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We calculate the energy of the state closest to threshold for two and three identical, spinless particles
confined to a cubic spatial volume with periodic boundary conditions and with zero total momentum in the
finite-volume frame. The calculation is performed in relativistic quantum field theory with particles
coupled via a λϕ4 interaction, and we work through order λ3. The energy shifts begin at Oð1=L3Þ, and we
keep subleading terms proportional to 1=L4, 1=L5 and 1=L6. These terms allow a nontrivial check of the
results obtained from quantization conditions that hold for arbitrary interactions, namely that of Lüscher for
two particles and our recently developed formalism for three particles. We also compare to previously
obtained results based on nonrelativistic quantum mechanics.
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I. INTRODUCTION

We have recently derived a quantization condition that,
subject to some conditions, determines the energy spectrum
for three particles in a cubic box [1,2]. The formalism is
fully relativistic, and extends earlier work in nonrelativistic
effective field theories [3,4]. One application of this general
result is to determine how the energy of the state lying
closest to the three-particle threshold depends on the box
size L. We have developed such a threshold expansion
through Oð1=L6Þ in Ref. [5].
This expansion also allows a test of the formalism. Since

the energy shifts are proportional to 1=L3, the kinematics
becomes nonrelativistic for large enough L. Thus we can
compare our results to those obtained using nonrelativistic
quantum mechanics in Refs. [6,7]. This comparison is
successful for the three leading terms (proportional to 1=Ln

with n ¼ 3, 4, 5), but turns out not to be useful for the 1=L6

term. This is because the three-particle interaction enters at
this order, and there is no a priori relation between a
nonrelativistic contact interaction and a relativistic three-
particle amplitude at threshold.1 Thus one can only use the

1=L6 terms as a method for determining this relation, and
not as a check on our threshold expansion.
We have thus turned to perturbation theory (PT) as an

alternative tool to provide a test of the 1=L6 results from the
threshold expansion. We pick the simplest interacting,
perturbatively renormalizable, relativistic QFT—scalar
λϕ4 theory—and determine the threshold energy shift
through Oðλ3Þ, keeping terms scaling as 1=Ln with
n ≤ 6 in the large volume expansion. Cubic order is
sufficient to provide a nontrivial check on the threshold
expansion developed in Ref. [5]. Furthermore, although the
ϕ4 theory has no bare six-point vertex, there is an induced
three-particle scattering amplitude starting at Oðλ2Þ, and
the subtraction methods developed in Refs. [1,5] are tested
at one-loop order by our calculation. In particular, as part of
our calculation, we have worked out the subtracted three-
particle amplitude at threshold through cubic order, using
the subtraction defined in Ref. [5].
We have carried out the calculation both for two and

three particles, so as to provide further cross-checks. In
particular, we can compare the result of our perturbative
threshold expansion for two particles with that obtained
using the relativistic finite-volume two-particle formalism
developed in Refs. [12,13]. The agreement we find, as
described below, gives us confidence in our methodology.
We can also compare to the results for two particles

obtained using nonrelativistic quantum mechanics in
Ref. [6]. Since the three-particle amplitude does not enter
into this result, the comparison is unambiguous. We find a
discrepancy in terms proportional to λ2=L6, and make a
suggestion for its source.
The remainder of this article is organized as follows. In

the following section we give an overview of our meth-
odology. Results for the two-particle threshold energy are
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1One indication that there cannot exist a simple a priori

relation between the nonrelativistic and relativistic three-body
interactions is that both require regularization and are scale and
scheme dependent, with different regularization schemes needed
for the two theories. In fact, in the relativistic context the situation
is even more complicated. This is because, as has been known for
a long time (see, e.g. Refs. [8–11], and our recent discussion in
Ref. [1]), the standard three-particle scattering amplitude diverges
at threshold. To obtain a finite threshold amplitude one must
perform subtractions, e.g. following the methods introduced in
Refs. [1,5]. These, however, are not unique—many definitions
are possible.
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then worked out in Sec. III. In Sec. IV we calculate the
subtracted, three-particle scattering amplitude at threshold.
In Sec. V we determine the three-particle threshold energy
and express it in terms of this subtracted amplitude as well
as two-to-two scattering observables. We make the com-
parisons to prior results in Sec. VI and present some
conclusions.
Three appendices contain technical details. Appendix A

derives two identities for finite-volume momentum sums.
Appendix B works out the s-wave scattering length and
effective range in λϕ4 theory. Finally, appendix C develops
the threshold expansion for two particles that follows from
Lüscher’s quantization condition out to Oð1=L6Þ.

II. OVERVIEW OF CALCULATION
AND METHODOLOGY

We consider the relativistic QFT described by the
Euclidean Lagrangian density,

L ¼ 1

2
∂μϕ∂μϕþm2

2
ϕ2 þ λ0

4!
ϕ4

þ δZ
2
∂μϕ∂μϕþ δZm

2
m2ϕ2; ð1Þ

with ϕ a scalar field. Although this theory contains no six-
particle local interaction, a 3 → 3 scattering amplitudeM3

is induced, as discussed below. This theory has a Z2

symmetry, under which ϕ → −ϕ, that forbids amplitudes
involving an odd number of fields. This symmetry is also
assumed in the general three-body formalism of Refs. [1,2].
We have included counterterms for wave-function and
mass renormalization. These are tuned so that m is the
physical, infinite-volume mass and that the residue of the
infinite-volume propagator at the mass pole is unity. Note
that we do not include an explicit counterterm for the
coupling λ0, preferring to work initially with the bare
coupling and later describe its renormalization.
To determine the energies of states close to threshold, we

calculate even and odd particle-number correlators in finite
volume. Choosing convenient overall factors, these are
defined by

C2ðτÞ ¼
ð2mÞ2
2L6

e2mτh ~ϕ~0ðτÞ2 ~ϕ~0ð0Þ2i; ð2Þ

C3ðτÞ ¼
ð2mÞ3
6L9

e3mτh ~ϕ~0ðτÞ3 ~ϕ~0ð0Þ3i; ð3Þ

where

~ϕ~pðτÞ ¼
Z
L
d3xe−i~p·~xϕð~x; τÞ: ð4Þ

The subscript “L” indicates that the spatial volume is
restricted to a cube of side L, with periodic boundary

conditions applied to ϕ. Thus the allowed momenta are
~p ¼ 2π~n=L, with ~n a vector of integers. We work in
Euclidean space, with τ the Euclidean time, which is taken
to have infinite range. We choose to place all fields at zero
spatial momentum since the threshold state in the absence
of interactions consists of particles at rest. Thus our creation
and annihilation operators will have large (Oð1Þ in PT)
overlap with the actual threshold state even in the presence
of interactions. This is a convenience, but is not strictly
necessary since all we need is for our operators to have
some overlap with the threshold state.
The general form of these two correlators is known in

terms of the eigenstates of the Hamiltonian of the theory.
Assuming, as we do henceforth, that τ > 0, we have

C2ðτÞ ¼
X

n∈even
Z2;ne−ΔE2;nτ; ð5Þ

C3ðτÞ ¼
X
n∈odd

Z3;ne−ΔE3;nτ; ð6Þ

where

ΔEj;n ¼ Ej;n − jm: ð7Þ

Due to the Z2 symmetry, it is possible to separate states
with even- and odd-particle quantum numbers into C2 and
C3, respectively. This implies that C2 contains a contribu-
tion from the vacuum state, which [given the inclusion of
the expð2mτÞ in its definition, Eq. (2)] leads to a growing
exponential of τ. Similarly, C3 contains an exponentially
growing contribution from a single-particle state. Such
growing exponentials might be problematic in a numerical
simulation, but can be readily identified in an analytic
calculation.
Our aim is to pick out from the infinite sum of

exponential contributions, those corresponding to the states
nearest threshold. We know that there is only one such state
for each correlation function, since there is only one such
state in the free theory (with all particles at rest) and we are
making an infinitesimal perturbation. For these threshold
states, the quantities ΔEj;n vanish as L → ∞ as a sum of
powers of 1=L, up to possible logarithmic corrections—
which in fact do not arise at the order we work—and
exponentially suppressed terms. The latter, which behave
as e−mL, we neglect throughout. Such corrections are also
dropped in Lüscher’s general two-particle quantization
condition and in our general three-particle formalism. As
mentioned above, in this work we expand the threshold
energy shift, ΔEj;n, in both λ0 and 1=L, working through
Oðλ30Þ and Oð1=L6Þ.
As is well known (see, e.g., Refs. [6,7,12,13]), the

leading contribution to the threshold energy shift is propor-
tional to 1=L3. As we now explain, this implies that we can
unambiguously pick out from the CjðτÞ the contribution
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from the near-threshold state. Consider first the behavior of
ΔEj;n from excited states. The lightest such state adds a
minimal unit of relative momentum between two of the
particles, so that ΔE2;n ¼ 2ωp − 2mþOðλ0Þ, where ωp ≡ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

