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A possible solution of the notorious sign problem preventing direct Monte Carlo calculations for systems
with nonzero chemical potential is to deform the integration region in the complex plane to a Lefschetz
thimble. We investigate this approach for a simple fermionic model. We introduce an easy to implement
Monte Carlo algorithm to sample the dominant thimble. Our algorithm relies only on the integration of the
gradient flow in the numerically stable direction, which gives it a distinct advantage over the other proposed
algorithms. We demonstrate the stability and efficiency of the algorithm by applying it to an exactly
solvable fermionic model and compare our results with the analytical ones. We report a very good
agreement for a certain region in the parameter space where the dominant contribution comes from a single
thimble, including a region where standard methods suffer from a severe sign problem. However, we find
that there are also regions in the parameter space where the contribution from multiple thimbles is
important, even in the continuum limit.
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I. INTRODUCTION

The Monte Carlo study of many field theories and many-
body systems is impeded by the sign problem. Among
those theories are theories of great importance such as QCD
at finite density (central to nuclear physics and the physics
of neutron stars) and the Hubbard model (important in the
theory of high temperature superconductors). In the lan-
guage of field theory, where observables of the theory are
expressed as a path integral, the sign problem appears as the
fact that the integrand is highly oscillatory and delicate
cancellations between contributions with opposite signs are
required to produce the correct result. Due to the impor-
tance of this problem several methods have been proposed
and explored aiming at its solution. Those include series
expansions on the chemical potential [1], reweighting [2,3],
canonical partition function methods [4,5], analytical
continuation from imaginary chemical potential [6], and
complex Langevin/stochastic quantization [7].
Recently there has been progress in implementing a new

method [8–21]. The basic idea is to complexify the real
variables of the path integral and deform the region of
integration to a region where the integrand is real and
positive. This new region of integration is a generalization
of the steepest descent path to multidimensional spaces. It
can be expressed as a combination of certain integration
regions, each of which is attached to a critical point of the
action (i.e. the configurations A such that δS½A�=δA ¼ 0).
These integration regions are known as “Lefschetz thim-
bles” and the integrand is real and positive (up to an overall
phase) over each thimble. The original integral is then
expressed as a combination of integrals over those

thimbles. This idea has ben fruitful in different aspects
of quantum mechanics [22–25] and quantum field theories
[26–28], especially in studying semiclassical expansions.
In this paper, however, we will focus on the implementation
of the Lefschetz thimble approach on lattice field theory.
In general, expressing multidimensional, complex,

Laplace type integrals in terms these Lefschetz thimbles is
governed by a well-developed mathematical theory (Picard-
Lefschetz theory) [29–31]. This theory is, however, difficult
to apply in practice. Especially for integrals that appear in
lattice field theory, finding out which particular set of
thimbles contributes to the original path integral is a difficult
problem. Some arguments have been made [8,9] that the
theory defined over one single thimble (associated with the
perturbative vacuum) is in the same universality class as
the original one. This is not a rigorous argument and a lot of
doubt remains, specially in the case of fermionic theories.
Furthermore, it is unclear whether Picard-Lefschetz theory
applies to the case where the action is not a polynomial, as in
the case of fermionic theories.1 This motivated the analytical
study of toy models for the fermionic case [16,20,33] that
shed some of light on these issues.
Different algorithms have been proposed to compute

integrals over a thimble and then applied to bosonic theories.2

In the present paperwe propose a novel algorithm to compute
integrals over one thimble and test it on a simple, exactly
solvable, 0þ 1 dimensional fermionic theory. Unlike some

1Notably there are examples with nonpolynomial actions, even
actions with poles where the theory applies [28,32].

2At the final stages of this research the first application to a
fermionic model appeared [20,21].
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of the previously introduced algorithms, our algorithm does
not suffer from certain problems such as the unstable flow
toward the critical point. We verify the feasibility and
efficiency of the algorithm, by comparing our results with
the exact ones, and find regions of the parameters space
where the contribution of other thimbles is negligible. Those
regions includemodels with a severe sign problem that could
not be dealt with using mode standardMonte Carlo methods
and successfully reproduces the exact result with a good
precision. On the other hand, we also argue that there are
other regions in the parameter space where the integration
over one thimble is not sufficient and contributions from
other thimbles have to be included. The existence of these
regions persists in the continuum limit. The fermionic
determinant which leads to questions on the applicability
of the Picard-Lefschetz theory to systemswith fermions does
not seem to create any problems for our algorithm.
The organization of the paper is as follows: In Sec. II we

recapitulate the basics of Lefschetz thimbles focusing on
their implementation on lattice field theory. In Sec. III we
explain our Monte Carlo algorithm for computing integrals
over one thimble. Section IV contains a summary of the
fermionic model with nonzero chemical potential that we
use and a collection of the exact results that we compare our
Monte Carlo results to. Our results are given in Sec. V. We
give our conclusions in the final Sec. VI.

II. LEFSCHETZ THIMBLES IN LATTICE
FIELD THEORY

Consider a multidimensional integral over the real
variables xi (with i ¼ 1;…; N) as found in the computation
of expectation values in Euclidean lattice field theory:

hO½x�i ¼
R
dxe−S½x�O½x�R
dxe−S½x�

with dx ¼
Y
i

dxi: ð1Þ

When the Euclidean action is real this ratio can be
estimated by sampling the x-space according to the
probability density

P½x� ¼ 1

Z
e−S½x� with Z ¼

Z
dxe−S½x�; ð2Þ

and computing

hO½x�i ≈ 1

Nconf

XNconf

a¼1

O½xðaÞ�: ð3Þ

This method cannot be used if the action S½x� is not real as
P½x� is not a real, positive quantity and cannot be seen as a
probability density. This is the generic case for systems,
including QCD, with nonzero chemical potential. An
alternative is to split S into its real and imaginary part,
include the real part in the probability density and the
imaginary part in the observable:

hO½x�i ¼ 1

Z

Z
dxe−S½x�O½x�

¼
R
dxe−SR½x�e−iSI ½x�O½x�R
dxe−SR½x�e−iSI ½x�

¼
R
dxe−SR½x�e−iSI ½x�O½x�R

dxe−SR½x�
=
R
dxe−SR½x�e−iSI ½x�R

dxe−SR½x�

¼ he−iSIOiR
he−iSIiR

: ð4Þ

The averages h·iR are performed with respect to the positive
definite measure given by the Boltzman factor expð−SR½x�Þ.
The “reweighting”method described above is successful as
long as the fluctuations on the phase expð−iSI½x�Þ are
small. It turns out that the phase fluctuation increases
exponentially with the spacetime volume and it is of limited
practical use.
An alternative is to modify the domain of integration.

