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The quark-connected part of the hadronic light-by-light scattering contribution to the muon’s anomalous
magnetic moment is computed using lattice QCD with chiral fermions. We report several significant
algorithmic improvements and demonstrate their effectiveness through specific calculations which show a
reduction in statistical errors by more than an order of magnitude. The most realistic of these calculations is
performed with a near-physical 171 MeV pion mass on a ð4.6 fmÞ3 spatial volume using the 323 × 64

Iwasakiþ DSDR gauge ensemble of the RBC/UKQCD Collaboration.
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I. INTRODUCTION

New particles and interactions which occur at a very large
energy scale Λ, above the reach of present-day accelerators,
may be first discovered through their indirect effects at low
energy. A particularly promising low-energy quantity that
may reveal such effects is the anomalous moment of the
muon. This “anomalous” difference gμ − 2 between the
muon’s gyromagnetic ratio gμ and the Dirac value of 2 for
a noninteracting particle can receive contributions from such
new high-energy phenomena, contributions which are sup-
pressed by the ratio of the squares of the energy scales
ðmμ=ΛÞ2 and the strength of the coupling of these new
phenomena to themuon. (Heremμ ¼ 105 MeV is themass of
themuon.) Theknowncouplings of themuonare its relatively
weak interaction with the photon, the W�, Z and Higgs
bosons, which can be accurately described by perturbation
theory. This implies that even very small differences between
gμ − 2 and the predictions of the standard model can be
recognized, making gμ − 2 an attractive place to search for
new, beyond-the-standard-model phenomena [1].
In fact, the use of gμ − 2 to search for new phenomena

has reached a very high level of precision. This quantity has
been measured with an accuracy of 0.54 ppm [2], and the
corresponding theoretical calculations have achieved a
similar level of precision. The present status of experiment
and theory is summarized in Table I. As this table shows,
there is at present a 3 standard deviation discrepancy
between the experimental result and the standard model
prediction. This discrepancy provides strong motivation
both for new experiments, which are either underway or

planned at Fermilab (E989) and J-PARC (E34) with a
targeted precision as small as 0.14 ppm, and for a reduction
in the theoretical errors.
The two components of the theoretical calculation with

the largest errors involve couplings to the up, down and
strange quarks: the hadronic vacuum polarization (HVP)
and hadronic light-by-light scattering (HLbL). These are
the first cases in which the effects of the strong interaction
enter the determination of gμ − 2. The HVP effects enter
beginning at order α2, while those from HLbL are of order
α3, where α ¼ 1=137.036 is the fine structure constant.
These two types of contributions are shown in Fig. 1 and,
because of the strong interactions of the quarks, these
quantities must be evaluated using methods which treat the
strong interactions nonperturbatively.
The strong-interaction contribution to HVP can be deter-

mined directly from the experimentally measured cross
section for the single-photon eþ-e− annihilation into hadrons
using a dispersion relation—a well-developed method with
fractional percent errors. These same nonperturbative strong-
interaction effects can be determined using lattice QCD [9],
but accuracy comparable to that obtained from experimen-
tally measured eþ − e− annihilation has yet to be achieved.
The determination of the HVP contribution by both methods
is an active area of research [10,11], and further reduction of
these errors is expected.
The HLbL contribution is less well studied and is the

topic of this paper. Unlike the HVP case, it is presently
not known how to determine the HLbL contribution from
experimental data and dispersion relations, although
progress is being made in this direction [12–16]. The
HLbL contribution to gμ − 2 has been evaluated in model
calculations [7,11] whose errors cannot be systematically
improved and whose estimates, which are used in Table I,*ljin.luchang@gmail.com

PHYSICAL REVIEW D 93, 014503 (2016)

2470-0010=2016=93(1)=014503(25) 014503-1 © 2016 American Physical Society

http://dx.doi.org/10.1103/PhysRevD.93.014503
http://dx.doi.org/10.1103/PhysRevD.93.014503
http://dx.doi.org/10.1103/PhysRevD.93.014503
http://dx.doi.org/10.1103/PhysRevD.93.014503


are approximately the same size as the discrepancy between
the standard model theory and experiment.
However, as demonstrated by Blum, Chowdhury,

Hayakawa and Izubuchi [17], this quantity can be calcu-
lated from first principles using the methods of lattice
QCD. Unfortunately, as their calculation also demonstrates,
even the most accessible quark-connected part of the HLbL
contribution is a challenging task for lattice QCD, espe-
cially if physical quark masses and realistically large
volumes are to be used. The more difficult disconnected
parts, while also accessible to a first-principles lattice
calculation, will be even more demanding.
In the present paper we develop a series of significant

improvements to the methods used in the paper of Blum
et al. and demonstrate their effectiveness with several
calculations, including one at a much smaller 171 MeV
pion mass in a large ð4.6 fmÞ3 spatial volume. These
improvements are described as a series of steps which
reduce both systematic and statistical errors while
giving greater insight into the quantity being computed.
Throughout this paper we will focus on the connected
HLbL amplitude, which will be abbreviated as cHLbL.
In the first step (Sec. II A), we move from the non-

perturbative treatment of QED used in Ref. [17] to one in
which explicit stochastic electromagnetic fields are intro-
duced which generate only the three photon propagators
which appear in the Oðα3Þ HLbL amplitude. This avoids
entirely Oðα2Þ statistical errors as well as the unwanted

Oðα4Þ contributions present in the earlier nonperturbative
approach to QED.
In the second step (Sec. II B), these stochastically gen-

erated photon propagators are replaced by the analytic
propagators which they approximate. Of course, when mak-
ing such a replacement, we lose the important benefit offered
by the stochastic approach: when a photon propagator is
generated as the average of a product of stochastic fields, the
complete amplitude can be written as the product of separate
factors, one containing the source field and the other the sink
field. It is only when this product is averaged over the
stochastic field that a coupling between these factors is
introduced. A calculation of ðvolumeÞ2 difficulty is replaced
by the average of products, each of only ðvolumeÞ1 difficulty.
We overcome the ðvolumeÞ3 problem that results when

three analytic photon propagators are introduced by sto-
chastically summing over the locations where two of the
photons couple to the internal quark line. For example,
referring to Fig. 2, we might evaluate each amplitude for
a series of random space-time locations of the vertices
at x and y and then stochastically sum over x and y.
This replacement of a stochastic evaluation of the 4L3T-
dimensional integral over the electromagnetic field by the
much simpler stochastic evaluation of the 8-dimensional
sum over two electromagnetic vertices dramatically sim-
plifies the calculation. Here L and T are the spatial and
temporal extents of the lattice volume. Since the two
vertices appear on the same closed quark loop, the
amplitude being evaluated will fall exponentially as x
and y are separated beyond ≈1 fm, a fact that can be
exploited when choosing the distribution according to
which x and y are generated.
As is shown in Appendix A, the short-distance properties

of these HLbL graphs require that at least one of the
currents which couple to the internal quark line be a
conserved lattice current if the resulting amplitude is to
have a simple continuum limit with no need to subtract a
contact term. The conservation of the external current
implies that this amplitude vanishes in the limit that
q → 0, the limit needed to evaluate gμ − 2. The third
algorithmic improvement (Sec. II C) that we explore is
making a choice of graphs so that this vanishing behavior in
the q → 0 limit occurs for each QCD gauge configuration.
If this approach is adopted, then both the signal and the
noise will vanish in this limit.
The fourth algorithmic development (Sec. II D) resolves

the difficulty of evaluating the limit q2 → 0 for an ampli-
tude which is proportional to q in finite volume. In such a
case, the amplitude would normally be evaluated at the
smallest nonzero lattice momentum 2π=L and the limit
q2 → 0 achieved only in the limit of infinite volume (or by
extrapolation from nonzero q2). Here we introduce a
position-space origin related to the choice of x and y
and show that a simple, spatial first moment of the
finite-volume, current matrix element between zero-

FIG. 1. Feynman diagrams depicting the hadronic vacuum
polarization (left) and hadronic light-by-light scattering (right)
contributions to gμ − 2.

TABLE I. Comparison between experiment and the standard
model prediction for ðgμ − 2Þ=2 (in units of 10−11). Other recent
analyses [3,4] give similar values for the difference between
experiment and standard model theory. Note that the HVP NNLO
contribution is not included in the standard model totals, while
LO, NLO and NNLO indicate leading order, next-to-leading
order and next-to-next-to-leading order.

SM Contribution Value� Error Ref.

QED (incl. 5-loop) 116584718.951� 0.080 [5]
HVP LO 6949� 43 [3]
HVP NLO −98.4� 0.7 [3,6]
HVP NNLO 12.4� 0.1 [6]
HLbL 105� 26 [7]
Weak (incl. 2-loop) 153.6� 1.0 [8]
SM Total (0.51 ppm) 116591840� 59 [5]
Experiment (0.54 ppm) 116592089� 63 [2]
Difference (Exp − SM) 249� 87 [5]
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momentum initial and final muons will yield the q2 ¼ 0
anomalous magnetic moment:

ðgμ − 2ÞcHLbL
−e
4mμ

~σs0s

¼ 1

2

Z
d3rf~r × hμðs0Þj~Jð~rÞjμðsÞicHLbLg: ð1Þ

Here ~σ is a vector formed from the three Pauli matrices, s
and s0 are the initial and final spin indices, and the label
cHLbL indicates that only the quark-connected, HLbL
amplitude is being considered. The relation between the

initial and final states, the electromagnetic current ~Jð~rÞ and
the volume will be carefully specified below.
The paper is organized as follows: In Sec. II we describe

in greater detail the algorithmic improvements outlined
above. Section III contains the numerical results that
demonstrate these new methods. Two results are of par-
ticular interest. The first is a value for the quark-connected
HLbL contribution:

ðgμ − 2ÞcHLbL
2

¼ ð0.1054� 0.0054Þðα=πÞ3

¼ ð132.1� 6.8Þ × 10−11; ð2Þ
obtained with a 171 MeV pion mass and ð4.6 fmÞ3 volume,
the most realistic lattice QCD calculation of this quantity
to date. While it is premature to compare this result with
experiment or model calculations because the errors arising
from finite-volume, finite-lattice spacing and the unphys-
ical quark and muon masses are not yet controlled, the 5%
statistical error suggests that this calculation is now within
the reach of the methods of lattice QCD. The second result
of special interest is for pure QED where a muon loop
instead of a quark loop appears. In this case, all of the
diagrams are connected, so our calculation should give the
complete result. Here we work at q2 ¼ 0 and examine three
values for the lattice spacing a (actually three values of
mμa) and three physical volumes. We use the three choices
of lattice spacing to extrapolate to the continuum limit and
are then able to recognize a 1=L2 dependence on the spatial
extent L of the volume. Using this form to extrapolate to
L → ∞, we obtain a continuum and infinite volume limit
which is consistent with the known, perturbative QED
result. A summary and outlook are given in Sec. IV. We

should emphasize that as in Ref. [17], only the quark-
connected HLbL contribution has been considered, and the
quark-disconnected diagrams, where two, three, or four
quark loops couple to the external current and the three
internal photon propagators, are not discussed.