~p2 þm2
p

with j~pj ¼ 2π=L. For L ≫ 1=m, the energy
shift can be expanded asΔE2;n ∝ ~p2 ∝ 1=L2, and so we see
that the excited states are parametrically separated from the
near-threshold state, whose energy shift scales as 1=L3 as
noted above. Thus there can be no avoided level crossings,
and, in an analytic calculation, we can unambiguously
identify the excited state contributions. We stress that it is
crucial to discard these exponentials before expanding in
1=L, so that the contributions do not become confused with
the ground-state energy shift. Excited states involving more
particles (e.g. five-particle states in C3) are even more
obviously separated, since then ΔEj;n ≈ 2m, which does
not vanish as L → ∞. Similarly, far-subthreshold states,
which contain less particles (e.g single particle states in
C3), have ΔEj;n ≈ −2m, and the exponentials can also be
easily separated.
In light of the previous discussion, the method we use is

as follows. We calculate C2 and C3 order by order in PT,
and remove by hand the contributions from exponentially
growing far-subthreshold states and from exponentially
falling excited states. The resulting subtracted correlators
we call Cj;thr. We know that these have the form

Cj;thr ¼ Zj;thre−ΔEj;thrτ: ð8Þ

Thus, if we expand in powers of τ, and keep only the
constant and linear terms,

Cj;thrðτÞ ¼ Cj;thrð0Þ þ τ½∂τCj;thrð0Þ� þOðτ2Þ; ð9Þ

then the threshold energy shift is given by

ΔEj;thr ¼ −
∂τCj;thrð0Þ
Cj;thrð0Þ

: ð10Þ

The advantage of this method is that it allows us to keep
track of powers of λ0 in a straightforward manner. An
alternative approach would be to identify the infinite set of
perturbative diagrams leading to the exponential behavior
in Eq. (8), with its associated renormalization factor Zj;thr.
This requires working to all orders in λ0 in a subset of
diagrams. We have used this alternate method as a check on
our results, though we present no details here.
The diagrams that we need to calculate to obtain ΔEj;thr

up to third order in λ0 are shown in Figs. 1 and 2 for C2 and
C3, respectively. The free propagators are

h ~ϕ~pðτ1Þϕð~0; τ2Þiλ0¼0 ¼
1

2ωp
e−ωpjτ1−τ2j; ð11Þ

where, again, ωp ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~p2 þm2

p
is the energy of a free

particle with a finite-volume momentum ~p. For each loop
there will be a sum over spatial momentum restricted to the
allowed finite-volume values. In addition there will be an
integral over the Euclidean time of each intermediate vertex.
For given values of each of the spatial momenta, this is
simply an integral over exponentials, with the integrand
depending on the time ordering due to the absolute values in
the propagators, Eq. (11). Thus the integrals are trivial, but
keeping track of all the time orderings is less so. We have
used two independent Mathematica codes to ensure that all
terms are included. After the vertex integrals, one can read
off which terms are exponentially falling or growing, drop
these by hand, and thus obtain Cj;thrðτÞ. Expanding in
powers of τ leads to the results for Cj;thrð0Þ and
∂τCj;thrð0Þ [see Eq. (9)] and thus to ΔEj;thr [using Eq. (10)].
The final stage of the calculation is, for each loop, to sum

over the finite-volume momenta. This is done by con-
verting sums to integrals, which can be absorbed into
infinite-volume loop contributions, plus a finite-volume
residue leading to the desired power-law terms. The
methods for converting sums to integrals are variants
and extensions of those used in deriving the general
finite-volume quantization conditions [1,12,13] and their
threshold expansions [5]. The results we need are collected
in Appendix A.
As a simple illustration of these methods, consider the

diagrams of Figs. 1(a) and 2(a). By construction, both

diagrams lead to CðaÞ
j ðτÞ ¼ 1. In particular, the contraction

factors cancel the 1=2 and 1=6 in Eqs. (2) and (3),
respectively. There are thus no exponentially growing or
falling terms to remove by hand, and Cj;thrðτÞ ¼ CjðτÞ ¼ 1

at this order.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

p
q

p

FIG. 1. Feynman diagrams contributing to the even particle-
number correlation function. External particles have zero three-
momentum. Diagram (i) also has a horizontally flipped partner,
not shown. Examples of labels used in the text for loop momenta
are shown.
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Since only the constant term in Cj;thr is nonvanishing at
leading order, the perturbative expansions of the quantities
of interest can be written as follows:

Cj;thrð0Þ ¼ 1þ
X∞
n¼1

λn0C
ðnÞ
j;thrð0Þ; ð12Þ

∂τCj;thrð0Þ ¼
X∞
n¼1

λn0½∂τC
ðnÞ
j;thrð0Þ�; ð13Þ

ΔEj;thr ¼
X∞
n¼1

λn0ΔE
ðnÞ
j;thr: ð14Þ

Inserting these expansions into Eq. (10), we find

ΔEð1Þ
j;thr ¼ −∂τC

ð1Þ
j;thrð0Þ; ð15Þ

ΔEð2Þ
j;thr ¼ −∂τC

ð2Þ
j;thrð0Þ þ Cð1Þ

j;thrð0Þ½∂τC
ð1Þ
j;thrð0Þ�; ð16Þ

ΔEð3Þ
j;thr ¼ −∂τC

ð3Þ
j;thrð0Þ þ Cð1Þ

j;thrð0Þ½∂τC
ð2Þ
j;thrð0Þ�

þ ðCð2Þ
j;thrð0Þ − Cð1Þ

j;thrð0Þ2Þ½∂τC
ð1Þ
j;thrð0Þ�: ð17Þ

Thus a third-order calculation of ΔEj;thr requires a third-
order result for ∂τCj;thrð0Þ but only a second-order result
for Cj;thrð0Þ.
Another simple example of our methods is provided by

the disconnected diagram of Fig. 1(b). This diagram clearly
has no dependence on τ, so when we use Eq. (2) we find
that C2ðτÞ ∝ e2mτ. Dropping this exponentially growing
term leads to C2;thr ¼ 0, so this diagram makes no con-
tribution to the threshold energy.
The final example we consider here is the connected

diagram Fig. 1(c), which involves a single vertex. All four

propagators have vanishing spatial momenta, so we only
need to do the integral over the vertex position, τ1. The
resulting contribution to the correlator is

CðcÞ
2 ðτÞ ¼ −

1

2

λ0
ð2mÞ2

1

L3

�Z
τ

0

dτ11

þ
Z

0

−∞
dτ1e4mτ1 þ

Z
∞

τ
dτ1e−4mðτ1−τÞ

�
ð18Þ

¼ −
λ0

8m2L3

�
1

2m
þ τ

�
: ð19Þ

Here there are no exponentially growing or falling terms to
remove, and we find the first nontrivial result for the
threshold energy shift

∂τC
ð1Þ
2;thrð0Þ ¼ −

1

8m2L3
¼ −ΔEð1Þ

2;thr; ð20Þ

as well as an Oðλ0Þ contribution to the constant term

Cð1Þ
2;thrð0Þ ¼ −

1

16m3L3
: ð21Þ

We now describe three classes of diagram that we do not
need to calculate explicitly, although they contribute to the
CjðτÞ at the order we work. This is because they either do
not contribute to Cj;thrðτÞ, or they lead only to changes in
the overall normalization of the correlators, Zj;thr, but not to
the energy shifts ΔEj;thr. Examples of these diagrams are
shown in Fig. 3 for C2 and Fig. 4 for C3.
The first class involves self-energy and counterterm

insertions on the diagrams described above (i.e., those in
Figs. 1 and 2). All diagrams in Fig. 3 and those of Fig. 4(a)–
4(c) are examples of this class. We first note that

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

(k) (l)

p

(m) (n) (o)

