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We further pursue an approach to the sign problem of quantum chromodynamics at nonzero chemical
potential, in which configurations of the lattice path integral are gathered into subsets. In the subset
construction we multiply each temporal link by center elements independently and in a first step neglect the
gauge action. The positivity of the subset weights—shown for 0þ 1 dimensions in an earlier study—
extends to larger lattices: for two sites in the temporal direction and arbitrary spatial extent we give a proof
of the positivity by decomposing the subset weight in positive summands. From numerical evidence we
conjecture that the positivity persists on larger lattices and that the gauge action can be reintroduced
through mild reweighting. First results on the quark number obtained with this method in two dimensions
are shown as well.
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I. INTRODUCTION

The sign problem in quantum chromodynamics
(QCD)—the nonpositivity of the quark determinant at
nonzero chemical potential—hampers numerical simula-
tions of QCD thermodynamics based on importance
sampling, see e.g. [1]. This problem, generically caused
by a complex action in the partition function, also occurs
in other physical systems [2,3]. The sign problem causes
large cancellations between the contributions of the con-
figurations corresponding to the fundamental degrees of
freedom of the ensemble, and suggests that other degrees
of freedommay be more effective to render the path integral
in such regimes.
The subset method consists of gathering configurations

of the ensemble into subsets using some definite rule. The
weight of such subsets is given by the sum of the individual
weights. An “early application of subsets” (to summations)
is the computation of finite arithmetic series by first pairing
up numbers positioned symmetrically around the center of
the sequence and then summing up the pair sums (this goes
back to the Indian mathematician Aryabhata [4] and is also
attributed to the young C.F. Gauss). In lattice QCD and
related theories the aim is to find subsets with positive
weights. The remaining path integral over all subsets can
then be treated by statistical methods like importance
sampling.
The subset method has been first developed on a random

matrix model of QCD: subsets with positive weights could
be found, hence, solving the sign problem [5,6]. Later, this
subset construction was understood in terms of imaginary
chemical potentials and canonical partition functions [7].
Canonical partition functions vanish, when the correspond-
ing configurations average out in the integral. The subset

method removes such contributions already on the level of
the integrand, rendering the weight positive.
Although gathering configurations in subsets and adding

up their weights is a very general and always exact option
to compute partition functions, there is generically no
reason that the resulting subset weight be positive. In this
context it is very helpful, if the generation of the configu-
rations in the subset is guided by some symmetry principle
or physical insight to perform cancellations explicitly using
more physical degrees of freedom. For the random matrix
model this symmetry is a ZN subgroup of the U(1)-
symmetry of the integration measure. For lattice QCD,
multiplying any of the group-valued links by another group
element is possible,1 i.e. compatible with the Haar measure.
A natural choice, however, is to make use of the center
symmetry Z3 as a subgroup of the gauge symmetry SU(3),
on the temporal lattice links.2 Mathematically speaking we
divide out the center from these links. This leads to
temporal mesonic and baryonic hoppings. As another
motivation we take the fact that gauge groups without
the center, like SU(N) in the adjoint representation or G2,
do not cause a sign problem [9–11].
In our previous work with T. Wettig [8] center subsets

have been shown to yield positive weights in one of the
simplest QCD toy models, QCD in 0þ 1 dimensions,
where only the Dirac determinant is present (and where
analytic solutions are available [12,13]). Since the con-
figurations in this system are fully characterized by one
group element, the Polyakov loop, the subset method
consists of a single Z3-multiplication. This again removes
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1Multiplying gauge links by generic group elements has been
utilized on top of the center subsets in [8] to treat many flavors.

2Changing a single link and thereby changing the configura-
tions’ weights, as we do here, should not be confused with a
gauge transformation that always changes several links and
preserves all gauge invariants.
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canonical determinants that average out in the partition
function, and only multiples of the baryon chemical
potential survive.
In the present workwe extend the subset method to higher

dimensions, using (unrooted) staggered fermions and in a
first step neglecting the gauge action. We demonstrate that
the method yields positive weights, sums of Dirac determi-
nants, when each temporal link is multiplied by an inde-
pendent center element. We prove the positivity of these
center subset weights analytically for lattices with two sites
in the temporal direction and arbitrary spatial extent and
present numerical evidence that positivity persists for larger
lattices. We show first numerical evidence that the gauge
action can be reintroduced and treated through reweighting.
As a first measurement using this method we present the
quark number for the massless case on two-dimensional
lattices of various sizes.
As it stands the subset method requires a cost growing

exponentially with the volume. In the positivity proof,
however, positive subterms can be identified. This could be
the starting point of a refined subset method. In a
companion paper [14] we give a diagrammatic representa-
tion of the subset weights shedding more light on the terms
causing the sign problem and how the latter is solved by the
subset method.
This paper is organized as follows: in the next section we

introduce the general idea of subsets and show that they
improve the reweighting factor in general. Section III
contains the definition of subsets for lattice QCD, its basic
properties and building blocks. In Sec. IV we prove the
positivity of the subset weights for lattices with two sites in
the temporal direction by expressing the fermion action in
terms of Grassmannians, and after that for the massless
2 × 2 lattice using Dirac matrix language. We also com-
ment on the possibility to apply subsets on spatial links. In
Sec. V we present our numerical results, which support the
conjecture that this positivity also holds for larger lattices,
and show data for the quark number density in two
dimensions. We also give first results for the subset
reweighting factor in the presence of a gauge action.
Finally, we summarize and give several technical results
in the Appendices.

II. IDEA OF SUBSETS AND IMPROVEMENT
OF THE REWEIGHTING FACTOR

We consider a general integral Z ¼ R
dμðxÞfðxÞ whose

integrand fðxÞ is real, but not necessarily positive. The idea
is to collect several configurations x and add up their
weights fðxÞ to a new weight. To formalize this we assume
that the integration measure is invariant under the action of
a discrete group G,

R
dμðxÞfðgxÞ ¼ R

dμðxÞfðxÞ for all
g ∈ G. For the integration over gauge groups in lattice
QCD, dμðUÞ is the Haar measure, which obeys this
invariance. The subsets Ω generated by such a group
and their weights σ read,

Ωx ¼ fgxjg ∈ Gg; ð1Þ

σðΩxÞ ¼
1

jGj
X
y∈Ωx

fðyÞ ¼ 1

jGj
X
g∈G

fðgxÞ; ð2Þ

where jGj is the cardinality ofG (the number of elements in
G and thus in Ωx for all x). We divide by this number to
avoid a jGj-fold overcounting of the configurations in the
integral.
In the best case, the new weights σðΩxÞ are positive for

all subsets Ωx. It means that having performed part of the
integration (the summation over y in Ωx) explicitly and
deterministically, the remaining integral (over Ωx) may be
subject to importance sampling methods.
Even if not becoming strictly positive, the integrand

always “comes closer to positivity” in the sense of an
improved sign quenched reweighting factor. Besides the
invariance of the measure we only need the Cauchy-
Schwarz inequality to show that

Z
dμðxÞjσðΩxÞj ¼

Z
dμðxÞ

���� 1

jGj
X
g∈G

fðgxÞ
����

≤
Z

dμðxÞ 1

jGj
X
g∈G

jfðgxÞj ¼ 1

jGj
X
g∈G

Z
dμðxÞjfðgxÞj

¼ 1

jGj
X
g∈G

Z
dμðxÞjfðxÞj ¼

Z
dμðxÞjfðxÞj: ð3Þ

For the reweighting factors r and their variances Δ2 we
obtain the inequalities

rsubsets ≡ ZR
dxjσðΩxÞj

≥
ZR

dxjfðxÞj≡ rsign quenched;

Δ2
r;subsets ≤ Δ2

r;sign quenched; ð4Þ

where the second inequality follows from the first one and
the fact that Δ2

r ¼ 1 − r2 (in this case) [6]. This improve-
ment is in some sense expected, since summing/integrating
over the whole ensemble yields the partition function,
which shall be positive.
Note that this reduction of the sign problem comes at the

expense of an increase of the computational effort by a
factor of jGj.