In one dimension the integration over the real line can
be deformed into an integral over a different contour, as
long as no singularity is crossed in the deformation
process. This feature is explored, for instance, in the
steepest descent method where one deforms the contour
of integration from the real line to a curve zðτÞ passing
through a critical point (a point zcr in the complex plane
where dS=dz ¼ 0). This curve has two properties: (i) it
is the path along which the real part of the action
increases the fastest and (ii) the imaginary part of the
action is constant along it. Property (i) makes the choice
of the steepest descent path convenient when performing
a semiclassical expansion around the critical point (but,
of course, the full exact integral over the new contour
equals exactly the original integral). For bypassing the
sign problem, however, property (ii) is the useful one.
Indeed, since the action has a fixed phase along the new
contour, standard Monte Carlo methods can be applied
to the evaluation of the integral along the steepest
descent path. This curve is the one dimensional version
of a Lefschetz thimble. In general, the action can have
multiple critical points and therefore multiple thimbles,
each of which is attached to a different critical point.
The original integral over the real axis is then equal to a
particular sum over integrals over certain thimbles.
Which thimbles contribute to the original integral
depends on the action. How to apply Monte Carlo
methods to multithimble integrals is an important open
question.
We denote with J the integration contour corresponding

to the steepest descent method and zcr the critical point that
corresponds to this curve. In one dimension the curve J
defining the new integration contour is completely deter-
mined by the two properties listed above. To generalize this
construction to higher dimension we need to define this
curve using the flow induced by the action. The downward
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flow3 is a map from of the complex plane into itself,
Fτ∶C → C, with z0 ↦ Fτðz0Þ ¼ zðτÞ, where zðτÞ is the
solution of the differential equation:

dz
dτ

¼ −
�
dS
dz

��
with initial condition zð0Þ ¼ z0: ð5Þ

Using this flow we define the new integration contour J
passing through the critical point zcr

J ¼ fz ∈ Cj lim
τ→∞

FτðzÞ ¼ zcrg; ð6Þ

that is the collection of all points in the plane that flow into
the critical point zcr.
Before discussing the generalization of these ideas to

multidimensional integrals, we want to stress a few
important points.

(i) Starting from any point in the set z0 ∈ J , z0 ≠ zcr,
the flow given by Eq. (5) will describe a trajectory in
J approaching zcr asymptotically. The flow will not
cross to the other side of the critical point.

(ii) Starting with any point in z0 ∈ J , the set of points
Rz0 ¼ fFτðz0Þjτ ∈ ð−∞;∞Þg define a subset of the
integration contour (call it the ray passing through
z0). To generate the entire set we need to pick
another point in z1 ∈ J that is on the other side
of the critical point. We have then J ¼
Rz0 ∪ fzcrg ∪ Rz1 , where Rz1 is defined in the
same manner as Rz0 . The set J is then the union
of all rays, since zðτÞ ¼ zcr is also a solution of the
flow equation.

(iii) In one dimension, in order to construct the set J as a
union of rays, we need two seed points in J . These
points can be determined by analytically solving
the problem in an infinitesimal neighborhood of
zcr, where the action is well approximated by
S½z� ≈ S½zcr� þ ∂2S=∂z2½zcr�ðz − zcrÞ2=2. Around zcr
the set J is approximated by a straight line with the
slope controlled by the phase ϕ ¼ arg ∂2S=∂z2½zcr�.
As seed points we can pick two points on this line on
each side of zcr, z0;1 ¼ zcr � ϵ expð−iϕ=2Þ, and
compute the rays associated with them. The set J
is recovered in the limit ϵ → 0, but in practice a small
ϵ value is sufficient.

(iv) Note that if we start with the seed points mentioned
above, the set of points zðτÞ for τ > 0 are all in the
neighborhood of zcr, on the nearly straight line
connecting z0;1 to zcr. The points of interest are
those for τ ∈ ð−∞; 0�. In practice this part of the ray
is determined using the upward flow, F̄τ, z0 ↦
F̄τðz0Þ defined by the differential equation

dz
dτ

¼
�
dS
dz

��
with zð0Þ ¼ z0: ð7Þ

For τ > 0 this flow generates the same points
as the downward flow Fτ for negative values of τ.
In fact the flows are invertible and we have F−1

τ ¼
F−τ ¼ F̄τ.

(v) We note that there is another curve K that passes
through the critical point, along which the imaginary
part of the action is constant and equal to SI½zcr�:

K ¼ fz ∈ Cj lim
τ→∞

F̄τðzÞ ¼ zcrg: ð8Þ

This set is called the unstable thimble and around the
critical point it represents the direction in which
the real part of the action decreases the fastest. The
existence of this set has to do with the fact that the
critical points for S are saddle points for SR.

(vi) Both sets J and K are invariant under both the
upward and downward flow, that is points in J are
moved by both of these flows into points in J (and
similarly for K). From a numerical stability point of
view, we note that the positive upward flow F̄τ>0 is
stable on J , that is points that are slightly off J are
moved by the upward flow into points in the vicinity
of J . The positive downward flow Fτ>0 is unstable
around J and it is very difficult to integrate the flow
in this direction numerically.

The generalization of these ideas to the multidimensional
case goes as follows [29–31]. Assume that the action
depends on N complex variables zi with i ¼ 1;…; N. The
downward flow Fτ∶CN → CN, z0 ↦ Fτðz0Þ ¼ zðtÞ is
defined by the system of equations

dzi
dτ

¼ −
�∂S
∂zi

��
with initial condition

zið0Þ ¼ ðz0Þi for i ¼ 1;…; N: ð9Þ

The role of the steepest descent path is played by a
manifold with N real dimensions (embedded in a space
of 2N real or N complex dimensions). A point belongs to
this manifold—the Lefschetz thimble J of the correspond-
ing critical point zcr—if the takes that point (asymptoti-
cally) to the critical point, namely limτ→∞FτðzÞ ¼ zcr.
Another way to visualize the thimble is the following:
the critical point zcr is a saddle point. In the infinitesimal
neighborhood of it, there are N (real) directions along
which the real part of the action increases. Starting
infinitesimally away from zcr and following the flow
equation (9) along one of these directions defines a ray.
The collection of all such rays is an N dimensional real
manifold which is the Lefschetz thimble associated with
that critical point.