FIG. 2. Feynman diagrams contributing to the odd particle-number correlation function C3. External particles have vanishing spatial
momentum. Not shown are diagrams obtained from (h), (j), (k) and (o) by applying the loop correction to the other vertex. An example
of loop-momentum labeling is shown. Figures (i)–(o) are also diagrams for the connected part of the three-particle scattering amplitude.
We reference these diagrams, reinterpreted as infinite-volume scattering contributions, in our calculation of Sec. IV. For that calculation
the external particles are not assumed to be at rest.
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contributions involving tadpole diagrams, such as those in
Figs. 3(a)–3(f) and Fig. 4(a), are cancelled identically by
the δZm counterterm. This is because the loops are
independent of the external momenta and thus lead only
to mass renormalization. The only subtlety is that δZm
actually cancels the infinite-volume version of the tadpole
diagram, in which the loop is integrated rather than
summed. However, since the difference between the sum
and the integral is exponentially suppressed, scaling like
e−mL, no contribution remains in our 1=L expansion.2

The other renormalization diagrams that contribute at the
order we work are those that do not involve tadpoles. These

are those shown in Figs. 3(g)–3(i) and Figs. 4(b) and 4(c),
together with related diagrams in which the renormaliza-
tions appear on different external lines, and diagrams
containing the corresponding counterterms. Note that
renormalizations appear only on external propagators at
this order. For all these diagrams the loop sums can be
replaced by integrals—there are no power-law finite-volume
residues. Thus, if the propagators were evaluated on mass
shell, the contributions of these diagrams would exactly
cancelwith those containing the appropriatemass andwave-
function counterterms (given our convention that the residue
at the mass pole is unity). In fact, the external propagators,
while evaluated at vanishing spatial momenta, are not
Fourier transformed in time. Thus they contain excited state
contributions. However, once these are removed, following
our general prescription described above, we expect the
general argument to hold and the contributions of these
diagrams and those with the corresponding counterterms to
cancel exactly. We have checked that this is the case by
explicitly calculating these diagrams.
The second class of diagrams are those exemplified by

Figs. 4(d), 4(e), and 4(f), as well as those obtained by
horizontal reflection. The characteristic feature of this class
is that there is a disconnected propagator joining two of the
external fields at either the initial or final time, multiplied
by a “one-to-three” correlator. This factorization is main-
tained as higher-order corrections are included. The dis-
connected propagator has no τ dependence, and so provides
only an overall factor. Thus, applying our methodology to
this class of diagrams amounts to studying the three-
particle threshold energy using the one-to-three correlator.
As noted above, this is a legitimate approach, since one can
use any interpolating fields with the correct quantum
numbers. In particular, this class of diagrams alone must
give the same result for ΔE3;thr as that obtained from the
full C3. Thus we can drop these one-to-three diagrams
without changing the result for the energy shift. We have
checked this argument by explicitly calculating all the
diagrams in this class up to order λ30. Note that, since one
vertex is needed to convert the initial single particle into
three, only a second-order result for ΔE3;thr is obtained.
The third and final class of diagrams are those exem-

plified by Figs. 4(g), 4(h), and 4(i). Here one is effectively
calculating the threshold energy shift using the “one-to-
one” correlator, with the disconnected propagators at each
end only changing the overall factor. Once again, this class
of diagrams alone, analyzed using our method, must yield
the correct result for ΔE3;thr, and so can be dropped.

III. TWO-PARTICLE ENERGY SHIFT

In this section we calculate the threshold energy shift for
two particles. We work toOðλ30Þ in PT and keep terms up to
Oð1=L6Þ in thevolume expansion.We have alreadyobtained
the contribution linear in λ0, Eq. (20), sowe start herewith the
quadratic term, which arises from Figs. 1(d) and 1(e).

(a) (b)

(d)

(h)(g)

(f)

(i)

(c)

(e)

FIG. 3. Examples of Feynman diagrams leading to mass and
wave-function renormalization in the correlator C2 at the order
we work. Similar diagrams involving the counterterms δZ and
δZm are not shown.

(a) (b)

(d)

(h)(g)

(f)

(i)

(c)

(e)

FIG. 4. Examples of Feynman diagrams whose contributions to
C3 lead only to renormalizations of the constant Z3;thr but not to
changes in the threshold energy shift ΔE3;thr. Diagrams similar to
(a)–(c) but involving counterterms are not shown.

2The difference between loop sums and integrals is exponen-
tially suppressed as long as there are no cuts through the loops in
which, for threshold kinematics, all particles can go on shell.
Several examples where this is not the case are described in
subsequent sections.
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For Fig. 1(d), the form of the result depends on whether
the loop momentum, ~p, vanishes or is nonvanishing. This is
because one of the terms which enters the energy shift in
the ~p ¼ 0 case becomes an excited state exponential, to be
discarded, in the case of nonvanishing loop momenta. The
zero-momentum contribution is

C2ðτÞ ⊃
�

λ0
8m2L3

�
2
�

3

8m2
þ 3τ

4m
þ τ2

2

�
: ð22Þ

The τ2 term is the second term in the expansion of

expð−ΔEð1Þ
2;thrτÞ, with ΔEð1Þ

2;thr given in Eq. (20), and does
not concern us here. For ~p ≠ 0 we find the contribution

C2ðτÞ ⊃
λ20

64m2L3

1

L3

XΛ
~p≠0

1

ω2
p

�
ωpðω2

p − 3m2Þ
2mð~p2Þ2

þ τ
ωp

~p2
þ e−2ðωp−mÞτ m2

ð~p2Þ2
�
: ð23Þ

The superscript Λ indicates that ultraviolet (UV) regulari-
zation is required, although the choice of regulator is
unimportant. The last term in the summand is from excited
states, and is dropped in C2;thrðτÞ, as explained in the
previous section. The remaining two parts of the summand
diverge for ~p → 0, and are converted to integrals plus
finite-volume residues using the results in Appendix A. For
example, the term proportional to τ leads to the following

contribution to ∂τC
ð2Þ
2;thrð0Þ:

∂τC
ð2Þ
2;thrð0Þ ⊃

1

64m2L3

1

L3

XΛ
~p≠0

1

ωp ~p2
ð24Þ

¼ 1

64m2L3

�Z
Λ

~p

�
1

ωp ~p2

�
þ I
4π2mL

þ 1

2m3L3

�
;

ð25Þ
where we have used Eq. (A5) and introduced the short-
hand

R
~p ≡

R
d3p=ð2πÞ3.

Turning to Fig. 1(e), we note that ~p ¼ 0 does not need to
be treated separately. After dropping excited-state contri-
butions, we obtain

C2;thrðτÞ ⊃
λ20

32m2L3

1

L3

XΛ
~p

�
ω2
p þ ωpm −m2

2mω4
pðωp þmÞ þ

τ

ω3
p

�
:

ð26Þ
Here the sum can be replaced by an integral, since the
summand is nonsingular and we are dropping exponentially
suppressed volume dependence.
Combining the results from Eqs. (22), (23) and (26), and

evaluating the sums using Eqs. (A5) and (A8), we obtain

∂τC
ð2Þ
2;thrð0Þ ¼

A2

8m2L3
þ I
256π2m3L4

þ 5

256m5L6
; ð27Þ

Cð2Þ
2;thrð0Þ ¼ −

J
1024π4m2L2

þ A2

16m3L3

þ Ið0;2Þ

64m3L3
þOðL−4Þ: ð28Þ

Here A2 is the one-loop integral defined in Appendix B,
Eq. (B6), while Ið0;2Þ is the finite integral

Ið0;2Þ ¼
Z
~p

m
ωp þm

�
1

ωp ~p2
−

m
ω4
p

�
¼ 1

8π
: ð29Þ

Two comments are in order. First, the A2 terms are
exactly those needed to convert the factor of λ0 multiplying
the first-order results in Eqs. (20) and (21) into the
renormalized λ. The latter is defined in Eqs. (B7)–(B8),
which we reproduce here for clarity,

λ ¼ 32mπa ¼ λ0 − A2λ
2
0 þ A3λ

3
0 þOðλ40Þ; ð30Þ

where a is the two-particle scattering length. Second, we

have truncated Cð2Þ
2;thrð0Þ at Oð1=L3Þ, since higher-order

terms in 1=L lead to contributions to ΔEð3Þ
2;thr of Oð1=L7Þ.

This is becauseCð2Þ
2;thrð0Þmultiplies∂τC

ð1Þ
2;thrð0Þ ∝ 1=L3when

it contributes to ΔEð3Þ
2;thr, as can be seen from Eq. (17).