II. EVALUATION STRATEGY

The anomalous magnetic moment of the muon is
determined by the electromagnetic form factor F2ðq2Þ
evaluated at q2 ¼ 0: F2ð0Þ ¼ ðgμ − 2Þ=2≡ aμ, where aμ
is known as the muon anomalous magnetic moment and the
usual form factors F1 and F2 appear in the decomposition
of the matrix element of the electromagnetic current
between the incoming and outgoing muon states:

hμð~p0ÞjJνð0Þjμð~pÞi

¼ −eūð~p0Þ
�
F1ðq2Þγν þ i

F2ðq2Þ
4m

½γν; γρ�qρ
�
uð~pÞ; ð3Þ

where Jνð0Þ is the electromagnetic current, jμð~pÞi and
jμð~p0Þi are the initial and final muon states, uð~pÞ and
ūð~p0Þ ¼ u†ð~p0Þγ0 are standard, positive-energy solutions of
the Dirac equation, and −e is the electric charge of the
muon. The states jμð~pÞi and jμð~p0Þi are normalized as
simple plane waves. Thus, in finite volume their inner
product will be given by Vδ~p;~p0, while in infinite volume
ð2πÞ3δð~p − ~p0Þ will result.
The matrix element in Eq. (3) can be obtained from a

Euclidean-space lattice QCD calculation by evaluating a
Euclidean-space Green’s function containing a muon
source and sink with definite incoming and outgoing
momentum (here chosen to be −~q=2 and ~q=2, respectively)
in the limit of large time separation:

Mνð~qÞ ¼ lim
tsrc→−∞
tsnk→∞

eEq=2ðtsnk−tsrcÞ
X

~xsnk;~xsrc

e−i
~q
2
·ð~xsnkþ~xsrcÞei~q·~xop

×Mνðxsnk; xop; xsrcÞ; ð4Þ

where Eq=2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðq=2Þ2 þm2

μ

q
and the amplitude

Mνðxsrc; xop; xsnkÞ is given by the Euclidean-space
Green’s function

−eMνðxsrc; xop; xsnkÞ ¼ hμðxsnkÞJνðxopÞμ̄ðxsrcÞi: ð5Þ

FIG. 2. Hadronic light-by-light dia-
grams. There are four additional diagrams
resulting from further permutations of the
photon vertices on the muon line.
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Here the operator μ̄ðxsrcÞ creates a muon at the space-time
position xsrc, μðxsnkÞ destroys a muon at the position xsnk,
and JνðxopÞ is the operator for the electromagnetic current.
For the general case discussed in this and the following
paragraph, the fields μ̄ðxsrcÞ and μðxsnkÞ must be renor-
malized, a refinement which is not needed for the class of
graphs which enter the HLbL contribution to gμ − 2. Note
that the factor ei~q·~xop has been introduced into Eq. (4) so that
translational symmetry implies that Mνð~qÞ does not
depend on the position xop.
Recognizing that the two Euclidean-time limits, tsrc →

−∞ and tsnk → ∞ in Eq. (4), will project onto physical
muon states, we can relate the form factors in Eq. (3) and
the amplitude Mνð~qÞ:
��

−ipþ þmμ

2Eq=2

��
F1ðq2Þγν þ i

F2ðq2Þ
4m

½γν; γρ�qρ
�

×

�
−ip− þmμ

2Eq=2

��
αβ

¼ ðMνð~qÞÞαβ; ð6Þ

where for clarity we have explicitly introduced the spinor
indices α and β, and the four- momenta have the
form q� ¼ ðiEq=2;�~q=2Þ.
We now specialize to the cHLbL case of interest and

its particular set of six graphs, two of which appear in
Fig. 2. In this case, it will be convenient to express
Mνðxsrc; xop; xsnkÞ as an explicit sum of an amplitude
F νðx; y; z; xop; xsnk; xsrcÞ in which the locations of the other
three photon-quark vertices, x, y and z, indicated in Fig. 2,
appear:

Mνðxsrc; xop; xsnkÞ ¼
X
x;y;z

F νðx; y; z; xop; xsnk; xsrcÞ: ð7Þ

The amplitude F νðx; y; z; xop; xsnk; xsrcÞ can then be written
in terms of quark, muon and photon propagators:

F νðx; y; z; xop; xsnk; xsrcÞ ¼ −ð−ieÞ2
X

q¼u;d;s

ðieqÞ4htr½γνSqðxop; xÞγρSqðx; zÞγκSqðz; yÞγσSqðy; xopÞ�iQCD

×
X
x0;y0;z0

Gρρ0 ðx; x0ÞGσσ0 ðy; y0ÞGκκ0 ðz; z0Þ½Sμðxsnk; x0Þγρ0Sμðx0; z0Þγκ0Sμðz0; y0Þγσ0Sμðy0; xsrcÞ

þ Sμðxsnk; z0Þγκ0Sμðz0; x0Þγρ0Sμðx0; y0Þγσ0Sμðy0; xsrcÞ þ four other permutations�; ð8Þ

where only the two sets of contractions shown in Fig. 2 are
written explicitly. For simplicity, Eq. (8) is written using
local operators for each of the seven electromagnetic
currents. The electric charge of the muon is −e, while
eu ¼ 2e=3, ed ¼ es ¼ −e=3 are the charges of the up,
down and strange quarks. The brackets h…iQCD indicate an
average over the QCD gauge configurations which provide
the background fields in which the quark propagators
Sqðx; yÞ are computed. The quantities Gσ;σ0 ðx; yÞ and
Sμðx; yÞ are photon and muon propagators, respectively.
The polarization indices are shown explicitly on the photon
propagators, but Sμ and Sq are 4 × 4 spinor matrices with
the spin indices suppressed. We use Euclidean-space
conventions with the γ matrices obeying fγν; γρg ¼ 2δν;ρ,
as specified in Appendix C.
The six sums over the space-time volume which appear

in Eqs. (7) and (8) make this expression too computation-
ally expensive to be evaluated directly, and stochastic
methods must be introduced if this quantity is to be
computed with current computing resources.

A. Stochastic electromagnetic field

One standard stochastic method of including electro-
magnetic effects is to compute the charged fermion

propagators in the background of stochastically generated
QED gauge field configurations. If these gauge configu-
rations are generated according to a discrete version of the
Maxwell action, then averaging over these QED configu-
rations will reproduce all photon exchange diagrams in
exact analogy with the usual technique for including the
gluon degrees of freedom in lattice QCD. However, this
method will include QED contributions to all orders in α,
beginning at order α1. Since we are only interested inOðα3Þ
contributions corresponding to the diagrams in Fig. 2, we
must perform a carefully crafted subtraction to remove the
lower-order contributions while keeping α small to control
the higher-order contribution [18]. This method has been
successfully applied to obtain the first lattice QCD results
for this cHLbL contribution and requires the evaluation of
relatively few quantities because of the indirect treatment of
most of the electromagnetic degrees of freedom. However,
as α is decreased to reduce the size of the unwanted α4 and
higher-order diagrams, we must deal with the lower-order
α2 terms which, although vanishing on average because of
the subtractions which are performed, can still contribute to
the stochastic noise.
In fact, stochastic methods can be used to directly

evaluate the specific graphs of interest if one begins with
an expression very similar to the α3 amplitude of interest
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given in Eq. (8). We can simply replace the photon
propagators Gρ;ρ0 ðx; yÞ which appear in that equation with
the product of two stochastic variables distributed so
that the average of their product reproduces the target
propagator:

hAρðxÞAρ0 ðyÞiA ¼ Gρ;ρ0 ðx; yÞ; ð9Þ
where h…iA represents an average over this ensemble of
electromagnetic gauge fields. An appealing implementa-
tion of this approach follows the original construction of
Blum et al. and replaces only the photon propagators which
couple to the left (x) and right (y) points along the quark
line in Fig. 2 with stochastic fields while keeping an exact
photon propagator which joins the quark line at the center
point z. The unwanted propagator joining the points x and y
can be avoided if independent stochastic fields are used for
the points x and y. If these two stochastic fields are written
as AρðxÞ and BσðyÞ, then the two diagrams shown in Fig. 2
are simplified to those shown in Fig. 3.
With the introduction of these two stochastic field

variables, the evaluation of the amplitudes corresponding
to the diagrams shown in Fig. 3 is straightforward. Each
product of two quark propagators joined by a stochastic
field can be evaluated using the sequential-source method.
For example, consider the quark propagator on the left side
of the loop, coupling to the Bm2 field in Fig. 3. The location
of the external current xop can be used as a source allowing
us to solve for the first propagator, Sqðy; xopÞ, which is
found as a function of the sink position y. This function can
then be multiplied by Bm2

σ ðyÞγσ and the resulting function
of y used as a source for the second propagator which
connects to the vertex z. This same approach can be used to
obtain the product of quark propagators joining xop and z,
as well as the two products of pairs of muon propagators
needed to construct the muon line. Finally, the resulting two
explicit functions of z and z0 can be multiplied by the exact
photon propagator connecting z and z0 and the final sum
over z and z0 performed with OðV lnðVÞÞ operations by
using the fast Fourier transform (FFT).
We should point out that while the discussion above is

simplest if we use a fixed location xop for the external
current vertex, in a practical calculation a sum over this
position can be achieved by using a random source for the
two propagators joined to xop, which is distributed over a

possibly large space-time subvolume and will lead to a
much improved signal-to-noise ratio. In this standard
method, arranging the noise source as a vector of inde-
pendent random numbers for each site guarantees that after
a noise average, only the desired terms where the two
propagators are joined to the same point will be nonzero.
An interesting enhancement that can be exploited when

using this method is to compute the 2M sequential-source
propagators for the right- and left-hand quark propagators
shown in Fig. 3 separately, where the right-hand sequential-
source propagator incorporates stochastic field Am1 , while
the left-hand propagator contains Bm2 for 1 ≤ m1; m2 ≤ M.
We can then compute the amplitude of interest for all M2

pairs, effectively enhancing the statistical sample by a
factor of M with only the added cost of M2 evaluations of
the less expensive muonic part of the amplitude. We refer to
this approach as the M2 method and present numerical
results in Sec. III B. These results suggest that the full
statistical gain of a factor M2 is realized.
Introducing specific, stochastic QED fields and using

sequential-source propagators solves the problem of lower-
order noise that will degrade a dynamical QED calculation
in which amplitudes of lower order in α are removed by
subtraction. However, there is another very significant
problem, which might be called the “disconnected dia-
gram” problem. If we were to replace all three photon
propagators with pairs of stochastic QED fields obeying the
condition given in Eq. (9), the resulting diagram would
usually be referred to as a disconnected diagram, because
the quark loop and the muon line are not joined by explicit
propagators which decrease as their end points are sepa-
rated. For example, if we work with fixed spatial locations
for xsrc, xop and xsnk but allow the time separation tsep
between xsrc and xsnk to grow (to project onto the muon
ground state), each stochastic field will contribute unsup-
pressed noise from any point along the muon line. For the
case when three stochastic photon propagators are used,
these stochastic fluctuations will cause the statistical error
to grow as t3=2sep , where we estimate the stochastic noise by
averaging the square of the product of the three fields
evaluated on the muon line, giving a result for the square of
the noise which grows proportionally to t3sep. This noise
problem will become even more severe if we work in a
large spatial volume and use a wall source for the initial and

FIG. 3. Two of the six HLbL diagrams
that result if a stochastic method is
adopted to evaluate two of the three
photon propagators which appear in
Fig. 2. The wavy line joining the muon
line and the quark loop represents the
exact photon propagator, while the pairs
of factors, Am1

ρ ðxÞ, Am1

ρ0 ðx0Þ and Bm2
σ ðyÞ,

Bm2

σ0 ðy0Þ, are the m1 and m2 elements of
two independent ensembles of stochastic
electromagnetic fields.
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final muon and a random wall source, also at fixed time, for
the external current in an attempt to exploit a finite volume
average. The result will be a statistical error which should
grow as L3, assuming that L and T are of approximately the
same size. (This estimate comes from combining the factor
of T3 obtained in the estimate above with a factor of L3

resulting from the integration of xop over the L3 volume
contributing at a fixed time, implying an error whose square
will grow as T3L3.) If one exact photon propagator is
introduced as discussed above, these effects are reduced,
but the resulting statistical error will still grow as L2, since
the removal of one of the stochastic fields evaluated on the
muon line will reduce the T dependence of the square of the
error from T3 to T2, and the presence of the explicit photon
propagator joining the quark loop and muon line will
reduce the contribution from the integration over xop from
L3 to L2.

