858(17) 1.2288(8)
S2 0.5361(36) 1.0423(57) 1.4116(9) 0.5833(13) 1.2278(8)
S3 0.5261ð41Þa 1.0625ð79Þb 1.4184(13) 0.5842(20) 1.2278(10)
S4 0.5204(33) 1.0621(60) 1.4124(10) 0.5820(18) 1.2277(8)
S5 0.5384(36) 1.0446(55) 1.4110(8) 0.5835(12) 1.2287(8)

U1 0.5325(70) 1.056(11) 1.4302(28) 0.5718(39) 1.2539(19)

TABLE VI. BK and gold-plated combinations for μ ¼ 3 GeV on each lattice listed in Table I. The convention for a
and b is the same as Table V.

ID BK G21 G23 G24 G45

C1 0.5298(53) 0.951ð10Þa 1.3942(8) 0.5713(18) 1.1468(6)
C2 0.5341(54) 0.950ð10Þa 1.3926(8) 0.5738(20) 1.1459(6)
C3 0.5481(50) 0.9323ð97Þb 1.3911(7) 0.5760(19) 1.1455(5)
C3-2 0.5521(49) 0.9308ð89Þa 1.3915(7) 0.5735(14) 1.1458(5)
C4 0.5449(52) 0.944ð10Þb 1.3921(7) 0.5792(18) 1.1457(5)
C5 0.5484(45) 0.9327ð80Þa 1.3898(6) 0.5767(14) 1.1467(4)

F1 0.5115(42) 0.9991(66) 1.3829(7) 0.5610(18) 1.1594(7)
F2 0.5266(34) 0.9828(56) 1.3817(5) 0.5606(10) 1.1586(4)
F3 0.5049(47) 1.0069ð96Þa 1.3840(9) 0.5634(19) 1.1584(8)
F4 0.5077(29) 0.9909ð61Þb 1.3853(5) 0.5571(11) 1.1597(4)
F5 0.5205(42) 0.9867ð80Þa 1.3825(6) 0.5618(16) 1.1589(6)
F6 0.5287ð57Þa 0.969ð10Þb 1.3821(10) 0.5639(21) 1.1604(7)
F7 0.5210(34) 0.9935(56) 1.3793(5) 0.5645(11) 1.1585(5)
F9 0.5314(16) 0.9806(29) 1.3811(3) 0.5611(5) 1.1585(2)

S1 0.5178(37) 1.0068(53) 1.3927(8) 0.5394(16) 1.1806(6)
S2 0.5179(34) 0.9965(55) 1.3909(7) 0.5372(12) 1.1798(6)
S3 0.5083ð39Þa 1.0158ð76Þb 1.3960(10) 0.5380(19) 1.1798(8)
S4 0.5028(31) 1.0153(58) 1.3916(8) 0.5359(16) 1.1797(6)
S5 0.5202(34) 0.9986(53) 1.3905(6) 0.5373(12) 1.1805(6)

U1 0.5145(67) 1.009(10) 1.4044(21) 0.5266(36) 1.1991(14)
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to good approximation, we expect all the quantities we
calculate to be described by

~F1 ¼ d1 þ d2
LP

Λ2
χ
þ d3

SP −M2
ss;phys

Λ2
χ

þ d4ðaΛQÞ2: ð18Þ

HereΛQ ¼ 0.3 GeV andΛχ ¼ 1 GeV, and we have chosen
to expand the d3 term about the physical ss̄ mass.
When we fit our results to this form, we impose Bayesian

constraints on the linear terms to enforce the expected
power counting: d2−4 ¼ 0� 2. We have also tried fits with
broader constraints, d2−4 ¼ 0� 4, but find that these do not
significantly change the χ2 or the resulting fit parameters.
We find, as was the case in our earlier work [8,9,23] that we
cannot obtain a good description if we include the coarse
lattices. Thus we fit all the fine, superfine and ultrafine
lattice data to Eq. (18). We call this the ~F1 fit, since it is a
small variation from the fitting function F1

B in our previous
work [9] (differing only in the offset in the d3 term). Since
the number of configurations differ on each ensemble,
errors on the fit parameters are obtained using a variant of
the bootstrap method. Note that for this fit there are no
correlations between the different ensembles.
In Table VII, we show the results of the ~F1 fits to BK and

the Gi (renormalized at μ ¼ 2 GeV). Plots of the fits are

shown in Figs. 7(a), 8(a), 9(a), 10(a), and 11(a). The fits are
qualitatively similar and of comparable quality if the
operators are renormalized at μ ¼ 3 GeV. To interpret
these plots the following must be kept in mind. For each
nominal value of a (e.g. for the fine lattices) there is a
variation in the actual values of a and in the values of SP.
This is most significant for the ensembles F6 and F7, which
have a substantially lower strange-quark mass than the
other fine ensembles. These variations are accounted for in
the fit (with F6 and F7 providing a significant lever arm to
determine d3), but do not show up in these two-dimensional
plots. Indeed, the points from F6 and F7 are not included in
the plots, while the fit lines for the fine and superfine
ensembles are shown with a and SP set to their average
values (excluding ensembles F6 and F7 for the fine
lattices). Thus, even if the fit were perfect, the fit lines
would not pass through any of the points, except for the
ultrafine case. Because of this, the fits appear slightly worse
than they actually are; the real indicator of goodness of each
fit is the quoted value of χ2=d:o:f.
The fits indicate that the dependence on the strange sea-