Now we move to third order. As is clear from Eq. (17),

we only need to determine the term linear in τ, ∂τC
ð3Þ
2;thrð0Þ,

in order to obtain ΔEð3Þ
2;thr. Furthermore, we can drop any

contributions falling as 1=L7 or faster.
We begin with Fig. 1(f). If both loop momenta vanish,

the diagram is proportional to 1=L9 and can be dropped. If
only one loop momentum vanishes, we find (dropping
higher-order terms)

∂τC
ð3Þ
2;thrð0Þ ⊃

1

1024m5L6

1

L3

XΛ
~p≠0

4m2 − 3~p2

ωpð~p2Þ2 ; ð31Þ

¼ J
4096π4m4L5

−
1

256m5L6

�
Ið1;3Þ þ

Z
Λ

~p

3

4ωp ~p2

�
; ð32Þ

where

Ið1;3Þ ¼
Z
~p

m
ωpðωp þmÞ~p2

¼ 1

2π2
: ð33Þ

The UV divergent integral in Eq. (32) combines with that in
the result from Fig. 1(i) [given in Eq. (38) below] to give a
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term proportional to A2. This turns out to be exactly the
contribution needed to convert the factor of λ20 multiplying
the τ term in Eq. (22) to λ2.
If both momenta are nonvanishing, the result factorizes

into a product of loop sums.3

∂τC
ð3Þ
2;thrð0Þ ⊃ −

1

512m2L3

�
1

L3

X
~p≠0

1

ωp ~p2

�
2

; ð34Þ

¼−
1

512m2L3

�Z
~p

1

ωp ~p2
þ I
4π2mL

þ 1

2m3L3

�
2

:

ð35Þ
The only product of finite-volume residues that falls slowly
enough to be included is

∂τC
ð3Þ
2;thrð0Þ ⊃ −

I2

8192π4m4L5
: ð36Þ

Terms involving a single finite-volume residue multiplied
by the integral give part of the contribution needed to
convert the factor of λ20 multiplying the I=L4 and 1=L6

terms in Eq. (25) into λ2. Terms involving two integrals
contribute to two-loop renormalization, generating part of
the A3λ

3
0 term which converts λ0 to λ in the λ0=L3

contribution to C2;thr.
The sums in both loops in Fig. 1(g) and 1(h) can all be

converted into integrals, and these integrals are exactly
those obtained when the same diagrams are evaluated
as contributions to infinite-volume scattering. It follows
that these diagrams contribute only to renormalization of
lower-order terms.
This leaves Fig. 1(i) and its horizontal reflection. Here

we must treat the cases ~p ¼ 0 and ~p ≠ 0 separately (see the
label in the figure), since the separation between ground
and excited states is different in the two cases. For ~p ¼ 0,
the contribution to the threshold correlator is

∂τC
ð3Þ
2;thrð0Þ ⊃

1

512m5L6

1

L3

XΛ
~q

�
2m2

ω4
qðωq þmÞ −

3

ω3
q

�
;

ð37Þ

¼ 4 − π

2048π2m5L6
−

1

512m5L6

Z
Λ

~q

3

ω3
q
: ð38Þ

The UV divergent integral leads to a renormalization of
lower-order terms, as described above in the discussion
following Eq. (32).
For ~p ≠ 0, the diagram contributes

∂τC
ð3Þ
2;thrð0Þ ⊃ −

λ30
64m2L3

1

L6

XΛ
~p≠0;~q

Gð~p; ~qÞ
~p2

; ð39Þ

Gð~p; ~qÞ ¼ ωp þW

ωpωqωpqðW2 −m2Þ ; ð40Þ

where W ¼ ωp þ ωq þ ωpq and ωpq ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð~pþ ~qÞ2 þm2

p
.

We can replace the sum over ~q with an integral since the
summand is regular, leading to

∂τC
ð3Þ
2;thrð0Þ ⊃ −

λ30
64m2L3

1

L3

XΛ
~p≠0

fð~p2Þ
~p2

ð41Þ

¼−
λ30

64m2L3

�Z
~p;~q

Gð~p;~qÞ
~p2

þIfð0Þ
4π2L

−
f0ð0Þ
L3

�
;

ð42Þ
where

fð~p2Þ ¼
Z

Λ

q
Gð~p; ~qÞ: ð43Þ

Here we have assumed that the UV regulator maintains
rotational invariance, and used Eq. (A5). The first term in
Eq. (42) contributes to the two loop renormalization of

∂τC
ð1Þ
2;thrð0Þ, while the second completes the renormalization

of the I term in Eq. (25). The third term completes the
renormalization of the 1=L6 term in Eq. (25), leaving a
finite residue which we now calculate.
To determine f0ð0Þ we must expand G for small ~p,

Gð~p; ~qÞ ¼ f0 þ ~p · ~qf1 þ ~p2f2a þ ð~p · ~qÞ2f2b þ…;

ð44Þ

where the fj are functions of ~q2. Performing the angular
average over ~q, and picking out the term quadratic in ~p, we
find

f0ð0Þ ¼
Z

Λ

~q

�
f2að~q2Þ þ

~q2

3
f2bð~q2Þ

�
: ð45Þ

Carrying out the algebra, and the resulting finite integrals,
we find

f0ð0Þ ¼ 1

m3

�
1

64π
−

1

12π2
−
Z

Λ

~q

1

4ω3
q

�
: ð46Þ

3This factorization occurs because, in order to obtain a
contribution proportional to τ, the times of the vertices must
satisfy 0 < τ1; τ2; τ3 < τ. The setup is then essentially the same as
in the calculation of a threshold scattering amplitude, for which
we know, from using Feynman diagrams, that the contributions
from the two loops factorize. This is true both in finite and infinite
volume.
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The last term is part of the renormalization of the 1=L6 term
in Eq. (25), as mentioned above. The first two terms
complete the finite residues at the order we work.
Adding the results from Eqs. (32), (36), (38) and (42), we

find

∂τC
ð3Þ
2;thrð0Þ ¼

2J − I2

8192π4m4L5
−

1

4096πm5L6

−
1

768π2m5L6
þ renorm: parts; ð47Þ

where the “renorm. parts” are the above-described con-
tributions that convert λ0 to λ in lower-order terms.
With all the results in hand, we can determine ΔE2;thr

through Oðλ30=L6Þ. We note that only the first and third
terms in Eq. (17) contribute at this order, while both terms
in Eq. (16) are needed. Writing the full result in terms of the
renormalized coupling λ we obtain

ΔE2;thr ¼
λ

8m2L3
−

λ2I
256π2m3L4

þ λ3ðI2 − J Þ
8192π4m4L5

−
3λ2

256m5L6
þ λ3

768π2m5L6
þOðλ4=L6; 1=L7Þ:

ð48Þ

IV. DIVERGENCE-FREE THREE-PARTICLE
SCATTERING AMPLITUDE AT THRESHOLD

The threshold energy shift in the three-particle case,
ΔE3;thr, depends, at Oð1=L6Þ, on the three-particle
scattering amplitude, M3. As is well know, however,
M3 is singular for certain choices of external momenta
and, in particular, at threshold (see, e.g., Refs. [8–11]).
This is a well-understood physical singularity, described,
for example in Ref. [1]. It implies that the 1=L6 term in
ΔE3;thr cannot depend on M3 itself, but rather on a
subtracted version which is finite at threshold. In Ref. [1]
we provide one possible definition for a subtracted
amplitude, which we call the divergence-free amplitude.
This definition is general, working for particles of any
masses and both at and away from threshold. It is,
however, a cumbersome definition to implement (e.g.
involving an infinite number of subtractions, all but three
of which are finite for degenerate particles at threshold).
Our analysis of the threshold expansion of the three-
particle quantization condition suggests instead using a
simpler quantity, which we call M3;thr, whose definition
involves only the minimum necessary subtractions [5].
This quantity is motivated and discussed at length
in Ref. [5].
The purpose of this section is to calculate M3;thr to

Oðλ3Þ, so that we can express our perturbative result in
terms of this infinite-volume quantity. Its definition is [5]

M3;thr ≡ lim
δ→0

�
M3;δ − I0;δ −

Z
δ

d3 ~p
ð2πÞ3 Ξ1ð~pÞ

−
Z
δ

d3 ~p1

ð2πÞ3
Z
δ

d3~p2

ð2πÞ3 Ξ2ð~p1; ~p2Þ
�
: ð49Þ

Here δ is an IR cutoff, whose definition will be explained in
the context of the following calculation. There are three
subtraction terms, involving I0, Ξ1 and Ξ2, respectively.
Only the first two terms enter at the order we work, since
Ξ2 ¼ Oðλ4Þ. We give the definitions of the relevant parts of
I0;δ and Ξ1 below.
The diagrams that contribute toM3 at the order we work

are those of Figs. 2(i)–2(o), now interpreted as Feynman
diagrams in infinite volume. We first consider the Oðλ20Þ
diagram, Fig. 2(i), which is also reproduced in Fig. 5(a)
along with the momentum labels we use. This gives a
contribution that diverges at threshold, since the intermedi-
ate propagator goes on shell. The δ prescription of Eq. (49)
corresponds here simply to working away from threshold
with general momenta, making the subtraction (here of I0),
and then sending all external momenta to zero [5]. The
contribution to the scattering amplitude is