III. SUBSETS FOR LATTICE QCD

A. Definitions

A lattice QCD configuration is given by the tuple of
temporal and spatial SU(3) links, which we denote as
U ¼ ½U0;Us�. The partition function

Z ¼
Z

d½U0;Us� detDð½U0;Us�Þ ð5Þ
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is a path integral with Haar measure d½U0;Us� ¼Q
x dμHðU0ðxÞÞ

Q
i;x dμHðUiðxÞÞ. Herein we work in the

strong coupling limit and neglect the gauge action (in
Sec. V we reintroduce the gauge action through reweight-
ing). We consider the staggered Dirac operator for one
quark flavor with mass m and chemical potential μ,

Dð½U0;Us�;xjyÞ
¼ eμU0ðxÞδxþ0̂;yð−1Þδx0 ;Nt −e−μU†

0ðyÞδx−0̂;yð−1Þδy0 ;Nt

þ
Xd−1
i¼1

ηiðxÞ½UiðxÞδxþî;y−U†
i ðyÞδx−î;y�þ2m13δx;y; ð6Þ

where we have set the lattice spacing to unity, a ¼ 1, and
neglected a factor 2 on the left hand side, since in the
determinant of D this only gives an irrelevant constant
factor. We work on an Nt × N1 × � � � × Nd−1 lattice with
even Nν and antiperiodic boundary conditions in the
temporal direction (represented by the minus signs on
the last time slice). The temporal extension is the inverse
temperature, Nt ¼ 1=T, while the factors e�μ are the lattice
implementation of the chemical potential [15]. We use the
standard notation 0̂ and î for unit steps in the temporal and
spatial directions. For simplicity we have chosen the
staggered signs as η0 ¼ 1 and ηi ¼ ð−1Þx0þx1þ���þxi−1 . At
zero chemical potential the determinant of the staggered
Dirac operator is positive,3 but at nonzero real μ the Dirac
operator is no longer antihermitian, as DðμÞ† ¼ −Dð−μÞ,
and its determinant is no longer necessarily positive,
inducing the sign problem.
In the subset method for QCD we generate subsets by

gathering a number of different configurations of the
ensemble summing up their individual weights to the
subset weight. The members of a subset are generated
by multiplying the temporal links U0ðxÞ with the center
Z3 ¼ f1; z; z�gwhere z ¼ expð2πi=3Þ. The generated links
U0, zU0 and z�U0 remain in the configuration space, the
group SU(3). The invariance of the Haar measure under
group multiplications ensures that the integration measure
is the same for the three configurations, so that adding the
determinants gives the correct weight of the subset (in the
strong coupling limit).

B. 0þ 1 dimensions

In 0þ 1 dimensions the configurations are fully char-
acterized by the (untraced) Polyakov line P (which can be
shown using a gauge transformation). In Ref. [8] it was
shown that the subset ΩP ¼ fP; zP; z�Pg for one quark
flavor has a positive weight for any P ∈ SUð3Þ,

σðΩPÞ ¼
1

3
½detDðPÞ þ detDðzPÞ þ detDðz�PÞ�

¼ A3 − 3Aþ AjtrPj2 þ 2 coshð3μ=TÞ > 0; ð7Þ

where A ¼ 2 coshðNtarsinhð 1
Nt

m
TÞÞ ≥ 2, thus solving the

sign problem. In the massless case this simplifies to A ¼ 2
and

σðΩPÞ¼ 2þ2jtrPj2þ2coshð3μ=TÞ> 0 ðm¼ 0Þ: ð8Þ

Note that only terms with baryon chemical potential
μb ¼ 3μ appear.

C. Higher dimensions

In higher dimensions each temporal link can be multi-
plied by an independent center element. In other words, the
subsets are generated by the direct product of all local
Z3ðxÞ,

Ω½U0;Us� ¼ f½gU0;Us�jg ∈ Gg;

G ¼ ⊗
V

i¼1
Z3ðxiÞ; V ≡ NtN1…Nd−1; ð9Þ

or a subgroup thereof. A group element g ¼
ðe2πik1=3;…; e2πikV=3Þ with ki ∈ f0; 1; 2g acts on a configu-
ration U0 ¼ ðU0ðx1Þ;…; U0ðxVÞÞ through

gU0 ¼ ðe2πik1=3U0ðx1Þ;…; e2πikV=3U0ðxVÞÞ: ð10Þ

After introducing subsets the partition function (5) can be
written as

Z ¼
Z

d½U0;Us�σðΩ½U0;Us�Þ; ð11Þ

with subset weights

σðΩ½U0;Us�Þ ¼
1

3V

YV
i¼1

X2
ki¼0

detDð½gU0;Us�Þ; ð12Þ

where we just add the determinants because of the
invariance of the Haar measure under group multiplication.
The cardinality of G, jGj ¼ 3V , is exponential in the
number V of lattice points.

D. Collective subsets

Before discussing the full subsets (9), let us first consider
collective subsets, which contain three configurations. The
subset elements are constructed by synchronously rotating
the links on one time slice with the same Z3 element
expð2πik=3Þ, k ∈ f0; 1; 2g, and leaving all other links
untouched. For the Dirac operator (6) the operation of a
collective Z3 rotation can also be interpreted as adding an

3ThemasslessDirac operator anticommuteswith η5 (the residual
chiral symmetry), such that its eigenvalues come in �λ pairs.
Antihermiticity at μ ¼ 0 yields eigenvalues on the imaginary axis
and the positivity of the determinant follows. The mass term only
shifts the real part of the eigenvalues keeping this positivity.
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imaginary chemical potential μ=T → μ=T þ 2πik=3 while
keeping the original links U0ðxÞ unchanged, since the
chemical potential can be introduced equivalently through
factors e�Ntμ ¼ e�μ=T on one time slice. The partition
functions with these shifted chemical potentials are iden-
tical, which is the Roberge-Weiss periodicity [16].
Nevertheless, for a given configuration the integrands in
the three partition functions differ and after adding these up
the contributions of the canonical determinants with non-
zero triality are removed, as we now show.
The fugacity expansion of the partition function, Z ¼P
q Zqeqμ=T with canonical partition functions Zq, has a

corresponding expansion at the level of the determinants
and subset weights,

detDð½U0;Us�Þ ¼
X
q

Dqeqμ=T;

σðΩ½U0;Us�Þ ¼
X
q

σqeqμ=T; ð13Þ

where the sum ranges over the number of spatial lattice
points, q ¼ −3Vs;…; 3Vs, with Vs ¼ N1…Nd−1, and we
have omitted the link arguments of Dq and σq.
As the Z3 rotations can be shifted into an imaginary

chemical potential, the collective subsets yield for every q
(see also [7])