B. Exact photon propagators

To completely avoid this disconnected-diagram problem,
we need to use an explicit, free-field formula for each of the
three photon propagators and introduce the necessary
stochastic sampling in a different way. Fortunately, this
is not difficult and will result in statistical noise that will
remain finite, even in the infinite-volume limit. This new
approach to the HLbL calculation is the topic of this
section. As suggested above, it is not possible to evaluate
Eqs. (7) and (8) without approximations even on a single
QCD configuration, so we introduce randomness in a
different way which, as we will see, leads to statistical
fluctuations which are much more easily controlled.
This approach can be best presented if we express the

cHLbL amplitude Mνð~qÞ as an explicit sum over the three
additional space-time vertices x, y and z at which the
internal photon lines couple to the quark line, in analogy
with Eqs. (7) and (8):

Mνð~qÞ ¼ ei~q·~xop
X
x;y;z

F νð~q; x; y; z; xopÞ; ð10Þ

where the factor of ei~q·~xop has been introduced so that
Mνð~qÞ will not depend on xop, and the amplitude
F νð~q; x; y; z; xopÞ is related to the similar point-source/
point-sink quantity defined in Eq. (8) by

F νð~q; x; y; z; xopÞ ¼ lim
tsrc→−∞
tsnk→∞

eEq=2ðtsnk−tsrcÞ
X

~xsnk;~xsrc

e−i
~q
2
·ð~xsnkþ~xsrcÞ

× F νðx; y; z; xop; xsnk; xsrcÞ: ð11Þ

Here we will choose the momentum transfer ~q ¼ ð2π=LÞẑ,
where ẑ is a unit vector in the z direction. Thus, the muon
propagators must be evaluated with antiperiodic boundary
conditions in the z direction. As observed previously,

translational symmetry in the three spatial directions and
the added factor of ei~q·~xop introduced in Eqs. (4) and (11)
imply that the right-hand side of Eq. (10) is independent of
~xop. Similarly, the right-hand side of Eq. (10) does not
depend on top, since the energies of the initial and final
muons are the same.
We can exploit the space-time translational covariance of

F νð~q; x; y; z; xopÞ to write the sum in Eq. (10) in terms of
variables expressed relative to the location of the quark
loop. Begin by shifting all four position arguments of this
function by the average w ¼ ðxþ yÞ=2:

Mνð~qÞ¼
X
x;y;z

ei~q·ð~xop−~wÞF ν

�
~q;
x−y
2

;−
x−y
2

;z−w;xop−w

�

ð12Þ

¼
X
r

�X
~z;~xop

ei~q·~~xopF ν

�
~q;
r
2
;−

r
2
; ~z; ~xop

��
; ð13Þ

where in the second equation we have changed summation
variables to

r ¼ x − y; ~z ¼ z − w; and ~xop ¼ xop − w ð14Þ

and explicitly organized the sums so that the sum over the
relative coordinate r is performed last.
The form of Eq. (13) suggests a natural strategy for its

evaluation in lattice QCD. First we make a random choice
of the average variable w somewhere within the space-time
volume of our simulation. To match our assumption that
tsnk − top and top − tsrc are large, we choose the times tsnk
and tsrc to be ðxopÞ0 þ T=4 and ðxopÞ0 − T=4, respectively,
where the sums should be performed modulo T, the
temporal extent of the lattice volume. Next, the space-time
variable r is chosen stochastically as described below, and
the points r=2 and −r=2 are used as source locations for
two propagators whose sinks are joined at the positions ~z
and ~xop, which are then explicitly summed over the entire
lattice. The resulting Mνð~qÞ, when summed over w and r
and averaged over gauge configuration, is the desired
muon-current three-point function.
To evaluate the stochastic sum over r efficiently, we use

importance sampling, i.e. we sample most frequently the
important region where jrj≲ 1 fm. For some of the results
presented here we choose a set of M points fxig1≤i≤M
following the empirically chosen distribution:

pðjxi − wjÞ ∝
�
1 jxi − wj < 1

1=jxi − wj3.5 jxi − wj ≥ 1
; ð15Þ

where the special treatment when jxi − wj is smaller than
one lattice unit has been introduced to avoid the singularity
in our distribution at xi − w ¼ 0. The distribution of the
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relative distance jrj between any two points drawn from
this set is

PðjrjÞ ¼
X
x

pðjx − rjÞpðjxjÞ: ð16Þ

The resulting distribution PðjrjÞ used for our 323 × 64
ensemble is shown in Fig. 4.
Note that MðM − 1Þ=2 x-y pairs can be formed from a

set of M points. (Here each “pair” is already symmetrized
between the points x and y.) If we calculate a single, point-
source quark propagator for each of these M points, then
for each x-y pair, we can sum over ~z and ~xop exactly with no
further inversions. We find that the resulting statistical error
corresponds to that from the larger number of M2 samples
unlessM is so large that these many samples, all distributed
within ≈1=mπ of the single point w, become correlated.
This M2 benefit is seen for M at least as large as 16.
In contrast with the stochastic electromagnetic field

discussed in Sec. II A, the statistical noise in the exact-
photon-propagator method remains finite in the infinite-
volume limit because the quark propagator decreases
exponentially with distance. The noise associated with
the stochastic sampling of the space-time points x and y
will also fall as 1=

ffiffiffiffi
N

p
in the limit of a large number N of

x-y samples provided the distribution PðjrjÞ that we choose
is normalizable in the infinite-volume limit, a choice which
is certainly possible, again because the quark propagator
decreases exponentially with distance.
This exact-photon-propagator method gives a very large

reduction in statistical errors when compared to the
previous methods based on a stochastic photon field and
is the basis for the mπ ¼ 171 MeV, ð4.6 fmÞ3 volume
calculation reported in the next section. The replacement of
a stochastic average over 4L3T gauge variables by the
simpler importance sampling of two 4-dimensional space-
time positions r and w results in a calculation that appears
easier to optimize. We learn a posteriori how the integrand

depends on jrj and can adjust our sampling weights to
increase the effectiveness of the sampling. In particular, we
recognize that the largest integrand results from small jrj,
and therefore compute all pairs with jrj ≤ rmax. A similar
advantage from the use of exact photon propagators may be
found when this approach is applied to other processes
which include electromagnetism.

C. Current conservation on each configuration

As can be seen from Eq. (3), the form factor F2ðq2Þ from
which gμ − 2 can be determined is proportional to q, which
implies that the signal that results from our Monte Carlo
average will vanish in the q → 0 limit that is needed to
determine F2ð0Þ. However, the form shown in Eq. (3), and
especially the proportionality to q, is a consequence of the
conservation of the current Jν, a condition that will not be
obeyed for the individual samples that are averaged in the
exact-photon-propagator method described in the previous
section.
As discussed in Appendix A, if at least one of the four

currents coupled to the quark loop is exactly conserved at
finite lattice spacing, the HLbL amplitude will be convergent
and have a correct continuum limit.Wemeet this requirement
by using the exactly conserved, five-dimensional DWF
current as the external current JνðxopÞ. This guarantees that
the resulting amplitudewill have the form given in Eq. (3) up
to finite lattice spacing corrections. However, for the method
described in the previous section, the vertices x, xop, y and z
appear in a specific order on the quark loop. We have not
computed all three possible insertions for the external photon.
Consequently, the individual samples will not yield a con-
served current. The Ward identity necessary for the external
current to have a vanishing divergence will be obeyed only
after the stochastic average over x and y, which makes the
three internal photon vertices on the quark line indistinguish-
able. As a result, the noise will not vanish when q ¼ 0.
To make the contribution of each configuration (and

hence the statistical noise) vanish as q → 0, we must
average the three diagrams in Fig. 5 so that the required
Ward identity is obeyed, configuration by configuration
[19]. Explicitly, this average can be achieved by replacing
the function F ν of Eq. (8) with the symmetrized version
FC

ν given by

FC
ν ðx; y; z; xop; xsnk; xsrcÞ ¼

1

3
F νðx; y; z; xop; xsnk; xsrcÞ

þ 1

3
F νðy; z; x; xop; xsnk; xsrcÞ

þ 1

3
F νðz; x; y; xop; xsnk; xsrcÞ:

ð17Þ

In later equations, we will simply add the superscript C to
indicate that such an average has been performed. These

FIG. 4. Distribution of relative separations jrj ¼ jx − yj be-
tween the x-y pairs of randomly chosen points used to compute
Mνð~qÞ on the 323 × 64 QCD gauge ensemble described in
Sec. III C.
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additional diagrams are also computationally accessible.
The left-hand diagram represents the single amplitude that
would be computed following the method of Sec. II A. The
center diagram requires the computation of sequential-
source propagators at xop for each polarization of the
external photon. Finally, the right-hand diagram also
requires sequential-source propagators at xop, but with
the external photon momentum in the opposite direction,
since γ5 Hermiticity must be used to reverse the direction of
the propagators, which reverses the momentum of the
external photon as well.
Thus, in addition to the point-source propagators from

the sites x and y, we must compute sequential-source
propagators as discussed in Sec. II A for each possible
polarization and momentum of the external current. We
normally evaluate the amplitude for three polarization
directions x, y, and t (which are perpendicular to the z
direction of the external momentum) and two momentum
directions (since in some cases the complex conjugate of
the sequential-source propagator is needed). This requires
an additional 6 times more quark Dirac-operator inversions.
Since we can adjustM to rebalance the cost, the overall cost
increase may not be significant, but the potential gain can
be large, especially in a large volume when we study
small q ¼ 2π=L.
There is an additional optimization that can be exploited

when all three groups of the diagrams represented in Fig. 5
are computed. Since the three internal photon vertices are
now treated symmetrically, we are free to introduce one
asymmetry and restrict the sum over the z vertex to the
region where jx − yj < jx − zj and jx − yj < jy − zj and
multiply the result by 3 [20]. This restriction on z will
skew the distribution of jx − yj, enhancing the region where
jx − yj is small and the signal less noisy, but suppressing
the large jx − yj region where the signal is weak and the
noise large.

D. Moment method: Obtaining q2 ¼ 0 in finite volume

As can be seen in Eq. (3), a matrix element of the current
JνðxopÞ between muon states contains the electromagnetic

form factor F2ðq2Þ multiplied by components of the
momentum transfer qρ. This suggests that F2ðq2Þ can be
obtained in a lattice calculation only when qβ ≠ 0, so the
anomalous moment gμ − 2 ¼ 2F2ð0Þ can be determined
only after taking the limit qρ → 0. Of course, this limit is
difficult to evaluate in a lattice calculation, since the
smallest nonzero momentum component is 2π=L, sug-
gesting that F2ð0Þ will only become accessible if very large
spatial lattice sizes are studied. We will now show how this
potential difficulty can be avoided for the case of the light-
by-light contribution to gμ − 2 by evaluating a carefully
defined spatial moment of the Feynman amplitude which
determines the matrix element of JνðxÞ.
We begin with Eq. (13) repeated here with a small

change in notation:

Mνð~qÞ ¼
X
r;z;xop

FC
ν

�
~q;
r
2
;−

r
2
; z; xop

�
ei~q·~xop ; ð18Þ

where we have altered that earlier equation by dropping
the tilde on the summation variables z and xop and adding
the superscript C. Note that the function FC has the same
dependence on xop as does the current JνðxopÞ whose
matrix element is being evaluated and will therefore obey
the same Ward identity:

ΔðxopÞνF
C
ν ð~q; x; y; z; xopÞ ¼ 0; ð19Þ

where a sum over the repeated index ν is understood andΔx
evaluates the “backward” lattice difference:

ΔxfðxÞ ¼ fðxÞ − fðx − aÞ; ð20Þ

where a is the lattice spacing.
The critical step in our presentation replaces the factor

ei~q·~xop in Eq. (18) with ðei~q·~xop − 1Þ, giving

FIG. 5. Diagrams showing the three different possible insertions of the external photon when the vertices x and y are fixed. For each of
these three diagrams, there are five other possible permutations of the connections between the three internal photons and the muon line
that are not shown. The contributions of each of these three sets of six contractions will be the same after the stochastic average over the
vertices x and y.
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Mνð~qÞ ¼
X
r;z;xop

FC
ν

�
~q;
r
2
;−

r
2
; z; xop

�
ðei~q·~xop − 1Þ: ð21Þ

The extra “−1” term introduced into the sum over xop will
vanish because of the Ward identity, Eq. (19), if a surface
term can be neglected. This can be seen from the following
manipulation:

0 ¼
X
xop

ΔðxopÞρ

�
ðxopÞνFC

ρ

�
~q;
r
2
;−

r
2
; z; xop

��
ð22Þ

¼
X
xop

�
FC

ν

�
~q;
r
2
;−

r
2
; z; xop

�

þ ðxopÞνΔðxopÞρF
C
ρ

�
~q;
r
2
;−

r
2
; z; xop

��
ð23Þ

¼
X
xop

FC
ν

�
~q;
r
2
;−

r
2
; z; xop

�
; ð24Þ

where the final line demonstrates that the extra “−1” term
that was added to Eq. (18) sums to zero.
Finally, we can expand the right-hand side of Eq. (21) in

qρ and determine

∂
∂qi Mνð~qÞj~q¼0 ¼ i

X
r;z;xop

FC
ν ð~q ¼ 0; r;−r; z; xopÞðxopÞi:

ð25Þ

While this equation has been derived in infinite space-time
volume, the fact that the average of the two points r and −r
is located at the origin implies that the integrand decreases
exponentially as jxopj increases, so this integral can be
evaluated in finite volume with only exponentially small
corrections.
As discussed in Sec. II C, Eq. (19) representing current

conservation is somewhat subtle. This equation with the
fixed vertices �r and z will only be obeyed if the external
current JνðxopÞ is inserted in all possible places along the
internal quark loop. This requires that all three diagrams
shown in Fig. 5 be included. This requirement that all three
diagrams must be included remains valid even if we
perform the integration over the four-vectors r and z.
Since the midpoint of the vertices �r remains at the origin,
these two �r vertices remain distinguished, and the
cancellation required to derive the Ward identity for a
closed fermion loop will not be realized unless all three
diagrams are combined.
A further refinement of this approach which we have not

yet explored numerically chooses the origin with respect to
which xop is defined not as the average of the two points x
and y, but instead as the average of the three points x, y
and z. With this more symmetrical choice of the origin, the

necessary Ward identity would hold when the six possible
contractions to the muon line are included and the points x
and y stochastically summed. This approach would then
allow us to avoid the calculation of the additional six
sequential-source propagators that are required when all
three diagrams of Fig. 5 must be computed.
We can obtain a complete expression for F2ð0Þ and

hence gμ − 2 from Eq. (18) by performing a similar small-q
expansion of Eq. (6). For the light-by-light diagram in the
small momentum transfer limit, we can specialize Eq. (6)

