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We investigate the phase structure of two-color QCD at both real and imaginary chemical potentials (μ),
performing lattice simulations and analyzing the data with the Polyakov-loop extended Nambu–Jona-
Lasinio (PNJL) model. Lattice QCD simulations are done on an 83 × 4 lattice with the clover-improved
two-flavor Wilson fermion action and the renormalization-group-improved Iwasaki gauge action. We test
the analytic continuation of physical quantities from imaginary μ to real μ by comparing lattice QCD results
calculated at real μ with the results of an analytic function, the coefficients of which are determined from
lattice QCD results at imaginary μ. We also test the validity of the PNJL model by comparing model results
with lattice QCD ones. The PNJL model is good in the deconfinement region, but less accurate in the
transition and confinement regions. This problem is cured by introducing the baryon degree of freedom to
the model. It is also found that the vector-type four-quark interaction is necessary to explain lattice data on
the quark number density.
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I. INTRODUCTION

Exploration of QCD phase diagrams is one of the most
important subjects in not only nuclear and particle physics
but also cosmology and astrophysics. However, due to the
complexity of fermion determinants, the first-principles
calculation, i.e., lattice QCD (LQCD) simulations, are quite
difficult at high-quark-number chemical potential μ. The
QCD partition function Z at finite temperature T and finite
μ is expressed by

Z ¼
Z

DU det½MðμÞ�e−SG ; ð1Þ
where Uμ (μ ¼ 1, 2, 3, 4) and SG are the link variables and
the pure gauge action, respectively, and MðμÞ is written as

MðμÞ ¼ γμDμ þm − μγ4; ð2Þ

with the covariant derivative Dμ and the quark mass m in
the continuum limit. For later convenience, we regard μ as a
complex variable. It is easy to verify that

fdet½MðμÞ�g� ¼ det½Mð−μ�Þ�: ð3Þ

Hence, the fermion determinant det½MðμÞ� is not real when
μ is real, and the importance sampling technique does
not work in the Monte Carlo simulations there. This is the
well-known sign problem. Several methods were proposed
so far to resolve this problem; these are the reweighting
method [1], the Taylor expansion method [2,3], the analytic
continuation from imaginary μ to real μ [4–11], the
complex Langevin method [12–14], and the Lefschetz
thimble theory [15,16]. However, at present, these are still
far from perfection.
On the contrary, in two-color QCD (QC2D), the lattice

simulations can be made at real and finite μ, since the
theory has no sign problem [17–23]. In fact, the following
relation is obtained:

det½MðμÞ� ¼ det½ðt2Cγ5Þ−1MðμÞðt2Cγ5Þ� ¼ ðdet½Mðμ�Þ�Þ�;
ð4Þ

where t2 and C ¼ γ2γ4 are the second Pauli matrix in color
space and the charge conjugation matrix, respectively.
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Obviously, det½MðμÞ� is real when μ is real. Recently,
Hands et al. analyzed the phase structure of QC2D in a wide
range of real μ by using two-flavor Wilson fermions
[21,22]. QC2D can also be used to check the validity of
methods proposed to resolve the sign problem. In fact,
Giudice and Papa and Cea et al. [24–26] tested the validity
of analytic continuation from imaginary μ to real μ with
staggered fermions.
Equation (3) shows that det½MðμÞ� is real when μ is pure

imaginary, i.e., μ ¼ iμI ¼ iθT for real variables μI and θ, so
that LQCD simulations are feasible there. Observables at
real μ are extracted from those at imaginary μ with analytic
continuation. In the analytic continuation, we must pay
attention to the structure of the phase diagram in the
imaginary μ region where QCD has two characteristic
properties, the Roberge-Weiss (RW) periodicity and the
RW transition [27]. The QCD grand partition function has a
periodicity of 2π=Nc in θ:

ZðθÞ ¼ Z

�
θ þ 2πk

Nc

�
ð5Þ

for integer k and the numbers of colors Nc. This periodicity
was found by Roberge and Weiss and is now called
RW periodicity. Roberge and Weiss also showed that a
first-order phase transition occurs at T > TRW and
θ ¼ ð2kþ 1Þπ=Nc. This transition is named the RW
transition, and TRW is slightly larger than the pseudocritical
temperature Tc0 of the deconfinement transition at zero μ.
These features are remnants of ZNc

symmetry in the pure
gauge limit. These properties are confirmed by LQCD
simulations [4–10,25,26].
The RW periodicity does not mean that ZNc

symmetry is
exact. Hence, there is no a priori reason that the order
parameter for ZNc

symmetry such as the Polyakov loopΦ is
zero in the confinement phase. In fact, in the case of
Nc ¼ 3, the Polyakov loop is always finite even in the
confinement phase, when T is finite. However, the case of
Nc ¼ 2 is special [25]. In this case, the action and the
boundary conditions are invariant at μI=T ¼ ð2kþ 1Þπ=2
under the CZ2 transformation composed of the Z2 trans-
formation and charge conjugation C [28]. Because of this
symmetry, the Polyakov loop becomes zero at low T when
μI=T ¼ ð2kþ 1Þπ=2. Paying attention to these character-
istic features, Cea et al. [25,26] analyzed the validity of
analytic continuation in QC2D and found that lattice QC2D
(LQC2D) data at real μ can be described by a suitable
analytic function, when the coefficients of the analytic
function are determined from LQC2D data at imaginary μ.
The results of LQCD at imaginary μ are also useful for

determining the parameters of effective models, such as the
Polyakov-loop extended Nambu–Jona-Lasinio (PNJL)
model [29–35]. Here we call this approach the “imaginary
chemical potential matching approach” [36]. It is known
that the PNJL model can reproduce the results of LQCD at
imaginary μ, at least qualitatively, since the model has the
RW periodicity and the RW transition [37,38]. It was

proposed [39] that the strength Gv of the vector-type four-
quark interaction [40,41], which is expected to be important
for the physics of neutron stars, may be determined from
LQCD data at imaginary μ; for the relation between neutron
star properties and Gv, see Ref. [42] and references therein.
In Refs. [43] and [44], in fact, Gv is determined with this
prescription. The validity of such a determination of
parameters in effective models can be checked in QC2D.
In this paper, we study the phase structure of QC2D at

both real and imaginary μ by performing simulations on an
83 × 4 lattice with the renormalization-group-improved
Iwasaki gauge action [45,46] and the clover-improved
two-flavor Wilson fermion action [47] and by analyzing
the QC2D data with the PNJL model. We first test the
analytic continuation from imaginary μ to real μ by
comparing LQC2D data calculated at real μ with the results
of an analytic function, the coefficients of which are
determined from LQC2D data at imaginary μ. Such a test
was carried out in Refs. [25,26] with staggered fermions.
Here the test is made with clover-improved Wilson fer-
mions by assuming a polynomial series in the deconfine-
ment phase and a Fourier series in the confinement phase.
We also test the validity of the PNJL model by

comparing LQC2D results with model ones. The PNJL
model is good in the deconfinement region, but less
accurate in the confinement region. This problem is cured
by introducing the baryon degree of freedom to the model.
It is also found that the vector-type four-quark interaction
is necessary to explain QC2D data on the quark number
density nq.
This paper is organized as follows. Section II presents

the lattice action and the parameter setting used in our
LQC2D simulations. The definition of physical quantities is
also presented. In Sec. III, the PNJL model is recapitulated.
In Sec. IV, numerical results of LQC2D are shown and the
analytical continuation of physical quantities from imagi-
nary μ to real μ is tested. A comparison between LQC2D
data and PNJL results is made in Sec. V. Errors and
uncertainties in the fitting of parameters of the PNJL model
are also discussed. Section VI is devoted to a summary.