σcollectiveq eqμ=T ¼ 1

3

X2
k¼0

Dqeqðμ=Tþ2πik=3Þ; ð14Þ

and the well-known formula for the sum over powers of
roots of unity reduces q to multiples of three,

Dqeqμ=T
1

3

X2
k¼0

eqð2πik=3Þ ¼ Dqeqμ=Tδq;3b

⇒ σcollectiveq ¼ Dqδq;3b ð15Þ

with integer baryon number b in the range −Vs;…; Vs.
Therefore, the canonical weights for collective subsets are
given by the canonical determinants with zero triality and
vanish otherwise. It is well known that the QCD partition
function satisfies the same property, i.e. only receives
triality zero contributions, and can therefore be expanded
in the baryon chemical potential μb ¼ 3μ. One of the
essential mechanisms of subsets is that they ensure this
reduction already at the level of the path integrand.
Although the collective subsets and the ensuing global
reduction to triality zero terms turned out to solve the sign
problem in 0þ 1 dimensions [8], we will see in Sec. V that
in higher dimensions they attenuate the sign problem but do
not suffice to solve it. Further note that the collective
subsets preserve all plaquette values, such that this subset

method could be applied directly in full QCD after
introducing the gauge action.
For the full subsets (9) the cancellation of the collective

subsets is also achieved (since the collective subsets are a
subgroup of the full group), but the zero triality weights
will be modified further. Full subsets enforce zero triality
for each temporal link, i.e. even for chemical potentials
that would be defined locally, again via μðxÞ → μðxÞþ
2πikðxÞ=3. This statement will be made more precise in the
next section, e.g. Eq. (21).

E. Subset building blocks

In this subsection we will demonstrate how the subset
weight can be decomposed into local building blocks. They
are the basics for the positivity proof presented in the next
section. For that we write the quark determinant in the
partition function as an integral over Grassmann fields,

detDðUÞ ¼
Z �YV

i¼1

Y3
a¼1

dψaðxiÞdψ̄aðxiÞ
�
eSFðψ ;ψ̄ ;UÞ; ð16Þ

where SFðψ ; ψ̄ ;UÞ ¼
P

x;y ψ̄ðxÞDðU; xjyÞψðyÞ with the
staggered Dirac operator of Eq. (6). As each term in the
fermion action is bilinear in Grassmannians, the exponen-
tial can be factorized in single-link contributions

eSFðψ ;ψ̄ ;UÞ ¼
Y
x;y

expðψ̄ðxÞDðU; xjyÞψðyÞÞ: ð17Þ

Let us focus on the contribution of a specific temporal
link, i.e. U0ðxÞ and U†

0ðxÞ for some fixed x, which
according to (6) is

eμψ̄ðxÞU0ðxÞψðxþ 0̂Þ − e−μψ̄ðxþ 0̂ÞU†
0ðxÞψðxÞ

≡ eμuþ e−μū; ð18Þ

which defines the bosonic variables u and ū. At the
temporal boundary this expression enters the fermionic
action with a minus sign. We expand the contribution from
this link to the path integral weight

expðeμuþ e−μūÞ ¼
X3
n;m¼0

1

n!m!
ðeμuÞnðe−μūÞm: ð19Þ

Because ψ and ψ̄ represent Grassmann fields with three
color degrees of freedom, only terms which are at most
cubic in u and ū will contribute.
Center rotations on that link amount to the changes

U0ðxÞ → e2πik=3U0ðxÞ, and thus u → e2πik=3u and
ū → e−2πik=3ū, k ∈ f0; 1; 2g, and the subset sum for a
term ðeμuÞnðe−μūÞm becomes
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1

3

X2
k¼0

ðeμe2πik=3uÞnðe−μe−2πik=3ūÞm

¼ ðeμuÞnðe−μūÞm 1

3

X2
k¼0

e2πikðn−mÞ=3 ð20Þ

¼
�
eðn−mÞμunūm if ðn −mÞ mod 3 ¼ 0;

0 otherwise:
ð21Þ

Terms with nonzero triality are removed, while terms
with zero triality remain unchanged. Therefore, the follow-
ing subset building blocks4 survive from the local con-
tribution (19):

σx≡1þuūþ 1

2!2
ðuūÞ2þ 1

3!2
ðuūÞ3þ 1

3!
ðe3μu3þe−3μū3Þ:

ð22Þ

We will denote the u3 term, just three forward hoppings,
by “baryonic,” the ū3 term, just three backward hop-
pings, by “antibaryonic,” the terms with ðuūÞn,
n ∈ f1; 2; 3g, by “n-mesonic” (hoppings) and the iden-
tity by “empty link.” Only the (anti)baryonic terms carry
the μ-dependence, in the form e�3μ ¼ e�μb , with baryon
chemical potential μb.
The subset building blocks are similar to those found in

the polymer-baryon approach to strong coupling lattice
QCD [17,18]. In the latter the gauge links are integrated out
completely, yielding the same hopping structure (in all
directions) as in σx. Integrating out the Grassmannians as
well, enforces site constraints on the polymers and baryons.
In contrast to this, our hopping terms retain a dependence
on the background gauge links [actually only the 1- and
2-mesons do, see (29)], but are subject to the same
Grassmann constraints.

IV. POSITIVITY

In this section we first present our proof for the positivity
on lattices with Nt ¼ 2 and arbitrary spatial extent. Then
we give a more detailed discussion of the 2 × 2 lattice,
where some concepts become more explicit. While the first
subsection uses the framework of Grassmannians, the
second subsection makes use of the particular matrix
structure of the Dirac operator (which is of course fully
equivalent).

A. Positivity proof for Nt ¼ 2 using Grassmannians

We first consider the temporal part of the fermionic
action and gather the two points in the temporal direction at
each spatial point,

SF;t ¼
X
~x

ðeμuþ e−μū − eμv − e−μv̄Þ; ð23Þ

where in analogy to (18):

u ¼ ψ̄ð1; ~xÞU0ð1; ~xÞψð2; ~xÞ;
ū ¼ −ψ̄ð2; ~xÞU†

0ð1; ~xÞψð1; ~xÞ;
v ¼ ψ̄ð2; ~xÞU0ð2; ~xÞψð1; ~xÞ;
v̄ ¼ −ψ̄ð1; ~xÞU†

0ð2; ~xÞψð2; ~xÞ; ð24Þ

with arguments ~x on the left-hand sides omitted for
simplicity. The relative minus sign between u and v in
(23) comes from the antiperiodic boundary conditions.
For the subset sum we expand expðSF;tÞ in analogy to

Sec. III E, and again the zero triality condition applies to
ðu; ūÞ and ðv; v̄Þ. Using (22) and taking into account the
additional sign for v and v̄ the contribution of the spatial
point ~x to expðSF;tÞ is

σð1;~xÞσð2;~xÞ ¼
��

1þ e3μ

3!
u3
��

1þ e−3μ

3!
ū3
�
þ uūþ ðuūÞ2

2!2

�

× ðu → −v; ū → −v̄Þ; ð25Þ

where four of the hopping terms in (22) were collected into
a product. Because of periodicity, u and v̄ visit the same
Grassmann variables, although they are connected by
different gauge links, and the same holds for v and ū.
The Grassmannian antisymmetry restricts (25) to polyno-
mials that are cubic both in the combinations ðu; v̄Þ and
ðū; vÞ. Therefore, several cross terms from the product
above vanish and one is left with

σ~x ≡ σð1;~xÞσð2;~xÞ ¼ σb þ σm; ð26Þ

where

σb ¼
�
1þ e3μ

3!
u3 −

e−3μ

3!
v̄3
��

1þ e−3μ

3!
ū3 −

e3μ

3!
v3
�

ð27Þ

combines baryonic terms with the empty link and
3-mesons, and the remainder

σm ¼
�
1þ uūþ ðuūÞ2

2!