MðiÞ
3 ¼ −

λ20
q2 −m2 þ iϵ

; ð50Þ

q ¼ ðE − ωp − ωk;−~p − ~kÞ ð51Þ

where E ¼ ωp þ ωa þ ωb, and we have used the vanishing
of the total spatial momentum. The denominator of the
propagator is

q2 −m2 ¼ ðE −WÞðE −W þ 2ωkpÞ; ð52Þ

(a) (b)

(c) (d)

p

b

c

k

q b

c

FIG. 5. Feynman diagrams contributing to the three-particle
scattering amplitude, M3. The momentum labels shown in (a)
apply to all four diagrams.
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where ωkp ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð~pþ ~kÞ2 þm2

q
and, here, W ¼ ωpþ

ωk þ ωkp. This denominator vanishes when all the spatial
momenta tend to zero, for then E andW both tend to 3m. It
also vanishes for non-zero momenta if E ¼ W (i.e. if
ωa þ ωb ¼ ωk þ ωkp) and we must avoid such above-
threshold divergent momentum configurations. The sub-
traction term corresponding to this diagram is the leading-
order part of I0 [5]:

IðiÞ0 ¼ −
λ20

2ωkpðE −W þ iϵÞ : ð53Þ

By construction this has the same pole at E ¼ W as MðiÞ
3 ,

so that the difference is finite (both at threshold and for
above-threshold divergent momenta):

MðiÞ
3 − IðiÞ0 ¼ λ20

2ωkpðE −W þ 2ωkpÞ
: ð54Þ

The final steps needed to obtain M3;thr are to symmetrize
over the external momentum assignments,4 and to take the
threshold limit. Since the limiting value is independent of the
choice of external momenta, symmetrization gives a factor
or 3 × 3, and the total contribution from this diagram is

MðiÞ
3;thr ¼

9λ20
4m2

: ð55Þ

We next consider the diagrams in which the vertices in
the tree diagram receive one-loop corrections. The full set
of these are those involving the s-, t- and u-channel loops
shown in Figs. 5(b), 5(c), and 5(d), respectively, as well as
the corresponding corrections to the right-hand vertex. The
subtraction in this case is somewhat subtle so we provide a
more detailed explanation.
A key point in the following is that the intermediate

propagator (with momentum q) is off shell, and so the loop
corrections to the vertices at either end of this propagator
differ in general from thosewhich enter theon-shell scattering
amplitude. This is true despite the fact that three of the four

legs are on shell (e.g. those with momenta ~b, ~c and ~k for the
left-hand vertex). In fact, at one-loop order, the s-channel
loops [e.g. Fig. 5(b)] do not depend on the off-shellness of q,
while the t- and u-channel loops [e.g. Figs. 5(c) and 5(d)] do.
This point is important because the general form of the

subtraction term, I0, replaces the loops at either end of the
central propagator with on-shell scattering amplitudes, as
well as changing the form of the propagator (as described
above for the tree-level diagram). This feature of the
subtraction is crucial, since it means that it is given in
terms of physical quantities. The general form is quite

complicated because it involves scattering amplitudes in all
partial waves [5]. However, since we are interested in the
subtracted amplitude at threshold, we need only the part of
I0 that involves s-wave scattering, and we need this only
close to threshold. Specifically, we have

IðijkÞ0 ¼ −
M2ðb�ÞM2ðb0�Þ
2ωkpðE −W þ iϵÞ ; ð56Þ

M2ðbÞ ¼ −λ −
λ2

4π

�
−

ib
8m

þ b2

3m2

�
þOðb3; λ3Þ; ð57Þ

where the superscript “ðijkÞ” refers to the subfigures within
Fig. 2. Here b� is the magnitude of the spatial momentum of
b evaluated in the bþ c CM frame, and b0� is the same
quantity for b0. The result (57) is simply the threshold
expansion of the two-particle scattering amplitude, obtained
using Eqs. (B3), (B7) and (B14) in Appendix B. Note that
this is expressed in terms of λ ¼ λ0ð1 − A2λ0 þ…Þ. Note
also that the leading-order part of Eq. (56) is the subtraction
(53) that we used for the tree-level diagram.
Evaluating Figs. 5(b), 5(c), and 5(d), together with the

diagrams where the other vertex is corrected, and adding
the result (50) from Fig. 5(a), we obtain

MðijkÞ
3 ¼ −

�
M2ðb�Þ þ

λ20ðq2 −m2Þ
192π2m2

�

×
1

q2 −m2 þ iϵ

�
M2ðb0�Þ þ

λ20ðq2 −m2Þ
192π2m2

�
:

ð58Þ

As noted above, only the t- and u-channel loops differ from
the on-shell scattering amplitude. The part which differs is,
close to threshold, proportional to tþ u, where, for
example, t ¼ ðb − kÞ2 and u ¼ ðc − kÞ2 when the left-hand
vertex is being corrected. Now tþ u ¼ q2 þ 3m2 − s, and
s ¼ ðbþ cÞ2 is the same irrespective of whether q is on or
off shell. Thus the difference between tþ u on- and off-
shell is equal to the difference between q2 on and off-shell,
which is just q2 −m2. The key point is that this cancels the
denominator of the propagator, leaving a finite residue in
the threshold limit.
We can now perform the subtraction, take the threshold

limit, and multiply by the momentum permutation factor of
9, to obtain the final result from the diagrams of Fig. 5:

MðijkÞ
3;thr ¼

9λ2

4m2
þ 9λ3

96π2m2
þOðλ4Þ: ð59Þ

Note that we have written this result in terms of the
renormalized coupling.
The “bull’s head” diagram of Fig. 2(l) also requires

subtraction, in this case from the Ξ1 term in Eq. (49). At
Oðλ30Þ the subtraction function is

4Since the particles are identical, interchanging ~a and ~b does
not lead to a different assignment, so there are only three choices
for each of the initial and final states.
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Ξ1ð~pÞ ¼ −
9λ30
8m

Hð~pÞ2
ð~p2Þ2 ; ð60Þ

where H is the UV cutoff function discussed in
Appendix A. Ξ1 is to be integrated over ~p with an IR
cutoff j~pj ≥ δ, so that the integral is finite. The definition of
the IR-regulated three-particle scattering amplitude, M3;δ

is, in general, quite involved, as it requires applying a cut-
off both on loop momenta and also on the external
momenta. However, the external momenta scale as δ3=2,
which implies that the IR cutoff they induce in the loop
integral is weaker than that from the direct cutoff at j~pj ¼ δ.
This means that we can set the external momenta to zero.
Doing so, we find that

MðlÞ
3;δ ¼ −

9λ30
16

Z
~p;δ

3ω2
p −m2

ω3
pð~p2Þ2 ; ð61Þ

where the subscript δ on the integral indicates the IR cutoff.

Combining MðlÞ
3;δ with the integral of Ξ1 leads to an IR

convergent integral in which one can set δ ¼ 0:

MðlÞ
3;thr ¼ −

9λ30
16m2

Z
~p

�
3ω2

p −m2

ω3
p

−
2Hð~pÞ2

m

�
m2

ð~p2Þ2 : ð62Þ

We stress that this is a UV convergent integral that has a
finite value, but that this value depends on the choice of
cutoff function H.
Next we consider the “twisted bull’s head” diagram of

Fig. 2(m). This diagram is convergent in the IR, so no
subtraction is needed, and it can be evaluated directly at
threshold. We find

MðmÞ
3;thr ¼ −i6λ30

Z
d4p
ð2πÞ4

�
1

p2 −m2 þ iϵ

�
3

; ð63Þ

¼ −
3λ30

16π2m2
: ð64Þ

The final diagrams involve intermediate single-particle
states. These also have no IR divergences, require no
subtractions, and can be evaluated directly at threshold.
Since Fig. 2(n) is a tree diagram, it is simple to evaluate,
and yields

MðnÞ
3;thr ¼ −

λ20
8m2

: ð65Þ

The one-loop corrections to this diagram are given by
Fig. 2(o) and the similar diagram where the right-hand
vertex is corrected. Note that although this looks like an
s-channel loop and might be expected to have t- and
u-channel partners, in fact, no other diagrams exist.
Evaluating the loop we find that the sum of the two
diagrams gives

MðoÞ
3;thr ¼

3λ30
32m2

Z
Λ

~p

1

ωp ~p2
: ð66Þ

The UV divergence here is exactly that needed to convert λ0
in (65) to λ, up to a finite residue:

MðnoÞ
3;thr ¼ −

λ2

8m2
þ λ3

32π2m2
þOðλ4Þ: ð67Þ

Combining results from all diagrams, we obtain

M3;thr ¼
9λ2

4m2
þ 3λ3

32π2m2
þMðlmnoÞ

3;thr þOðλ4Þ; ð68Þ

where the last quantity is the contribution from Figs. 2(l)–
2(o), given by

MðlmnoÞ
3;thr ¼ −

λ2

8m2
þ λ3

8π2m2
þ 9λ3C3

8m2
; ð69Þ

with

C3 ¼
Z
~p

m½Hð~pÞ2 − 1�
ð~p2Þ2 : ð70Þ

We observe that, at the order we work, one could
dispense with the cutoff function H, i.e. set H ¼ 1 so
that C3 ¼ 0. This is appealing because it would remove the
cutoff dependence from M3;thr at this order. However, this
removal does not extend to higher orders in λ.