�
−ipþ þmμ

2Eq=2

��
F2ðq2Þ
2mμ

i
2
½γν; γβ�qβ

��
−ip− þmμ

2Eq=2

�

¼ Mνð~qÞ; ð26Þ

where the external four-momenta q� ¼ ðiEq=2;�~q=2Þ. If
we examine the case ν ¼ i, equate the coefficients of ð~qÞj,
and evaluate the matrix element of this equation between
Dirac positive-energy, zero-momentum eigenstates, we find

ūð~q ¼ ~0; s0Þ
�
F2ðq2 ¼ 0Þ

2mμ

i
2
½γi; γj�

�
uð~q ¼ ~0; sÞ

¼ ūð~q ¼ ~0; s0Þ ∂
∂qj Mið~qÞ~q¼~0uð~q ¼ ~0; sÞ: ð27Þ

Finally, we can multiply the left- and right-hand sides of
this equation by 1

2
ϵijk, sum over i and j, and use Eq. (18) to

replace the derivative of Mð~qÞ with respect to qj with the
moment of FC times ðxopÞj. The result is the kth compo-
nent of the vector equation:

F2ð0Þ
2mμ

ūð~0;s0Þ~Σuð~0;sÞ

¼1

2

X
r;z;xop

~xop × iūð~0;s0Þ ~FC
�
r
2
;−

r
2
;z;xop

�
uð~0;sÞ; ð28Þ

where Σi ¼ 1
4i ϵijk½γj; γk�. Here, i ~F

C represents the quan-
tum-mechanical current, and the above equation resembles
the conventional expression for the magnetic moment
created by a static, localized current [21]:

~μ ¼ 1

2

Z
d3r½~r × ~Jð~rÞ�: ð29Þ

The precise connection between Eqs. (28) and (29) is
worked out in Appendix B.

III. NUMERICAL STUDIES

In this section we describe our numerical results. This
discussion is divided into five subsections. In the first,
Sec. III A, we describe the QCD gauge ensembles used in
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the calculation and explain our treatment of the electro-
magnetic degrees for freedom, in particular our method for
treating the zero or near-zero modes of the photon field in
finite volume. We also explain how the form factor F2ðq2Þ
is determined from the Euclidean-space correlator that
we evaluate. Section III B describes a series of example
calculations exploring the statistical properties of four
techniques that can be used in the calculation of cHLbL,
using a stochastic representation for the photon propagator
described in Sec. II A. In Sec. III C, we describe in more
detail the use of exact photon propagators whose source
points are chosen stochastically, giving both our methods
and results, including results for the large 4.6 fm, 323 × 64
volume and 171 MeV pion mass. In Sec. III D we extend
the exact-photon-propagator method, now computing the
moment as proposed in Sec. II D and present further
large-volume, small quark-mass results, now for F2ðq2Þ
evaluated at q2 ¼ 0. In Sec. III E, we apply the exact-
photon-propagator and moment methods to the calculation
of (gμ − 2) for the case of the QED light-by-light scattering
amplitude, in which the internal loop is a muon instead of a
quark, examining the vanishing lattice spacing and large-
volume limits. This discussion gives a first indication of the
size of the systematic errors associated with finite volume
and finite lattice spacing in our results. It also provides a
useful consistency check, since we can compare our result
with that known from conventional perturbation theory.

A. Computational setup

We have carried out a series of lattice QED and QCD
calculations to both develop the methods described in the
previous section and obtain a result of the cHLbL con-
tribution to gμ − 2 using a relatively light pion in large
volume. We will now provide some of the details of those
calculations. The QCD calculations were performed using
four ensembles with the pion masses and lattice volumes
listed in Table II. Although each of the ensembles listed in
Table II incorporates 2þ 1 flavors, with two degenerate,
light sea quarks and one physical-mass, strange sea quark,
we typically calculate the contribution of a single light
quark but multiply by the charge factor ð2=3Þ4þð−1=3Þ4¼
17=81 to obtain the result expected from a mass-degenerate
up- and down-quark doublet with charges þ2=3 and −1=3.
Most of our results address only this light quark contribu-
tion, although for the large-volume, light-pion calculation
we also include an explicit, physical strange quark
contribution.
The ensembles listed in Table II were obtained using

domain wall fermions (DWF) [26], and the same DWF
Dirac operator was used for the quark loop in the cHLbL
calculation. However, for the cHLbL calculations on the
32ID ensemble we used a Möbius variant [27] of the
DWF operator that was used to generate the ensemble.
This Möbius Dirac operator used Ls ¼ 12 and Möbius

parameters bþ c ¼ 32=12 and b − c ¼ 1, chosen to
ensure that the corresponding Möbius DWF quark
propagator agrees at the few 0.1% level with the DWF
quark propagator used when generating the ensemble. All
of the quark propagators used the five-dimensional
mass M5 ¼ 1.8.
We also use the DWF action for the muon. We compute

the muon propagators with the five-dimensional massM5 ¼
1 and infinite Ls. Since all the muon-photon interactions
have been explicitly included in our formulas, the muon
propagators are free fermion propagators. To calculate these
free propagators, we use Fourier transformations and ana-
lytic expressions [28]. This allows us to exploit the physical
properties of DWF with essentially the same computation
cost as would be required for fermions without chiral
symmetry, e.g. Wilson fermions. Because the contribution
of those cHLbL subgraphs to gμ − 2 which contain one or
more photon-muon vertices will have a negative degree of
divergence, we can use local currents for the photon-muon
coupling at x0, y0, and z0 and incur only Oða2Þ errors.
As is discussed in detail in Appendix A, we can avoid a

divergent contact term resulting from the quark loop in the
cHLbL diagram if only one of the four vertices where a
photon attaches to that quark loop is given by a conserved
current. Thus, we use the complete, five-dimensional,
nonlocal conserved form for the external current, while
for the three vertices x, y, and z attached to internal photons
we use the simpler local, four-dimensional current in the
above formulas. We introduce the factor of Z3

V that is
needed to properly normalize these three local, noncon-
served currents. (The additional convergence provided by
the first position-space moment of the cHLbL amplitude
allows us to use only local currents for that case.)
We use Feynman gauge for the photon propagator, which

can be written as

Gμ;νðx; yÞ ¼
1

VT

X
k

j~kj≠0

δμ;ν
~k2

expðik · ðx − yÞÞ; ð30Þ

where VT is the space-time volume in lattice units. The

four-vector k ¼ ðk0; ~kÞ is determined by four integers

TABLE II. List of ensembles used in our calculations. Two light
and one strange sea quark flavor of domain wall fermions were
used when generating these ensembles, where Ls is a length of
fifth dimension. The strange quark mass was chosen close to its
physical value. The values for ZV are obtained from Tables XLIII
and III of Refs. [22] and [23], respectively.

Label Size Ls a−1 (MeV) mπ (MeV) ZV Ref.

16I 163 × 32 16 1747 423 0.6998(20) [24]
24I 243 × 64 16 1747 423 0.6998(20) [25]
24IL 243 × 64 16 1747 333 0.6991(17) [25]
32ID 323 × 64 32 1371 171 0.6685(36) [23]
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k ¼ 2πðn0=T; ~n=LÞ, where the integers nν, 0 ≤ ν ≤ 3 obey
−T=2 < n0 ≤ T=2 and −L=2 < ni ≤ L=2 for 1 ≤ i ≤ 3.
The four-vector ~k appearing in the denominator of Eq. (30)
is given by

~kν ¼ 2 sin

�
kν
2

�
: ð31Þ

The omission of all Fourier modes with ~k ¼ 0 from the sum
appearing in Eq. (30) removes a possible infrared singu-
larity and will contribute to the finite-volume error that is
present in our results [29].
As a first step of generating stochastic photon fields, we

define a complex photon field

AνðxÞ ¼
1ffiffiffiffiffiffiffi
VT

p
X

k
j~kj≠0

ϵνðkÞffiffiffiffiffiffiffiffi
ð~kÞ2

q expðik · xÞ; ð32Þ

where ϵνðkÞ is a random complex variable which satisfies

hϵμðkÞϵ�νðk0ÞiA ¼ δμ;νδk;k0 ; ð33Þ

hϵμðkÞϵνðk0ÞiA ¼ 0; ð34Þ

and the average h…iA indicates an average over the random
variables ϵνðkÞ. In our calculations, we choose ϵνðkÞ to be a
Gaussian random variable, which is similar to the distri-
bution of the gauge fields found in conventional QED
gauge ensembles. We can verify that this complex stochas-
tic field will generate the desired Feynman-gauge photon
propagator:

hAμðxÞA�
νðyÞiA ¼

1

VT

X
k

j~kj≠0

X
k0

j~k0 j≠0

hϵμðkÞϵ�νðk0ÞiA
eik·xffiffiffiffiffiffiffiffi
ð~kÞ2

q e−ik
0·yffiffiffiffiffiffiffiffiffiffi

ð~k0Þ2
q

ð35Þ

¼ Gμ;νðx; yÞ: ð36Þ

Finally, a real stochastic photon field can be constructed
from the real part of AμðxÞ:

AμðxÞ ¼
ffiffiffi
2

p
ReAμðxÞ; ð37Þ

which obeys

hAμðxÞAνðyÞiA ¼ 1

2
ðhAμðxÞA�

νðyÞiA þ hA�
μðxÞAνðyÞiAÞ

¼ Gμ;νðx; yÞ: ð38Þ

It is this real stochastic photon field AμðxÞ that we use in the
calculation.

While the three-momenta of the initial and final muons
are typically fixed to be �~q=2, we calculate all 16
amplitudes corresponding to all possible initial and final
spinor indices, α and β. We extract the form factor F2ðq2Þ
from the resulting 4 × 4 matrices Mνð~qÞαβ for different
external photon polarizations ν of Eq. (4) by matching to
the Green’s function shown in Fig. 6. This diagram
represents the result of a tree-level calculation with a muon
source and sink identical to those used in our lattice
calculation, but with a vertex function that is expressed
in terms of the general invariant functions F1ðq2Þ and
F2ðq2Þ using Eq. (3).
We compute the tree-level amplitude ðMtree

ν ð~qÞÞαβ
described by the diagram given in Fig. 6 as a function
of the input variables F1ðq2Þ and F2ðq2Þ on the same lattice
volume, with the same muon source and sink momenta as
were used in the cHLbL calculation, obtaining

Mtree
ν ð~qÞ ¼ eEq=2ðtsnk−tsrcÞei~q·~xop

X
~xsnk;~xsrc

e−i
~q
2
·ð~xsnkþ~xsrcÞ

· Sμðxsnk; xopÞ
�
F1ðq2Þγν þ i

F2ðq2Þ
4mμ

½γν; γβ�qβ
�

× Sμðxop; xsrcÞ: ð39Þ

We then find the two values of F1ðq2Þ and F2ðq2Þ that
minimize the difference

X
ν

X
α;β

jðMνð~qÞÞαβ − ðMtree
ν ð~qÞÞαβj2: ð40Þ

In most of our simulations, we choose ~q to be in the z
direction. Since ðMtree

z ð~qÞÞαβ will then naturally be zero,
we omit that direction from the above summation.
In the moment method, both muons carry zero momen-

tum and the resulting, simplified spinor structure is given in
Eq. (28). Because F1ð0Þ ¼ 0 in this case, we only need to
find the minimum with respect to F2ð0Þ and can neglect
the amplitude ðMtð~qÞÞαβ corresponding to polarization in
the t direction. However, we still evaluate the tree diagram
of Fig. 6 and minimize the expression in Eq. (40) to
obtain F2ð0Þ.
When computing quark propagators on configurations

belonging to the four ensembles described in Table II, we

FIG. 6. The shaded circle represents the vertex

F1ðq2Þγν þ i F2ðq2Þ
4mμ

½γν; γβ�qβ.
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use low-mode deflation with 100 eigenvectors for the 16I
ensemble and 550 eigenvectors for the other three ensem-
bles. These low modes are also used when computing
the reduced-precision propagators that are used in the all-
mode-averaging procedure described below. Except for
these low-precision inversions, the Dirac operator was
inverted using a stopping condition of 10−8. More specifi-
cally, we required that the inverse of a product of
the preconditioned Dirac operator times its Hermitian

conjugate solve the Dirac equation with a residual whose
norm was 10−8 times smaller than the norm of the vector to
which the inverse was applied.
We conclude this subsection with a discussion of the

unconventional strategy which we have implemented in all
of the numerical work presented here. In contrast to most
lattice QCD calculations, the initial and final states do not
contain quarks and enter a computationally inexpensive
portion of the calculation. The bulk of the computational

FIG. 7. The left column shows
histograms of the contribution to
F2 from different separations
jrj ¼ jx − yj. The sum of all these
points gives the final result for F2.
The right column contains scatter
plots of results for F2 for all ran-
dom point pairs, adjusted by their
sampling weight. The average
value of F2 from all points gives
the jrj ≥ rmax portion of the final
result. The vertical lines in the left
plots and the left-hand boundaries
of the right plots indicate the value
of rmax. The labels 16I, 24I, 24IL
and 32ID indicate the ensembles
given in Table II.
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effort is associated with evaluating quark propagators
whose sources have fixed positions in space-time and
are necessarily located close to the position xop of the
external current Jν. In order to suppress the contribution of
excited states (typically states of a muon with one or more
photons) we must work with large time separations tf − top
and top − ti. To the extent that these separations are large,
our final Green’s functions will depend on tf and ti only
through their difference tf − ti, which we hold fixed at T=2.
In order to achieve the greatest suppression of excited
states, we will choose the locations of the muon source and
sink to be maximally distant from the sources of the quark
propagators. Specifically, we locate tf and ti so that the
average w ¼ ðxþ yÞ=2 appearing in Eq. (12) lies midway
between tf and ti. This means that we do not keep tf − top
and top − ti fixed but instead average over a range of large
values of tf − top and top − ti, upon which the quantity we
are computing should not depend. In order to provide
numerical evidence that the effects of excited states have
been reduced below the level of our statistical errors, we
simply vary tsep ¼ tf − ti to explore the degree to which
our results depend on it.