�
× ðuū → vv̄Þ − 1

¼ uūþ vv̄þ ðuūÞ2
2!2

þ ðvv̄Þ2
2!2

þ uūvv̄

þ uūðvv̄Þ2
2!2

þ ðuūÞ2vv̄
2!2

ð28Þ

is a polynomial in uū and vv̄ and thus mesonic. Note that
various contributions in σ have Grassmann vacancies and

4Note, that the symbol σ now represents subset sums over
Grassmann terms which are still subject to Grassmann integration.
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need to combine with spatial hoppings or mass terms to
achieve Grassmann saturation for all ψ̄ðxÞ and ψðxÞ.
Using the antisymmetry of Grassmannians and detU ¼ 1

one can simplify the baryonic terms to be independent of
the links5

u3

3!
¼ −

v̄3

3!
¼ −ψ̄3ð1; ~xÞψ3ð2; ~xÞ;

v3

3!
¼ −

ū3

3!
¼ −ψ̄3ð2; ~xÞψ3ð1; ~xÞ; ð29Þ

where ψ3 ≡ ψ1ψ2ψ3. The baryonic product can therefore be
written as

σb ¼
�
1þ 2 coshð3μÞ u

3

3!

��
1þ 2 coshð3μÞ ū

3

3!

�

¼ ½1 − 2 coshð3μÞψ̄3ð1; ~xÞψ3ð2; ~xÞ�
× ½1þ 2 coshð3μÞψ̄3ð2; ~xÞψ3ð1; ~xÞ�: ð30Þ

With (30) and (28) the subset sum (26) for the temporal
links at each site ~x can be written as

σ~x ¼ ½1 − 2 coshð3μÞψ̄3ð1; ~xÞψ3ð2; ~xÞ�
· ½1 − 2 coshð3μÞψ3ð1; ~xÞψ̄3ð2; ~xÞ�

þ u · ūþ v̄ · vþ u2

2
·
ū2

2
þ v̄2

2
·
v2

2
þ uv̄ · ūv

þ uv̄2

2
·
ūv2

2
þ u2v̄

2
·
ū2v
2

; ð31Þ

where we have rewritten the terms such that the first
factor depends on fψ̄ð1; ~xÞ;ψð2; ~xÞg and the second on
fψð1; ~xÞ; ψ̄ð2; ~xÞg, cf. the definitions (24) of u, ū, v and v̄
(for clarity the multiplication of such factors is represented
by a dot). With appropriate functions hα the subset weight
(31) can be summarized as

σ~x ¼
X7
α¼0

hαðψ̄ð1; ~xÞ;ψð2; ~xÞ; U0ð1; ~xÞ; U0ð2; ~xÞ�Þ

· hαðψð1; ~xÞ; ψ̄ð2; ~xÞ; U0ð1; ~xÞ�; U0ð2; ~xÞÞ: ð32Þ

In each term both factors can be obtained from one another
by exchanging the fermions and antifermions, ψ ⇌ ψ̄ ,
and complex conjugating the links. After denoting this
exchange operation as

f ≡ fjψ⇌ψ̄ ;Uν⇌U�
ν
; ð33Þ

we can write

σ~x ¼
X
α

hαð~xÞ · hαð~xÞ: ð34Þ

For the spatial part of the fermion action, see (17), we find,
after anticommuting the fermions in the backward hopping
term,

SF;s ¼
X
x

X
i

ðψ̄aðxÞηiðxÞUi;abðxÞψbðxþ îÞ

þ ψðxÞaηiðxÞU�
i;abðxÞψ̄bðxþ îÞÞ ð35Þ

≡X
x

ðwðxÞ þ wðxÞÞ; ð36Þ

where we explicitly wrote out the color indices in (35) (with
implicit summation over repeated indices) to easily identify
the exchange symmetry (33). The spatial weight (without
subsets for the spatial links) is then

eSF;s ¼
Y
x

expðwðxÞÞ · expðwðxÞÞ: ð37Þ

This embodies the antihermiticity of the Dirac operator,
which is an important ingredient in the positivity of the
determinant at μ ¼ 0, and hints at the fact that the structure
(34) will be important to prove the positivity of the subset
weights.
The second ingredient necessary to show the positivity of

the subsets is the staggered chirality, i.e. the fact that all
interactions connect even with odd sites or odd with even
sites (recall that m ¼ 0). Here even and odd lattice sites xe

and xo are those with η5ðxÞ ¼ þ1 and −1, respectively,
where η5 ¼ ð−1Þx0þx1þ���þxd−1 . In all products hα · hα in (34)
and ew · ew in (37) one factor will only depend on the
Grassmann sets fψ̄ðxeÞg≡ Ψ̄e and fψðxoÞg≡Ψo coming
with links fUνðxeÞg≡ Ue and fU�

νðxoÞg≡ Uo� and the
other only on the complements Ψe, Ψ̄o with links Ue�, Uo.
The full massless subset weight reads

σ ¼
Y
~x

X
α~x

hα~xð~xÞ · hα~xð~xÞ
Y
x

expðwðxÞÞ · expðwðxÞÞ;

ð38Þ
and after expanding all products we can rewrite σ as

σ ¼
X
A

fAðΨ̄e;Ψo;Ue;Uo�Þ · fAðΨe; Ψ̄o;Ue�;UoÞ; ð39Þ

5We can write:

1

3!
u3 ¼ 1

3!
ðψ̄UφÞ3 ¼ 1

3!
ðψ̄aUaa0φa0 Þðψ̄bUbb0φb0 Þðψ̄cUcc0φc0 Þ

¼ −
1

3!
ðϵabcϵa0b0c0Uaa0Ubb0Ucc0 Þψ̄3φ3

¼ −
1

3!
ð3! detUÞψ̄3φ3 ¼ −ψ̄3φ3;

where ψaψbψc ¼ ϵabcψ1ψ2ψ3 ¼ ϵabcψ
3 with ψ3 ≡ ψ1ψ2ψ3, and

we used the Leibniz formula for the determinant and detU ¼ 1.
The minus signs comes from the permutation of Grassmann
variables.
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where the index A ¼ fα~xg runs over all combinations of α~x
for all spatial points ~x and oversaturated terms, i.e. with too
many Grassmannians, automatically cancel.
Moreover, the Grassmannmeasure factorizes analogously

Y
x

dψðxÞdψ̄ðxÞ

¼
Y
xe

Y
xo

dψðxeÞdψ̄ðxeÞdψðxoÞdψ̄ðxoÞ

¼
Y
xe
dψ̄ðxeÞ

Y
xo
dψðxoÞ ·

Y
xe
dψðxeÞ

Y
xo
dψ̄ðxoÞ

≡ dΨ̄edΨo · dΨedΨ̄o; ð40Þ

where dψ̄dψ ¼ Q
3
a¼1 dψ̄adψa. The Grassmann integrals

over σ remove all terms with insufficient Grassmann content
and each of the surviving terms is a product of two
polynomials in the (complex) links only. By renaming
integration variables it can be seen that these polynomials
are still related by complex conjugation of the link arguments