V. THREE-PARTICLE ENERGY SHIFT

In this section we determine the three-particle threshold
energy shift, which (aside from renormalization) arises
from the diagrams shown in Fig. 2. The fully disconnected
diagram, Fig. 2(a), was discussed in Sec. II, and leads to the

leading “1” in Cð0Þ
3;thr, Eq. (12). The next seven diagrams,

Figs. 2(b)–2(h), involve the interaction of only two par-
ticles, with the third being a spectator. Thus the results are
the same as those for the corresponding two-particle
diagrams, discussed in Sec. III, except multiplied by a
factor of three for the number of pairs. Calling these
contributions “disconnected”, we thus have, for the part
linear in τ,

∂τC
ðnÞ
3;thr;discð0Þ ¼ 3∂τC

ðnÞ
2;thrð0Þ; n ¼ 1; 2; 3;… ð71Þ

For the constant term, where we need only the terms linear
and quadratic in λ0, and only out to 1=L3 in the volume
expansion, it turns out that “connected” diagrams do not
contribute. Thus, the rescaled two-particle results are all
that we need:
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CðnÞ
3;thrð0Þ ¼ 3CðnÞ

2;thrð0Þ; n ¼ 1 and 2: ð72Þ

Our remaining task is therefore to calculate the con-
nected contributions to ∂τC3;thrð0Þ, which arise from
Figs. 2(i)–2(o).
We begin with the tree diagram Fig. 2(i). A simple

calculation results in5

∂τC
ð2Þ
3;thrð0Þ ⊃

3

32m5L6
: ð73Þ

One-loop corrections to this result are given by Figs. 2(j)
and 2(k) and their reflections. The contributions from
vanishing loop momenta scale as 1=L9 and can be dropped.
Those from nonvanishing loop momenta give, after com-
bining all four diagrams,

∂τC
ð3Þ
3;thrð0Þ ⊃ −

3

256m5L6
SðjkÞ; ð74Þ

SðjkÞ ¼ 1

L3

X
~p

�
2

ωpp2
þ 4

ω3
p
−

m2

ω4
pðωp þmÞ −

2m2

ωpð~p2Þ2
�
:

ð75Þ

For the first three summands we can replace the sum with
an integral at the order we work, while for the last we must
use Eq. (A8). We also note that the first two summands are
proportional to the integrand of A2 [see Eq. (B6)], and
indeed have the correct normalization to convert λ20 in
Eq. (73) to λ2. Collecting all contributions and carrying out
the resulting finite integrals, we find

SðjkÞ ⊃ −
mLJ
8π4

þ 16A2 þ
1

2π2
þ 1

8π
: ð76Þ

Next we consider the bull’s head diagram, Fig. 2(l).
Again the ~p ¼ 0 contribution can be dropped. For nonzero
loop momentum we find

∂τC
ð3Þ
3;thrð0Þ ⊃ −

3

256m5L6
SðlÞ; ð77Þ

SðlÞ ¼ 1

L3

X
~p≠0

m2ð3ω2
p −m2Þ

ω3
pð~p2Þ2 : ð78Þ

Using Eq. (A8) we can write the sum as

SðlÞ ¼ mL
8π4

J þ
Z
~p

�ð3ω2
p −m2Þ
ω3
p

−
2

m

�
m2

ð~p2Þ2 þOðL−1Þ:

ð79Þ

The integral appearing here is essentially the same as that in
the subtracted bull’s head contribution to the scattering
amplitude, Eq. (62), except that the cutoff function H is
absent. Combining results we find the total bull’s head
contribution to be

∂τC
ð3Þ
3;thrð0Þ ⊃ −

3J
2048π4m4L5

þ MðlÞ
3;thr

48λ30m
3L6

−
3C3

128m5L6
:

ð80Þ

The twisted bull’s head diagram of Fig. 2(m) contributes

∂τC
ð3Þ
3;thrð0Þ ⊃ −

3

128m5L6

1

L3

X
~p

m2

ω5
p
; ð81Þ

¼ −
1

256π2m5L6
; ð82Þ

¼ MðmÞ
3;thr

48λ30m
3L6

; ð83Þ

where in the second line we have converted the IR and UV
finite sum to an integral and evaluated the integral, while in
the third line we have used the result for the corresponding
contribution to the scattering amplitude, Eq. (64).
Finally we come to the diagrams involving single-

particle intermediate states, Figs. 2(n) and 2(o), together
with the reflection of the latter. Since the presence of
growing exponentials is a new feature of these diagrams,
we give a little more detail here. The tree diagram of
Fig. 2(n) leads to

C3ðτÞ ⊃
λ20

96m6L6

�
9

16
e2mτ −

13

48
−
mτ

4

�
: ð84Þ

Dropping the enhanced exponential, the τ term gives the
contribution

∂τC
ð2Þ
3;thrð0Þ ⊃ −

1

384m5L6
¼ MðnÞ

3;thr

48λ20m
3L6

; ð85Þ

where we have used the result Eq. (65) for the contribution
to the threshold amplitude from Fig. 2(n).
This by-now standard relation between the threshold

amplitude and the 1=L6 energy shift holds also for the one-
loop diagram Fig. 2(o). Including its reflection we find the
contribution

∂τC
ð3Þ
3;thrð0Þ ⊃

1

512m5L6

1

L3

X
~p≠0

1

ωp ~p2
: ð86Þ

Since the sum can be replaced by an integral up toOð1=L7Þ
corrections, we see from Eq. (66) that this contribution

indeed equals MðoÞ
3;thr=ð48λ30m3L6Þ.

5There is also contribution to Cð2Þ
3;thrð0Þ proportional to 1=L6,

but this is beyond the order we need, as noted above.
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The total result from all connected diagrams is

λ20½∂τC
ð2Þ
3;thr;connð0Þ� þ λ30½∂τC

ð3Þ
3;thr;connð0Þ�

¼ 3λ2

32m5L6
−

3λ3

512π2m5L6
−

3λ3

2048πm5L6

−
3λ3C3

128m5L6
þMðlmnoÞ

3;thr

48m3L6
þOðλ4Þ; ð87Þ

where MðlmnoÞ
3;thr is given in Eq. (69). We observe that the

λ30J =L5 terms cancel between Figs. 2(j), 2(k), and 2(l).
Combining this with the results of Eqs. (71) and (72) for the
disconnected diagrams, and using the relation (68) between

M3;thr and MðlmnoÞ
3;thr , together with expressions (15)–(17)

for the energy shift, we obtain

ΔE3;thr ¼
3λ

8m2L3
−

3λ2I
256π2m3L4

þ 3λ3ðI2 þ J Þ
8192π4m4L5

−
9λ2

256m5L6
þ 3λ3

256π2m5L6

þ 3λ3C3
128m5L6

−
M3;thr

48m3L6
þOðλ4=L6; 1=L7Þ: ð88Þ

This is the main result of this article. We recall that −λ is
defined to equal the threshold two-to-two scattering ampli-
tude, and is related to the scattering length via λ ¼ 32mπa.
Finally we observe that the dependence on the cutoff
function H cancels between the last two terms, as must
be the case since the finite-volume energy shift is a physical
quantity.