B. Example stochastic photon calculations

In Sec. II A, we compared the original subtraction
method used to obtain the first lattice QCD results for
gμ − 2 [17] and an alternative stochastic method in which
specific random photon fields are introduced to construct
only the three propagators needed for the Oðα3Þ cHLbL
amplitudes. In this section, we will not attempt a numerical
comparison of these two methods, since the absence of both
Oðα2Þ noise and the need to remove unwanted Oðα4Þ and

higher-order terms gives the latter method a clear advan-
tage. (A comparison of the original method and a combi-
nation of many of the improvements suggested in this paper
can be found in Fig. 9, presented later in this section.)
Instead, we will begin by comparing a series of variations
of the stochastic field method.

1. M2 method

We first study the statistical advantage that results if we
compute M sequential-source propagators for the x vertex

FIG. 8. Histograms
and scatter plots for
the contribution to F2

from different separa-
tions jrj¼ jx−yj are
shown in the left and
right plots, respectively,
following the conven-
tions used in similar pre-
vious figures. The upper
two plots are obtained
using the conserved
version of the exact-
photon method on the
32ID ensemble. The
lower two plots are ob-
tained using the moment
method, but from
approximate propaga-
tors each obtained from
100 CG iterations, again
on the 32ID ensemble.

FIG. 9. A comparison of the results for F2ðq2Þ=ðα=πÞ3 ob-
tained in the original lattice QCD cHLbL calculation [17]
(diamonds) and those obtained on the same gauge field ensemble
using the moment method presented here (circles). The points
from the original subtraction method with q2 ¼ ð2π=24Þ2 ¼
ð457 MeVÞ2 were obtained from 100 configurations and the
evaluation of 81,000 point-source quark propagators for each
value of the source-sink separation tsep. In contrast, the much
more statistically precise results from the moment method
required a combined 26,568 quark propagator inversions for
both values of tsep and correspond to q2 ¼ 0. The moment
method value for tsep ¼ 32 is listed in Table IX.
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in Fig. 3 with momentum −q=2 injected at the external
current vertex and an additional M sequential-source
propagators for the y vertex with the momentum þq=2
injected, and then evaluate allM2 possible pairs. This test is
carried out on a 163 × 64 lattice and uses muon propagators
for both the external muon and the internal loop. Thus,
there are no fluctuating QCD configurations, and the
resulting statistical noise comes entirely from the stochastic
photon propagators.
The advantage of using the M2 method can be seen by

comparing the first two rows of Table III. The first row
evaluates M ¼ 12 stochastic propagators for each of the
two sequential sources created from propagators whose
sources correspond to the external current with four-
momenta þq=2 and −q=2 and combines them using all
M2 possible pairs. The second row uses two stochastic
sequential-source propagators corresponding to single
sequential sources at the x and y vertices in Fig. 3, again
carrying the momenta�q=2. Both the first and second rows
of Table III use a random space-time volume source for the
external current. The quantity Nprop listed in the third
column in Table III is the total number of propagator
inversions required for each result and is given by

Nprop ¼ Next-curð2ð1þMÞÞ: ð41Þ

Here the factor 1þM corresponds to 1 random wall- (or
point-) source inversion and M sequential-source inver-
sions forM different stochastic photon fields, while Next-cur
is the number of random wall or point sources used for
the external current. The extra factor of 2 is needed because
the external photon carries momentum, which requires two
separate momenta for the fermions entering and exiting at
this vertex.
As can be seen from the first two rows of Table III, we

realize a substantial reduction in statistical error when using
the M2 method. Since the computational cost involved in
these two rows is not the same, a precise comparison
requires more than a simple comparison of the resulting
statistical errors. This comparison is assisted by the

ffiffiffiffiffiffiffiffi
Var

p
and

ffiffiffiffiffiffiffiffiffiffiffiffi
VarEff

p
columns in that table. In each of these

columns, we begin with the quoted jackknife statistical
error and compute a measure of the width of distribution of

individual samples before the average over samples is
performed. For the quantity

ffiffiffiffiffiffiffiffi
Var

p ¼ Err
ffiffiffiffiffiffiffiffiffiffiffi
Nprop

p
, we sim-

ply expand the final error (Err) by a factor given by the
square root of the number of internal loop propagators
that were computed to produce that error. The comparison
of

ffiffiffiffiffiffiffiffi
Var

p
between the first and second rows suggests that

the statistical fluctuations found in the result for a given
computational cost were roughly 5 times smaller for the
M2 method. The quantity

ffiffiffiffiffiffiffiffiffiffiffiffi
VarEff

p ¼ Err
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Nsample

p
, where

Nsample ¼ Next-curM2 inflates the final quoted error by the
square root of the number of “effective” samples Nsample,
which in this case treats the M2 samples as if they were all
independent. Here the resulting nearly equal “effective”
variances imply that this hypothesis is true and these M2

samples are essentially independent. Thus, if only the cost
of the internal muon line is considered, in this case the M2

method has reduced the computational cost by a factor
of M ¼ 12.
The choice ofM ¼ 12made in this test was motivated by

the case of QCD with an internal quark loop. In that case,
the M2 method allows M2 samples from 2M computation-
ally expensive light quark propagator inversions. However,
we need to evaluate the product of external muon propa-
gators for all six different permutations of the three internal
photons, each pair of stochastic photons joined to x and y,
and all combinations of photon polarizations. Since this
muonic part of the calculation grows at M2, we cannot
make M too large. In our simulations, the choice M ¼ 12
balances the cost of muons and quarks but is not so large
that the QCD gauge noise seen from configuration to
configuration dominates the statistical noise, so the stat-
istical gain is still proportional to M2.

2. Random wall sources for the external current

A second standard method to increase the efficiency of
this cHLbL calculation attempts to increase the degree of
volume averaging by using a random wall source for the
two sequential-source propagators appearing in the internal
loop, instead of choosing one or more point sources. For a
random source at a given time top we use a full spatial
vector of Gaussian random numbers, with a different vector
being chosen for each spin and color. As described above,

TABLE III. Results for F2 evaluated at q2 ¼ ð2π=LÞ2 for three stochastic propagator methods. The calculations
were performed on a 163 × 64 lattice with a muon mass of 0.02, a time separation of 32 between the muon source
and sink, and using an internal muon loop. For this test we used a local current for the external photon and conserved
currents for internal photons. However, the two- and three-photon contact terms needed for these conserved currents
were not included. A summary of these results has been presented in Ref. [30].

Method F2=ðα=πÞ3 Nprop
ffiffiffiffiffiffiffiffi
Var

p
Nsample

ffiffiffiffiffiffiffiffiffiffiffiffi
VarEff

p

Stoch. 0.2228(46) 9; 864 × ð2 × ð1þ 12ÞÞ 2.3 9; 864 × 122 5.5
Stoch. w=o M2 0.1962(368) 18; 432 × ð2 × ð1þ 1ÞÞ 10.0 18; 432 × 12 5.0
Stoch. ext. pt. 0.232(33) 18; 096 × ð2 × ð1þ 6ÞÞ 16.6 18; 096 × 62 28.4
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two independent noise vectors are needed with momentum
factors exp ð�iq · xop=2Þ. If the propagators corresponding
to one of these two noise sources are multiplied by the
complex conjugate of the other, which are then combined
with the second noise vector and the complex conjugate of
the first, an expression can be constructed whose noise
average will be the desired sum over all locations of ~xop for
a fixed choice of top. Such random volume sources were
used to obtain the results given in the first two rows of
Table III.
In order to determine the value of this use of a random

wall source, we generated the results in the third row of
Table III by using Next-cur point-source locations for the
external current. (Here the extra factor of 2 in cost for
external current sources carrying the momenta �q=2 could
have been avoided, but this would not have changed the
qualitative conclusion.) By comparing the first and third
rows of Table III, one sees a 5- to 8-times reduction in the
errors from the use of a random wall source.

3. Breit-frame muon momenta

The symmetrical choice of �π=L for the outgoing and
incoming momentum has aesthetic appeal and only non-
zero spatial momenta, as is required for a direct lattice
measurement of a magnetic moment. However, by avoiding
assigning a 2× larger spatial momentum of 2π=L, this
approach also results in substantially smaller statistical
errors than the simpler assignment of the allowed finite-

volume four-momenta ðmμ; ~0Þ and ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

μ þ ð2π=LÞ2
q

;

2π=LêÞ to the incoming and outgoing muon momenta.
The errors obtained using this standard assignment and
those resulting from the Breit- or brick-wall-frame choice
made here, with the incoming and outgoing four-momenta

ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

μ þ ðπ=LÞ2
q

;∓π=LêÞ, are compared in Table IV.

(Here ê is a unit vector in the direction of one of the three
spatial axes.) This comparison is identical to that shown in
Table III, except the muon mass has been reduced from
0.02 to 0.01 and shows an approximate 15-times reduction
in error, which is equivalent to what would be obtained with
200 times the statistics. Such a reduction in error should be

expected. When the initial and final momenta are ~q and ~0,
the signal behaves as expð−ðE~q þ E~0Þtsep=2Þ. However, the

noise behaves as expð−E~0tsepÞ, which leads to an expo-
nentially decreasing signal-to-noise ratio in the large-time-
separation limit.

C. Exact photon propagators

The use of exact instead of stochastic photon propagators
is the most significant improvement in method suggested
in this paper because of its elimination of stochastic noise,
which grows with the volume. In this subsection we
describe the implementation of this method, compare it
with our earlier results, and apply it to obtain the cHLbL
contribution to gμ − 2 for the near-physical circumstance
with mπ ¼ 171 MeV and a reasonably large 323 × 64
lattice volume which is 4.6 fm on a side in physical units.
As described earlier, we choose stochastically the loca-

tion of two of the three vertices x and y at which the internal
photons couple to the quark loop. The pair of positions x
and y are point sources for the quark propagators, and we
arrange the contractions so that the location of the external
current, xop, and the third photon vertex, z, appear as sinks
and are explicitly summed over space-time. While compu-
tational cost prevents our performing an explicit sum over
all space-time separations rν ¼ xν − yν, we can split the
computation of the sum into two parts. The first part
contains all rν values with Euclidean magnitude less than a
certain value: jrj ≤ rmax. Here we evaluate all distinct
separations rν up to discrete symmetries. The second part
of the sum, where the magnitude jrj is larger than rmax, is
evaluated by averaging over random point-pair samples,
weighted to increase the sampling efficiency.
We compare the exact-photon method with our previous

stochastic method by performing a test on the 16I ensem-
ble. The results are listed in Table V. For the stochastic
method, the total number of propagator inversions per
configuration Nprops ¼ Nsetð2ð1þMÞÞ, where 1þM cor-
responds to 1 random wall-source inversion and M
sequential-source inversions for M different stochastic
photon fields. The quantity Nset is the product of the
number of random sources used per time slice and the
number of time slices used on each configuration analyzed.
For the exact-photon method, Nprops ¼ Nshort-dist þ NsetM.
In the “stochastic” method, we use a local current for the
external photon and the conserved current for the internal

TABLE IV. Comparison of results obtained with muon momenta of�q=2ê using twisted boundary conditions for
the initial and final muon propagators and those obtained when the initial muon carries zero momentum and the final
muon is given qê. Here q ¼ 2π=L, and ê is a unit vector parallel to one of the edges of the spatial volume. Except for
the choice of muon mass, mμ ¼ 0.01, all features of the calculation and definitions are the same as those for
Table III. A summary of these results has been presented in Ref. [30].