Z Y
x

dψðxÞdψ̄ðxÞσ ¼
X
A

Z
dΨ̄edΨofAðΨ̄e;Ψo;Ue;Uo�Þ

·
Z

dΨedΨ̄ofAðΨe; Ψ̄o;Ue�;UoÞ

¼
X
A

pAðUe;Uo�ÞpAðUe�;UoÞ: ð41Þ

Since the polynomials p emerge from the hopping terms in
the Dirac operator, they possess real coefficients only.
Therefore, polynomials with complex conjugated link argu-
ments turn into complex conjugated polynomials, such that

Z Y
x

dψðxÞdψ̄ðxÞσ ¼
X
A

pAðUe;Uo�Þ½pAðUe;Uo�Þ��

¼
X
A

jpAðUe;Uo�Þj2 ≥ 0: ð42Þ

This proves that the massless subset weight is positive for
Nt ¼ 2 at nonzero chemical potential and arbitrary spatial
extent. What is more, the subset weight consists of various
positive subterms (labeled by A).
The modification of this proof caused by a nonzero mass

is presented in Appendix A. For μ ¼ 0 the subset con-
struction is not needed and one can prove the positivity by
using (37) for all directions.
In showing the positivity we have made use of the fact

that for Nt ¼ 2, u and v̄ connect the same sites and
thus have the same Grassmann content but with opposite
μ-dependence, and that the baryonic factors are indepen-
dent of the connecting links, (29), such that μ enters in the
form (30). This would not hold with nonzero triality terms
present, as is the case in the determinant formulation
without subsets.

Let us make some further remarks. First, note that the
temporal antiperiodicity is crucial to ensure the subset
positivity. Consider for instance periodic boundary con-
ditions. In this case the v- and v̄-terms in (23), (25) and (27)
would have plus signs instead of minus signs, and all odd
powers of v and v̄ in the derivation above would have
opposite signs. The mesonic discussion is left unchanged as
v and v̄ always come in pairs, but the baryonic product
would become

�
1þ e3μ

3!
u3 þ e−3μ

3!
v̄3
��

1þ e−3μ

3!
ū3 þ e3μ

3!
v3
�

¼
�
1þ 2 sinhð3μÞ u

3

3!

��
1 − 2 sinhð3μÞ ū

3

3!

�
: ð43Þ

Due to the different signs in both factors, this product cannot
be written as h · h̄ and no longer satisfies the conjugation
symmetry required in the positivity proof above.
Note that the last two terms of the mesonic weight (28)

can be simplified further as (see Appendix B)

uūðvv̄Þ2 ¼ ðuūÞ2vv̄
¼ 4jtrPð~xÞj2ψ̄3ð1; ~xÞψ3ð1; ~xÞψ̄3ð2; ~xÞψ3ð2; ~xÞ:

ð44Þ

This and the 4cosh2ð3μÞ-term from (30), which equals
2þ 2 coshð6μÞ ¼ 2þ 2 coshð3μ=TÞ, have full Grassmann
content and represent the full weight for the one-
dimensional massless case at Nt ¼ 2, cf. (8).
The last remark is slightly more formal. One can rewrite

the subset contribution σ as an exponential of an effective
subset action,

σ ∝ exp
X
~x

�
uūþ vv̄ −

ðuūÞ2 þ ðvv̄Þ2
4

− 6ψ̄3ð1; ~xÞψ3ð1; ~xÞψ̄3ð2; ~xÞψ3ð2; ~xÞ

þ 2 coshð3μÞfψ̄3ð1; ~xÞψ3ð2; ~xÞ − ψ̄3ð2; ~xÞψ3ð1; ~xÞg
�
;

ð45Þ

which can easily be checked by an expansion of the
exponential function (which again terminates). In contrast
to the Dirac action this effective action is not bilinear in
ðψ̄ ;ψÞ but also involves higher powers of the Grassmann
fields. Therefore the Grassmann integral of σ can not be
represented as a determinant.

B. Alternative proof for the massless 2 × 2 lattice

Below we give an alternative positivity proof, which only
holds for a 2 × 2 lattice in the massless case. The salient
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feature of this proof is that it directly uses the determinant
formulation.
For a 2 × 2 lattice the Dirac operator can be written as

D ¼

0
BBBBB@

0 0 Te
1 S1

0 0 S2 Te
2

−To
1 −S†2 0 0

−S†1 −To
2 0 0

1
CCCCCA; ð46Þ

where Tx and St are the temporal and spatial hoppings on
the spatial slice x and time slice t, respectively. These 3 × 3
blocks are given by

Te
1 ¼ eμU0ð11Þ þ e−μU†

0ð21Þ;
To
1 ¼ eμU0ð21Þ þ e−μU†

0ð11Þ;
Te
2 ¼ −½eμU0ð22Þ þ e−μU†

0ð12Þ�;
To
2 ¼ −½eμU0ð12Þ þ e−μU†

0ð22Þ�;
S1 ¼ −½U1ð11Þ −U†

1ð12Þ�;
S2 ¼ U1ð22Þ − U†

1ð21Þ; ð47Þ

where the superscripts e and o stand for even-odd and odd-
even hoppings. Each entry is a sum of two contributions
because neighboring sites on a 2 × 2 lattice can be con-
nected in two ways, where one is “around the world.” The
spatial part of the Dirac operator is anti-Hermitian, there-
fore only two independent St occur. At μ ¼ 0 the full Dirac
operator is anti-Hermitian and To

x ¼ ðTe
xÞ†. The sign differ-

ence between S1 and S2 is due to the staggered phase,
whereas the signs in Tx reflect the antiperiodic boundary
conditions.
Using the determinant formula for block matrices we

find

detD ¼ det

�
Te
1 S1

S2 Te
2

�
det

�−To
1 −S†2

−S†1 −To
2

�

¼ detðSS†Þ detð13 −MeÞ detð13 −MoÞ; ð48Þ

where we defined

S ¼ S1S2;

Me ¼ Te
1S

−1
2 Te

2S
−1
1 ;

Mo ¼ ½S−11 �†To
2½S−12 �†To

1: ð49Þ

The first factor of (48) is the determinant of the spatial part
of the Dirac operator, which is blind to μ and therefore
positive. Formally, the positivity follows because a matrix
product SS† is always positive-semidefinite. At μ ¼ 0

the M-matrices are related as Mo ¼ ðMeÞ†, and the full
determinant is positive for the same reason.