II. LATTICE SIMULATIONS

A. Lattice action

We use the renormalization-group-improved Iwasaki
gauge action SG [45,46] and the clover-improved two-
flavor Wilson quark action SQ [47] defined by

S ¼ SG þ SQ; ð6Þ

SG ¼ −β
X
x

�
c0

X4
μ<ν;μ;ν¼1

W1×1
μν ðxÞþc1

X4
μ≠ν;μ;ν¼1

W1×2
μν ðxÞ

�
;

ð7Þ
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SQ ¼
X
f¼u;d

X
x;y

q̄fxMx;yq
f
y; ð8Þ

where q is the quark field, β ¼ 4=g2, c1 ¼ −0.331,
c0 ¼ 1 − 8c1, and

Mx;y ¼ δxy − κ
X3
i¼1

fð1 − γiÞUx;iδxþî;y þ ð1þ γiÞU†
y;iδx;yþîg

− κfeμð1 − γ4ÞUx;4δxþ4̂;y þ e−μð1þ γ4ÞU†
y;4δx;yþ4̂g

− δxycswκ
X
μ<ν

σμνFμν: ð9Þ

Here κ is the hopping parameter, Fμν is the lattice field
strength, and Fμν ¼ ðfμν − f†μνÞ=ð8iÞ, with fμν the standard
clover-shaped combination of gauge links.
We apply the CP-PACS parametrization scheme [48] for

determining the coefficient csw of the clover term in the
two-color case. The coefficient csw is determined by using a
result obtained in a perturbative mean-field-improved
value csw ¼ P−3=4 [49] with the plaquette P calculated in

one-loop perturbation theory, P ¼ 1 − 0.21027 N2
c−1
2

β−1 for
Nc ¼ 2 [50]. We also check that the one-loop value of P
reproduces the measured ones in the simulations
within 10%.
In this paper, we deal with only the region

μ ≪ mps=2 ∼ 308 MeV, where mps is the pseudoscalar
(PS) meson mass. In NJL-like effective models such as
the PNJL model, the diquark condensate appears only
when μ > mps=2. We then assume that no diquark con-
densate comes out in the present analysis and do not add
any diquark source term to the lattice action to see whether
the diquark condensate appears in our lattice simulations.

B. Parameter setting for simulations

We denote temporal and spatial lattice sizes as Nt and
Ns, respectively. The hybrid Monte Carlo algorithm is used
to generate full QC2D configurations with two-flavor
dynamical quarks. The simulations are performed on a
lattice of N3

s × Nt ¼ 83 × 4. The step size of molecular
dynamics is δτ ¼ 0.02 and the step number of the dynamics
is Nτ ¼ 50. The acceptance ratio is more than 95%. We
generated 10,000 trajectories and removed the first 5,000
trajectories as thermalization for the entire parameter set.
The relation of parameters κ and β to the corresponding
T=Tc0 is determined by finding the line of constant physics
where the ratio of the pseudoscalar meson mass mps to the
vector meson massmv at T ¼ μ ¼ 0 is invariant; see Table I
for the relation.
To obtain the results in Table I, we calculated the

pseudoscalar meson mass mps and vector meson mass
mv in vacuum on an N3

s × Nt ¼ 83 × 16 lattice when
β ¼ 0.6, 0.64, 0.66, 0.68, 0.70, 0.72, 0.74, 0.76, and

0.78. Using the data, we determined the relation among
β, κ, and lattice spacing a, imposing the relation mps=mv ∼
0.8 and mv ¼ 770 MeV. The corresponding temperature T
in the smaller lattice is obtained by using the relation
T ¼ 1=ðNtaÞ. For β ¼ 0.65 and 0.75, we have determined
the β-κ-T relation by interpolation. We have determined the
critical beta βc0 at μ ¼ 0 by measuring the susceptibility of
the Polyakov loop and the pseudocritical temperature Tc0
by using the β-T relation obtained by the interpolation.

C. Physical observables

In this paper, we calculate the Polyakov loop (Φ), the
quark number density (nq), and the chiral condensate (σ).
The quark number density is calculated by

nq ¼
T
V

∂
∂μ logZ; ð10Þ

where V is the spatial volume, and σ is by

σ ¼ hq̄qi; ð11Þ
where q is quark field and the hOi is the average value of
physical quantity O. The chiral condensate suffers from the
renormalization, and chiral symmetry is explicitly broken
by Wilson fermions. This makes it difficult to deal with the
absolute value of the chiral condensate itself. We then
consider a variation

δσðT; μÞ ¼ σðT; μÞ − σðT; 0Þ: ð12Þ
The Polyakov-loop operator is defined by

LðxÞ ¼ 1

Nc

YNt

t¼1

U4ðx; tÞ; ð13Þ

TABLE I. Summary of the simulation parameter in this paper.
Tc0 is the pseudocritical temperature at μ ¼ 0. In this parameter
setting, except for β ¼ 0.65 and 0.75, the lattice spacing a is
about 1.38218 ∼ 1.95711 ½GeV−1� and the ratio mp=mv ¼ 0.8 at
T ¼ 0. For β ¼ 0.65 and 0.75, we have determined the β-κ-T
relation by interpolation.

Ns Nt β κ T=Tc0

8 4 0.60000 0.13782 0.87783(585)
0.64000 0.13770 0.94126(628)
0.65000 0.13764 0.96229(645)
0.66000 0.13751 0.98577(657)
0.68000 0.13695 1.02608(84)
0.70000 0.13677 1.06282(709)
0.72000 0.13679 1.11629(745)
0.74000 0.13567 1.16526(77)
0.75000 0.13526 1.18160(792)
0.76000 0.13493 1.20197(802)
0.78000 0.13443 1.24298(829)
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with link variables Uμ ∈ SUð2Þ. The average value Φ of L
is related to the single static-quark free energy Fq as

Φ ¼ hLi ∼ e−Fq=T: ð14Þ
The Polyakov loop Φ is an order parameter of the
confinement/deconfinement transition if quark mass
m is infinitely large. In fact, if Fq is finite (infinite),
Φ is finite (zero). The symmetry associated with the
confinement/deconfinement transition is Z2 symmetry
under the transformation

U4ðx; tÞ → z2ðtÞU4ðx; tÞ; ð15Þ
where z2 is the element of theZ2 group that depends only on
the temporal coordinate t. Pure gauge action is invariant
under this transformation while L is not. Hence,Φ ¼ hLi is
an order parameter of Z2 symmetry breaking. Effects of
dynamical quarks breakZ2 symmetry explicitly andΦ is not
a proper order parameter of the confinement/deconfinement
transition. As mentioned in the previous section, however,
at θ ¼ ð2kþ 1Þπ=2 the system is symmetric under the CZ2

transformation [28]. Hence, Φ becomes an order parameter
of the combined symmetry there.