Method F2=ðα=πÞ3 Nprop
ffiffiffiffiffiffiffiffi
Var

p
Nsample

ffiffiffiffiffiffiffiffiffiffiffiffi
VarEff

p

Stoch. ~p1 ¼ − π
L ê 0.1666(69) 1584 × ð2 × ð1þ 12ÞÞ 1.4 1584 × 122 3.3

Stoch. ~p1 ¼ ~0 0.2278(265) 10260 × ð2 × ð1þ 24ÞÞ 19.0 10260 × 242 64.4
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photons, with the necessary contact terms included in these
cases. In the “exact-photon” method, we use the conserved
current for the external photon and a local current for each
internal photon coupling. (There are no contact terms
required in this case.) We can see that even on this relatively
small volume, the exact-photon method is more than 700
times as cost effective as the stochastic method.
The results for F2ðq2Þ at q2 ¼ ð2π=LÞ2 using the exact-

photon method for each of the ensembles listed in Table II
are presented in Table VI. The statistical weights for the
separations between the pairs and other simulation param-
eters used to obtain these results are listed in Table VII.
Since we calculate the contribution for each x-y pair, the

results contain more information than a single final number.
In Fig. 7, we plot a histogram of the contributions to F2

from different point-pair separations and a scatter plot of
the F2 contribution from each random point-pair sample.
Shown are results for the four different QCD ensembles
described in Table II. The fifth row, labeled 32ID-S, uses

the strange instead of the light quark in the quark loop,
evaluated on the 32ID ensemble. Table VII lists the choices
made in sampling the points x and y for each case. As can
be seen in Fig. 7, the majority of the contribution to F2

comes from a separation of jrj ≤ 10 in lattice units or
jrj ≤ 1.4 fm. However, most of the statistical noise comes
from the more difficult to sample, larger separations with
jrj ≥ 1.4 fm, even for the case of the heavier strange quark.
We conclude the discussion of the exact propagator

method at nonzero q2 by examining two of the possible
enhancements. The first involves including two extra
diagrams so that the external current is conserved on each
configuration, as was discussed in Sec. II C. The second
can be viewed as an adaptation of theM2 method discussed
for the case of stochastic fields in Sec. III B 1 to the exact
propagator case. In the present case, we compute the
needed sequential-source quark propagators from M loca-
tions of the point x and then evaluate the contribution to F2

from each of the MðM − 1Þ=2 distinct pairs that can be
formed from this set of M points.

1. Conserved current on each configuration

We repeated the 32ID lattice computation with the
same parameter choices but included all three diagrams
in Fig. 5 in order to determine the value of this potential
enhancement, described in Sec. II C. The results are listed
in Table VIII as the “conserved” method. We find that
although the cost per stochastic point is 7 times larger than
for the case that only one diagram is evaluated, this extra
cost yields a marginal overall benefit in the reduction
of noise.

2. M2 method

We can analyze the effectiveness of this M2 method
for exact photon propagators by comparing two different

TABLE V. Comparison of the stochastic and exact-photon
methods carried out on the 16I ensemble with mμ ¼ 332 MeV
and the separation between the muon source and sink tsep ¼ 16.

As in the previous tables,
ffiffiffiffiffiffiffiffi
Var

p ¼ Err
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
NconfsNprop

p
. Here Nconfs

is the number of configurations analyzed, and Nprops is the
number of propagators that are computed on each configuration.
In both cases, F2ðq2Þ is evaluated at the minimum nonzero lattice
momentum transfer ð2π=LÞ2.
Method F2=ðα=πÞ3 Nconfs Nprop

ffiffiffiffiffiffiffiffi
Var

p

Stoch. 0.1485(116) 31 32 × ð2 × ð1þ 6ÞÞ 1.37
Exact 0.1235(26) 16 129þ 16 × 16 0.051

TABLE VI. The magnetic form factor F2ðq2Þ evaluated at q2 ¼
ð2π=LÞ2 for our four ensembles. In each case, we choose the
muon mass to give the physical value for the ratio of muon to pion
mass. The 32ID-S results are obtained from the 32ID ensemble,
but with the loop mass set to that of the strange instead of the light
quark. The actual strange quark contribution to cHLbL for the
32ID ensemble would be the value shown divided by 17 to
introduce the proper electric charge weighting. The last two lines
are for comparison: “Model” is the result presented at the
Glasgow meeting [7], and “Exp − SM” is the E821 experimental
value minus the standard model prediction, without a HLbL
contribution.

Label mμ=MeV Nconfs F2=ðα=πÞ3
16I 332 16 0.1235(26)
24I 332 17 0.2186(83)
24IL 261 18 0.1570(69)
32ID 134 47 0.0693(218)
32ID-S 134 23 0.0195(88)
Model 0.08(2)
Exp − SM 0.28(7)

TABLE VII. Simulation parameters used to obtain the results
given in Table VI. The quantity rmax is the upper bound on the
magnitude of the x-y separations which are evaluated without
random sampling, M is the number of randomly sampled points
that are combined using theM2 method, while Nset is the number
of groups of these M samples analyzed per QCD configuration.
Note that for each set of M random points we randomly chose a
point s in the lattice volume, and then the M stochastic points
which will be used for the vertices x and y are chosen relative to
that random point s following the weight pðx − sÞ.
Label rmax pðxÞ M Nset

Cost per conf
BG=Q rack days

16I 4 1=jxj3.5 16 16 0.039
24I 4 1=jxj3.5 16 16 0.178
24IL 4 1=jxj3.5 16 16 0.177
32ID 3 1=jxj3.5 16 8 0.224
32ID-S 4 1=jxj4 8 8 0.085
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methods of estimating the statistical error that results from
the long-distance contribution to F2 coming from point
pairs with r ≥ rmax. In Table VIII, we list separately the
results and errors from the short- and long-distance parts.
The errors are correct statistical errors computed from the
variance of the average values obtained for each configu-
ration. However, we can also estimate a second long-
distance error, denoted as “ind-pair” in the table, by
assuming that the long-distance point pairs are all com-
pletely independent even though on a given configuration
they are simply different combinations of the same set of
points. If the correlations between these point pairs are
significant, we should expect that the error obtained by
treating them as independent and dividing the width
of the distribution of results from these pairs byffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
NsetNconfMðM − 1Þ=2p

will be less than the true error,
determined by the first method described above. From the
table we can see that the error found by treating these
MðM − 1Þ=2 pairs as independent is only slightly smaller
than the actual error, which suggests a significant gain from
evaluating the contribution of these MðM − 1Þ=2 pairs.
Once again we see an OðM2Þ statistical advantage from the
calculation of only OðMÞ propagators.

D. Moment method

Here we present results that are obtained by using the
best of the strategies discussed in Sec. II. Specifically, we
evaluate F2ðq2Þ at the point of interest q2 ¼ 0 using the
moment method of Sec. II D. We also introduce the
restriction jz − xj ≥ jx − yj and jz − yj ≥ jx − yj explained
at the end of Sec. II C in order to more accurately sample
the region where one of the three vertices is far from the
other two. We use the 32ID ensemble lattice and increase
the efficiency of the calculation by using the all-mode-
averaging (AMA) method [31,32], in which most of the
propagator inversions are computed imprecisely and a
small but more computationally expensive correction term
is computed far less frequently. We compute the short-
distance part up to rmax ¼ 5 with the following samplings:
We compute point pairs with jrj ≤ 1 six times, 1 < jrj ≤ 2
five times, 2 < jrj ≤ 3 four times, 3 < jrj ≤ 4 two times,

and 4 < jrj ≤ 5 one time for each configuration. We use
Eq. (28) in this computation and make use of its invariance
under a larger set of discrete symmetries, including
independent inversions of x, y, z, t, and the exchange of
the x, y and z directions.
For the long-distance part, we compute 512 pairs per

configuration. In order to more precisely control the
distributions of these long-distance r > 5 point pairs, we
do not use the M2 method in this calculation and instead
choose the individual pairs so that their separation r follows
the probability distribution

P32IDðrÞ ∝
1

jrj4 e
−0.05jrj: ð42Þ

The approximate AMA results are computed using propa-
gators that were obtained using only 100 conjugate gradient
(CG) iterations. We treat the AMA correction as a separate
computation on the same set of configurations. For the
short-distance part, we sum the contribution of the point
pairs up to rmax ¼ 2. We compute 48 long-distance point
pairs per configuration, using the same pair-separation
distribution given in Eq. (42) for the long-distance part
of the AMA correction, but with jrj > 2. On this restricted
sample we compute the result from propagators computed
using only 100 CG iterations and propagators computed
with a residual of 10−8.
The results are presented in the final three rows of

Table VIII. We use mμ ¼ 134 MeV and a separation
between the muon source and sink of tsep ¼ 32. As in

previous tables,
ffiffiffiffiffiffiffiffi
Var

p ¼ Err
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
NconfNprop

p
, where the num-

ber of propagators computed per configuration, Nprop, is
defined as before. In the moment method, for each point we
compute one point-source propagator and three sequential-
source propagators for each of the three spatial magnetic
moment directions. Since the

ffiffiffiffiffiffiffiffi
Var

p
is based on the number

of propagators computed, the reduction in
ffiffiffiffiffiffiffiffi
Var

p
seen

between the “Conserved” and “Mom. (aprox)” rows of
Table VIII suggest that we get 40% speed-up from the
moment method in addition to the gain in inversion speed

TABLE VIII. Results from three variants of the exact-photon method obtained from the 32ID ensemble. The first
row, labeled “Exact,” corresponds to the row labeled 32ID in Table VI. The second row, labeled “Conserved,” is
similar, except all three arrangements of the vertices x, y and z are combined, ensuring that the external current is
conserved on each configuration. The final three rows are obtained from the moment method and are explained in
the text.

Method F2=ðα=πÞ3 Nconf Nprop
ffiffiffiffiffiffiffiffi
Var

p
rmax SD LD ind-pair

Exact 0.0693(218) 47 58þ 8 × 16 2.04 3 −0.0152ð17Þ 0.0845(218) 0.0186
Conserved 0.1022(137) 13 ð58þ 8 × 16Þ × 7 1.78 3 0.0637(34) 0.0385(114) 0.0093
Mom. (approx) 0.0994(29) 23 ð217þ 512Þ × 2 × 4 1.08 5 0.0791(18) 0.0203(26) 0.0028
Mom. (corr) 0.0060(43) 23 ð10þ 48Þ × 2 × 4 0.44 2 0.0024(6) 0.0036(44) 0.0045
Mom. (tot) 0.1054(54) 23
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that results from using the AMA approach. Although we
limit the approximate CG inversions to only 100 iterations,
compared with precise inversions which require ∼1300
iterations, the correction is very small. However, the variance
of the correction is rather large, suggesting that the choice of
100 approximate iterations may not be optimum.
In the results presented in Table VIII we use local

currents for the internal photons. In the “Exact” and
“Conserved” methods, we use the conserved current for
the external photon, while in the moment method, we use a
local current for the external photon. The final row of
Tab. VIII, labeled “Mom. (tot),” gives the complete result
from the moment method, while the preceding two rows,
“Mom. (approx)” and “Mom. (corr),” show separately the
approximate AMA results and the needed correction term.
The “SD” and “LD” columns give the results from the pairs
with jrj ≤ rmax and jrj > rmax, respectively. The “ind-pair”
column gives the error that would be expected if the long-
distance pairs were truly independent. Note that the
quantity F2ðq2Þ is computed at q2 ¼ ð2π=LÞ2 for the first
two rows and at q2 ¼ 0 for the final three rows. The final
error shown for the moment method on the fifth line of
Table VIII is obtained by applying the jackknife method
to the sum of the approximate AMA result and the AMA
correction term. The resulting error is similar to what would
be found if the statistical error on the approximate and
correction terms were computed separately and added in
quadrature.
We should emphasize that the moment-method result

given in the final line of Table VIII is the most important
numerical result presented in this paper. It provides the
cHLbL contribution (calculated directly at q2 ¼ 0) to g − 2
for the muon with a 5% statistical accuracy for the case of a
pion with mπ ¼ 171 MeV using a ð4.6 fmÞ3 spatial vol-
ume, but with a relatively coarse lattice spacing a with
1=a ¼ 1.378 GeV. More information about the conserved
and moment method calculations presented in Table VIII
can be found in Fig. 8, where histograms and scatter plots
are presented as functions of the separation of the two
stochastically chosen points x and y.
As a final topic in this section, we apply the conserved

method and the moment method, with the restriction
jz − xj ≥ jx − yj and jz − yj ≥ jx − yj that was described
previously, to the 24I ensemble with mμa ¼ 0.1 in order to
compare these methods with the original subtraction
calculation [17] which was carried out on the same
ensemble with the same muon mass. We compute the
short-distance part up to rmax ¼ 4. For jrj ≤ 2 we compute
each independent direction twice, while for 2 < jrj ≤ 4
each independent direction is computed only once for
each configuration. We take many discrete symmetries
into account when summing over the short-distance part,
including independent inversions of x, y, z, t, and
exchanges of the x and y directions. For the long-distance
part, we do not use the M2 method, but instead directly

choose the probability distribution for the point pairs
(jrj > 4):