3Note we use the nomenclature “downward” in accordance
with the direction in which SR is decreasing.
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Some intuition about the flow equations can be gained by
splitting each variable zi ¼ xi þ iyi into its real and
imaginary parts:

dxi
dτ

¼ −
∂SR
∂xi ¼

∂SI
∂yi ;

dyi
dτ

¼ −
∂SR
∂yi ¼ −

∂SI
∂xi : ð10Þ

The first equality shows that flow is the gradient flow for
the real part of the action, SR, while the second equality
states that the flow is a Hamiltonian flow with the
imaginary part of the action, SI , playing the role of the
Hamiltonian which is a conserved quantity along the flow.
In other words, the flow is in the direction of the fastest
increase of SR and keeps SI constant.
In general, the integration over the real variables equals

the integration over a linear combination (with integer
coefficients that may be zero) of the integrals over all

thimbles (labeled by “σ”) associated with critical points zðσÞcr :

hO½x�i¼
R
dxe−S½x�O½x�R
dxe−S½x�

¼
P

σnσe
−iSI ½zðσÞcr �R

J σ
dze−SR½z�O½z�P

σnσe
−iSI ½zðσÞcr �R

J σ
dze−SR½z�

:

ð11Þ

The coefficients nσ are determined by how the original
integration region (the real hypersurface yi ¼ 0) intersects
the unstable thimble, Kσ, which is defined like the thimble
J σ but with the reversed flow, that is the flow along which
SR decreases.
The volume element in the integrals above can be

defined by choosing a parametrization of the thimble by
N real variables ηi as

dz≡YN
i¼1

dzi ¼
�YN

j¼1

dηj

�
det

�∂zi
∂ηj

�
|fflfflffl{zfflfflffl}

Jij

≡ dη det J: ð12Þ

This form is not amenable for Monte Carlo computations
since the Jacobian J is complex. Let us separate the
magnitude and phase of the determinant of the complex
matrix J and write det J ¼ j det Jjeiα. The residual phase
eiα describes the inclination of the space tangent to the
thimble in relation to the real hyperplane. We have now
(assuming for notational simplicity that only one thimble
contributes):

hO½x�i ¼
R
dηj det Jjeiαe−SR½η�O½η�R
dηj det Jjeiαe−SR½η�

¼
R
dηeiαe−SR½η�þlogðj det JjÞO½η�R
dηeiαe−SR½η�þlogðj det JjÞ ¼ heiαOiJ

heiαiJ
; ð13Þ

where the averages h·iJ are defined by the effective action
Seff ≡ SR − logðj det JjÞ. The feasibility of this form for
Monte Carlo evaluations hinges on the size of the fluctua-
tions of the residual phase eiα. This phase is very different
from the phase e−iSI ½x� that caused the sign problem to begin
with. In fact, there are simple models where e−iSI ½x� is
rapidly oscillating (for real x) but α ¼ 0.4

III. THE ALGORITHM

All Monte Carlo algorithms rely on a Markov chain
taking, at every step, one point of the integration region to
another point. This presents a difficulty for an integration
over the thimble as the shape of the thimble is only defined
via the solution of a differential equation (being a multi-
dimensional manifold, storing the coordinates enough
points on the thimble—let alone computing them—is
unfeasible). If the Markov chain is at one point of the
thimble it is unclear which directions can be proposed for
the next step. In other words, the tangent space to the
thimble is not known locally.
The tangent space to the thimble at the critical point is,

however, relatively easy to find. In fact, near the critical
point the real part of the action is given by:

SR½zcr þ Δz�

≈ SR½zcr� þ
1

2
Re

� ∂2S
∂zi∂zj

����
zcr

ΔziΔzj þ � � �
�

¼ SR½zcr� þ
1

4

� ∂2S
∂zi∂zj

����
zcr

ΔziΔzj

þ
� ∂2S
∂zi∂zj

������
zcr

Δz�iΔz�j þ � � �
�
: ð14Þ

The tangent space consists of the directions along which SR
increases. Consider the following equation:

HðzcrÞ�ρ�λ ¼ λρλ with λ ∈ R; ð15Þ

where the HessianHij ≡ ∂2S=∂zi∂zj is a symmetric and in
general complex matrix (thus, the matrix is not Hermitian
generically). Taken as a real vector space, there are 2N
linearly independent “eigenvectors” ρλ with 2N real
“eigenvalues” λ.5 Strictly speaking, they are not actually
eigenvalues and eigenvectors of HðzcrÞ due to the complex
conjugation involved, but with a slight abuse of terminol-
ogy we shall refer to them as such. We note first that
solutions of Eq. (15) always exist with λ ∈ R: if ðλ; ρÞ is a

4For a trivial example, consider the one dimensional action
SðxÞ ¼ ðxþ 1000iÞ2.

5If only real combinations are allowed, there are 2N linearly
independent such vectors. If complex linear combinations are
allowed only N of them are independent.
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solution, then ðe2iαλ; e−iαρÞ is also a solution. Therefore a
complex λ that satisfies Eq. (15) can always be rotated to a
real number. For the existence of such solutions let us
rewrite Eq. (15) separated into its real and imaginary parts
assuming λ is real

Hcr

�
Re ρλ
Im ρλ

�
¼ λ

�
Re ρλ
Im ρλ

�
with

Hcr ≡
�

HR −HI

−HI −HR

�����
z¼zcr

: ð16Þ

The matrix Hcr is real and symmetric therefore it has 2N
real eigenvalues and eigenvectors. These eigenvalues and
eigenvectors are used to construct the solutions of Eq. (15).
We stress that they are not the eigenvalues of the complex
matrix HðzcrÞ, but instead they are eigenvalues of the 2N
dimensional real matrix Hcr. Secondly we note that for
every ðλ; ρÞ there exists ð−λ; iρÞ.6 As such, there are N real
positive eigenvalues and N negative ones. Choosing the
displacements Δz ¼ P

λ>0cλρλ with cλ ∈ R in the sub-
space generated by real linear combinations of the eigen-
vectors ρλ with positive eigenvalues λ > 0, increases the
real part of the action:

SR½zcr þ Δz� ≈ SR½zcr� þ
1

2

X
λ>0

cλλ∥ρλ∥2 þ � � � > SR½zcr�:

ð17Þ

The collection of N complex vectors ρλ with λ > 0 spans
the tangent space to the thimble and it can be computed
from Eq. (16) in a straightforward fashion. This method
of constructing the tangent space only works at the
critical point. For noncritical points, where ∂S=∂zi ≠ 0,
the argument does not apply.
All algorithms put forward up to now rely on this fact in

order to generate a Markov chain along the thimble. Every
Monte Carlo update involves flowing “downhill” to a point
close to the critical point, changing the directions along the
tangent plane (that is known in that region by the
observations above) and flowing back near the previous
point in the thimble. These methods are further complicated
by the fact that the downhill flow toward the critical point is
unstable, as evidenced by the presence of N negative
eigenvalues.
The method we use is to parametrize a generic (far) point

zf on the thimble by a point zn near the critical point
obtained by flowing zf downhill by a fixed amount of time
τ ¼ T, zn ¼ FTðzfÞ. If the flow time T is large enough, the
relevant region of the thimble that one would like to sample
(the one with significant statistical weight) is mapped into a

small region near the critical point. In this small region,
which we will refer to from now on as the ‘Gaussian
region,” the tangent space is (approximately) found by the
diagonalization of the Hessian and updates can be made
while staying (nearly) on the thimble. In order to illustrate
this mapping we consider a two dimensional integral. In
this case the thimble is two-dimensional and by projecting
on the real parts of coordinates we can depict sampled
points zf as shown in Fig. 1. The arrows connect the points
on the thimble (zf) and their respective images in the
Gaussian region (zn). With this contraction map the
sampling of points can be easily done in the Gaussian
region where the tangent space is computed in a straight-
forward fashion. The sampling statistics is determined by
the images of these points in the far region therefore the
integral over the full thimble is simply obtained by flowing
these points by a fixed flow time. This way, as opposed to
other algorithms, we avoid flowing in the unstable down-
ward direction which causes great problems.
The near point zn plays the role of the real parameter η in

Eq. (13). In fact this parametrization amounts to a change of
variable in the integral:

Z
dzfe−SR½zf �O½zf�

¼
Z

dzn det Je−SR½zfðznÞ�O½zfðznÞ� with

Jij ¼
∂ðzfÞi
∂ðznÞj : ð18Þ

FIG. 1. Schematic representation of the mapping between
points zf on the thimble (black points) and their images zn (blue
points) in the Gaussian region (shown as the light blue disk). The
novelty of our algorithm is that by sampling the distribution of the
blue points we can compute the integral over the whole thimble
via the contraction map.

6iρ is linearly independent from ρ if one is allowed to make
only real linear combinations of the eigenvectors.
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Our algorithm will generate a set of points zn with the
probability distribution controlled by the Boltzmann factor:

PðznÞ ∝ e−SR½zfðznÞ�j det Jj: ð19Þ

Note that the Jacobian J corresponds to the map
zn ↦ zf ¼ F̄TðznÞ, that is the upward flow map for time
T. The determinant of the Jacobian measures the inverse
ratio of a volume element (an infinitesimal parallelepiped)
at the near point and the volume of its image at the far point.
To compute this, we setup an infinitesimal parallelepiped
Pn at the near point zn spanning its tangent space and
transport it using the upward flow to zf to get a parallel-
epiped Pf. To compute the image of a vector in the tangent
space, let us consider a pair of infinitesimally close points z
and z0. By transporting both of them by a time step dt using
the upward flow we find that:

z0iðtþ dtÞ − ziðtþ dtÞ

≈ z0iðtÞ − ziðtÞ þ
��∂S

∂zi
������

z0
−
�∂S
∂zi

������
z

�
dt

≈ z0iðtÞ − ziðtÞ þ
�� ∂2S

∂zi∂zj
�����

z

ðz0 − zÞj
��
dt; ð20Þ

which shows that tangent vectors v are transported by the
flow according to the equation

dvi
dτ

¼
� ∂2S
∂zi∂zj vj

��
that is

dv
dτ

¼ ½HðzÞv��: ð21Þ

Coupled with the differential equations for the upward
flow,

dzi
dτ

¼
�∂S
∂zi

��
with initial condition

zið0Þ ¼ ðznÞi for i ¼ 1;…; N: ð22Þ

this equation allows us to map the tangent space at zn to the
tangent space at zf.
To construct the parallelepiped Pn we take advantage of

the fact that the tangent space in the Gaussian region is well
approximated by the span of the positive eigenvectors of
Hcr. We set:

ðPnÞij ¼ ðρλjÞi with λj > 0 for i ¼ 1;…; N; ð23Þ

and get Pf ¼ Pðτ ¼ TÞ by integrating the upward flow
equation

dP
dτ

¼½HðzÞP�� with initial condition Pð0Þ¼Pn; ð24Þ

for time T. The determinant of J is then

det J ¼ detPf= detPn: ð25Þ

Before we describe the algorithm, we note that since Pn is
the same for all zn’s its contribution drops out when
considering averages over one thimble. We can then use
detPf instead of det J in the expression for the effective
action. Furthermore, we note that Pn can be any set of N
linearly independent vectors that span the tangent space at
zcr, which means that Pn is the same with the one we
defined here up to a multiplication with an N × N non-
singular real matrix. In particular, if the eigenvectors of ρλ
are all real, we can set Pn ¼ 1.
In order to sample the thimble we use a simple

Metropolis algorithm based on the representation of the
expectation values given by Eq. (19) and generate “near”
points with the distribution PðznÞ ∝ expð−Seff ½zn�Þ. We use
the following steps:
(1) Begin with the system at the critical point: zn ¼ zcr.
(2) Pick a random vector δ ∈ RN and make a proposal

z0n ¼ zn þ
P

jδjρλj , where λj > 0. In order to insure
detailed balance, the probability distribution for δ
has to satisfy PðδÞ ¼ Pð−δÞ.

(3) Compute z0f and det J½z0n� by solving Eq. (22) and
Eq. (24) with initial conditions zð0Þ ¼ ~z0n and
Pð0Þ ¼ Pn.

