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Lattice QCD studies on fluctuations and correlations of charm quantum number have established that
deconfinement of charm degrees of freedom sets in around the chiral crossover temperature, Tc; i.e., charm
degrees of freedom carrying fractional baryonic charge start to appear. By reexamining those same lattice
QCD data we show that, in addition to the contributions from quarklike excitations, the partial pressure of
charm degrees of freedom may still contain significant contributions from open-charm-meson- and
baryonlike excitations associated with integral baryonic charges for temperatures up to 1.2Tc. Charm-quark
quasiparticles become the dominant degrees of freedom for temperatures T > 1.2Tc.
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Nuclear modification factor and elliptic flow of open-
charm hadrons in heavy-ion collision experiments are
important observables that provide us with detailed knowl-
edge of the strongly coupled quark gluon plasma (QGP)
[1]. Most of the theoretical models that try to describe these
quantities rely on the energy loss of heavy quarks via
Langevin dynamics [2–4]. However, the importance of
possible heavy-light (strange) bound states inside the QGP
has been pointed out in Refs. [5–8]. In particular, the
presence of such heavy-light bound states above the QCD
transition temperature seems to be necessary for the
simultaneous description of elliptic flow and nuclear
modification factor of Ds mesons [5]. The presence of
various hadronic bound states [9] as well as colored ones
[10,11] in strongly coupled QGP created in heavy-ion
collisions has also been speculated in other contexts.
By utilizing various novel combinations of up-to-fourth-

order cumulants of fluctuations of charm quantum number
(C) and its correlations with baryon number (B), electric
charge, and strangeness (S), lattice QCD studies [12] have
established that charm degrees of freedom associated with
fractional baryonic and electric charge start appearing at the
chiral crossover temperature, Tc ¼ 154� 9 MeV [13–15].
Below Tc the charm degrees of freedom are well described
by an uncorrelated gas of charm hadrons having vacuum
masses [12], i.e., by the hadron resonance gas (HRG)
model. Similar conclusions were also obtained from lattice
QCD studies involving the light up, down and strange
quarks [16,17].
On the other hand, lattice QCD calculations have also

shown that weakly interacting quasiquarks are good
descriptions for the light quark degrees only for temper-
atures T ≳ 2Tc [16,18–20]. The situation for the heavier
charm quarks is also analogous. By reexpressing the lattice
QCD results for charm fluctuations and correlations up to
fourth order from Ref. [12] in the charm- (c) and up- (u)
quark flavor basis, we show the u-c flavor correlations,
defined as χucmn ¼ ð∂mþnp=∂μ̂mu ∂μ̂ncÞ at μu ¼ μc ¼ 0, in
Fig. 1. Here, p denotes the total pressure in QCD and

μu and μc indicate the up- and charm-quark chemical
potentials with μ̂X ≡ μX=T. In order to compare these
lattice QCD data with resummed perturbation theory
results, which are available only for zero quark masses,
we normalize the off-diagonal flavor susceptibilities
with the second-order charm-quark susceptibility χc2 ¼
ð∂2p=∂μ̂2cÞ calculated at μX ¼ μc ¼ 0. Such a normaliza-
tion largely cancels the explicit charm-quark mass depend-
ence of the off-diagonal susceptibilities and enables us to
probe whether the u-c flavor correlations can be described
by the weak coupling calculations. In the weak coupling
limit χuc11, χ

uc
13, and χuc31 are expected to have leading-order

contributions at Oðα3sÞ [21], where αs is the QCD strong
coupling constant. This contribution is, strictly speaking,
nonperturbative, but can be calculated on the lattice using
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FIG. 1. Off-diagonal quark number susceptibilities χucnm nor-
malized by the second-order diagonal charm susceptibility χc2 as a
function of temperature [12]. The shaded band shows the three-
loop hard-thermal-loop perturbation theory calculation for
χ22=χ2; the width of the band corresponds to a variation of the
renormalization scale from πT to 4πT [23]. Also shown, as
dashed lines, are the results of dimensionally reduced electro-
static QCD (EQCD) calculations for χ11 corresponding to
temperatures 1.32Tc and 2.30Tc from [22].
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dimensionally reduced effective theory for high-temperature
QCD, the so-called EQCD [22]. Similarly, in the weak
coupling picture, the leading contribution to χuc22 arises from

the so-called plasmon term and starts at Oðα3=2s Þ [23]. Thus,
it is generically expected that χuc22 ≫ χuc13 ∼ χuc31 ∼ χuc11 in the
weak coupling limit. As shown in Fig. 1, such an obvious
hierarchy in magnitude of the off-diagonal susceptibilities is
clearly absent in the lattice data for T < 200 MeV. However,
for T ≳ 200 MeV these lattice results are largely consistent
with the weak coupling calculations, indicating that the
weakly coupled quasiquarks can be considered as the
dominant charm degrees of freedom only above this temper-
ature. The fact that for Tc ≲ T ≲ 200 MeV the charm
degrees of freedom are far from weakly interacting quasi-
quarks is also supported by lattice QCD studies of the
screening properties of the open-charm mesons. In this
temperature range the screening masses of open-charm
mesons also turn out to be quite different from the expect-
ation based on an uncorrelated charm and a light quark
degrees of freedom [24].
From the preceding discussion it is clear that the weakly