P24ILðrÞ ∝
1

jrj4 e
−0.1jrj: ð43Þ

For the conserved method, the propagators are computed
with approximate inversions carried out to a precision of
10−4. (No correction term has been added.) The number of
propagators needed per configuration (Nprop) is given by
the sum of the number of point pairs times twice the
number of propagators computed per point. For the con-
served method, for each point we compute one point-source
propagator and six sequential-source propagators, corre-
sponding to the three external photon polarizations and two
momentum directions.
For this implementation of the moment method we

compute only the external momentum in the z direction,
and external photon polarizations in x and y directions, so
for each point we compute one point-source propagator and
two sequential-source propagators for these two external
photon polarizations. This is slightly different (and less
effective) than the approach used for the moment method
given in Table VIII. The results are shown in Table IX, and
a direct comparison between the q2 ¼ 0 results of the
moment method (at two different muon source-sink sep-
arations) and the earlier q2 ¼ ð2π=LÞ2 results of Ref. [17]
is shown in Fig. 9. As can be seen, a substantial improve-
ment over the original calculation has been obtained. In
addition, the good agreement between the earlier results
and the new results using the conserved current method,
both at q2 ¼ ð2π=LÞ2, provides a useful consistency check,
since these are two completely independent calculations.

E. QED light-by-light scattering results

In this section, we present results for QED light-by-light
scattering in which the quark loop discussed in the previous
sections is replaced by a muon loop. These calculations
make use of the most effective of the numerical strategies
discussed above: the use of exact photon propagators
and the position-space moment method to determine F2

TABLE IX. Results for F2ðq2Þ from applying the conserved
and moment methods to the 24IL ensemble with mμa ¼ 0.1
using a muon source-sink separation tsep ¼ 32. As before,ffiffiffiffiffiffiffiffi
Var

p ¼ Err
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
NconfNprop

p
. We use the conserved current for

the external photon and local currents for the internal photons
for both methods. The conserved results are for q2 ¼ ð2π=LÞ2,
while the moment methods gives a q2 ¼ 0 result.

Method F2=ðα=πÞ3 Nconf Nprop
ffiffiffiffiffiffiffiffi
Var

p

Conserved 0.0825(32) 12 ð118þ 128Þ × 2 × 7 0.65
Mom. 0.0804(15) 18 ð118þ 128Þ × 2 × 3 0.24
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evaluated at q2 ¼ 0. Since these calculations are less
computationally costly than those for QCD, we can
evaluate a number of volumes and lattice spacings
(all specified with reference to the muon mass) and
examine the continuum and infinite-volume limits. We
can then compare our results, extrapolated to vanishing
lattice spacing and infinite volume, with the known
result calculated in standard QED perturbation theory
[33,34]. This QED calculation serves both as a demon-
stration of the capability of lattice methods to determine
such light-by-light scattering amplitudes and as a first look
at the size of the finite-volume and nonzero-lattice-spacing
errors.
In Fig. 10 we show results for F2ð0Þ computed for three

different lattice spacings, i.e. three different values of the
input muon mass in lattice units, but keeping the linear size
of the system fixed in units of the muon mass. The data
shown in Fig. 10 are also presented in Table X. We use two
extrapolation methods to obtain the continuum limit. The
first, shown in the figure, uses a quadratic function of a2 to
extrapolate to a2 ¼ 0. The second makes a linear extrapo-
lation to a2 ¼ 0 using only the two leftmost points for each
of the three values of mμL. The coefficients for the
quadratic-in-a2 fits shown in Fig. 10 as well as those for
the linear-in-a2 fits are given in tabular form in Tables XI
and XII.
In Fig. 11, we plot the a2 ¼ 0 values that result from the

quadratic fit to the a2 dependence given in Table XI as a
function of 1=ðmμLÞ2 along with the original perturbative
result for these QED terms. There is clearly good agree-
ment between an extrapolation linear in 1=ðmμLÞ2 using
the two leftmost points and the known perturbative result.

These fitting results, shown as functions of mμL, are
summarized in the following equations:

½F2ð0Þ�quad=ðα=πÞ3 ¼ 0.3679ð42Þ − 1.86ð11Þ=ðmμLÞ2;
ð44Þ

½F2ð0Þ�lin=ðα=πÞ3 ¼ 0.3608ð30Þ − 1.92ð8Þ=ðmμLÞ2; ð45Þ

½F2ð0Þ�PT=ðα=πÞ3 ¼ 0.3710052921; ð46Þ

where the errors shown in Eqs. (44) and (45) are statistical
only, and the perturbative result is given in Eq. (46). We

FIG. 10. Plots of our results for the connected light-by-light
scattering contribution in QED to F2ð0Þ, known to be 0.371 ×
ðα=πÞ3 [33,34], as a function of a2 expressed in GeV by assigning
mμ ¼ 106 MeV. This is done for three choices of the physical
lattice size: L ¼ 11.9 fm (diamonds), 8.9 fm (squares) and 5.9 fm
(circles). The curves shown are quadratic functions of a2 chosen
to pass through the three points for each physical volume. The
coefficients for each of these fits are listed in Table XII.

TABLE XI. Functions quadratic in a2 which fit the data shown
in Fig. 10. The results from these fits at a2 ¼ 0 are plotted in
Fig. 11.

L=fm F2ð0Þ=ðα=πÞ3
5.9 0.2099ð12Þ − 0.0478ð13Þða GeVÞ2 þ 0.0049ð3Þða GeVÞ4
8.9 0.2873ð13Þ − 0.0595ð11Þða GeVÞ2 þ 0.0056ð2Þða GeVÞ4
11.9 0.3226ð17Þ − 0.0669ð17Þða GeVÞ2 þ 0.0062ð4Þða GeVÞ4

TABLE X. A list of the input parameters, weights and numeri-
cal results for our QED calculations using the moment method.
The rightmost column shows the very accurate results from the
short-distance jrj ≤ rmax region. These results are plotted in
Fig. 10.

Vol mμ rmax pðxÞ Npair F2ð0Þ=ðα=πÞ3 SD

163 × 64 0.2 5 expð−0.4jxjÞ
jxj4

1024 0.1016(1) 0.1000

243 × 96 0.1333 6 expð−0.25jxjÞ
jxj4

86 0.1465(3) 0.1428

323 × 128 0.1 6 expð−0.2jxjÞ
jxj4

194 0.1712(3) 0.1624

243 × 96 0.2 6 expð−0.4jxjÞ
jxj4

80 0.1468(1) 0.1451

323 × 128 0.15 6 expð−0.3jxjÞ
jxj4

50 0.1907(2) 0.1863

483 × 192 0.1 6 expð−0.2jxjÞ
jxj4

152 0.2388(5) 0.2243

323 × 128 0.2 5 expð−0.4jxjÞ
jxj4

276 0.1634(2) 0.1613

483 × 192 0.1333 6 expð−0.25jxjÞ
jxj4

189 0.2324(3) 0.2291

643 × 128 0.1 6 expð−0.2jxjÞ
jxj4

184 0.2680(5) 0.2592

TABLE XII. Functions linear in a2 which can be used to
extrapolate the data shown in Fig. 10 to a2 ¼ 0. The results from
these fits at a2 ¼ 0 are plotted in Fig. 11.

L=fm F2ð0Þ=ðα=πÞ3
5.9 0.2030ð8Þ − 0.0357ð6Þða GeVÞ2
8.9 0.2773ð9Þ − 0.0432ð5Þða GeVÞ2
11.9 0.3138ð12Þ − 0.0515ð9Þða GeVÞ2
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find very satisfactory agreement between the results from
standard perturbation theory and the lattice results extrapo-
lated to the continuum and infinite-volume limits.

IV. CONCLUSION AND OUTLOOK

In this paper we have extended the lattice field theory
methods introduced in Ref. [17], increasing the computa-
tional efficiency by more than 2 orders of magnitude and
allowing the calculation of the q2-dependent form factor
F2ðq2Þ directly at q2 ¼ 0 instead of at ð2π=LÞ2, the
smallest nonzero momentum accessible in finite volume.
To demonstrate the correctness of our methods, we have
studied the light-by-light scattering contribution within
QED, arising when the internal loop is a muon, working
at three values for the lattice spacing and three volumes. By
extrapolating to vanishing lattice spacing and infinite
volume, we obtain a result which agrees with the analytic
result within 2%, an accuracy expected from a combination
of statistical and extrapolation uncertainties.
The most successful approach uses exact, analytic

formulas for the three photon propagators that appear in
the HLbL amplitude and the standard methods of lattice
QCD. In contrast with normal perturbative methods, much
of the calculation is performed in position space, and
stochastic methods are only introduced to sample position-
space sums, reducing the computational cost so that it
grows proportionally to the space-time volume instead of
its cube. Because of the structure of the amplitude being
computed, we can identify a specific space-time position
within the hadronic part of the amplitude and use that
location as the origin to obtain the anomalous magnetic
moment from what is essentially a classical spatial moment
of the quantum distribution of current.

These new methods are used to obtain a result for the
cHLbL contribution to gμ − 2 from a relatively coarse
323 × 64 ensemble with 1=a ¼ 1.38 GeV, spatial extent
L ¼ 4.6 fm and pion mass mπ ¼ 171 MeV:

ðgμ − 2ÞcHLbL
2

¼ ð0.1054� 0.0054Þðα=πÞ3

¼ ð132.1� 6.8Þ × 10−11; ð47Þ

which can be compared to the conventional model-
dependent result for the complete HLbL contribution to
gμ − 2 of ð105� 26Þ × 10−11 and the difference between
the current experimental result and the standard model
prediction (excluding the HLbL component) of
ð354� 86Þ × 10−11. Equation (47) shows only the statis-
tical error. There are significant systematic errors associated
with the unphysical pion mass, the nonzero lattice spacing
and the finite volume that have been used in this calcu-
lation. These systematic errors are at present insufficiently
well understood to be reliably estimated. A particularly
important systematic error comes from the omission of the
quark-disconnected contributions, which play an important
role in the phenomenological estimates. Thus, the com-
parison of the result in Eq. (47) with experiment serves only
to give a context for the size of the present statistical errors.
In Sec. III, we have presented a series of numerical tests

of many of the different methods that were explored while
developing the methods that were finally used to obtain the
result in Eq. (47). We hope that some of these may be useful
in the future for the efficient calculation of other quantities
that involve a combination of QED and QCD, a relatively
new area where there are many new directions to explore.
While the results presented here required modest com-

putational resources, the result for the cHLbL contribution
to gμ − 2 requires substantially increased statistics as the
pion mass decreases to its physical value. However, based
on the performance of the methods described here, we
expect that calculations at physical pion mass are practical
on current leadership-class computers, and a calculation
on an ð5.5 fmÞ3 volume with 1=a ¼ 1.73 GeV is currently
underway. This calculation requires a 483 × 96 lattice
volume, and a follow-on calculation with a smaller lattice
spacing and a corresponding 643 × 128 volume may also
be possible, allowing a continuum limit to be evaluated.
Controlling the effects of finite volume and including the
contributions of disconnected diagrams are more difficult,
but they are being actively pursued.
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APPENDIX A: AVOIDING LATTICE ARTIFACTS
IN THE HLbL AMPLITUDE