quark mass is very weak for all five quantities, with
jd3j ≪ 1. For the gold-plated combinations, the depend-
ence on the light sea-quark mass is also weak, much weaker
within our range of parameters than the dependence on a.
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FIG. 7. Continuum-chiral extrapolation for BK renormalized at μ ¼ 2 GeV. Results from the fine, superfine and ultrafine lattices are
shown with (green) triangles, (blue) diamonds and the (brown) pentagon, respectively. (a) ~F1 fit; (b) ~F4 fit. The (red) circle gives the
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TABLE VII. Results of ~F1 fits to BK and the gold-plated combinations. The renormalization scale is μ ¼ 2 GeV.

BK G21 G23 G24 G45

d1 0.5390(37) 1.0568(62) 1.4248(10) 0.5590(15) 1.2567(8)
d2 −0.127ð14Þ 0.095(27) 0.0275(33) −0.0097ð56Þ 0.0041(26)
d3 0.006(15) −0.014ð25Þ 0.0145(30) −0.0207ð53Þ 0.0026(25)
d4 0.78(25) −1.92ð41Þ −1.799ð64Þ 3.21(10) −3.529ð53Þ
BK or Gi 0.5366(36) 1.0585(59) 1.4253(10) 0.5589(15) 1.2568(8)
χ2=d:o:f: 1.53 1.30 2.01 1.08 4.07
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FIG. 8. Continuum-chiral extrapolation results for G21 at μ ¼ 2 GeV. The notation is as in Fig. 7.

 1.38

 1.4

 1.42

 1.44

 1.46

 1.48

 1.5

 1.52

 0  0.1  0.2

G
23

 (
2G

eV
)

LP

Fine
Superfine

Ultrafine

 1.38

 1.4

 1.42

 1.44

 1.46

 1.48

 1.5

 1.52

 0  0.1  0.2

G
23

 (
2G

eV
)

LP

Fine
Superfine

Ultrafine

FIG. 9. Continuum-chiral extrapolation results for G23 at μ ¼ 2 GeV. The notation is as in Fig. 7.
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Only for BK does the variation with LP have a similar
magnitude to that with a. The values of the a2 coefficient,
d4, indicate that scale describing a2 effects ranges from
∼0.3 GeV (jd4j ∼ 1) up to ∼0.55 GeV (jd4j ∼ 3.5). These
scales are not unusual for discretization errors with
improved staggered fermions. The χ2=d:o:f: of these fits
is reasonable for BK, G21, and G24.

4 Hence, we choose the
results from the ~F1 fits for our central values for these
quantities. However, we cannot use the ~F1 results for G23

and G45, since the fit quality is too poor. This is primarily
due to the difficulty that the fits have in reproducing the
dependence on a.
To obtain reasonable fits for G23 and G45, we add

higher-order terms to the fitting function, denoting the
new form ~F4:

~F4 ¼ ~F1 þ d5ðaΛQÞ2
LP

Λ2
χ
þ d6ðaΛQÞ2

�
SP −m2

ss̄

Λ2
χ

�

þ d7ðaΛQÞ2αs þ d8α2s þ d9ðaΛQÞ4 ð19Þ

where αs ¼ αMS
s ð1=aÞ. In other words, we add a subset of

the analytic terms quadratic in LP, SP and a2, as well as two
terms that include logarithmic dependence on a. The d7
term would be the dominant source of a dependence were
the action and operators tree-levelOða2Þ improved. In fact,
our valence fermion action and operators are not tree-level
improved, so we must include the pure a2 d4 term as well.
Nevertheless, we expect the tree-level contributions propor-
tional to a2 alone to be small, due to the use of HYP-
smeared gauge fields. The d8 term arises because our lattice
operators are only matched to the continuum operators at
one-loop order, leaving a two-loop residual discrepancy. In

the ~F4 fits we constrain d2−9 using the Bayesian method,
choosing the prior conditions d2−9 ¼ 0� 2. Again we find
that broadening the priors does not significantly improve
the fits.
The results for the ~F4 fits are shown (for μ ¼ 2 GeV) in

Table VIII and Figs. 7(b), 8(b), 9(b), 10(b), and 11(b). With
the additional terms, we obtain reasonable values of
χ2=d:o:f for G23 and G45, and we take the resulting
extrapolated values as our final results for these two
quantities. For the other quantities, the fit quality is only
slightly improved.
As is apparent, particularly from Figs. 9(b), 10(b) and