(4) Compute the effective action Seff ½z0n� ¼ S½z0f�−
logðj det J½z0n�jÞ.

(5) Accept/reject the proposal with probability
minf1; expð−Seff ½z0n� þ Seff ½zn�Þg and set zn to z0n.

(6) Go back to 2 and repeat the process.
The above algorithm generates a series of triplets
ðzn; zf; JÞk which are then used to estimate the observables
average:

hOi ≈
P

kO½ðzfÞk�ei arg JkP
ke

i arg Jk
: ð26Þ

Note that only the far points zf and the phase of the
Jacobian are used in the calculation for the observables.
The algorithm proposed here is simple to implement and
the only delicate part is the integration of the downward
flow, which is, as we stressed earlier, numerically stable.
We use a fifth order adaptive integrator based on Runge-
Kutta method [34]. The choice of the probability distribu-
tion for the random displacements, PðδÞ in step 2, is
important to insure that the algorithm is efficient. We will
discuss a choice appropriate for this model in Sec. V. The
results of the simulation will depend on the amount of time
T we integrate the downward flow. The exact result is
recovered in the limit T → ∞. In practice this parameter
will either be chosen large enough so that the results are
sufficiently close to their exact values or we can use an
extrapolation in T.
Before we conclude, we note that a Metropolis based

algorithm was used to investigate a simple system using
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Lefschetz thimble approach [11]. Our proposal differs in
several important details. In particular, in our work the
Jacobian is included in the effective action used for
updating, whereas in the work cited this is accounted for
in the calculation of the observable as an additional
reweighting factor. For systems where the thimble is not
well approximated by the Gaussian thimble, the Jacobian
will fluctuate wildly and the reweighting fails.

IV. THE MODEL

We will illustrate our algorithm using a 0þ 1 dimen-
sional version of the Thirring model at finite density which
can be solved analytically and compare the Monte Carlo
results to the analytical ones. This model suffers from a sign
problem and has been used as a toy model for testing ideas
such as complex Langevin dynamics [7,35,36] and hybrid
Monte Carlo on Lefschetz thimbles [20,21]. The model is a
fermionic system with a quartic interaction and has the
following continuum Euclidean Lagrangian

LTh ¼ χ̄

�
γ0

d
dt

þmþ μγ0
�
χ þ g2

2
ðχ̄γ0χÞ2; ð27Þ

where χ is a two component spinor and γ0 is a Pauli matrix.
The interaction term is simply the 0þ 1 dimensional
analog of the current-current interaction ðχ̄γμχÞðχ̄γμχÞ of
the original Thirring model. This quartic interaction term
can be can be eliminated via a Hubbard-Stratonovich
transformation leading to the effective Lagrangian

L ¼ χ̄

�
γ0

d
dt

þ iγ0zþmþ μγ0
�
χ þ 1

2g2
z2; ð28Þ

where the auxiliary field z is reminiscent of a one
component gauge field. After integrating out fermions
we arrive at the expression for the partition function

Z ¼
Z

Dz det

�
γ0

d
dt

þ iγ0zþmþ μγ0
�
e
− 1

2g2

R
dtz2

: ð29Þ

Above the Euclidean time direction is finite, with a length
inversely proportional to the temperature. The fermionic
fields χ are antiperiodic and the bosonic field z is periodic.
For real values of μ, the determinant is complex and the
model has a sign problem.
The lattice formulation of this model with staggered

fermions has the partition function [7,35,36]

Z ¼
�YN
t¼1

Z
2π

0

dzt
2π

�
detKe

− 1

2g2

P
N
t¼1

ð1−cos ztÞ

≡
�YN
t¼1

Z
2π

0

dzt
2π

�
e−S½z�; ð30Þ

where the effective action and the explicit form of the
discretized Dirac matrix are

S½z� ¼ −
1

2ĝ2
XN
t¼1

ð1 − cos ztÞ þ log detK; ð31Þ

Kt;t0 ¼
1

2
ðeμ̂þiztδtþ1;t0 − e−μ̂−izt0 δt−1;t0 þ e−μ̂−izt0 δt;1δt0;N

− e−μ̂−iztδt;Nδt0;1Þ þ m̂δt;t0 : ð32Þ

Here N ¼ β=a is an even number that denotes the number
of lattice sites related to the inverse temperature of the
system β, and all the dimensionful quantities, m, g2, μ are
converted in dimensionless units by multiplying with
appropriate powers of the lattice spacing: m̂ ¼ ma,
μ̂ ¼ μa, ĝ2 ¼ g2a. The auxiliary field z in this discretiza-
tion plays the role of a Uð1Þ link variable. The partition
function, the chiral condensate, and the charge density can
be calculated analytically in this lattice model [35]:

Z ¼ e−Nα

2N−1 ½IN1 ðαÞ coshðNμ̂Þ þ IN0 ðαÞ coshðN sinh−1ðm̂ÞÞ�;
ð33Þ

hni ¼ 1

β

∂
∂μ logZ ¼ 1

N
∂
∂μ̂ logZ

¼ IN1 ðαÞ sinhðNμ̂Þ
IN1 ðαÞ coshðNμ̂Þ þ IN0 ðαÞ coshðN sinh−1ðm̂ÞÞ ; ð34Þ

hχ̄χi ¼ 1

β

∂
∂m logZ ¼ 1

N
∂
∂m̂ logZ

¼ ð1þ m̂2Þ−1=2IN0 ðαÞ sinhðN sinh−1ðm̂ÞÞ
IN1 ðαÞ coshðNμ̂Þ þ IN0 ðαÞ coshðN sinh−1ðm̂ÞÞ ;

ð35Þ
where α≡ 1=ð2ĝ2Þ and InðαÞ denotes the modified Bessel
function of the first kind.