In standard continuum perturbation theory, the Feynman
graphs which enter the HLbL contribution to gμ − 2 contain
no divergences beyond the usual mass, wave function and
coupling constant renormalizations that result from either
the QED or QCD interactions. In fact, because of the
limited topologies for the photon couplings which appear
in these HLbL amplitudes, even these standard QED
renormalizations are not required. However, when a lattice
regulator is used, the choice of electromagnetic couplings
may change this situation. Wilson’s formulation of lattice
gauge theory introduces couplings between the quarks and
gluons which explicitly preserve the Yang-Mills gauge
symmetry even at finite lattice spacing and guarantees that
gauge-noninvariant counterterms will not be needed to
ensure that the lattice theory has a continuum limit.
Following the same strategy, we can avoid the appear-

ance of new, unwanted short-distance contributions in a
HLbL lattice calculation by introducing quark-photon and
muon-photon couplings which are invariant under QED
gauge symmetry. This is quite manageable if a single
photon is to be coupled to a muon or quark line: we can
introduce the conserved lattice current which contains
fermion fields evaluated at both ends of the given lattice
link associated with the current operator. However, if two or
three photons are coupled to the same fermion line, then
the nonlocality of the conserved current used to couple the

first photon requires that additional two- and three-photon
vertices be introduced if electromagnetic gauge invariance
is to be preserved. The resulting calculation can still be
performed but at the cost of considerable complexity.
In this appendix, we will demonstrate that new Oð1Þ

lattice artifacts can be avoided in the case of the HLbL
amplitude by the simple precaution of using the conserved
lattice current when coupling the external photon to the
quark loop. The other six electromagnetic couplings can be
given by the standard local current, provided the six
necessary ZV renormalization factors are introduced. The
use of the conserved current for the external photon is only
needed for the connected graph. For the disconnected
HLbL amplitudes, the simpler local current can be used
for all photon couplings.
The absence of new short-distance contributions when a

local current is used for all internal photon couplings in a
lattice-regulated calculation of HLbL can be seen by
examining the HLbL amplitude in a Feynman perturbation
theory expansion carried out to arbitrary order in the
QCD coupling. A convenient approach organizes the
QCD perturbation theory into skeleton graphs and analyzes
each skeleton graph [35,36]. Recall that a skeleton graph in
this context will be a graph with three internal photon lines
and arbitrary quark and gluon lines subject to the restriction
that no self-energy or proper vertex subgraphs appear. Each
vertex in such a skeleton graph represents a sum over all
one-particle irreducible QCD vertex graphs. Likewise, each
propagator in such a skeleton graph represents a sum over
all QCD gluon or quark self-energy diagrams. In Fig. 12 we
show a sample HLbL graph and the corresponding skel-
eton graph.
Each such skeleton graph can be expanded into a sum of

ordinary graphs by replacing each vertex and propagator
with the corresponding sums over all vertex and propagator
subgraphs. Likewise, a general graph can be identified with
a skeleton graph if each vertex and self-energy subgraph
appearing in that general graph is replaced with a simple

FIG. 12. The left-hand graph shows a sample QCDþ QED diagram contributing to the HLbL amplitude. The black dot in this
diagram represents the current to which the external photon couples. The right-hand graph shows the skeleton graph to which this
sample graph contributes. Here the shaded disk with the black dot on its circumference represents the full vertex function containing the
current to which the external photon couples.
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vertex or propagator. It can be shown that this process
yields a unique skeleton graph independent of the order in
which this replacement is made, provided that the entire
graph is not itself a self-energy graph, which it is not in
the present HLbL case. In a standard skeleton graph
expansion, the three internal photon propagators may
themselves be part of a proper vertex or self-energy
subgraph and would then not appear in the final skeleton
graph. However, for the HLbL case where each internal
photon line is coupled to the single muon line which
passes through the diagram, the only vertex or self-energy
subgraph which contains one or more internal photon
lines is the entire graph.
We will now show that each of the six internal photon

vertices in this skeleton expansion can be accurately
implemented if the internal photon is coupled to ZV
multiplied by the local lattice current for each of the vertex
subgraphs represented by that vertex in the skeleton graph
expansion. This will be the case if the momentum carried
by each of the three external lines connected to that vertex
is small compared to the regulator scale, which in our case
is the inverse lattice spacing 1=a. It is for such physical-
scale momenta that ZV times the local current and the
conserved lattice current will agree. Thus, we need to show
that all skeleton subgraphs which contain such a complete
internal photon vertex have a negative degree of diver-
gence. Such a convergent character for all graphs in which
each internal photon vertex appears will guarantee that
when the momentum entering that vertex is of order 1=a,
this will correspond to a momentum integration region
which is suppressed by at least two inverse powers of 1=a,
which results in a small Oða2Þ error.
There are two types of skeleton graphs with a non-

negative degree of divergence. The first is the entire HLbL
graph itself, which as a vertex graph has zero degrees of
divergence. However, for the case of the magnetic form
factor F2 being examined here, we are considering a term
which is even under conjugation with γ5. Such a chirality-
changing amplitude will vanish unless an explicit factor of
the muon mass is present, and the presence of such a mass
factor implies that the graph has a degree of divergence −1
or smaller, guaranteeing suppression of the momentum
region when all internal lines carry large momenta.
The other type of subgraph, which is neither a vertex nor

a self-energy subgraph, but which has a potentially non-
negative degree of divergence, contains an internal quark
loop coupled to four gluon or photon lines which are
external lines of that subgraph. In a gauge-invariant
regularization scheme in which these gluons and photons
couple to conserved currents, the corresponding Ward
identities will guarantee that each of these currents is
transverse, which requires that the entire amplitude contain
two or more explicit factors of the momenta carried by
these four external gluons or photons. The presence of
these momentum factors reduces the zero degrees of

divergence of such a graph with four external boson lines,
resulting in a negative degree of divergence. Since each
gluon couples to a conserved current which guarantees
convergence of the subgraph, the only subgraphs at issue
are those with four external photon lines.
Such subgraphs do appear in the HLbL amplitude and

correspond to a quark loop with general internal gluon
couplings, but the only external vertices possessed by that
subgraph are those of the three internal photons and the
external current. Thus, each such subgraph will have zero
degrees of divergence unless we require that one of these
four couplings involve an exactly conserved current. Thus,
our choice that the photon external to the entire HLbL
graph couples to a conserved current guarantees that this is
the case. Under these circumstances an explicit external
momentum factor must be present, and the subgraph must
have a negative degree of divergence. Note that this class of
diagram which can be made convergent by the introduction
of the conserved external current corresponds only to the
connected cHLbL case studied in this paper. Such a
conserved current coupling is not required for any of the
disconnected graphs.
In this discussion we have assumed that the three internal

photons couple to the quark and muon lines through a local
current. We have not been concerned about the short-
distance form of this local current, since this will only affect
the form of the coupling when large momentum flows
through the vertex given by that current. For a noncon-
served local current, this will act only to change the
normalization of the current, an effect which is corrected
by the introduction of the factor of ZV . We can also include
more complex couplings for the internal photons without
changing the final result. For example, if additional
dimension-6, two-quark, three-photon couplings are intro-
duced, the degree of divergence of these subgraphs will be
increased and could become non-negative. Such a dimen-
sion-6 vertex would result in subgraphs with two quark
and three photon external lines with degree of divergence
increased from −2 to 0. However, the factor of a2 that must
accompany such a dimension-6 lattice operator would
ensure that its effects would vanish as a2 in the continuum
limit.

APPENDIX B: CONVENTIONAL
INTERPRETATION OF MOMENT FORMULA

Equation (28) derived in Sec. II D provides a very
effective way to obtain gμ − 2 from a first moment of
the finite-volume cHLbL amplitude evaluated directly at
zero momentum transfer. In this appendix we provide
additional context for this equation by showing its relation
to the conventional formula given in Eq. (29) for the
magnetic moment resulting from a localized static current
distribution. We begin by repeating Eq. (28):
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F2ð0Þ
2mμ

ūð~0; s0Þ~Σuð~0; sÞ ¼ 1

2

X
r;z;xop

~xop × iūð~0; s0Þ

× ~FC
�
r
2
;−

r
2
; z; xop

�
uð~0; sÞ:

ðB1Þ

While this equation is suggestive of the conventional
Eq. (29) for the magnetic moment, there are three signifi-
cant differences: (i) An internal coordinate in the Feynman
amplitude on the right-hand side of Eq. (B1), the variable
w ¼ ðxþ yÞ=2, is fixed at zero when it should be integrated
over space-time in a perturbative evaluation of the matrix
element of the current ~JðxopÞ in Eq. (29); (ii) the time

coordinate of the current, ðxopÞ0 is integrated instead of
being held fixed; and (iii) the factor of 1=V which is
required if the initial and final muon states are to be
properly normalized is missing. As we will see, these three
differences between Eqs. (28) or (B1) and Eq. (29) mutu-
ally compensate.
The first step in this demonstration exploits the sym-

metry of ~FCðr
2
;− r

2
; z; xopÞ under time translation to sub-

tract ðxopÞ0 from each of the four time arguments in
Eq. (B1). This step will result in the external current being
evaluated at t ¼ 0, an easily absorbed shift in the summa-
tion variable z0 and the appearance of two independent
summations over the time arguments of the points x and y,
allowing us to write Eq. (B1) as

F2ð0Þ
2mμ

ūð~0; s0Þ~Σuð~0; sÞ ¼ 1

2

X
~r;x0 ;y0
z;~xop

~xop × iūð~0; s0Þ ~FC
��

x0;
~r
2

�
;

�
y0;−

~r
2

�
; z; ð0; ~xopÞ

�
uð~0; sÞ; ðB2Þ

where we have written the previous x and y vertices as the four-vectors ðx0; ~r2Þ and ðy0;− ~r
2
Þ, respectively, and absorbed the

ðxopÞ0 shift into the summation variable z.

Next, we turn to the conventional formula, adapted to our quantum mechanical circumstances:

hψ 0jψið~μÞs0;s ¼
1

2

X
~xop

~xop ×

�X
~p0 ~p

~ψ 0ð~p0Þ�hμð~p0; s0Þj~Jð0; ~xopÞjμð~p; sÞi ~ψð~pÞ
�
; ðB3Þ

where ~ψ 0ð~p0Þ and ~ψð~pÞ are momentum-space wave functions that describe initial and final muon states which are localized
at the origin, which itself is chosen to be far from the walls of the large, finite volume in which the calculation is being
performed. (The wave functions ~ψ 0ð~p0Þ and ~ψð~pÞ are normalized to 1=V to compensate for the states jμð~p0; s0Þi and
jμð~p; sÞi being un-normalized plane waves.) A non-relativistic form has been assumed for the expression on the left-hand
side. Finally, we can recover Eq. (B2) from Eq. (B3) if we replace the matrix element between momentum eigenstates with

the Feynman amplitude iūð~p0; s0Þ ~FCðx; y; z; xopÞuð~p; sÞ that appears in Eq. (B2):

hψ 0jψið~μÞs0;s ¼ −
e
2

X
~xop

~xop ×

�X
~p0 ~p

~ψ 0ð~p0Þ�
X
~w

iūð~p0; s0Þ ~FCð~w; ð0; ~xopÞÞuð~p; sÞ ~ψð~pÞ
�
; ðB4Þ

where for clarity we display only the internal vector ~w ¼ ð~xþ ~yÞ=2 in addition to xop. We can use the translational
covariance ofF to extract the variable ~w, rename the shifted variable ~xop − ~w to simply ~xop, and invoke current conservation
to drop the added ~w that will appear in the left-hand factor of ~xop when this renaming is done. We obtain

hψ 0jψið~μÞs0;s ¼ −
e
2

X
~xop

~xop ×

�X
~p0 ~p

~ψ 0ð~p0Þ�
X
~w

ei~w·ð~p−~p0Þiūð~p0; s0Þ ~FCð~0; ð0; ~xopÞÞuð~p; sÞ ~ψð~pÞ
�
: ðB5Þ

If we assume that ~p and ~p0 are both small on the scale over which ūð~p0; s0Þ ~FCuð~p; sÞ varies, this equation reduces to
Eq. (B2), since the factor

X
~p;~p0; ~w

~ψ 0ð~p0Þ�ei~w·ð~p−~p0Þ ~ψð~pÞ ¼ hψ 0jψi; ðB6Þ

which can now be recognized on the right-hand side, cancels that on the left.
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APPENDIX C: CONVENTIONS

We adopt the following gamma matrix convention:

σx ¼
�
0 1

1 0

�
σy ¼

�
0 −i
i 0

�
σz ¼

�
1 0

0 −1

�
; ðC1Þ

γ0 ¼
�
0 1

1 0

�
; γ1 ¼ −i

�
0 σx

−σx 0

�
; γ2 ¼ −i

�
0 σy

−σy 0

�
;

γ3 ¼ −i
�

0 σz

−σz 0

�
; γ5 ¼

�
1 0

0 −1

�
¼ γ1γ2γ3γ0: ðC2Þ

The continuum fermion propagator is

Sðx; yÞ ¼
Z

d4p
ð2πÞ4

1

ipþm
eip·ðx−yÞ: ðC3Þ

The two Dirac positive-energy, zero-momentum eigenstates are

uð~p ¼ ~0; sÞ ¼ 1ffiffiffi
2

p
�
χs

χs

�
; ūð~p ¼ ~0; sÞ ¼ 1ffiffiffi

2
p ð χ†s χ†s Þ; ðC4Þ

where

χ0 ¼
�
1

0

�
; χ1 ¼

�
0

1

�
: ðC5Þ
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