11(b), the change from ~F1 to ~F4 fits has a very significant
impact on the continuum extrapolation. This is primarily
due to the d8α2S term, which has a rapid dependence on a as
a → 0. We note that the coefficients of this term in the fits
to G23 and G45 are relatively large [although still of Oð1Þ],
and this is what leads to the large change in the extrapolated
value between the fits. We do not find the ~F4 fits to provide
a convincing description of the a dependence, particularly
as they depend very strongly on the result from the single
ultrafine lattice. However, we think that the conservative
choice is to use the better fit for the central value, and then
to take the difference between the two fits as an estimate of
the systematic error in the continuum-chiral extrapolation.
The final results from the two fits, and the resulting
estimate of the systematic error, are collected in
Table IX. For G23, G24 and G45 this source of error
dominates all others, as discussed in the following section.
We have also used fit functions with additional higher-

order terms. These do lead to mild reductions in the values
of χ2=d:o:f, but do not lead to significant changes in the
central values compared to the ~F4 fits. Thus they do not
significantly change our estimates of systematic errors. For
the sake of brevity, we do not display the results of these
more elaborate fits.
We close this section by returning to the option of

directly fitting the BSM B-parameters rather than using the
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FIG. 11. Continuum-chiral extrapolation results for G45 at μ ¼ 2 GeV. The notation is as in Fig. 7.

4Here we consider a value up to ∼1.5 to be reasonable, due to
residual correlations between configurations. We work with a bin
size of 5, and Fig. 3 shows that this can lead to an underestimate
of the error by ∼25% on some configurations. Consequently the
χ2 will be overestimated by ∼1.252.
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gold-plated combinations. In all cases we find that direct
continuum-chiral fits have values of χ2=d:o:f: in the range
3–5, both for ~F1 and ~F4 (and more elaborate) fits. We do
not fully understand this failure of the continuum-chiral
fits, but suspect that it is related to errors in valence chiral
extrapolation (X fits). The X fits are better controlled with
the gold-plated combinations.

VI. FINAL RESULTS AND ERROR BUDGET

In this section we discuss all sources of error, and give
our final results for the BSM B-parameters with their error
budget. Because we obtain BG

2−5 using Eq. (6), we estimate
the errors in BK and the Gi first, and then propagate the
errors to BG

2−5. Our final results for the two standard
renormalization scales are given in Tables X and XI, while
the final error budget is given in Table XII.5

As can be seen from Table XII, the statistical errors in BK
and the Gi are small, ranging from ∼0.25% to ∼1%. The

largest are those in G23 and G45, resulting from the use of
the ~F4 fits for the continuum-chiral extrapolation. We
propagate the statistical errors into the BG

j using the
bootstrap method. The larger errors in G23 and G45 then
lead to BG

3 and BG
5 having the largest statistical errors of the

BSM B-parameters. In all cases, however, the statistical
errors are much smaller than those from systematic effects.
We now run through the systematic errors in the order

listed in Table XII. The dominant error is that due to the
combined effect of using one-loop matching and the
continuum-chiral extrapolation. We combine these because
the ~F4 fit includes the α2s error that results from perturbative
truncation, and indeed this is the dominant contribution to
the systematic error estimate, as discussed above. However,
one can also estimate the truncation error directly, follow-
ing Ref. [8], by the size of a typical two-loop contribution:

ΔBi ≈ Bi × α2s : ð20Þ

TABLE VIII. Fit results for BSM B-parameters and the gold-plated combinations obtained using ~F4 fit at μ ¼ 2 GeV.

BK G21 G23 G24 G45

d1 0.5308(99) 1.080(12) 1.488(14) 0.523(12) 1.378(14)
d2 −0.124ð18Þ 0.104(28) 0.045(14) 0.001(16) −0.013ð12Þ
d3 0.005(15) −0.011ð25Þ 0.019(6) −0.021ð6Þ 0.012(7)
d4 0.24(40) −0.33ð27Þ 2.22(75) 0.84(63) 3.70(80)
d5 −0.18ð77Þ −0.66ð48Þ −1.10ð87Þ −0.7ð10Þ 1.16(78)
d6 0.10(10) −0.081ð63Þ −0.29ð34Þ 0.03(22) −0.64ð42Þ
d7 0.09(21) −0.10ð14Þ 1.20(40) 0.33(33) 2.06(42)
d8 0.22(21) −0.65ð20Þ −1.80ð37Þ 0.98(31) −3.34ð39Þ
d9 0.008(31) −0.008ð21Þ 0.183(60) 0.036(50) 0.322(64)

BK or Gi 0.5285(98) 1.082(12) 1.489(13) 0.523(12) 1.378(14)
χ2=d:o:f: 1.52 1.23 1.33 0.91 1.39

TABLE IX. Results for BK and Gi (renormalized at
μ ¼ 2 GeV) from continuum-chiral extrapolation using the ~F1

and ~F4 fits. Our choices for the final central values are underlined.
Δ is the fractional systematic error in the continuum-chiral
extrapolation, and is obtained from the difference between the
two fits.

~F1
~F4 Δð%Þ

BK 0.5366ð36Þ 0.5285(98) 1.52
G21 1.0585ð59Þ 1.082(12) 2.18
G23 1.4253(10) 1.489ð13Þ 4.26
G24 0.5589ð15Þ 0.523(12) 6.36
G45 1.2568(8) 1.378ð14Þ 8.79

TABLE X. Final results for BK and the BSM B-parameters at
renormalization scales μ ¼ 2 GeV and μ ¼ 3 GeV. The first
error is statistical, the second systematic.