VI. COMPARISONS AND CONCLUSIONS

To compare our results for the threshold energy shifts to
those in the literature, it is convenient to re-express them in
terms of the scattering length. For the two-particle case we
obtain

ΔE2;thr ¼
4πa
mL3

�
1 −

aI
πL

þ a2ðI2 − J Þ
π2L2

�
þ að6Þ2

L6
þOðL−7Þ;

ð89Þ

að6Þ2 ¼ 4πa
m

�
−
3πa
m2

þ 32a2

3m

�
þOða4Þ: ð90Þ

The 1=L3, 1=L4 and 1=L5 contributions agree with those
obtained in Refs. [6,12] (Reference [7] did not consider this
quantity.) To aid comparison between the 1=L6 terms, we

rewrite að6Þ2 in terms of the effective range r given in
Eq. (B15):

að6Þ2 ¼ −
4π2a2

m3
þ 8π2a3r

m
þOða4Þ: ð91Þ

The latter form agrees with that obtained in Appendix C
from expanding Lüscher’s quantization condition [13] to
Oð1=L6Þ. It is, however, in disagreement with

að6Þ2 ðRef: ½6�Þ ¼ 8π2a3r
m

þOða4Þ: ð92Þ

The disagreement, which is proportional to λ2=L6 in
ΔE2;thr, appears to arise from the use of a nonrelativistic
dispersion relation at the last stage of the calculation, as
discussed in Appendix C. We stress that a3r starts at Oðλ2Þ
in PT, so that the result from Ref. [6] does contain a term
scaling as λ2=L6, but with a different coefficient from that
which we find here.
We note that Lüscher’s quantization condition holds for

general scalar field theories, including effective field
theories with arbitrary higher-order couplings. Thus, the

form of að6Þ2 that holds in all such theories is that given in
Eq. (91), i.e. in terms of a and r. By contrast, the form given
in Eq. (90) holds only for λϕ4 theory.
Our result for the three-particle energy shift is

ΔE3;thr ¼
12πa
mL3

�
1−

aI
πL

þ a2ðI2 þJ Þ
π2L2

�
þ að6Þ3

L6
þOðL−7Þ;

ð93Þ

where

að6Þ3 ¼ 12πa
m

�
−
3πa
m2

þ 32a2

m

�
þ 768a3π3C3

m2
−
M3;thr

48m3
;

ð94Þ

¼12πa
m

�
3πa
m2

þ6πa2r

�
þ768a3π3C3

m2
−
M3;thr

48m3
: ð95Þ

As for the two particle case, the second expression holds for
general interactions whereas that in terms of a alone is
special to λϕ4 theory. The 1=L3, 1=L4 and 1=L5 contri-

butions agree with those obtained in Refs. [6,7]. As for að6Þ3 ,
Ref. [6] finds

að6Þ3 ðRef: ½6�Þ ¼ 24π2a3r
m

þ η3ðμÞ þOða4Þ; ð96Þ

while Ref. [7] quotes

að6Þ3 ðRef: ½7�Þ ¼ 36π2a3r
m

þDþOða4Þ: ð97Þ

Here η3ðμÞ is a three-particle contact interaction while D is
the “three-body scattering hypervolume.” Both characterize
a local three-particle interaction within the nonrelativistic
context of their respective calculations. The scale μ in η3 is
a renormalization scale, and any dependence on this scale
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must cancel out in the energy shift. The results of Ref. [6]
show, however, that this dependence enters only at Oða4Þ.
While η3 and D are nonrelativistic analogs of our

threshold amplitude M3;thr, there could, in general, be
finite differences between these quantities. Indeed equating
the three results in Eqs. (95), (96) and (97) gives relations
between these quantities. However, given that our relativ-

istic calculation gives a different result for að6Þ2 from that
obtained using nonrelativistic methods in Ref. [6], it is not
clear whether the nonrelativistic three-particle results apply
at Oð1=L6Þ in a relativistic theory.
Irrespective of these considerations, our result allows us

to check the threshold expansion that we obtain in Ref. [5]
from our relativistic three-particle quantization condition
[1,2]. We find complete agreement, giving us further
confidence in the quantization condition. Furthermore,
the perturbative calculation carried out here has provided
a first explicit verification of the details of the subtractions
needed to define a finite three-particle scattering amplitude
at threshold.
It would be interesting to push this calculation to one

higher order in λ, so as to allow a check of the λ4=L6 terms
that arise in the threshold expansion of Ref. [5].
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APPENDIX A: IDENTITIES FOR
FINITE-VOLUME SUMS

We collect here various results needed in the main text to
convert sums into integrals plus a finite-volume residue.
Throughout we drop terms that are suppressed exponen-
tially, i.e. as expð−mLÞ=Ln for n ≥ 0. We make use of a
cutoff function Hð~pÞ that was introduced in Ref. [1].6 The
relevant properties of H are that it equals unity for ~p2 ¼ 0,
vanishes for ~p2 ≥ 16m2=9, and interpolates smoothly in
between. In addition, all derivatives of H at ~p2 ¼ 0 and at
~p2 ¼ 16m2=9 vanish.
We first consider the generic “1=~p2” sum:

SI ¼
1

L3

XΛ
~p≠0

fð~p2Þ
~p2

: ðA1Þ

As always in this appendix, the sum is over finite-volume
momenta, in this case excluding ~p ¼ 0where the summand

diverges. The function fð~p2Þ is assumed regular at ~p ¼ 0,
so that the corresponding integral is IR convergent in three
dimensions. In general, however, the sum is UV divergent,
and must be regularized in some way, as indicated by the
superscript Λ on the sum. All we need to know about this
regularization is that it involves a cutoff scale Λ ≫ 4m=3,
so that H ¼ 0 at the cutoff scale.
To proceed, we rewrite the sum as7

SI ¼
1

L3

XΛ
~p≠0

�
fð~p2Þ
~p2

−
fð0ÞHð~pÞ2

~p2

�

þ
�
1

L3

XΛ
~p≠0

−
Z

Λ

~p

�
fð0ÞHð~pÞ2

~p2

þ
Z

Λ

~p

fð0ÞHð~pÞ2
~p2

: ðA2Þ

Given the properties of H, the combined summand on the
first line is regular at ~p ¼ 0. Thus, if one adds the ~p ¼ 0
term to the sum, it can be replaced by an integral up to
exponentially suppressed corrections. Thus, the first line
becomes

Z
Λ

~p

�
fð~p2Þ
~p2

−
fð0ÞHð~pÞ2

~p2

�
−
f0ð0Þ
L3

þOðe−mLÞ: ðA3Þ

In the sum-integral difference on the second line of
Eq. (A2) the cut-off Λ can be dropped since the sum-
mand-integrand is regulated in the UV by H2. This differ-
ence is then nothing other than a regulated 1=~p2 sum. Using
a result derived in Ref. [5], the second line can be written

Ifð0Þ
4π2L

þOðe−mLÞ; ðA4Þ

where I is a geometrical factor, equal to Z00ð1; 0Þ of
Ref. [12]. Combining these results we obtain

SI ¼
Z

Λ

~p

fð~p2Þ
~p2

þ Ifð0Þ
4π2L

−
f0ð0Þ
L3

þOðe−mLÞ: ðA5Þ

In other words, the sum can be replaced by an integral with
exponential accuracy aside from a residue consisting of a
1=L and a 1=L3 term.
The second sum we need is the generic “1=ð~p2Þ2” sum:

SJ ¼
1

L3

XΛ
~p≠0

gð~p2Þ
ð~p2Þ2 : ðA6Þ

6Hð~pÞ is actually a function of ~p2 but we use ~p as the argument
for brevity. We note that the derivation can be made without
introducing H, but doing so allows us to borrow a result from
Ref. [1].