A. Semiclassical approximation and
subleading thimbles

For analyzing our Monte Carlo results it is useful to have
an estimate for the contribution of individual thimbles to
the final result, in particular the leading and subleading
thimbles. We note that for fermionic systems the analysis is
more involved due to the zeros of the determinant, which
lead to divergencies in the effective action. The thimbles
that start at the critical points could run to infinity but they
can also terminate at a zero of the determinant. In this
section we will focus on estimating the contribution of the
subleading thimbles to gauge the expected discrepancy
between the Monte Carlo one-thimble result and the exact
result that should be exactly reproduced only when all
contributing thimbles are included in the Monte Carlo
calculation.
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The critical points are determined by the equation

∂S
∂zt ¼

1

2ĝ2
sinðztÞ

− i
sinh ðNμ̂þ i

P
N
t0¼1

zt0 Þ
cosh ðNμ̂þ i

P
N
t0¼1

zt0 Þ þ coshðN sinh−1ðm̂ÞÞ ¼ 0;

ð36Þ

which we solve numerically. We want to stress two points
here: First, the second term in Eq. (36) is independent of t
which leads to the conclusion that all the critical points of
the discretized path integral in Eq. (30) have the property
that sin zt is time independent, that is sin zt ¼ sin z0. If the
field was continuous this would imply that the zt is also
time independent (that is zt ¼ z0 for all t), but in a
discretized system it is possible to have critical points
where the value of zt changes to π − z0. However, we
expect that the leading contributions come from thimbles
attached to critical points with constant zt. This assumption
substantially simplifies the problem of finding the critical
points of the action. Second, the leading contribution
comes from the thimble attached the critical point with
Rez0 ¼ 0. For μ̂ ¼ 0 this critical point is at z0 ¼ 0 but for
nonzero chemical potential it is a pure imaginary, that is
z0 ¼ ix for some real x, even though the original path
integral is along the real values of zt, namely the interval
½0; 2π�. This is an example of the situation where complex
valued configurations which lie outside of the original
integration region contribute to the semiclassical expansion
[23–25,37]. In fact in this case the complex configuration
constitutes the leading contribution.
In the semiclassical approximation we approximate the

path integral by evaluating the effective action and the
observable only at the critical points. Within the semi-
classical approximation we have

hO½z�i ≈
P

σnσO½zðσÞcr �e−S½zðσÞcr �P
σnσe

−S½zðσÞcr �
ð37Þ

where σ labels different critical points. The coefficients nσ
can be zero for some critical points. These coefficients are
difficult to determine precisely given the complicated
topology of the thimbles in the CN space. We compute
all critical points that have constant field, do a flow analysis
in the constant field plane and estimate the thimbles that are
likely to contribute. To derive the estimate, we assume that

the values of nσ ’s are equal to 1 for the thimbles we believe
contribute and include in our estimate the largest two
subleading thimbles. Given the heuristics involved in our
procedure, we use these estimates only to set the expect-
ations for the order of magnitude of the disagreement
between the Monte Carlo and exact results.
We apply the procedure above to estimate the subleading

contributions to the chiral condensate hχ̄χi. In Table I we
give the numerical values of the contribution from the next-
to-leading critical point for a range of parameters. The order
of magnitude for this quantity is about 1. In the table we
include the results for a set of parameters similar to the one
used in our numerical simulations. We set m̂ ¼ 1 and look
at two values for the coupling ĝ2 ¼ 1=6 (weak coupling)
and ĝ2 ¼ 1=2 (strong coupling). At low values of μ the
subleading contribution is very small, it increases for values
around μ̂ ¼ 1 and decreases again as μ̂ is greater than 2.
From the table we see that forN ¼ 2 the discrepancy for the
weak coupling case is very small and it is unlikely to
resolve it using Monte Carlo methods. However, even for
weak coupling, when the temperature is increased, as we
show in the table for N ¼ 8, the other thimble contributions
grows and we expect that discrepancy to be resolved in our
simulations. For strong coupling the subleading contribu-
tion is large even at high temperature. These values are to
be compared with the difference between the exact result
and one thimble Monte Carlo computation given in the
bottom line of Fig. 5 and the right-hand side of Fig. 6. The
order of magnitude agreement between the semiclassical
estimate of the contribution of the subleading thimble and
the difference between the exact result and the Monte Carlo
result, δhχ̄χi, show that the algorithm is correct and that the
discrepancy is due to the contribution of the neglected
thimbles.

B. Continuum limit

It is also illustrative to study the continuum limit of the
model. The continuum limit is a two fermion system with
four levels. By taking the limit a → 0 while keeping
β ¼ Na, m ¼ m̂=a, g2 ¼ ĝ2=a and μ ¼ μ̂=a constant we
obtain

Z → e−βð−m−g2=4Þ þ e−βð−μþ3g2=4Þ þ e−βðμþ3g2=4Þ

þ e−βðm−g2=4Þ; ð38Þ
up to an overall normalization factor that we dropped.
Further shifting the ground state energy −m − g2=4 to zero

TABLE I. Semiclassical estimates for the contribution of the sub-leading thimbles to the chiral condensate. The contribution is
significantly smaller for smaller and larger values of μ̂. These estimates are for systems with mass m̂ ¼ 1.

N ¼ 2 ĝ2 ¼ 1=6 N ¼ 2 ĝ2 ¼ 1=2 N ¼ 8 ĝ2 ¼ 1=6

μ̂ 0.6 1.0 1.4 2.0 0.6 1.0 1.4 2.0 0.6 1.0 1.4 2.0
δhχ̄χi 2 × 10−6 4 × 10−4 −4 × 10−4 4 × 10−7 0.05 0.03 0.004 −0.01 −0.08 0.004 0.02 1 × 10−8
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we obtain the spectrum: 0; m − μþ g2; mþ μþ g2; 2m.
Notably when μ ¼ mþ g2, the ground state flips from
the unoccupied state to a singly occupied state, a quantum
mechanical analog of a phase transition. This value of μ is
where the susceptibilities peak as well.
The systems we consider in this study use rather coarse

lattice spacing and it is useful to consider a continuum
trajectory that approaches the limit faster. This can be
determined by casting the discretized partition function in
Eq. (30) using an ansatz Z ¼ P

i expð−ÊiNÞ, where
Êi ¼ aEi. We find:

Ê0 ¼ − log jm̂ −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 þ m̂2

p
j − log I0ðαÞ þ log 2 þ α;

Ê�
1 ¼ − log I1ðαÞ � μ̂ þ log 2 þ α;

Ê2 ¼ − log jm̂ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 þ m̂2

p
j − log I0ðαÞ þ log 2 þ α:

ð39Þ

Setting the ground state energy to zero, and doing an
expansion in m̂ ¼ ma, we get:

E�
1 ¼ m� μþ 1

a
log

I0ðαÞ
I1ðαÞ

þOðm̂3Þ;

E2 ¼ 2mþOðm̂3Þ: ð40Þ

Note that

1

a
log

I0ðαÞ
I1ðαÞ

¼ g2 þ ag4 þOðĝ6Þ; ð41Þ

and this result is indeed compatible with the continuum
limit derived above as it differs only at higher order. Wewill
use these relations to adjust the model parameters as we
approach the continuum limit in our simulations. We set

m̂ ¼ ma and μ̂ ¼ μa but we adjust the coupling ĝ2 to keep
the quantity ½log I0ðαÞ=I1ðαÞ�=a constant.