μ ¼ 2 GeV μ ¼ 3 GeV

BK 0.537(4)(26) 0.519(4)(26)
BG
2 0.568(1)(25) 0.525(1)(23)

BG
3 0.382(4)(17) 0.360(4)(16)

BG
4 0.984(3)(64) 0.981(3)(62)

BG
5 0.714(7)(71) 0.751(7)(68)

TABLE XI. Final results for the gold-plated combinations Gi.
Notation as in Table X.

μ ¼ 2 GeV μ ¼ 3 GeV

G21 1.059(6)(52) 1.012(6)(50)
G23 1.489(13)(66) 1.460(14)(65)
G24 0.559(1)(36) 0.515(1)(32)
G45 1.378(14)(123) 1.307(14)(107)

5The result quoted here for BKð2 GeVÞ is obtained by a very
slightly different analysis method than that we used previously in
Ref. [9]. Thus the results differ slightly, although they agree
within the (small) statistical errors, and have almost exactly the
same total error.
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Here we use αs in the M̄S scheme evaluated at a scale
1=amin, where amin is our smallest lattice spacing. This
leads to a 4.4% relative error. To avoid double counting, we
take the larger of (a) the direct estimate of two-loop effects
(4.4%) and (b) the difference between ~F1 and ~F4 fits. In
essence this method is using the ~F4 fit to give an estimate of
the uncertainty in the coefficient of the α2s term, except that
we do not allow this uncertainty to drop below unity.
The above description applies to quantities we calculate

directly, namelyBK and theGi. For thederivedquantitiesBG
j ,

defined in Eq. (6), we proceed as follows. We vary the fit
choices (for the continuum-chiral extrapolation) for each of
the components of theBG

j independently, and take the largest
variation from the central value as the systematic error
estimate. If thismaximumvalue lies below 4.4%,we replace
the estimatewith thedirect two-loopestimate of a4.4%error.
We next consider the error due to the FV of the lattice.

We estimate this from the difference between results on the
C3 and C3-2 ensembles, which differ only in their spatial
volumes. This is not entirely satisfactory, since we do not
use coarse lattices in our final continuum-chiral extrapo-
lation. However, we stress that the dominant FV error, as
estimated by SChPT, comes from valence pions propagat-
ing to adjacent periodic volumes. This is because the
arguments of the chiral logarithms of Eq. (10) are the
squared masses of valence pions, XB. Since on each
ensemble we are extrapolating to the physical valence
quark masses, the dominant FV effects are present, even
though on ensembles C3 and C3-2 we are far from the
physical values of LP and a. In our calculation of BK , we
have used the comparison of doing the X fits with finite-
and infinite-volume SChPT forms as an alternative estimate
of the FVerror [40]. However, this method is not useful for
the gold-plated combinations, since they do not contain
NLO chiral logarithms.
Our method of estimating systematic errors arising from

the X fits has been described in Sec. IV. We repeat the entire
analysis using different priors for the X fits, and using the
ES method. Each leads to a change in the final values of the
quantities of interest. We combine the fractional shifts in
quadrature to obtain our total systematic error.

Our method of estimating the systematic error arising
from Y fits, as noted above, is to repeat the entire analysis
(including the continuum-chiral extrapolation) using quad-
ratic, as apposed to linear, functional forms. This differs
slightly from the estimate we used in Ref. [9], where we
used the shift in the quantities on a specific MILC
ensemble. The Y fit errors turn out to be of comparable
size to those from X fits, ranging up to 2%.
The remaining two systematic errors are very small, and

have essentially no impact on the total error. We include
them for completeness. The first concerns the value of the
pion decay constant f that we use in the chiral logarithms of
Eq. (10). At NLO we could equally well use the physical
value fπ ¼ 130.41 MeV [41] or the value in the chiral
limit, fπ ≈ 124.2 MeV [32]. In practice we use f ¼
132 MeV (close to the physical value) for our central
value, and repeat the entire analysis using f ¼ 124.2 MeV
(the chiral-limit value) to estimate the systematic error. In
fact, only BK is sensitive to this choice, since the gold-
plated combinations contain no NLO chiral logarithms.
Thus the 0.1% error that results in BK propagates
unchanged into all of the BSM B-parameters.
Finally, the parameter we use to set the scale, r1, has an

error which propagates into all the final results. To estimate
this, we repeat the entire analysis with the central value for
r1 replaced by r1 � σr1, and quote the maximum difference
in each quantity as the systematic error. The resulting errors
are very small (∼0.1 − 0.35%), reflecting the fact that the
B-parameters are dimensionless.