III. PNJL MODEL

Two-color QCD has Pauli-Gürsey symmetry in the limit
of m ¼ μ ¼ 0 [51,52]. The PNJL Lagrangian of QC2D is
so constructed as to have the symmetry and is given by
[28,53,54]

L ¼ q̄ðiγνDν −mÞq
þ G½ðq̄qÞ2 þ ðq̄iγ5~τqÞ2 þ jqTCiγ5τ2t2qj2�
þ G8½ðq̄qÞ2 þ ðq̄iγ5~τqÞ2 þ jqTCiγ5τ2t2qj2�2
− Gvðq̄γνqÞ2 − UðΦÞ; ð16Þ

where q,m, ti, τi,G,G8,Gv are the two-flavor quark fields,
the current quark mass, the Pauli matrices in the color and
flavor spaces, the coupling constants of the scalar-type
four-quark interaction, the scalar-type eight-quark interac-
tion, and the vector-type four-quark interaction, respec-
tively. The potential U is a function of Φ.
The mean-field approximation leads us to the thermo-

dynamical potential Ω as [53]

Ω ¼ −2Nf

Z
d3p
ð2πÞ3

X
�
½Eþ

p þ E−
p þ Tðln f− þ ln fþÞ�

þU þ UðΦÞ; ð17Þ
with

f� ¼ 1þ 2Φe−βE
�
p þ e−2βE

�
p ; ð18Þ

U ¼ Gðσ2 þ ~Δ2Þ þ 3G8ðσ2 þ ~Δ2Þ2 −Gvn2q; ð19Þ

where Nf is the number of flavors, and ~Δ ¼
jhqTCiγ5τ2t2qij is the diquark condensate. The E�

p are
defined by

E�
p ¼ sgnðEp � ~μÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðEp � ~μÞ2 þ Δ2

q
; ð20Þ

where Ep ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þM2

p
with the effective quark massM≡

m − 2Gσ − 4G8σðσ2 þ ~Δ2Þ, ~μ ¼ μ − 2Gvnq, Δ ¼ −2G ~Δ,
and sgnðEp � ~μÞ is the sign function. When m ¼ μ ¼ 0, Ω
becomes invariant under the rotation in the σ- ~Δ plane as a
consequence of Pauli-Gürsey symmetry. Usually, G is
assumed to be constant. However, they may depend on
Φ [55]. Here we consider Φ-dependent G, namely,

G≡ G0ð1 − αΦ2Þ; ð21Þ
where G0 and α are constant parameters. As usual, we
assume that G8 is constant.
In the Polyakov gauge, Φ is given by

Φ ¼ 1

2
ðeiϕ þ e−iϕÞ ¼ cosðϕÞ; ð22Þ

for real number ϕ. Following Ref. [53], we take the
Polyakov-loop effective potential of the form

UðΦÞ
T

¼ −b½24e−a=TΦ2 þ ln ð1 − Φ2Þ�; ð23Þ

where a and b are constant parameters. As will be
mentioned in the next section, we determine the three
parameters α, a, and b, to reproduce LQC2D data on nq at
β ¼ 0.75 in the imaginary chemical potential region and
reproduce the pseudocritical temperature Tc0 ¼ 146 MeV
at μ ¼ 0. The obtained values are α ¼ 0.2, a ¼ 300 MeV,
and b1=3 ¼ 100 MeV.
Because this model is nonrenormalizable, the first

two terms in the integral of Ω are divergent. We then
regularize them by introducing a three-dimensional
momentum cutoff asZ

d3p
ð2πÞ3 →

1

2π2

Z
Λ

0

dpp2: ð24Þ

The mean fields X ¼ σ, Δ, nq, Φ are determined from the
stationary conditions

∂Ω
∂X ¼ 0: ð25Þ

In this paper, we consider only the region μ ≪ mps=2∼
308 MeV. In NJL-like effective models such as the PNJL
model, it is known that the diquark condensate appears only
when μ > mps=2. In fact, we confirmed that Δ is zero there,
using the PNJL model. This fact is consistent with our
assumption that the diquark condensate does not appear also
in our LQCD calculation.
There are six parameters in the NJL sector of the PNJL

model. A standard parameter set is already known for the
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two-color PNJL model with light pseudoscalar meson mass
(mps ¼ 140 MeV) [53]. In the standard parameter set,
Λ ¼ 657 MeV is used. In our case, since mps is larger,
we adopt a somewhat larger value, Λ ¼ 700 MeV. We also
require the effective quark mass M0 to be considerably
smaller than Λ and larger than half of the pseudoscalar
meson massmps. The latter is the condition for the meson to
be the Nambu-Goldstone boson. We search the parameter
set of G0, G8, and m, which reproduce the lattice mps value
(∼616 MeV), under the conditions above. The values ofGv
and α are chosen to reproduce LQC2D data on nq; see
Sec. V. Table II shows the parameter set used in this paper.

IV. ANALYTICAL CONTINUATION
OF PHYSICAL QUANTITIES

A. Analytical continuation

In this section, we show the numerical results of LQC2D
simulations and perform the analytical continuation of
physical quantities from the region at imaginary μ to the
region at real μ, and finally examine the validity of
analytical continuation.
Figure 1 shows the T dependence of Φ for several values

of μ̂≡ μ=T from iπ=2 to 1.2. For all the cases except

μ̂2 ¼ ðiπ=2Þ2 ¼ −ðπ=2Þ2, Φ increases smoothly as T goes
up. The deconfinement transition is thus crossover there.
This property is the same as in QCD with three colors [56].
For each μ̂2, the pseudocritical temperature Tcðμ̂2Þ [or
βcðμ̂2Þ] is defined by the temperature where the suscep-
tibility of Φ becomes maximum. It is found from LQC2D
simulations at μ̂ ¼ 0 that Tc0 ≡ Tcð0Þ ¼ 146 MeV. As for
μ̂2 ¼ ðiπ=2Þ2, Φ is almost zero below T ¼ 1.12Tc0 and
increases rapidly above T ¼ 1.14Tc0. At μ̂ ¼ iθ ¼ iπ=2, as
mentioned in Sec. I, the system has CZ2 symmetry and
hence the order parameterΦ of CZ2 symmetry is zero below
TRW and finite above TRW. Therefore, we can roughly
estimate that TRW is located somewhere in the range of
T ¼ 1.1 ∼ 1.2Tc0, although it is not clear from the present
analysis whether the RW transition is a first-order or
second-order phase transition on the RW end point.
Figure 2 shows the pseudocritical line βcðμ̂2Þ in the μ̂2-β

plane, and it is found that βcðμ̂2Þ decreases as μ̂2 increases.
The value of Tcðμ̂2Þ at μ̂2 ¼ ðiπ=2Þ2 determined from
βcððiπ=2Þ2Þ is 1.16Tc0. This value is a better value for TRW
than the one obtained by using Fig. 1.
Now we test the analytic continuation from imaginary μ

to real μ for the cases of β ¼ 0.75, 0.70, 0.65, and 0.60 that
correspond to T=Tc0 ¼ 1.18, 1.06, 0.96, and 0.88, respec-
tively. The system is in the deconfinement (D) phase
at β ¼ 0.75, while it is in the confinement (C) phase at
β ¼ 0.60 in the entire range of μ2 that we have studied. At
β ¼ 0.70ð0.65Þ, the system is in the C-phase when μ̂2 <
−1.15ð1.35Þ and in the D-phase when μ̂2 > −1.15ð1.35Þ.
For each temperature, we then use different analytic
functions as explained below [25,26,57].

-0.1

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.8  0.9  1  1.1  1.2  1.3
T /Tc0

( /T )2=1.44

( /T )2=0.64

( /T )2=0.16

( /T )2=0

( /T )2=-0.394

( /T )2=-1.58

( /T )2=(i /2)2

FIG. 1. LQC2D results on T dependence of Φ for several values
of μ̂2 ¼ ðμ=TÞ2.