The last two determinants of 3 × 3 matrices in (48) can
be expanded as

detð13 −MÞ ¼3×31 − detM − trM þ ðtrMÞ2 − trM2

2
; ð50Þ

which can, for example, be proven in terms of the
eigenvalues of M. Before constructing the full subsets,
we first construct “coarse subsets” Ωc containing three
configurations by multiplying U0ð11Þ with the three center
phases and U0ð21Þ by their complex conjugate. The
remaining links are left untouched. These rotations form
a subgroup of the full subset group. They multiply Te

1 and
thus Me by the three center phases and To

1 and thus Mo by
the complex conjugate phases, and consequently

detð13 − e2πik=3MeÞ ¼ 1 − detMe − e2πik=3trMe

þ e4πik=3
ðtrMeÞ2 − trMe2

2
;

detð13 − e−2πik=3MoÞ ¼ 1 − detMo − e−2πik=3trMo

þ e−4πik=3
ðtrMoÞ2 − trMo2

2
: ð51Þ

The coarse subset sum of the product (48) can then be
computed as in (21) and we find

1

3

X
Ωc

detD¼detðSS†Þ
�
ð1−detMeÞð1−detMoÞ

þ trMetrMoþðtrMeÞ2− trMe2

2

ðtrMoÞ2− trMo2

2

�
:

ð52Þ
After completing the full subsets the chemical potential

cancels in the second line of (52), since it can only enter if a
temporal link or its inverse appears three times, and by
inspection of (47) and (49) this cannot happen. Since this
expression is independent of μ, its value can equally well be
computed at μ ¼ 0 where Mo ¼ ðMeÞ†. This gives the
following full subset contribution for this second line

σðIIÞ ¼ j det Sj2σ0
�
jtrMej2 þ 1

4
jðtrMeÞ2 − trMe2j2

�
ð53Þ

where σ0ð� � �Þ indicates the subset at μ ¼ 0, and clearly
σðIIÞ is positive. Full subsets of the first line of (52) give a
contribution

σðIÞ ¼
1

jΩj
X
Ω

detðSS†Þ½1 − detðS−1Þ detTe
1 detT

e
2�

× ½1 − detðS−1Þ† detTo
1 detT

o
2�; ð54Þ

where we substituted Me;o, defined in (49). The subset
sums for temporal hoppings are computed in Appendix C
and substitution of (C6) yields,
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σðIÞ ¼ j det Sj2 þ ðdet Sþ det S†Þ4cosh2ð3μÞ
þ 4ð2cosh2ð3μÞ þ jtrPð1Þj2ÞðPð1Þ → Pð2ÞÞ

¼ j4cosh2ð3μÞ þ det Sj2
þ 8cosh2ð3μÞðjtrPð1Þj2 þ jtrPð2Þj2Þ
þ 4jtrPð1Þj2jtrPð2Þj2; ð55Þ

where the Polyakov loops P only depend on the spatial
argument after tracing. This expression contains mesonic
(μ-independent) and baryonic (3μ-dependent) terms.
The full subset weight is simply

σΩ½U0 ;Us �
¼ σðIÞ þ σðIIÞ; ð56Þ

with σðIÞ and σðIIÞ given in (55) and (53). As all the
summands are positive the subset weight is positive too. It
is interesting to note that the first term explicitly combines a
μ-independent and a μ-dependent contribution to achieve
its positivity. A similar principle is at work in the first term
of (31) in the more general proof given in Sec. IVA.
Finally, let us have a look at the canonical subset

weights (integrands of the subsets canonical partition
functions) as introduced in Eq. (13). This means nothing
but collecting the terms in the subset result according
to their μ-factors. The terms e�12μ ¼ e�6μ=T come from
the term 16cosh4ð3μÞ ¼ ðe3μ þ e−3μÞ4 in (56) and have
weights σq¼�6 ¼ 1 as expected from (anti)baryon satura-
tion of the lattice. The weights of the next terms
e�6μ ¼ e�3μ=T are

σq¼�3 ¼ det Sþ ðdet SÞ� þ 4þ 2jtrP1j2 þ 2jtrP2j2: ð57Þ

To compute the first two terms we note that

det S2 ¼ detðU1ð22ÞU1ð21Þ − 1|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Wð2Þ

ÞdetU†
1ð21Þ|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
1

¼ trWð2Þ − trWð2Þ† ¼ 2iIm trWð2Þ; ð58Þ

where WðtÞ is the Wilson loop on time slice t closing
around the spatial boundaries, and the second equality can
easily be checked for any SU(3) matrix in term of its
eigenvalues. Similarly we find for the other time slice

det S1 ¼ −2iIm trWð1Þ; ð59Þ

where the minus sign comes from the staggered phase. On
multiplying we find

det S ¼ 4Im trWð1ÞIm trWð2Þ: ð60Þ

The first two terms of (57) can thus be negative and are not
necessarily compensated for by the remaining positive
terms in σq¼�3. Therefore, the subset positivity does not

generically hold for the individual canonical subset
weights.

C. Note on spatial subsets

In this work we apply center subsets to temporal links
only, which we conjecture are the minimal subsets for
achieving positivity of subset weights. The main motivation
for this choice was that the chemical potential causing the
sign problem only couples to the temporal hoppings.
Extending the idea and applying center subsets on the
spatial links as well is another option to compute the
partition function, which we briefly comment on.
As the temporal subsets are positive already, the spatial

subsets just add positive numbers and thus remain positive.
Obviously, the cost for such subsets is even bigger, namely
3Vd, which is why we have not used spatial subsets in
practice.
The usefulness of spatial subsets can be seen at the level

of the canonical subsets, which are not necessarily positive
as discussed at the end of the previous section. Consider the
term (60) for the 2 × 2 lattice, which can cause a negative
contribution to σq¼�3 in (57). This term is linear in the
Wilson loops Wð1Þ and Wð2Þ and will disappear after
spatial subsetting according to Eq. (21) [with ðn;mÞ ¼
ð1; 0Þ or (0,1)]. In this particular case even the canonical
subset weight becomes positive upon spatial subsetting.
In future work we plan to use the positive summands

obtained after subsetting to sample the partition function
with a worm algorithm. In this context the spatial subsets
could give an additional advantage as they further reduce
the number of allowed building blocks, while still keeping
the dependence on the SU(3) links.

V. NUMERICAL RESULTS

We implemented the full subset method in a Monte Carlo
simulation. The subset weights are computed explicitly by
adding the numerically computed determinants for all the
configurations belonging to the subset. These positive
subset weights are then used to generate relevant subsets
of the partition function using a Metropolis importance
sampling algorithm.
As the full subset contains an exponential number of

configurations we speed up the computation in a number
of ways:

(i) There is some redundancy in the full subset:
although by definition the full subsets contain
3VsNt configurations, there is a 3Nt−1 fold degeneracy
in the determinant values so that we effectively only
need to consider 3ðVs−1ÞNtþ1 different configurations
per subset.

This degeneracy occurs when all temporal links
inside time slice i are rotated by the same Z3-factor
zi, i ¼ 1;…; Nt, while the Polyakov lines are left
unchanged, i.e.

QNt
i¼1 zi ¼ 1. These constrained
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rotations lead to a 3Nt−1 degeneracy of each determi-
nant value. This equality of determinants can be
understood as the latter consist of closed loops and
the rotations leave all loopvalues unchanged: for loops
involving temporal links we either encounter zi and z�i
if the loop goes backward and forward in time, albeit at
different spatial points, or we wrap around the lattice
which also yields unity because of the constraint.

(ii) Rank-6 corrections are used to reduce the numerical
work in the computation of the determinants when
stepping from one configuration to the next in the
subset.

(iii) The algorithm is efficiently parallelized by evenly
distributing the configurations of each subset over
several threads.