V. RESULTS

We performed numerical simulations of the model in
Eq. (30) using the algorithm described in Sec. III for a
variety of parameters m̂; μ̂; ĝ2; N and flow time T. In this
section we describe our main findings.
We start first by discussing some algorithmic issues. We

focus first on the choice of the flow time T. In the left panel
of Fig. 2 we show the distribution of the far and near points
for different flow times, for the parameters set m̂ ¼ 1,
μ̂ ¼ 0.7, N ¼ 2, ĝ2 ¼ 1=6, and flow times T ¼ 0, 0.5, 1.
On the top row we show the sampled points zn (actually, a
projection on the real plane). On the bottom row we show
the image of these points zf (again, their projection on the
real plane) connected to them by the flow. This shows that
the distribution of sampled points on the thimble is almost
independent of the flow even when their corresponding
distribution of points in the Gaussian region is more and
more concentrated around the critical point (as T → ∞).
These graphs also indicate how much flow is necessary in
order to have the near points zn in the Gaussian region. To
be more quantitative, we study the dependence of the chiral
condensate as a function of the flow time. The exact result
are obtained only in the T → ∞ limit. In the right panel of
Fig. 2 we show the chiral condensate as a function of the
flow time for the same parameters as in the left figure. It is
clear that already for T ¼ 0.5 the infinite flow time limit is
reached (at the level of the error bars). For the calculations
shown in this paper a flow time of T ≤ 3 was always
enough for our purposes.
When we discussed the algorithm in Sec. III we

mentioned that the choice of the probability distribution
for the proposal step PðδÞ is important to insure the
efficiency of the update. To explain our choice we need
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FIG. 2. Left: Probability distribution for the far (top row) and near points (bottom row) for different flow times. We plot 3000 samples
from a simulation with N ¼ 2, ĝ2 ¼ 1=6, m̂ ¼ 1, and μ̂ ¼ 0.7. Right: Chiral condensate as a function of flow time for the same
parameters showing the convergence towards the T → ∞ result. The horizontal line indicates the exact result which is expected to be
very close to the one-thimble result for these parameters.
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to discuss the properties of the map for large flow times.
The left panel of Fig. 3 shows an important feature of the
map between zf and zn. Even when the points zf are
distributed more or less isotropically their image zn can be
very anisotropic. This is due to the fact that the downward
flow FT that maps zf into zn in the Gaussian region is
essentially a compression in the different eigendirections ρλ
by an amount e−λT . Even modest differences between
eigenvalues will, at large T produce a very anisotropic
flow. Since our algorithm samples the distribution PðznÞ
which is anisotropic, a isotropic proposal that has a good
acceptance rate will be controlled by the narrowest direc-
tion (corresponding to the largest eigenvalue λ), but it will
then take a long time to sample the “long” directions. In the
top row of the middle and right panels of Fig. 3 we show the
simulation time evolution for the eigendirection relevant for
N ¼ 2 system: z1 � z2. We tune the algorithm for an
acceptance rate of about 50% and we find that the narrow
direction, z1 þ z2, is well sampled, whereas the long one,
z1 − z2, has a large autocorrelation time.
For this reason we chose our Metropolis update propos-

als also anisotropically. The proposals in the direction ρλ
are proportional to the factor e−λT. For the model in Eq. (31)
the eigenvalues of HðzcrÞ are readily obtained because the
Hessian at the critical point has a particularly simple
structure. Remember that the critical point is purely
imaginary and constant in time ðzcrÞt ¼ iζ. The value of
ζ is determined numerically by solving Eq. (36). All off-
diagonal elements of the Hessian are equal to

H12 ¼
cosh½Nðμ̂ − ζÞ�
2N−1 detKðζÞ −

�
sinh½Nðμ̂ − ζÞ�
2N−1 detKðζÞ

�
2

; ð42Þ

and the diagonal elements are

H11 ¼ α coshðζÞ þH12: ð43Þ

The eigenvalues are then λconst ¼ H11 þ ðN − 1ÞH12 (cor-
responding to the eigenvector with all components equal)

and λother ¼ H11 −H12, with a N − 1 degeneracy (corre-
sponding to the remaining eigenvectors). Furthermore, note
that the Hessian HðzcrÞ is real and then the eigenvectors are
purely real. Thus we do not have to solve the eigenvectors
explicitly either for the purpose of updating zn, nor for
computing the parallelepipedPn required to determine det J.
Our update procedure is then z0n ¼ zn þ

P
λδλe

−λTρλ,
with PðδλÞ an uniform distribution in the interval ½−ϵ; ϵ�,
independent of λ. For most of our runs we choose ϵ ¼ 1, as
we find that this choice produces good acceptance rates. We
note that with this proposal, the acceptance rates were
almost independent of the flow time T. For simulations
with large number of time slices N ≥ 32we had to reduce ϵ
to about 0.1 to get good acceptance rates. This proposal
method ensures that the thermalization of the average value
of the field over time slices (corresponding to ρconst) is
thermalized on the same time scale as the other directions in
field space. As an example we show the results of
anisotropic proposals in the bottom row of the middle
and right panels of Fig. 3. In the right panel we can clearly
see that the autocorrelation time is much smaller when
using anisotropic proposals.
The final algorithmic issue we will address here is