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

-3 -2 -1  0  1  2  3

D-phase

C-phase

β

(μ /T)2

Pseudo-critical line

LQCD

FIG. 2. Pseudocritical line of deconfinement transition in the
μ̂2-β plane. In each thin horizontal solid line, β is constant,
and in each thin vertical dotted line μ̂2 is constant. At β ¼ 0.70,
the left-hand side of the left thin vertical dotted line belongs
to the C-phase, and the right side to the D-phase. At β ¼ 0.65,
the left-hand side of the right thin vertical dotted line corresponds
to the C-phase, and the right side to the D-phase. Note that
βcð0Þ ¼ 0.67.

TABLE II. Parameters of the PNJL model. The parameters
reproduce mps ¼ 616 MeV. M0 is the effective quark mass in
vacuum obtained in the PNJL model.

mps (MeV) M0 (MeV) G0 (GeV−2) G8 (GeV−8)

616 354 4.6 60

Gv=G0 Λ [MeV] m [MeV] α

0.15 700 110 0.2

a [MeV] b1=3 [MeV]

300 100
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1. TRW < Tðβ ¼ 0.75Þ
At this temperature, due to the existence of the RW

transition, physical quantities cannot be described by any
continuous periodic function. Hence we use a polynomial
series of the form

Aþ Bμ̂2; ð26Þ
or

Aþ Bμ̂2 þ Cμ̂4; ð27Þ
for μ̂-even quantities Φ and σ, where A, B, C are expansion
coefficients. For a μ̂-odd quantity nq, we use

Aμ̂þ Bμ̂3; ð28Þ
or

Aμ̂þ Bμ̂3 þ Cμ̂5: ð29Þ
In Ref. [25], it is discussed that better results are obtained

using ratios of polynomials (Padé approximations). It
would be interesting to examine the approximations in
our future works.

2. Tc0 < Tðβ ¼ 0.70Þ < TRW

At this temperature, the system is in the D-phase when
μ̂2 > −1.15. We then use the same polynomial series as in
the case of β ¼ 0.75, but consider only the region −1.15 <
μ̂2 ≤ 0 as a fitting range. For Φ and σ, we use only the
quadratic function (26), since the number of data we can
use is small.

3. Tðβ ¼ 0.60;0.65Þ < Tc0

At this temperature, the system is in the C-phase at
imaginary and zero μ̂. Hence, it is expected that physical
quantities can be well described by continuous periodic
functions. Since ΦðθÞ is θ-even and has a periodicity of 2π
in θ ¼ Imðμ̂Þ, we use the following Fourier series,

A cosðθÞ; ð30Þ
or

A cosðθÞ þ B cosð3θÞ; ð31Þ
for Φ. Note that the terms of cosð2θÞ and cosð4θÞ as well as
the constant term are excluded, since Φðπ=2þ θ0Þ ¼
−Φðπ=2 − θ0Þ for any θ0. The chiral condensate σðθÞ is a
θ-even and periodic function with a period π. We then use
the following Fourier series,

Aþ B cosð2θÞ; ð32Þ
or

Aþ B cosð2θÞ þ C cosð4θÞ; ð33Þ
for σ. The quark number density nqðθÞ is a θ-odd and
periodic function with a period π. We therefore use the
following Fourier series,

A sinð2θÞ; ð34Þ
or

A sinð2θÞ þ B sinð4θÞ; ð35Þ
for nq. Note that, in the case of β ¼ 0.65, the system is in
the D-phase when μ̂2 > 1.35. Hence, the Fourier series in
which the coefficients are determined from LQCD data at
imaginary μ̂ and zero μ̂ ¼ 0 may not work there.

4. Pseudocritical line

The pseudocritical line βcðμ̂2Þ is μ̂-even. We then use the
polynomial series (26) and (27).

B. Quark number density

First we consider the analytic continuation of nq.
Figure 3 shows the μ̂2 dependence of ðnq=T3Þ2 for several
values of T. The analytic continuation has errors coming
from LQCD data at zero and imaginary μ̂. We then plot the
upper and lower bounds of analytic continuation with a pair
of the same lines. The ðnq=T3Þ2 are smooth at μ̂ ¼ 0, as
expected. This is true for δσ and Φ, as shown later. This
guarantees that the analytic continuation from imaginary μ̂
to real μ̂ is possible.
At β ¼ 0.75 (T=Tc0 ¼ 1.18), the system is in the

D-phase and hence the polynomial series is used. The
coefficients determined from LQCD data at imaginary μ are
tabulated in Table III. The polynomial series up to μ̂3

reproduces LQC2D data well in the wide range of
0 ≤ μ̂2 ≤ ð1.2Þ2. Note that the analytic function deviates
from LQC2D data near the first-order RW phase transition
present at T > TRW and μ̂2 ¼ −ðπ=2Þ2.
At β ¼ 0.70 (T=Tc0 ¼ 1.06), the system is in the

C-phase when μ̂2 < −1.15, while it is in the D-phase
otherwise. Hence, we use only seven data in the range
of μ̂2 ¼ −1.15 ∼ 0 to determine the coefficients of the
polynomial series. The coefficients of the function are
tabulated in Table III. LQC2D data calculated at real μ̂ lie
between the upper and lower bounds of the polynomial
series up to μ̂3 in the wide range of 0 ≤ μ̂2 ≤ ð1.2Þ2.
At β ¼ 0.65 (T=Tc0 ¼ 0.96), the system is in the

C-phase when μ̂2 < 1.35, while it is in the D-phase
otherwise. Hence, we use the Fourier series. The coef-
ficients of the function are tabulated in Table III. The
analytic functions fail to reproduce LQC2D data calculated
at real μ̂ when μ̂2 ≥ 0.4. The large deviation at large μ̂2 may
originate in the fact that the system is in the D-phase there
and the Fourier series may not be valid anymore.
At β ¼ 0.60 (T=Tc0 ¼ 0.88), the system is in the

C-phase. Therefore, we use the Fourier series. The coef-
ficients of the function are tabulated in Table III. The
Fourier series up to the term sin ð2θÞ [sin ð4θÞ] are con-
sistent with LQC2D data calculated at real μ̂ in the wide
range 0 ≤ μ̂2 < 0.8 [0 ≤ μ̂2 ≤ ð1.2Þ2].
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Comparing four cases of T=Tc0 with one another, one
can see that the analytic continuation is reasonable at higher
T=Tc0 where the system is always in the D-phase when μ̂2

varies from−ðπ=2Þ2 to ð1.2Þ2 and at lower T=Tc0 where the
system is always in the C-phase when μ̂2 varies from
−ðπ=2Þ2 to ð1.2Þ2. Near T=Tc0 ¼ 1, however, the system
changes from the C-phase to the D-phase as μ̂2 varies from
−ðπ=2Þ2 to a positive value. A simple analytic function
cannot follow the complicated change properly. Therefore,
the analytic continuation is reasonable except for the
vicinity of deconfinement crossover.

C. Chiral condensate

Figure 4 shows the μ̂2 dependence of δσ for several values
of T. Again, the upper and lower bounds of analytic
continuation are shown by a pair of lines of the same kind;
see Table III for the coefficients of the analytic function
determined from LQC2D data at imaginary μ. As for δσ, one
can make the same discussion as in Sec. IV B for nq, as
shown below, although the analytic function taken in the
C-phase is a cosine function.
At β ¼ 0.75 (T=Tc0 ¼ 1.18), the polynomial series

up to μ̂2 reproduces well the LQC2D data calculated at
real μ̂ in the wide range of 0 ≤ μ̂2 ≤ ð1.2Þ2. At β ¼ 0.70
(T=Tc0 ¼ 1.06), the system is in the C-phase when
μ̂2 < −1.15, while it is in the D-phase otherwise. Hence,
we can use only three data in the range of μ̂2 ¼ −1.15 ∼ 0
to determine the coefficients of the analytic function and
then use the quadratic function only. The function is
consistent with LQC2D calculated at real μ̂ in the wide
range of 0 ≤ μ̂2 ≤ ð1.2Þ2.
At β ¼ 0.65 (T=Tc0 ¼ 0.96), the system is in the C-phase

when μ̂2 < 1.35, while it is in theD-phase otherwise. Hence,
we use the Fourier series. The analytic function is not
consistent with LQC2D data calculated at real μ̂ when
μ̂2 > 0.4. As mentioned in the case of nq, this failure at
large μ̂may show that the system is in the D-phase there and
the Fourier series becomes less reliable. At β ¼ 0.60
(T=Tc0 ¼ 0.88), the system is in the C-phase. Hence, we
use the Fourier series. The analytic functions are consistent
with LQC2D data calculated at real μ̂ in the range
of 0 ≤ μ̂2 < 0.8.