VII. COMPARISONS AND OUTLOOK

In Table XIII and Fig. 12 we compare our results for the
B-parameters to those from other collaborations. This is
done at μ ¼ 3 GeV since results from all collaborations are
available at this choice of renormalization scale. The RBC-
UKQCD Collaboration uses Nf ¼ 2þ 1 light flavors of
domain-wall quarks, and NPR for the matching between
lattice and continuum theories. In 2012, RBC-UKQCD
used the RI-MOM scheme for this matching [21], while the
preliminary 2015 results are obtained using several RI-
SMOM schemes, in the spirit of Ref. [27]. Both schemes

TABLE XII. Error budget for the Bi and Gj evaluated at renormalization scale μ ¼ 2 GeV. All entries are in percent. A label
“cont-extrap” means the continuum-chiral extrapolation.

Cause BK G21 G23 G24 G45 BG
2 BG

3 BG
4 BG

5 BG;SUSY
3 Method

Statistics 0.67 0.56 0.87 0.27 1.02 0.25 1.00 0.27 0.98 0.66 See textnmatching
cont-extrap:

o 4.40 4.40 4.40 6.36 8.79 4.40 4.45 6.36 9.63 4.40 ( ~F1 vs ~F4) or α2s (U1)

Finite volume 0.73 0.17 0.05 0.43 0.04 0.56 0.52 0.99 1.02 0.60 (C3) vs (C3-2)
X fits 0.05 0.40 0.45 0.02 0.96 0.36 0.34 0.37 1.23 0.60 Change Bayes. prior and fit method
Y fits 2.07 2.11 0.32 0.48 1.12 0.00 0.32 0.48 1.59 0.22 Linear vs quad.
fπ 0.10 0 0 0 0 0.10 0.10 0.10 0.10 0.10 132 MeV vs. 124.2 MeV.
r1 0.35 0.28 0.11 0.16 0.21 0.07 0.17 0.09 0.30 0.01 Errors due to r1 ambiguity.
Total 4.93 4.91 4.44 6.39 8.92 4.45 4.51 6.47 9.90 4.49
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are connected to the M̄S scheme using one-loop perturba-
tion theory. The ETM Collaboration uses twisted-mass
Wilson quarks. The original results from 2012 were with
Nf ¼ 2 light sea quarks and a quenched valence strange
quark [13], while the 2015 results are from an Nf ¼
2þ 1þ 1 simulation including both strange and charmed
sea quarks [3]. Both ETM calculations match lattice
and continuum operators using NPR in the RI-MOM
scheme.
Both RBC-UKQCD and ETM results are quoted using

the so-called SUSY basis of BSM four-fermion operators
[42]. The only BSM B-parameter which differs from that in
the basis of Buras et al. (Ref. [31]) that we use is B3,

BSUSY
3 ¼ −

3

2
BBuras
3 þ 5

2
BBuras
2 : ð21Þ

We use this equation to determine our result for BSUSY
3

quoted in Table XIII.
For completeness, we note that our 2013 results for the

BSM B-parameters (Ref. [23]) are superseded and cor-
rected by our present results.6 We now have significantly
more ensembles, allowing a better controlled continuum-
chiral extrapolation. This addition required us to change
from ~F1 fits to ~F4 fits for G23 and G45, which, as shown
above, significantly changes the central values for these
quantities. In addition, we found an error in our RG running
due to the use of an incorrect two-loop contribution to the
pseudoscalar anomalous dimension [needed for the denom-
inators of the BSM B-parameters—see Eq. (3)]. Correcting
this error leads to ∼5% reductions in all the BSM B-
parameters. A detailed description of the effect of these
changes is given in Ref. [24]. The overall effect is that our
new results for B2, BSUSY

3 , B4 and B5 are reduced by about
5%, 3%, 5% and 12%, respectively, compared to those
in Ref. [23].
Table XIII shows that the results for BK, B2 and BSUSY

3

are consistent across all calculations, with all results having

comparable errors. By contrast, there are significant
differences for B4 and B5, as one can see most clearly
from Fig. 12. The preliminary results from RBC-UKQCD
(2015) using the intermediate RI-SMOM schemes are
consistent with our results, while those using the inter-
mediate RI-MOM scheme [RBC-UK (2012), ETM (2012)
and ETM (2015)] differ significantly. For example, the
ETM (2015) results for B4 and B5 differ from our results by
2.6σ and 3.2σ, respectively.
The pattern of results in the table suggests that the

ultimate source of these differences may well be
the matching from lattice matrix elements to those in
the continuum M̄S scheme. In our calculation, this error
is due to the truncation of matching factors at one-loop
order. For B4 and B5 (the two B-parameters which differ
from the results obtained using the RI-MOM scheme) our
error estimate is taken as the difference between fits
using ~F1 and ~F4 fit forms (see Figs. 10 and 11). While
we consider this to be a conservative estimate, we cannot
rule out that it is an underestimate due to unexpectedly
large α2 terms in the matching factors. In the case of the
calculations using the NPR method, the significant
differences between results obtained using RI-MOM and
RI-SMOM schemes indicate an underestimate of the
associated systematic errors. This could be a problem
specifically related to the RI-MOM scheme, where one
must subtract unwanted contributions from pion poles, a
source of systematic errors absent in the RI-SMOM
schemes [43]. Or it could be due to large truncation errors
in the relation between one or both of these schemes and the
M̄S scheme.
Clearly these issues require further investigation. One

possibility is for all the calculations to use the same
intermediate scheme such as RI-SMOM and then to
directly compare results in that scheme. This reduces the
dependence on perturbation theory as one does not need to
match to the M̄S scheme. One would still need to evolve
between different scales in the RI-SMOM scheme, but this
could also, ultimately, be done nonperturbatively [44]. To
these ends we are pursuing the implementation of NPR
using staggered fermions [45–47].