More details on the numerical implementation will be given
in a forthcoming publication.
In Table I and Fig. 1 we present results obtained with

direct product subsets for QCD in two dimensions with
massless staggered quarks. We compare the average
reweighting factors for two conventional reweighting
schemes in the link formulation:
(a) phase-quenched reweighting, and
(b) sign-quenched reweighting,
with the reweighting factors for three different subset
constructions:
(c) a collective subset constructed by synchronous Z3

rotations of all temporal links on one time slice, as
mentioned in Sec. III D,

(d) a direct product of local Z3 subsets for the temporal
links of all spatial sites on one time slice (containing
3Vs configurations), which we call T-slice subsets, and

(e) the full subsets (9), which is a direct product of local
Z3 subsets for the temporal links on all lattice sites.

For the full subsets data were collected for Nt × 2 grids
with Nt ¼ 2, 4, 6, 8, 10, for Nt × 4 grids with Nt ¼ 2, 4, 6

and for a 2 × 6 and 2 × 8 grid, all for Nf ¼ 1 and m ¼ 0 in
the strong-coupling limit. As can be seen from the phase-
quenched reweighting factor (a) the sign problem steadily
grows as Nt and Nx is increased. The sign quenched
reweighting (b) somewhat reduces the sign problem, which
can be useful for simulations at small chemical potential
[19]. Whereas a collective Z3 rotation (c) does not bring
much improvement in the two-dimensional case, the T-slice
subsets (d) substantially improves on the sign problem.
However, the truly surprising observation is that the full
subsets (e) yield subset weights that are real6 and positive in
all cases considered. We have proven this property for
Nt ¼ 2 in Sec. IV, but conjecture that it holds for any lattice
size in any dimension.
As an application of the subset method we show the

quark number density as a function of T and μ (in lattice
units) in Fig. 2 for QCD in 1þ 1 dimensions (for the
computation of observables in the subset framework, see
[8, Eq. (3.4)]). One observes the Silver Blaze phenomenon
where the quark number is independent of μ below some
value μc when T → 0. For the larger lattices the full subsets
(e) were too costly and we used T-slice subsets (d) instead.
These subsets require additional reweighting (away from
Nt ¼ 2), but still yield a vast improvement over the
standard phase quenched reweighting method.
We also verified the effect of the gauge action on the

reweighting factors for the 2 × 6 lattice by switching on β
to leave the strong-coupling regime. The subset weights
have to be modified to take into account the different values
of the gauge action for the different subset elements, and
the sign problem slowly reappears even for the full product
subsets. Nevertheless, for β ¼ 1, 2, 3, 4, 5 the reweighting

TABLE I. Reweighting factors for 2d-QCD forNf ¼ 1 (m ¼ 0) for (a) phase-quenched and (b) sign-quenched reweighting in the link-
formulation, and for (c) collective subsets, (d) T-slice subsets and (e) full subsets. The columns give the data for Nt × 2 grids with
Nt ¼ 2, 4, 6, 8, 10, for a Nt × 4 grid with Nt ¼ 2, 4, 6 and for a 2 × 6 and 2 × 8 grid, all in the strong-coupling limit at μ ¼ 0.3 with
NMC ¼ 100; 000.

Nt × Nx 2 × 2 4 × 2 6 × 2 8 × 2 10 × 2

a Phase-quenched 0.8134(3) 0.4361(4) 0.233(2) 0.130(2) 0.071(1)
b Sign-quenched 0.9271(2) 0.6150(5) 0.355(3) 0.203(2) 0.109(2)
c Collective 0.9778(9) 0.777(4) 0.500(6) 0.303(8) 0.178(3)
d T-slice 1.0 0.9896(5) 0.885(2) 0.670(5) 0.436(8)
e Full 1.0 1.0 1.0a 1.0a 1.0a

Nt × Nx 2 × 4 4 × 4 6 × 4 2 × 6 2 × 8

a Phase-quenched 0.7934(5) 0.295(1) 0.0961(9) 0.7364(6) 0.6725(7)
b Sign-quenched 0.9197(3) 0.442(2) 0.149(1) 0.8917(4) 0.8523(5)
c Collective 0.959(1) 0.557(6) 0.214(8) 0.912(3) 0.867(2)
d T-slice 1.0 0.9973(2) 0.812(3) 1.0 1.0
e Full 1.0a 1.0a 1.0a 1.0a 1.0a

ameans NMC ¼ 1; 000.

6The imaginary part of the weights is trivially canceled by
implicitly pairing each configuration with its complex conjugate.
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factor is 1.0, 1.0, 0.984(7), 0.964(13), and 0.972(17)
respectively, so that the sign problem remains very mild,
at least for these parameter values.
As a further test we also looked at the full subsets for

small lattices in three- and four-dimensional QCD, even
though the computational cost is huge even for small lattices.
We observe with great interest that for 23, 4 × 22, and 24

lattices the full subsets always give positive weights, as was
verified on samples of 200 random configurations.

VI. SUMMARY

We have applied subsets generated by center multi-
plications on temporal links to QCD at nonzero chemical
potential and have proven the emerging subset weights to
be positive for Nt ¼ 2 lattices in the strong coupling limit.
We have also presented numerical evidence that leads us to
conjecture that the positivity persists for larger lattices.
Moreover, preliminary results show that the reweighting
induced when reintroducing the gauge action is not severe.
In a subset measurement of the quark number density the
typical Silver Blaze phenomenon is clearly visible.
The number of determinants constituting the full subsets

grows exponentially with the number of lattice sites, i.e. with
inverse temperature and volume, which is a reincarnation
of the sign problem. This is why our numerical studies
have been restricted to small lattices so far. Two ways out of
this situation are conceivable. First, smaller than full
subsets improve the reweighting factor considerably—for
which we gave an analytic argument as well as numerical
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FIG. 2. Surface plots of the quark number density n versus
temperature T and quark chemical potential μ (in lattice units) for
Nx ¼ 2 (Nt ¼ 2…12) and Nx ¼ 6 (Nt ¼ 2…8).
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FIG. 1. Reweighting factors r for 2d-QCD for Nf ¼ 1 (m ¼ 0) in the strong coupling limit at μ ¼ 0.3, where the sign problem is
largest, with NMC ¼ 100; 000 (for the larger lattices the full subsets were simulated with NMC ¼ 1; 000, see Table I). We compare the
reweighting factors in the link-formulation for phase-quenched (pq) and sign-quenched (sq) reweighting, and in the subset formulation
for collective, T-slice and full subsets. Each column shows the different (color coded) reweighting factors for a specific Nt × Nx lattice.
For Nt ¼ 2 the T-slice data are not visible as they overlap with the full direct product data (r ¼ 1.0 for both of them).
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evidence—and these subsets are thus helpful for extending
the applicability range of reweighting methods.
The second possibility relies on our finding that the full

subset weight can be decomposed in a sum of positive
terms. Some of their weights simplify considerably, as will
also be discussed in a further publication [14]. Moreover,
the Grassmann nature of the fermions constrains the
combinations of such building blocks. Such constrained
systems can typically be simulated using worm algorithms,
and will be the subject of future work.
Open issues are the conjecture about the subset positivity

for Nt ≥ 4 lattices, which still needs to be demonstrated,
and the need to investigate how large the sign problem
becomes on larger lattices when introducing the gauge
action and leaving the strong coupling regime.
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APPENDIX A: POSITIVITY OF THE
MASSIVE SUBSETS

In this section we extend the positivity proof given in
Sec. IVA to the massive case.
The mass insertions, up to three per site,

expð2mψ̄ðxÞψðxÞÞ ¼ 1þ 2mψ̄ðxÞψðxÞ

þ ð2mÞ2
2!