D. Polyakov loop

Figure 5 shows the μ̂2 dependence ofΦ at several values of
T. Again, the upper and lower bounds of analytic continu-
ation are shown by a pair of same lines; see Table III for the
coefficients of the analytic function. As for Φ, one can make
the same discussion qualitatively as in Sec. IV C for δσ.

E. Pseudocritical line

Figure 6 shows the transition line of deconfinement
crossover in the μ̂2-β plane. The pseudocritical βcðμ̂2Þ at
μ̂2 ¼ 0 is about 0.67. We consider the polynomial series in
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FIG. 3. μ̂2 dependence of nq at (a) β ¼ 0.75 (T=Tc0 ¼ 1.18),
(b) β ¼ 0.70 (T=Tc0 ¼ 1.06), (c) β ¼ 0.65 (T=Tc0 ¼ 0.96), and
(d) β ¼ 0.60 (T=Tc0 ¼ 0.88). The dots with error bars are the
results of LQC2D data. The solid and dashed lines represent the
results of analytic continuation in which two types of analytic
functions are taken as shown by legends. The upper and lower
bounds of analytic continuation are shown by a pair of same lines.
Characters C and D denote confinement and deconfinement
phases, respectively.
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FIG. 4. μ̂2 dependence of σ at (a) β ¼ 0.75 (T=Tc0 ¼ 1.18),
(b) β ¼ 0.70 (T=Tc0 ¼ 1.06), (c) β ¼ 0.65 (T=Tc0 ¼ 0.96),
(d) β ¼ 0.60 (T=Tc0 ¼ 0.88). For the definition of dots, lines,
and characters, see the Fig. 3 caption.
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which the coefficients are obtained from LQC2D data at
imaginary μ and tabulated in Table IV. The polynomial
series up to μ̂2 reproduces the LQC2D data well at
0 ≤ μ̂2 < 0.8, but deviates at μ̂2 > 0.8. The polynomial
series up to μ̂4 is consistent with LQC2D data even at
μ̂2 > 0.8, but the difference between the upper and lower
bounds of analytic continuation is large. Therefore, we
should consider that the analytic continuation of the
pseudocritical line is reasonable at 0 ≤ μ̂2 < 0.8.

V. COMPARISON OF PNJL MODEL
WITH LQC2D DATA

A. Parameter setting

In this section, we compare the results of the PNJL
model with LQC2D data to test the validity of the model.
For this purpose, we first fix the parameters of the model.
For the NJL sector, except for Gv, the parameters have
already been determined in Sec. III. We then fix the
remaining parameters a, b, α, and Gv here.
Figure 7 shows the T dependence of nq divided by its

Stephan-Boltzmann (SB) limit nSB for several values of μ̂2

from −ðπ=2Þ2 to ð1.2Þ2. LQC2D results include a lattice
artifact due to finite volume and spacing. The artifact is
expected to be reduced in nq=nSB. For all the values of μ̂2,
the ratio nq=nSB increases as T increases.
Now we determine the parameters a, b, α, and Gv from

nq at the highest T in the present analyses, i.e., at β ¼ 0.75
(T=Tc0 ¼ 1.18). The reason why we use the LQCD data at
the highest temperature is that the PNJL model is essen-
tially a model for quark dynamics and it is expected to work
better at higher T than at lower T. The reason why we use
nq is that the quantity does not need the renormalization
and is sensitive to the value of Gv.

Figure 8 shows the μ̂2 dependence of nq=nSB at β ¼ 0.75
at imaginary μ. As μ̂2 decreases, the chiral symmetry
breaking becomes stronger and the effective quark mass
M becomes larger [37], so that nq=nSB decreases.
We determined parameters a, b, α, and Gv in the PNJL

model as follows. First, we searched for some parameter
sets of ða; b; αÞ that reproduce Tc0 ¼ 146 MeV. Next, for
each parameter set ða; b; αÞ, we searched for the best value
of Gv that reproduces the μ̂2 dependence of nq in Fig. 8
well. Finally, we selected the parameter set ða; b; α; GvÞ
that reproduces the results of Fig. 8 best. The parameters
thus obtained are shown in Table II. It is interesting that the
vector interaction is needed to reproduce LQC2D results
data at imaginary μ. In fact, the model with Gv ¼ 0.15G0
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(solid line) yields better agreement with LQC2D data than
the model with Gv ¼ 0 (dotted line). This method may
work as a way of determining the vector coupling also in
realistic QCD with three colors [39,43,44].
T dependence of Φ is shown in Fig. 9 for three cases of

μ̂2 ¼ −ðπ=2Þ2; 0; 1.44. Since the renormalization is needed
for Φ, we multiply the PNJL results by a factor 0.304 to
reproduce LQC2D results at μ̂ ¼ 0 and T ¼ Tc0. The
renormalized PNJL results (solid lines) reproduce
LQC2D data qualitatively, except for the vicinity of the
first-order RW phase transition at T > TRW ≈ 1.16Tc0 and
μ̂2 ¼ −ðπ=2Þ2. The value of TRW is 178 MeV in the PNJL
model, but 163 ∼ 170 MeV in LQC2D data. In the present
model, it is quite difficult to reproduce LQC2D values of
Tc0 and TRW simultaneously. A fine-tuning of the Polyakov
potential UðΦÞ may be necessary.

B. Quark number density

Figure 10 shows the μ̂2 dependence of nq=nSB at β ¼
0.75 (T=Tc0 ¼ 1.18). As mentioned in the previous sub-
section, we have used LQC2D on nq=nSB at β ¼ 0.75 and
imaginary μ to determine the parameter set of the PNJL
model. The obtained value of Gv is 0.15G0. The parameter
set thus determined reproduces LQC2D data well even at
real μ. This ensures the assumption that the PNJL model is
valid at high T. In the same figure, the results obtained by
using the PNJL model with Gv=G0 ¼ 0 and 0.5 are also
shown. Also note that the PNJL model with Gv=G0 ¼ 0 or
0.5 fails to reproduce LQC2D data at real μ, while the PNJL
model with Gv=G0 ¼ 0.15 agrees with the LQC2D data
even at real μ. The imaginary chemical potential matching
approach is thus a promising method.
Figure 11 shows the same as Fig. 10 but for β ¼ 0.70

(T=Tc0 ¼ 1.06). On the left (right) side of the vertical thin
dotted line, the system is in the C-phase (D-phase). The