TABLE XIII. Comparison of the BSM B-parameters at renormalization scale μ ¼ 3 GeV obtained using different fermion
discretizations. The RBC-UKQCD results using domain-wall fermions are RBC-UK (2012) [21] and the preliminary results (with
incomplete error budget) of RBC-UK (2015) [25]. The ETM Collaboration results using twisted-mass fermions are ETM (2012) [13]
and ETM (2015) [3]. N.A. means “not available.”

SWME (this work) RBC-UK (2012) RBC-UK (2015) ETM (2012) ETM (2015)

BK 0.519(4)(26) 0.53(2) 0.53(1) 0.51(2) 0.51(2)
B2 0.525(1)(23) 0.43(5) 0.49(2) 0.47(2) 0.46(3)
BSUSY
3

0.773(6)(35) 0.75(9) 0.74(7) 0.78(4) 0.79(5)
BBuras
3

0.360(4)(16) N.A. N.A. N.A. N.A.
B4 0.981(3)(62) 0.69(7) 0.92(2) 0.75(3) 0.78(5)
B5 0.751(7)(68) 0.47(6) 0.71(4) 0.60(3) 0.49(4)

6This does not apply to BK , for which our present result is
essentially the same as that from Ref. [23].

KAON BSM B-PARAMETERS USING IMPROVED … PHYSICAL REVIEW D 93, 014511 (2016)

014511-15



ACKNOWLEDGMENTS

We thank Peter Boyle, Nicolas Garron, Jamie Hudspith
and Andrew Lytle for discussions of the RBC-UKQCD
results and comments on the manuscript. We would also
like to express our sincere gratitude to Claude Bernard and
MILC Collaboration for private communications. C. J. is
supported by the U.S. DOE under Contract DE-AC02-
98CH10886. Jangho Kim is supported by Young Scientists
Fellowship through National Research Council of Science
& Technology (NST) of KOREA. The research of W. L. is

supported by the Creative Research Initiatives Program
(Grant No. 2015001776) of the NRF grant funded by the
Korean government (MEST). W. L. would like to acknowl-
edge the support from the KISTI supercomputing center
through the strategic support program for the supercomput-
ing application research (Grant No. KSC-2014-G3-003).
The work of S S. is supported in part by the U.S. DOE
Grants No. DE-FG02-96ER40956 and No. DE-
SC0011637. Part of computations were carried out on
the DAVID GPU clusters at Seoul National University.

[1] S. Aoki et al., Eur. Phys. J. C 74, 2890 (2014).
[2] T. Blum et al. (RBC and UKQCD Collaborations),

arXiv:1411.7017.
[3] N. Carrasco, P. Dimopoulos, R. Frezzotti, V. Lubicz, G. C.

Rossi, S. Simula, and C. Tarantino (ETM Collaboration),
Phys. Rev. D 92, 034516 (2015).

[4] S. Durr et al., Phys. Lett. B 705, 477 (2011).
[5] C. Aubin, J. Laiho, and R. S. Van deWater, Phys. Rev. D 81,

014507 (2010).
[6] J. Laiho and R. S. Van de Water, Proc. Sci., LATTICE2011

(2011) 293.
[7] T. Bae, Y.-C. Jang, C. Jung, H.-J. Kim, J. Kim, J. Kim, K.

Kim, W. Lee, S. R. Sharpe, and B. Yoon, Phys. Rev. D 82,
114509 (2010).

[8] T. Bae, Y.-C. Jang, C. Jung, H.-J. Kim, J. Kim, J. Kim, K.
Kim, S. Kim, W. Lee, S. R. Sharpe, and B. Yoon, Phys. Rev.
Lett. 109, 041601 (2012).

[9] T. Bae et al. (SWME Collaboration), Phys. Rev. D 89,
074504 (2014).

[10] J. A. Bailey, Y.-C. Jang, W. Lee, and S. Park (SWME
Collaboration), Phys. Rev. D 92, 034510 (2015).

[11] J. Laiho, E. Lunghi, and R. S. Van de Water, Phys. Rev. D
81, 034503 (2010).

[12] Z. Bai, N. H. Christ, T. Izubuchi, C. T. Sachrajda, A. Soni,
and J. Yu, Phys. Rev. Lett. 113, 112003 (2014).

[13] V. Bertone et al. (ETM Collaboration), J. High Energy Phys.
03 (2013) 089.

[14] M. Ciuchini, V. Lubicz, L. Conti, A. Vladikas, A. Donini
et al., J. High Energy Phys. 10 (1998) 008.