connected to the residual phase. If we were to carry out
the simulations using the original integration path with
z ∈ RN , we would have to do phase quenched simulation
and introduce the phase in the observable. For large μ̂ and
small temperatures the average of the phase becomes very
small leading to the notorious sign problem. When inte-
grating the field over the thimble a similar procedure is
applied to separate the complex phase of the Jacobian. This
residual phase has much smaller fluctuations and it does not
create any reweighting problems. To show this in the left
panel of Fig. 4 we plot both the phase quenched average
and the average of the residual phase for a low temperature,
weak coupling system. Note that as μ̂ grows bigger than 1
the phase quench average drops dramatically, whereas the
residual phase average barely changes. However, the
fluctuations of the residual phase are important and should
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FIG. 3. Left: Near points distribution, PðznÞ, for a flow time T ¼ 3 showing the anisotropy of their distribution. The simulation uses
the same parameters as in Fig. 2. Middle: Simulation time evolution for the sum of the real parts Reðz1 þ z2Þ. Top is the simulation using
an isotropic proposal and bottom anisotropic. The step-sizes were adjusted to get the same acceptance rate. Right: Plot of the difference
Reðz1 − z2Þ which corresponds to the elongated direction in the left panel. Note that for isotropic proposals (top) the autocorrelation
time is much longer.
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not be neglected: in the right panel of Fig. 4 we plot the
value of the chiral condensate for the same system with the
residual phase included and compare it with the average of
the observable when the phase is neglected. We can see that
in the transition region μ̂ ∼ 1 the difference between the two
averages is noticeable.
We now discuss the results of the Monte Carlo simu-

lations for two sets of parameters: weak coupling,
ĝ2 ¼ 1=6, and strong coupling, ĝ2 ¼ 1=2. The mass is

fixed at m̂ ¼ 1. For each set of parameters we thermalized
the system using 1,000 updates and collected 10,000
samples separated by 10 updates. The error bars were
estimated using binned jackknife method using bins of size
1,000. The results for the condensate weak coupling and
N ¼ 2 are presented as a function of μ in the left panel of
Fig. 5. The main feature to notice is the agreement between
our results and the exact one. This occurs even when μ is
large where the phase quenched simulations have large
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FIG. 4. Left: Phase average in for real phase quenched simulations and the average of the residual phase for single thimble simulations.
Right: the chiral condensate with and without the residual phase folded in. The solid line represents the exact result that includes
contribution from other thimbles.
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FIG. 5. Condensate as a function of chemical potential μ for the parameters for weak coupling (left) and strong coupling (right). In the
top plots the solid lines indicate the exact result. The bottom plots indicate the difference between Monte Carlo and exact results. No
discrepancy with the exact result is seen in the weak coupling case but a small statistically-significant difference is seen in the strong
coupling case.
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phase fluctuations. This agreement is expected since the
estimates for the size of the contribution from other
thimbles (see Table I) is very small, smaller than our
already small error bars. The results for strong coupling
(right panel of Fig. 5) show a small but statistically
significant difference from the exact result. This is also
expected as Table I show that the estimate of the con-
tributions of other thimbles are of the same order.
Even at small coupling the contribution of other thimbles

becomes important at low temperatures. An example we
use the small coupling parameters and set N ¼ 8, which
corresponds to a temperature 4 times lower than in the
N ¼ 2 case. The results are shown in Fig. 6 where, again, a
small but statistically significant discrepancy with the exact
result is seen. Once more, the magnitude of these deviations
are comparable to the semiclassical estimates in Table I.
The last question we address is whether the single-

thimble results becomes exact in the continuum limit. Note
that the continuum trajectory takes the value of ĝ2 towards
zero, so it is possible that in this limit the discrepancy
vanishes as the weak coupling simulations suggests. As one
approaches the continuum limit the location of the critical
points and the contribution of their respective thimbles to

observables, changes. To answer this question we per-
formed a series of simulations with increasing values of N
while adjusting m̂, μ̂, and ĝ2 according to the formulas in
Sec. IV B. We started with the strong coupling set of
parameters at N ¼ 4 where the lattice spacing was taken to
be a ¼ 1. The results for the particle density and the
condensate are shown in Fig. 7. The successive calculations
with increasing values of N ¼ 4, 8, 16, 32, and 64 clearly
converge but not to the exact result. Thus even in the
continuum limit the subleading thimbles have a nonvanish-
ing contribution.

VI. CONCLUSIONS

In this paper we proposed an algorithm for the compu-
tation of single-thimble contribution to field theories. Our
method has some advantages over previously proposed
algorithms, in particular the fact that it relies only on
integration of the flow in the numerically stable direction
and it avoids flowing the points or the tangent vectors in the
unstable direction of the flow (towards the critical point).
The computationally costly part of the algorithm is the
computation of the Jacobian of the upward flow which
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FIG. 7. Condensate (left) and particle number (right) as a function of chemical potential μ in the continuum limit. The solid line
indicate the exact, continuum results.
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FIG. 6. Condensate as a function of chemical potential in the high-temperature case. Despite the weak coupling a discrepancy with the
exact results is visible.
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scales as V2 in terms of memory footprint and V3 in terms
of floating-point operations, where V is the spacetime
volume. The computational cost can be reduced if the
Hessian is sparse or has a simple structure (as is the case for
the model we used). Note that our algorithm is designed to
sample only a single thimble. Proposals have been made to
take into account multiple thimbles [38]. While a direct
implementation of these proposals to our model would lead
to very low acceptance rates, we plan to investigate
variations of these ideas in an upcoming study.
We applied the algorithm to a simple, solvable one-site

fermionic model and demonstrated its feasibility. The algo-
rithm performs well despite some peculiarities of the fer-
mionicmodel as the presence of singularities on the borders of
the thimble (where the fermion determinant vanishes).
At weak coupling and high temperature there is a good

agreement between the Monte Carlo calculation of the one
thimble contribution and the exact result. There, the
semiclassical estimates for the contributions of other
thimbles indicate they are small.
On the other hand, at strong coupling or low temper-

atures, the discrepancy between the one thimble and the
exact results is noted numerically; semiclassical estimates
suggest the contribution of other thimbles have the correct
order of magnitude to fill in the gap.
A sizable contribution from other thimbles survive in

the continuum limit. Arguments have been put forward

suggesting that for the continuum limit of field theories or
systems with a thermodynamic limit simulations performed
in one single thimble suffice. These arguments are based on
the assumption that the theory defined on one thimble is in
the same universality class as the theory defined over real
variables (or, what is the same, over all thimbles). That way
the contribution from other thimbles would be simply to
renormalize the parameters of the one-thimble theory.
Despite detecting a discrepancy between the one thimble
and the exact result in physical observables our calculation
does not bear on this issue since there is not concept of
universality in 0þ 1 dimensions. A test in higher dimen-
sions, near the continuum limit, would help settle this
question. Hopefully, the algorithm we describe in this paper
will help achieve this goal.
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