PNJL result (solid line) underestimates LQC2D data sizably
in the C-phase. To improve this, we consider the baryon
degrees of freedom that are not taken into account in the
PNJL model in the mean-field approximation (MFA); note
that baryons (diquark fluctuations) appear only in higher-
order calculations beyondMFA. Assuming that the baryons
have the same degrees of freedom as PS mesons, we add a
contribution of free baryon gas to the nq calculated with the
PNJL model in MFA. It is well known in three-color QCD
that the PNJL model in MFA reproduces lattice results well
in the confinement phase, when the free baryon (and
meson) contribution is added [58].
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In QC2D, the baryon is a boson consisting of two
quarks. According to Refs. [19,20], the scalar baryon
with the same degree of freedom as the PS meson has
almost the same mass as the PS meson. Hence, we use the
baryon mass mB ¼ mps ¼ 616 MeV. The quark number
density nq;B calculated with the baryon gas model is then
obtained as

nq;B ¼ 2g
Z

d3p
ð2πÞ3

�
1

eβðEB−2μÞ − 1
−

1

eβðEBþ2μÞ − 1

�
; ð36Þ

where EB ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þmB

2
p

, g ¼ 3 is the degree of freedom,
and the factor 2 in front of g comes from the fact that the
baryon is composed of two quarks. This modification
improves agreement with LQC2D particularly in the
C-phase, but not in the D-phase. This implies that baryons
disappear in the D-phase at least partially.
Figure 12 shows the same as Fig. 10 but for β ¼ 0.65

(T=Tc0 ¼ 0.96). The system is in the C-phase on the left
side of the thin dotted line, but in the D-phase on the right
side. Again, the PNJL model undershoots LQC2D in the
C-phase, but the PNJLþ baryon model almost reproduces
the LQC2D data in the C-phase, although the latter model
overshoots LQC2D data in the D-phase. Thus, the baryon
may disappear in the D-phase.
More precisely, the PNJLþ baryon model overestimates

LQC2D data also in the C-phase near the thin dotted line.
This fact may imply that a repulsive force works between
baryons there. It is well known that such a repulsive force
suppresses the baryon number density in realistic nuclear
matter.
Figure 13 shows the same as Fig. 10 but for β ¼ 0.60

(T=Tc0 ¼ 0.88). The system is in the C-phase and the PNJL
model largely underestimates LQC2D data, but it is
improved by the PNJLþ baryon model. We can therefore

conclude that baryon effects make an important contribu-
tion to nq, whenever the system is in the C-phase.

C. Chiral condensate

As mentioned in Sec. II C, the renormalization is
necessary for the chiral condensate. The PNJL results
are then simply multiplied by a normalization factor
1.92 so that the results can reproduce LQC2D data at
β ¼ 0.75 (T=Tc0 ¼ 1.18) and μ̂2 ¼ ðiπ=2Þ2. This choice of
normalization is natural, since the PNJL model is a quark
model and is expected to be more reliable at higher T.
Figure 14 shows μ̂2 dependence of δσ at β ¼ 0.75

(T=Tc0 ¼ 1.18). At this temperature, the system is in the
D-phase, and the PNJL model reproduces LQC2D data well
even at real μ.
Figures 15 and 16 show the μ̂2 dependence of δσ at

β ¼ 0.70 (T=Tc0 ¼ 1.06) and β ¼ 0.65 (T=Tc0 ¼ 0.96),
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respectively. On the left side of the thin vertical dotted line
the system is in the C-phase, while it is in the D-phase on
the right side. The PNJL model (solid line) is consistent
with LQC2D data in the D-phase, but not in the C-phase. In
order to improve this disagreement in the C-phase, we add
baryon effects to the PNJL model again:

σB ¼
∂mB

∂m g
Z

d3p
ð2πÞ3

mB

EB

�
1

eβðEB−2μÞ−1
þ 1

eβðEBþ2μÞ−1

�
;

ð37Þ
where we assume

∂mB

∂m ¼ 2; ð38Þ

since a naive constituent quark model gives this value. As
shown in Figs. 15 and 16, the PNJLþ baryon model

(dashed line) is more consistent with LQC2D data than
the PNJL model (solid line) in the C-phase, but less
consistent in the D-phase. This means that baryon effects
are significant only in the C-phase.
Figure 17 shows the μ̂2 dependence of δσ at β ¼ 0.60

(T=Tc0 ¼ 0.88). At this temperature, the system is in the
C-phase. The PNJLþ baryon model (dashed line) yields
better agreement with LQC2D than the PNJL model (solid
line) in the whole region of μ̂2; note that δσ is always zero at
μ̂ ¼ 0 by the definition (12). Thus, baryon effects are
important in the C-phase not only for nq=nSB but also
for δσ.

D. Polyakov loop

Figure 18 shows the μ̂2 dependence of Φ at β ¼ 0.75. As
mentioned in Sec. VA, the PNJL result is multiplied by a
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normalization factor 0.304 for Φ. At this temperature, the
system is in the D-phase. The PNJL model (solid line) is
consistent with the LQC2D data except for the vicinity of
the first-order RW transition.
Figures 19 and 20 show the μ̂2 dependence of Φ at β ¼

0.70 and β ¼ 0.65, respectively. The PNJL model deviates
from LQC2D data to some extent in the C-phase except for
the point at μ̂2 ¼ ði π

2
Þ2 where CZ2 symmetry restricts Φ

to zero.
Figures 21 shows the μ̂2 dependence ofΦ at β ¼ 0.60. At

this temperature, the system is in the C-phase. The PNJL
model deviates from LQC2D data to some extent in the
whole region except for the point at μ̂2 ¼ ðiπ=2Þ2 where
CZ2 symmetry restricts Φ to zero.

Throughout all the analyses for Φ, we can say that the
PNJL model cannot reproduce LQC2D data properly in the
vicinity of the RW transition and at lower T. A fine-tuning
of UðΦÞ may be necessary to solve this problem.

E. Phase diagram

Figure 22 shows the phase diagram in the μ̂2-T plane.
The PNJL model (solid line) reproduces LQC2D data well
in the range of μ̂2 ¼ −2 ∼ 1, but it overshoots LQC2D data
to some extent near the RW transition line and undershoots
LQC2D data in the large μ̂2 region of μ̂2 ≈ ð1.2Þ2. It is an
interesting question whether the PNJL model can repro-
duce LQC2D data in the large μ̂2 region as soon as the
model is improved to reproduce LQC2D data near the RW
transition line.
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F. Errors and uncertainties in determination of the
parameters of the PNJL model

In this section, we discuss errors and uncertainties in
determination of the parameters of the PNJL model. First
we estimate the effect of changing the value of Gv. Since
the determination procedure of the PNJL model parameters
is very complex, we concentrate our discussion on the last
step of the parametrization. Suppose that, except forGv, the
parameters of the NJL sector of the PNJL model have
already been determined to reproduce the vacuum proper-
ties and suppose that one of the undetermined four
parameters, a, b, α, and Gv, have been eliminated by
the condition Tc;PNJLð0Þ ¼ Tc;LQCDð0Þ ¼ 146 MeV; then
we must fit the quark number density of the LQCD result at
imaginary chemical potential and at β ¼ 0.75 by choosing
the remaining three parameters. Thus, the d.o.f. in the
fitting is given by Ndata − 3, where Ndata is the number of
the LQCD data. The value of χ2=d:o:f: for this para-
metrization is shown in Table V. In the same table, the
values of χ2=Ndata are also shown for the other LQCD
observables. We see that the value of χ2=Ndata becomes
very large at low temperature. The PNJL model cannot
reproduce the LQCD data well when β ≠ 0.75. In Table VI,
the values of χ2=Ndata are shown for the quark number
density and the chiral condensate at β ≠ 0.75 when the
PNJLþ baryon model is used. We see that the value of
χ2=Ndata becomes smaller in the C-phase while it becomes
larger in the D-phase. This observation confirms our
conclusion that the baryon contribution is important for
these quantities in the C-phase and vanishes in the D-phase.
The χ2 value may depend on the errors of the PNJL-

model calculations. In order to obtain the σ that satisfies
Eq. (25), we have searched for the solution with a step
Δσ ¼ 0.08σ0=Iσ, where σ0 is the value of the chiral
condensate in vacuum and the integer Iσ is introduced to
control the value of Δσ. Comparing the result of Iσ ¼ 10
with that of Iσ ¼ 50 in Tables V–VIII, we can find that the
χ2 value does not depend strongly on the errors of PNJL
model calculations.
In Sec. V B, Fig. 10 showed the quark number density at