[15] M. Bona et al. (UTfit Collaboration), J. High Energy Phys.
03 (2006) 080.

[16] G. Isidori, Y. Nir, and G. Perez, Annu. Rev. Nucl. Part. Sci.
60, 355 (2010).

[17] M. Blanke, A. J. Buras, K. Gemmler, and T. Heidsieck,
J. High Energy Phys. 03 (2012) 024.

[18] C. R. Allton, L. Conti, A. Donini, V. Gimenez, L. Giusti, G.
Martinelli, M. Talevi, and A. Vladikas, Phys. Lett. B 453, 30
(1999).

[19] A. Donini, V. Gimenez, L. Giusti, and G. Martinelli, Phys.
Lett. B 470, 233 (1999).

[20] R. Babich, N. Garron, C. Hoelbling, J. Howard, L. Lellouch,
and C. Rebbi, Phys. Rev. D 74, 073009 (2006).

0.6  0.8  1  1.2  1.4  1.6
B4

SWME (2015)

SWME (2014)

RBC-UK (2015, RI-SMOM)

RBC-UK (2012, RI-MOM)

ETM (2015, RI-MOM)

ETM (2012, RI-MOM)

 0.4  0.6  0.8  1  1.2  1.4
B5

SWME (2015)

SWME (2014)

RBC-UK (2015, RI-SMOM)

RBC-UK (2012, RI-MOM)

ETM (2015, RI-MOM)

ETM (2012, RI-MOM)

FIG. 12. Comparison of results for B4 and B5 at μ ¼ 3 GeV. The references for the points are, proceeding from top to bottom, this
work (SWME 2015), [24] (SWME 2014), [25] (RBC-UK 2015), [21] (RBC-UK 2012), [3] (ETM 2015) and [13] (ETM 2012).

BENJAMIN J. CHOI et al. PHYSICAL REVIEW D 93, 014511 (2016)

014511-16

http://dx.doi.org/10.1140/epjc/s10052-014-2890-7
http://arXiv.org/abs/1411.7017
http://dx.doi.org/10.1103/PhysRevD.92.034516
http://dx.doi.org/10.1016/j.physletb.2011.10.043
http://dx.doi.org/10.1103/PhysRevD.81.014507
http://dx.doi.org/10.1103/PhysRevD.81.014507
http://dx.doi.org/10.1103/PhysRevD.82.114509
http://dx.doi.org/10.1103/PhysRevD.82.114509
http://dx.doi.org/10.1103/PhysRevLett.109.041601
http://dx.doi.org/10.1103/PhysRevLett.109.041601
http://dx.doi.org/10.1103/PhysRevD.89.074504
http://dx.doi.org/10.1103/PhysRevD.89.074504
http://dx.doi.org/10.1103/PhysRevD.92.034510
http://dx.doi.org/10.1103/PhysRevD.81.034503
http://dx.doi.org/10.1103/PhysRevD.81.034503
http://dx.doi.org/10.1103/PhysRevLett.113.112003
http://dx.doi.org/10.1007/JHEP03(2013)089
http://dx.doi.org/10.1007/JHEP03(2013)089
http://dx.doi.org/10.1088/1126-6708/1998/10/008
http://dx.doi.org/10.1088/1126-6708/2006/03/080
http://dx.doi.org/10.1088/1126-6708/2006/03/080
http://dx.doi.org/10.1146/annurev.nucl.012809.104534
http://dx.doi.org/10.1146/annurev.nucl.012809.104534
http://dx.doi.org/10.1007/JHEP03(2012)024
http://dx.doi.org/10.1016/S0370-2693(99)00283-X
http://dx.doi.org/10.1016/S0370-2693(99)00283-X
http://dx.doi.org/10.1016/S0370-2693(99)01300-3
http://dx.doi.org/10.1016/S0370-2693(99)01300-3
http://dx.doi.org/10.1103/PhysRevD.74.073009


[21] P. Boyle, N. Garron, and R. Hudspith (RBC and UKQCD
Collaborations), Phys. Rev. D 86, 054028 (2012).

[22] G. Martinelli, C. Pittori, C. T. Sachrajda, M. Testa, and A.
Vladikas, Nucl. Phys. B445, 81 (1995).

[23] T. Bae et al. (SWME Collaboration), Phys. Rev. D 88,
071503 (2013).

[24] J. Leem et al. (SWME Collaboration), Proc. Sci.,
LATTICE2014 (2014) 370.

[25] R. J. Hudspith, N. Garron, and A. T. Lytle, arXiv:1512.05398.
[26] N. Garron (RBC-UKQCD Collaboration) (to be published).
[27] C. Sturm, Y. Aoki, N. H. Christ, T. Izubuchi, C. T. C.

Sachrajda, and A. Soni, Phys. Rev. D 80, 014501 (2009).
[28] J. A. Bailey, H.-J. Kim, W. Lee, and S. R. Sharpe, Phys. Rev.