7The appearance ofH2 in the extra terms is simply to match the
results that appear in the threshold expansion of the three-particle
quantization condition [5]. For the derivation we could equally
well use H alone.
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This sum can be rewritten as

SJ ¼
1

L3

XΛ
~p≠0

gð~p2Þ − gð0Þ
ð~p2Þ2 þ gð0Þ

L3

X
~p≠0

1

ð~p2Þ2 : ðA7Þ

The first term now diverges only as 1=~p2 in the IR, so that,
using the result (A5), the sum can be replaced by an integral
up to Oð1=LÞ corrections. The second term is proportional
to a sum over integer vectors J ¼ P

~n≠0ð~n2Þ−2 which
equals Z00ð2; 0Þ in the notation of Ref. [12]. Thus, we
obtain

SJ ¼
Z

Λ

~p

gð~p2Þ − gð0Þ
ð~p2Þ2 þ Lgð0ÞJ

16π4
þOð1=LÞ: ðA8Þ

APPENDIX B: SCATTERING LENGTH AND
EFFECTIVE RANGE

In the main text we need the perturbative expressions for
the s-wave scattering length a and the effective range r in
the scalar λϕ4 theory. The standard definition of these
quantities in terms of the s-wave phase shift δ0 (using the
nuclear physics sign convention for a) is

tan δ0ðqÞ
q

¼ −a
�
1þ raq2

2
þOðq4Þ

�
: ðB1Þ

Here q is the magnitude of the spatial momentum of each
particle in the CM (center of mass) frame, which is
related to the total CM energy by E2 ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 þm2

p
. The

phase shift itself is related to the two-particle s-wave
scattering K matrix (defined as the angular average of the
full K matrix) by

K2;sðqÞ ¼ 16πE2

tan δ0
q

: ðB2Þ

The K matrix is related to the usual scattering amplitude
by

1

M2;sðqÞ
¼ 1

K2;sðqÞ
− i

q
16πE2

: ðB3Þ

It follows that the scattering length is given by

32πma ¼ −K2;sð0Þ ¼ −M2;sð0Þ: ðB4Þ

Through one-loop order, evaluating the diagrams of
Fig. 1(c), 1(d), 1(e), and the u-channel version of (e)
[treating these as Feynman diagrams for infinite-volume
scattering], one finds

M2;sð0Þ ¼ −λ0f1 − λ0A2 þOðλ30Þg; ðB5Þ

A2 ¼
1

2

Z
Λ

~p

�
1

4ωp ~p2
þ 1

2ω3
p

�
: ðB6Þ

Here we have done the integral over the loop energy
variable p0 so as to write the result in the same form as
those we obtain in the main text. The first term in square
braces arises from the s-channel loop, while the second
is the sum of those from the t- and u-channel loops. As
usual, the superscript Λ indicates an (unspecified) UV
regulator.
We find it convenient to adopt a physical renormalization

condition for the coupling constant, defining it in terms of
the scattering length as

λ≡ −M2;sð0Þ ¼ 32πma ðB7Þ

¼ λ0ð1 − λ0A2 þ λ20A3 þOðλ30ÞÞ; ðB8Þ

where A3 is the third-order coefficient that we do not need
explicitly.
To obtain the effective range we expand the K matrix

away from threshold in powers of q2. Specifically, using
Eqs. (B1), (B2) and (B8), we find

m2
dK2;s

dq2

				
q2¼0

¼ −λ
�
1

2
þ λ

rm
64π

�
; ðB9Þ

where the first term in the square braces is of kinematic
origin, coming from the expansion of E2 in Eq. (B2).
Dependence on q2 first arises at one-loop order. For the

sum of t- and u-channel loop-diagrams, a straightforward
calculation finds that the scattering is pure s wave and
yields the contribution

m2
dK2;s

dq2

				
q2¼0

⊃ −
λ20

48π2
: ðB10Þ

Note that K2 ¼ M2 for these diagrams, since there are no
physical cuts.
The s-channel loop diagram does have a cut, so K2 and

M2 differ. We elect to calculate the former, which requires
using the principle value prescription for the pole that
remains after doing the energy-component integral. The
contribution is purely s wave and gives

K2ðs channelÞ ¼ λ20
8
PV

Z
~p

1

ωpð~p2 − q2Þ : ðB11Þ

Expanding in powers of q2, we obtain8

8One must evaluate the principle value integral for q2 > 0 to
obtain this result. To obtain the correct result with q2 < 0, one
must use a modified PV prescription that yields analytic depend-
ence on q2 [1].
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PV
Z
~p

1

ωpð~p2 − q2Þ ¼
Z
~p

1

ωp ~p2
−

q2

2π2
þOðq4Þ: ðB12Þ

The first term reproduces the s-channel contribution to A2

[cf. Eqs. (B5) and (B6)]. The second term leads to the
following contribution to the derivative:

m2
dK2;s

dq2

				
q2¼0

⊃ −
λ20

16π2
: ðB13Þ

Combining Eqs. (B10) and (B13), we find

m2
dK2;s

dq2

				
q2¼0

¼ −
λ20

12π2
þOðλ30Þ: ðB14Þ

Comparing to the definition of r in Eq. (B9), we obtain our
final result:

rm ¼ −
32π

λ
þ 16

3π
þOðλÞ: ðB15Þ

We stress again that the strange-looking 1=λ term is of
purely kinematic origin. The nontrivial result of the one-
loop calculation is the constant term.

APPENDIX C: 1=L6 TERM FROM LÜSCHER’S
QUANTIZATION CONDITION

Lüscher’s original work on the two-particle threshold
energy shift presented explicit results only up to Oð1=L5Þ
[12]. To compare to our perturbative result we need also the
1=L6 term from the general quantization condition of
Ref. [13]. To our knowledge, the explicit result for this
term has not been presented elsewhere, so we determine
it here.
We start from the quantization condition in the form

given in Ref. [1], itself adapted from the form derived in
Ref. [14]. For vanishing total momentum, the condition is

[Eq. (96) of Ref. [1] with ~k ¼ 0]:

det ðK−1
2 þ FÞ ¼ 0: ðC1Þ

Here K2 and the kinematical function F are matrices in
angular-momentum space. K2 is diagonal, whereas F
contains off-diagonal elements. Close to threshold, s-wave
scattering dominates, and one can show that it is sufficient
to truncate the quantization condition to the s wave alone,
up to Oð1=L13Þ in the energy shift, at which point the
l ¼ 4 amplitude is needed. Thus, for our purposes, the
condition reduces to

K−1
2;s þ Fs ¼ 0; ðC2Þ

with

Fs ¼
�
1

L3

X
~p

− fPV Z
~p

�
Hð~pÞ2

8ω2
pðE2 − 2ωpÞ

: ðC3Þ

Here H is the cutoff function discussed in Appendix A, E2

is the two-particle CM energy, and the fPV pole prescription
is a generalized principle-value prescription introduced in
Ref. [1]. We stress that this condition is identical to the
truncated Lüscher quantization condition of Ref. [13] up to
exponentially suppressed terms.
In our companion analysis of the three-particle quanti-

zation condition near threshold, we derive the threshold
expansion of Fs (called 2m ~F00 in that work) [5]:

Fs ¼
1

4E2

�
1

q2L3
−

I
4π2L

−
q2L3J
ð4π2LÞ2

−
ðq2L3Þ2K
ð4π2LÞ3 þOðL−3Þ

�
; ðC4Þ

where q is defined as in Appendix B, the geometric
quantities I and J are described in Appendix A, and K ¼
Z00ð3; 0Þ is a third such quantity (evaluated in Refs. [6,12]).
The other result we need to apply the quantization con-
dition is the expansion of 1=K2;s, which, from Eqs. (B1)
and (B2), is

K−1
2;s ¼ −

1

16πaE2

�
1 −

ra
2
q2 þOðq4Þ

�
: ðC5Þ

The kinematic relation we need is

q2 ¼ mΔE2 þ ΔE2
2=4; ðC6Þ

where ΔE2 ¼ E2 − 2m. We are interested in the solution to
Eq. (C2) near threshold, so we expand ΔE as

ΔE2 ¼
X∞
n¼3

aðnÞ2

Ln ; ðC7Þ

truncating here at the að6Þ2 term. It follows from Eq. (C6)
that q2 has a similar expansion:

q2 ¼
X∞
n¼3

bðnÞ

Ln : ðC8Þ

Inserting the expansions of Fs and K−1
2;s into the quan-

tization condition (C2), and using Eq. (C8), we find

bð3Þ ¼ 4πa; ðC9Þ

bð4Þ

bð3Þ
¼ −

a
π
I ðC10Þ

PERTURBATIVE RESULTS FOR TWO- AND THREE-… PHYSICAL REVIEW D 93, 014506 (2016)

014506-15



bð5Þ

bð3Þ
¼


a
π

�
2ðI2 − J Þ ðC11Þ

bð6Þ

bð3Þ
¼ 2πra2 þ


a
π

�
3ð−I3 þ 3IJ −KÞ: ðC12Þ

Converting this to a result for ΔE using Eq. (C6), we obtain
the desired results:

aðnÞ2 ¼ bðnÞ

m
ðn ¼ 3 − 5Þ; ðC13Þ

að6Þ2

að3Þ2

¼ bð6Þ

bð3Þ
−
πa
m2

: ðC14Þ

The last term in að6Þ2 arises from the expansion of the
relativistic form of the energy, i.e. from the second term in
Eq. (C6). The results for an agree with those of Ref. [6]
aside from this term, suggesting that the source of the
discrepancy is the use of a nonrelativistic dispersion
relation in that work.
In the main text we work only to cubic order in λ. At this

order, we have

að6Þ2 ¼ 4πa
m

�
2πra2 −

πa
m2

�
þOðλ4Þ; ðC15Þ

where a and ra2 both start at OðλÞ.
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