β ¼ 0.75 obtained by the PNJLmodel withGv=G0 ¼ 0 and
0.5 as well asGv ¼ 0.15G0. The values of χ2 for the LQCD
observables are summarized in Tables VII and VIII when
the PNJL model with Gv=G0 ¼ 0 and 0.5 is used, respec-
tively. We see that the χ2=d:o:f: or χ2=Ndata is considerably
larger than that of the PNJL model with Gv ¼ 0.15G0. On
the other hand, the values of χ2=d:o:f: or χ2=Ndata in the
PNJL calculation with Gv=G0 ¼ 0.1 ∼ 0.4 are not that
much larger than those with Gv=G0 ¼ 0.15. Therefore,
we conclude that Gv=G0 is roughly estimated as 0.1 ∼ 0.4.
Next, we try to determine the PNJL parameters to

reproduce the quark number density at lower temperature
(β ¼ 0.60) at the imaginary chemical potential instead of
the one at β ¼ 0.75. The left side of Fig. 23 shows the best

fit we found for the quantity. In the new parameter set,
Gv ¼ 0 with the other parameters unchanged. In the figure,
it is clear that the PNJL model results underestimate
the LQCD results both in the imaginary and the real
chemical potential regions (the right side of the figure)
even if we use Gv ¼ 0. The values of χ=d:o:f: for quark
number density at imaginary chemical potential and
χ2=Ndata for quark number density at real chemical poten-
tial are 1973 and 4982, respectively. These values are much
larger than those for the quark number density at β ¼ 0.75
in Table V. We conclude that this parametrization is not
relevant.
The PNJL model reproduces the μ dependence of the

Polyakov-loopΦ only qualitatively. For example, in Fig. 18
the PNJL results underestimated Φ above μ=T > 0.5 and
overestimated at μ=T ¼ 0 ∼ 0.5 in the real chemical poten-
tial region. It is very difficult to reproduce the μ dependence
of the Polyakov loop more precisely in the present model.
An additional ad hoc μ dependence of parameters of the
effective model may explain the μ dependence of Φ but it
violates thermodynamical consistency and fails to repro-
duce the other quantities such as quark number density. At
present, it is an open question how we can reproduce the μ
dependence of Φ precisely while the thermodynamical
consistency is preserved.

VI. SUMMARY

We studied the phase structure of QC2D at both real and
imaginary μ by using an 83 × 4 lattice with the renormal-
ization-group-improved Iwasaki gauge action [45,46] and
the clover-improved two-flavor Wilson fermion action [47].
The Polyakov loop, the chiral condensate, and the quark
number density were calculated at 0.86 ≤ T=Tc0 ≤ 1.18
and −ðπ=2Þ2 ≤ μ̂2 ≤ ð1.2Þ2. These quantities are smooth at
μ̂ ¼ 0, as expected. This guarantees that the analytic
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continuation of physical quantities from imaginary μ̂ to real
μ̂ is possible.

Accuracy of the analytic continuation was tested in
Refs. [25,26] with staggered fermions. In this paper we
have made similar analyses with clover-improved Wilson
fermions by assuming a polynomial series of μ̂ in the
deconfinement phase and a Fourier series in the confine-
ment phase, where coefficients of the series were deter-
mined at imaginary μ. As for the quark number density at
T=Tc0 ¼ 1.18 corresponding to the deconfinement phase,
the polynomial series up to μ̂3 reproduces LQC2D results
well in the wide range of 0 ≤ μ̂2 ≤ ð1.2Þ2. At T=Tc0 ¼ 0.88
corresponding to the confinement phase, the results of the
lowest-order Fourier series sinð2θÞ are consistent with
LQC2D results in the range of 0 ≤ μ̂2 < 0.8. At T=Tc0 ¼
0.96 near the deconfinement transition, it is good only in
0 ≤ μ̂2 < 0.4. The analytic continuation is thus useful in
the deconfinement and confinement regions, but less
accurate in the transition region near T=Tc0 ¼ 1 where
the deconfinement crossover takes place somewhere in the
range of −ðπ=2Þ2 ≤ μ̂2 ≤ ð1.2Þ2 as μ̂2 increases with T
fixed. This is true for other quantities such as the Polyakov
loop and the chiral condensate.

We have tested the validity of the PNJL model by
comparing model results with LQC2D ones, where the
model parameters are fitted to the quark number density at
T=Tc0 ¼ 1.18 and imaginary μ. As for the transition line of
deconfinement crossover, the model results agree with
those of LQC2D. More precisely, the agreement is not
perfect in the vicinity of the RW transition line and the
large-μ̂2 region of ðμ̂Þ2 ≈ ð1.2Þ2. It is interesting to examine
whether the PNJL model can reproduce LQC2D data in the
large μ̂2 region as soon as the model is improved to
reproduce LQC2D data near the RW transition line. A
possible candidate for the improvement is a fine-tuning of
the Polyakov-loop potential UðΦÞ.

In the deconfinement region of T=Tc0 ¼ 1.18, the PNJL
model yields good agreement with LQC2D data at both real
and imaginary μ for the quark number density, the chiral
condensate, and the Polyakov loop. The agreement par-
ticularly at real μ indicates that the PNJL model is reliable
in the deconfinement region. In the transition region of
T=Tc0 ≈ 1, the agreement of the PNJL model with LQC2D
data is not perfect. As for the quark number density and the
chiral condensate, however, the deviation can be reduced in

the confinement area appearing at smaller μ̂2 by introduc-
ing the baryon degree of freedom to the PNJL model. In the
deconfinement area appearing at larger μ̂2, on the contrary,
the model overestimates LQC2D results if the baryon
contribution is taken into account. This means that baryons
disappear at least partially in the deconfinement area. Also
in the confinement region of T=Tc0 ¼ 0.88, the baryon
degree of freedom is important. As for the Polyakov loop,
the disagreement between PNJL and LQC2D results in the
confinement area cannot be solved by the baryon contri-
bution. Of course, this comes from the fact that the
Polyakov-loop potential is not changed by the baryon
contribution in the present framework. The improvement
of the PNJL model along this line is interesting.

The present analysis also shows that the vector-type four-
quark interaction is necessary to explain LQC2D data on
the quark number density. This fact indicates also that in the
realistic case of three colors the strength of the vector-type
interaction can be determined from LQCD data at imagi-
nary μ [39,43,44]. The present results indicate that the
imaginary-μ matching approach [36] is a promising
approach to the thermodynamics of QCD at finite real μ.

It should be stressed that our simulations were done on a
small volume (83 × 4). Therefore the finite volume effects
are very strong and not eliminated completely by the
normalization of physical quantities. There is the possibil-
ity that the PNJL model cannot reproduce the lattice data
very well for this reason. Simulations using the larger
lattice are needed to confirm our results.