D 85, 074507 (2012).
[29] J. Kim, W. Lee, and S. R. Sharpe, Phys. Rev. D 83, 094503

(2011).
[30] J. Kim, W. Lee, J. Leem, S. R. Sharpe, and B. Yoon (SWME

Collaboration), Phys. Rev. D 90, 014504 (2014).
[31] A. J. Buras, M. Misiak, and J. Urban, Nucl. Phys. B586, 397

(2000).
[32] A. Bazavov, D. Toussaint, C. Bernard, J. Laiho, C. DeTar

et al., Rev. Mod. Phys. 82, 1349 (2010).
[33] C. Bernard (MILC Collaboration) (private communication).
[34] J. A. Bailey, A. Bazavov, C. Bernard, C. Bouchard, C.

DeTar et al., Phys. Rev. D 85, 114502 (2012).
[35] A. Hasenfratz and F. Knechtli, Phys. Rev. D 64, 034504

(2001).

[36] W.-j. Lee and S. R. Sharpe, Phys. Rev. D 66, 114501
(2002).

[37] C. Davies, E. Follana, I. Kendall, G. P. Lepage, and C.
McNeile (HPQCD Collaboration), Phys. Rev. D 81, 034506
(2010).

[38] B. Yoon, Y.-C. Jang, C. Jung, and W. Lee, J. Korean Phys.
Soc. 63, 145 (2013).

[39] G. P. Lepage, B. Clark, C. T. H. Davies, K. Hornbostel, P. B.
Mackenzie, C. Morningstar, and H. Trottier, Nucl. Phys. B,
Proc. Suppl. 106–107, 12 (2002).

[40] J. Kim, C. Jung, H.-J. Kim, W. Lee, and S. R. Sharpe, Phys.
Rev. D 83, 117501 (2011).

[41] J. Beringer et al. (Particle Data Group), Phys. Rev. D 86,
010001 (2012).

[42] F. Gabbiani, E. Gabrielli, A. Masiero, and L. Silvestrini,
Nucl. Phys. B477, 321 (1996).

[43] A. T. Lytle, P. A. Boyle, N. Garron, R. J. Hudspith, and C. T.
Sachrajda (RBC-UKQCDCollaboration), arXiv:1311.0322.

[44] R. Arthur and P. A. Boyle (RBC and UKQCD Collabora-
tions), Phys. Rev. D 83, 114511 (2011).

[45] A. T. Lytle and S. R. Sharpe, Phys. Rev. D 88, 054506
(2013).

[46] J. Kim, J. Kim, W. Lee, and B. Yoon, Proc. Sci.,
LATTICE2013 (2014) 308.

[47] H. Jeong, J. Kim, J. Kim, W. Lee, J. Pak, and S. Park
(SWME Collaboration), Proc. Sci., LATTICE2014 (2015)
286.

KAON BSM B-PARAMETERS USING IMPROVED … PHYSICAL REVIEW D 93, 014511 (2016)

014511-17

http://dx.doi.org/10.1103/PhysRevD.86.054028
http://dx.doi.org/10.1016/0550-3213(95)00126-D
http://dx.doi.org/10.1103/PhysRevD.88.071503
http://dx.doi.org/10.1103/PhysRevD.88.071503
http://arXiv.org/abs/1512.05398
http://dx.doi.org/10.1103/PhysRevD.80.014501
http://dx.doi.org/10.1103/PhysRevD.85.074507
http://dx.doi.org/10.1103/PhysRevD.85.074507
http://dx.doi.org/10.1103/PhysRevD.83.094503
http://dx.doi.org/10.1103/PhysRevD.83.094503
http://dx.doi.org/10.1103/PhysRevD.90.014504
http://dx.doi.org/10.1016/S0550-3213(00)00437-5
http://dx.doi.org/10.1016/S0550-3213(00)00437-5
http://dx.doi.org/10.1103/RevModPhys.82.1349
http://dx.doi.org/10.1103/PhysRevD.85.114502
http://dx.doi.org/10.1103/PhysRevD.64.034504
http://dx.doi.org/10.1103/PhysRevD.64.034504
http://dx.doi.org/10.1103/PhysRevD.66.114501
http://dx.doi.org/10.1103/PhysRevD.66.114501
http://dx.doi.org/10.1103/PhysRevD.81.034506
http://dx.doi.org/10.1103/PhysRevD.81.034506
http://dx.doi.org/10.3938/jkps.63.145
http://dx.doi.org/10.3938/jkps.63.145
http://dx.doi.org/10.1016/S0920-5632(01)01638-3
http://dx.doi.org/10.1016/S0920-5632(01)01638-3
http://dx.doi.org/10.1103/PhysRevD.83.117501
http://dx.doi.org/10.1103/PhysRevD.83.117501
http://dx.doi.org/10.1103/PhysRevD.86.010001
http://dx.doi.org/10.1103/PhysRevD.86.010001
http://dx.doi.org/10.1016/0550-3213(96)00390-2
http://arXiv.org/abs/1311.0322
http://dx.doi.org/10.1103/PhysRevD.83.114511
http://dx.doi.org/10.1103/PhysRevD.88.054506
http://dx.doi.org/10.1103/PhysRevD.88.054506