ðψ̄ðxÞψðxÞÞ2

þ ð2mÞ3
3!

ðψ̄ðxÞψðxÞÞ3; ðA1Þ

break the chiral symmetry, since they connect sites with
themselves, and thus modify the positivity argument of
Sec. IVA, which was based on the staggered chirality of the
Dirac operator.
For a given subset term let n denote the total number of

mass insertions on even sites. The total number of mass
insertions at odd sites is n too7 and thus the partition
function only contains even powers of m. For the argument
it is irrelevant how many insertions come from any given
site, the only thing that matters is that the coefficients of all
even mass terms in (A1) have the same sign and those from
all odd mass terms too. We denote the mass insertion
locations as xoi and xej with i; j ¼ 1;…; n and regroup the
fermions as follows,

�Yn
i¼1

ψ̄ðxoi Þψðxoi Þ
��Yn

j¼1

ψ̄ðxejÞψðxejÞ
�

¼
�Yn
i¼1

ψ̄ðxoi Þ
��Yn

i¼1

ψðxoi Þ
��Yn

j¼1

ψ̄ðxejÞ
��Yn

j¼1

ψðxejÞ
�

¼
�Yn
i¼1

ψ̄ðxoi Þ
��Yn

j¼1

ψðxejÞ
�
·

�Yn
i¼1

ψðxoi Þ
��Yn

j¼1

ψ̄ðxejÞ
�
;

ðA2Þ

which comes with a factor m2n. These mass insertions
multiply expressions similar to (38) for the hopping
contributions without changing their structure, i.e. they
remain products of complex conjugate polynomials after
Grassmann integration. Because the even powers ofm have
positive coefficients and no additional minus signs are
picked up by reordering the Grassmann variables (a
reordering of ψ is always accompanied by the same
reordering of ψ̄) the positivity proof holds as before.

APPENDIX B: MIXED-MESON CONTRIBUTION

In order to simplify the mixed-meson hopping ðuūÞ2ðvv̄Þ
we substitute ψ ≡ ψð1; ~xÞ, φ≡ ψð2; ~xÞ, U≡ U0ð1; ~xÞ and
V ¼ U0ð2; ~xÞ in (24), for simplicity, and expand

u2v̄ ¼ ðψ̄UφÞ2ð−ψ̄V†φÞ ¼ ψ̄aψ̄bψ̄cUaa0Ubb0φa0φb0φc0V
†
cc0

¼ ψ̄3φ3ϵabcϵa0b0c0Uaa0Ubb0V
†
cc0 ðB1Þ

ū2v¼ð−φ̄U†ψÞ2ðφ̄VψÞ¼−φ̄aφ̄bφ̄cU
†
aa0U

†
bb0ψa0ψb0ψc0Vcc0

¼−φ̄3ψ3ϵabcϵa0b0c0U
†
aa0U

†
bb0Vcc0 ; ðB2Þ

where we also reordered the Grassmannians. We will also
use the following relation for U ∈ SUð3Þ,

1

2
ϵabcϵa0b0c0Uaa0Ubb0 ¼ U†

c0c: ðB3Þ

Indeed,U† ¼ U−1 in SU(3) and the left-hand side of (B3) is
the matrix of cofactors, which equals U−1 transposed, up to
the determinant of U, which is unity in SU(3).
Substituting (B3) in (B1) and (B2) yields

u2v̄ ¼ 2ψ̄3φ3U†
c0cV

†
cc0 ¼ 2trP†ψ̄3φ3;

ū2v ¼ −2φ̄3ψ3Uc0cVcc0 ¼ −2trPφ̄3ψ3; ðB4Þ

with Polyakov line P ¼ UV. Gathering these results yields

ðuūÞ2ðvv̄Þ ¼ 4trPtrP†ψ̄3ψ3φ̄3φ3; ðB5Þ

where the sign vanishes after commuting Grassmann
variables.

7For n mass insertions on even sites the remaining ð3V=2 − nÞ
fermions ψðxeÞ must be provided by temporal and spatial
hoppings to saturate the Grassmann integrals. These hoppings
also contain the same number of ψ̄ðxoÞ. The same is true for
ψ̄ðxeÞ and ψðxoÞ. In order to saturate the Grassmann integrals on
the odd sites, n mass insertions are required there as well.
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APPENDIX C: TEMPORAL HOPPINGS
FOR 2 × 2 LATTICES

Herein we compute the subsets of temporal hoppings
needed in (54). Their definitions (47) as sums of two
temporal links can be compactly written as

Te;o
x ¼ ð−Þxþ1½eμU0ðte;o; xÞ þ e−μU†

0ðto;e; xÞ�;
with te ¼ x; to ¼ ðxþ 1Þ mod 2: ðC1Þ

The determinants are computed in the following way

detTe;o
x ¼ ð−Þxþ1 detðeμU0ðte;o; xÞU0ðto;e; xÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Pðte;o;xÞ

þ e−μÞ

× detU†
0ðto;e; xÞ|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
1

¼ ð−Þxþ1ðe−3μ þ e−μtrPðxÞ þ eμtrPðxÞ† þ e3μÞ;
ðC2Þ

where the Polyakov loops P only depend on the spatial
argument after tracing, and the second equality can be
derived for any P∈SUð3Þ using its eigenvalues. The pro-
duct of these determinants at the same spatial position x,

detTe
x detTo

x

¼ e−6μ þ e−4μ2trPðxÞ þ e−2μ½2trPðxÞ† þ ðtrPðxÞÞ2�
þ 2ð1þ jtrPðxÞj2Þ þ e2μ½2trPðxÞ þ ðtrPðxÞ†Þ2�
þ e4μ2trPðxÞ† þ e6μ; ðC3Þ

is nothing but the one-flavor determinant of massless
one-dimensional QCD for Nt ¼ 2 [8 Eq. (A.6)
with A ¼ 2].
What is needed in (54) are total subsets on various

products of such determinants. Since the latter depend on
the links only through Polyakov loops, it is sufficient to
center rotate the PðxÞ, which removes their nonzero triality
terms. From (C2) we obtain the subset as the zero triality
projection

σðdetTe;o
x Þ ¼ ð−Þxþ12 coshð3μÞ: ðC4Þ

Note that Te
x and To

x depend on the same PðxÞ such that the
subset on the product (C3),

σðdetTe
x detTo

xÞ ¼ e−6μ þ 2þ 2jtrPðxÞj2 þ e6μ

¼ 4cosh2ð3μÞ þ 2jtrPðxÞj2; ðC5Þ

is not the product of individual subsets. Again, this
expression agrees with the subset weight for the massless
case in 0þ 1 dimension, cf. Eq. (8). Finally, the subsets on
different x factorize, giving

σðdetTe
1 detT

e
2Þ ¼ σðdetTo

1 detT
o
2Þ ¼ −4cosh2ð3μÞ;

σðdetTe
1 detT

e
2 detT

o
1 detT

o
2Þ

¼ ð4cosh2ð3μÞ þ 2jtrPð1Þj2Þ × ðPð1Þ → Pð2ÞÞ: ðC6Þ
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