In this paper, we consider only the μ region where the
diquark condensate is expected to be zero. A quantitative
check of our effective model in the larger μ region [20–22]
would also be interesting.
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APPENDIX: COEFFICIENTS OF FITTING FUNCTIONS FOR ANALYTIC CONTINUATION

We present the coefficients of analytic functions determined from LQC2D data at imaginary μ and the χ2=d:o:f: for the
fitting. We also show the errors for the fitting by the PNJL model.

TABLE IV. Coefficients of analytic functions and χ2=d:o:f: for the pseudocritical line. The coefficients are
determined from LQC2D data at imaginary μ. The fitting range is μ̂2 ¼ −ðπ=2Þ2 ∼ 0 for all cases.

Function A B C χ2=d:o:f:

Eq. (26) 0.66802(204) −0.02868ð167Þ 0.109
Eq. (27) 0.66871(257) −0.02637ð557Þ 0.00113(260) 0.089

TABLE III. Coefficients of analytic functions and χ2=d:o:f: for quark number density, chiral condensate, and the Polyakov loop at
(a) β ¼ 0.75, (b) β ¼ 0.70, (c) β ¼ 0.65, and (d) β ¼ 0.60. The coefficients are determined from LQC2D data at imaginary μ. The fitting
range is μ̂2 ¼ −1.15 ∼ 0 for (b) and μ̂2 ¼ −ðπ=2Þ2 ∼ 0 for the other cases.

(a) β ¼ 0.75
Observable Function A B C χ2=d:o:f:
ImðnqÞ Eq. (28) 3.61014(1466) 0.84703(2265) 2.914
ImðnqÞ Eq. (29) 3.57904(1989) 0.70990(6347) −0.08459ð3657Þ 2.566
δσ Eq. (26) −0.07116ð5561Þ −1.07870ð5010Þ 2.337
δσ Eq. (27) 0.01304(8702) −0.7336ð0190Þ 0.1571(8106) 1.448
Φ Eq. (26) 0.26153(70) 0.04379(12) 13.25
Φ Eq. (27) 0.25994(73) 0.02410(310) −0.01331ð191Þ 4.534
(b) β ¼ 0.70
Observable Function A B C χ2=d:o:f:
ImðnqÞ Eq. (28) 3.32812(2089) 1.07313(5618) 1.077
ImðnqÞ Eq. (29) 3.34986(2818) 1.2644(1755) 0.24168(21017) 1.016
δσ Eq. (26) 0.00868(13029) −1.39546ð25909Þ 0.018
Φ Eq. (27) 0.21241(112) 0.04621(279) 5.590
(c) β ¼ 0.65
Observable Function A B C χ2=d:o:f:
ImðnqÞ Eq. (34) 1.31566(759) 23.80
ImðnqÞ Eq. (35) 1.44376(1216) −0.11951ð886Þ 4.075
δσ Eq. (32) 1.1107(5784) −1.33556ð6933Þ 2.155
δσ Eq. (33) 1.05958(6059) −1.27686ð7235Þ 0.19765(6969) 0.1933
Φ Eq. (30) 0.15644(85) 7.920
Φ Eq. (31) 0.15375(94) −0.00461ð68Þ 0.442
(d) β ¼ 0.60
Observable Function A B C χ2=d:o:f:
ImðnqÞ Eq. (34) 0.93599(80) 1.189
ImðnqÞ Eq. (35) 0.94541(838) −0.01438ð74Þ 0.877
δσ Eq. (32) 0.69931(3257) −0.71395ð3973Þ 0.2853
δσ Eq. (33) 0.69633(3414) −0.71059ð4087Þ 0.01373(3913) 0.3394
Φ Eq. (30) 0.10258(38) 3.826
Φ Eq. (31) 0.10404(52) −0.00195ð46Þ 0.4438
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TABLE V. χ2=N for observables, where N is the number of
d.o.f. for ImðnqÞ at β ¼ 0.75 and is the number of data for the
other observables. The PNJL model with Gv ¼ 0.15G0 is used
for calculations. IM, RE, C, and D denote imaginary chemical
potential region, real chemical potential region, confined phase
(including the case with μ ¼ 0), and deconfined phase, respec-
tively. See the text for the definition of Iσ .

β nq δσ Φ

Iσ ¼ 50
0.75 (IM) 6.201 0.7876 187.7
0.75 (RE) 2.190 1.949 169.0
0.70 (C) 106.3 10.25 76.86
0.70 (D) 279.9 1.588 460.4
0.65 (C) 1547 66.44 720.4
0.65 (D) 2132 12.20 43.49
0.60 (C) 2560 136.2 4664
Iσ ¼ 10
0.75 (IM) 7.088 0.819 188.4
0.75 (RE) 2.190 2.095 170.3
0.70 (C) 116.4 10.72 92.87
0.70 (D) 293.0 2.006 485.0
0.65 (C) 1581 73.26 653.7
0.65 (D) 2003 13.34 60.24
0.60 (C) 2450 136.2 4578

TABLE VII. χ2=N for observables, where N is the number of
d.o.f. for ImðnqÞ at β ¼ 0.75 and is the number of data for the
other observables. The PNJL model with Gv ¼ 0 is used for
calculations. IM, RE, C, and D are the same as in Table V.

β nq δσ Φ

Iσ ¼ 50
0.75 (IM) 41.08 0.4004 174.8
0.75 (RE) 260.4 0.2879 163.9
0.70 (C) 109.1 23.58 84.15
0.70 (D) 173.3 7.970 463.2
0.65 (C) 1496 1015 719.6
0.65 (D) 1630 14640 78.22
0.60 (C) 2559 3802 4615
Iσ ¼ 10
0.75 (IM) 40.89 0.4565 172.7
0.75 (RE) 263.6 0.4106 167.6
0.70 (C) 116.0 23.66 94.95
0.70 (D) 174.3 8.606 494.0
0.65 (C) 1385 996.5 641.4
0.65 (D) 1481 12870 108.9
0.60 (C) 2444 7555 4540

TABLE VIII. χ2=N for observables, where N is the number of
d.o.f. for ImðnqÞ at β ¼ 0.75 and is the number of data for the
other observables. The PNJL model with Gv ¼ 0.5G0 is used for
calculations. IM, RE, C, and D are the same as in Table V.

β nq δσ Φ

Iσ ¼ 50
0.75 (IM) 41.23 3.482 214.3
0.75 (RE) 773.2 10.13 179.7
0.70 (C) 103.4 22.46 59.81
0.70 (D) 646.5 2.130 457.9
0.65 (C) 1660 798.2 734.7
0.65 (D) 3315 11220 1.746
0.60 (C) 2598 3421 4752
Iσ ¼ 10
0.75 (IM) 40.03 2.892 214.0
0.75 (RE) 773.2 12.76 181.5
0.70 (C) 77.67 18.43 21.32
0.70 (D) 653.1 2.639 490.5
0.65 (C) 1693 536.3 679.1
0.65 (D) 2994 10032 21.13
0.60 (C) 2472 6428 4691

TABLE VI. χ2=Ndata for observables, whereNdata is the number
of data. The PNJLþ baryon model is used for calculations. IM,
RE, C, and D are the same as in Table V.

β nq δσ

Iσ ¼ 50
0.70 (C) 47.60 3.875
0.70 (D) 5327 12.63
0.65 (C) 264.5 50.32
0.65 (D) 4932 113.1
0.60 (C) 329.0 64.03
Iσ ¼ 10
0.70 (C) 54.21 4.350
0.70 (D) 5291 11.73
0.65 (C) 188.3 44.30
0.65 (D) 5134 116.5
0.60 (C) 298.0 64.03
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