interacting charm quasiquarks cannot be the only carriers of
charm quantum number for T ≤ 200 MeV. Such an obser-
vation naturally raises the question of whether charm
excitations associated with baryon number zero and one
exist in the QGP for Tc ≲ T ≲ 200, along with the charm
quasiquark excitations carrying 1=3 baryonic charge. In the
present work, we address this question by postulating that
such open-charm-meson- and baryonlike excitations exist
alongside the charm quasiquarks in the QGP; we then
investigate whether such an assumption is compatible with
the exact lattice QCD results on charm fluctuations and
correlations.
Fluctuations of charm quantum number and its correla-

tion with other conserved quantum numbers can be
measured on the lattice through the generalized charm
susceptibilities

χXYCijk ¼ ∂iþjþkpðT; μX; μY; μCÞ
∂μ̂iX∂μ̂jY∂μ̂kC

����
μX¼μY¼μC¼0

; ð1Þ

where μ̂X ¼ μX=T. For notational brevity we will suppress
the superscripts of χ whenever the corresponding subscript
is zero. To check our postulates against the lattice QCD
results, we will use throughout this study the lattice QCD
data of Ref. [12] on up-to-fourth-order generalized charm
susceptibilities, i.e., for iþ jþ k ≤ 4.
To avoid the introduction of unknown tunable param-

eters we simply postulate an uncorrelated, i.e., noninter-
acting, gas of charm-meson-, baryon-, and quarklike
excitations for T ≳ Tc. Owing to the large mass of the
charm quark itself, compared to T ∼ 2Tc, it is safe to treat
all the quark-, meson-, and baryonlike excitations as
classical quasiparticles, i.e., within the Boltzmann approx-
imations. Furthermore, as discussed in Ref. [12], the

doubly and triply charmed baryons are too heavy to have
any significant contributions to QCD thermodynamics in
the temperature range of interest and we thus neglect their
contributions. With these simplifications the partial pres-
sure of the open-charm sector, pC, can be written as

pCðT; μC; μBÞ
¼ pC

q ðTÞ cosh ðμ̂C þ μ̂B=3Þ
þ pC

BðTÞ cosh ðμ̂C þ μ̂BÞ þ pC
MðTÞ coshðμ̂CÞ; ð2Þ

where pC
q , pC

B, and pC
M denote the partial pressure of the

quarklike, mesonlike, and baryonlike excitations, respec-
tively, and μB and μC ¼ μc represents the baryon and
charm chemical potentials.
Using combinations of up-to-fourth-order baryon-charm

susceptibilities, it is easy to isolate the partial pressures
of pC

q , pC
M, and pC

B appearing in Eq. (2). For example,
pC
q ¼ 9ðχBC13 − χBC22 Þ=2, pC

B ¼ ð3χBC22 − χBC13 Þ=2, and pC
M ¼

χC2 þ 3χBC22 − 4χBC13 . The contributions of these partial pres-
sures compared to total charm pressure pCðT; 0; 0Þ ¼ χC2 is
shown in Fig. 2 (top). For T ≲ Tc the partial pressure of
mesons, pC

M, and the partial pressure of baryons, pC
B, agree

with the corresponding partial pressures from the HRG
model including all the experimentally observed as well as

FIG. 2. (Top) Fractional contributions of partial pressures of
charm quarklike (pC

q ), mesonlike (pC
M), and baryonlike (pC

B)
excitations to the total charm partial pressure (pC). (Bottom)
Fractional contributions of partial pressures of charm-strange
mesonlike (pC;S¼1

M ), charm-singly-strange baryonlike (pC;S¼1
B ),

and charm-doubly-strange baryonlike (pC;S¼2
B ) excitations to the

total charm partial pressure (pC). The solid lines show the corre-
sponding partial pressures obtained from the HRGmodel including
additional quark-model-predicted charm hadrons (see text).
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additional quark-model-predicted, but yet unobserved,
open-charm hadrons with vacuum masses [12]. The con-
tributions of pC

M and pC
B remain significant until

T ≲ 200 MeV. In fact, for T ≲ 180 MeV the combined
contributions of pC

M and pC
B exceeds the contribution

from pC
q . With increasing temperatures pC

M and pC
B deviate

from the HRG model predictions. This indicate that these
charm-meson- and baryonlike excitations can no longer be
considered as vacuum charm mesons and baryons. This is
in line with the lattice QCD studies on spatial correlation
functions of open-charm mesons [24], which show sig-
nificant in-medium modifications of open-charm mesons
already in the vicinity of Tc. The partial pressure of
quarklike excitations is quite small for T ∼ Tc and becomes
the dominant contribution to pC only for T > 200 MeV.
Since a charm-quark-like excitation does not carry a

strangeness quantum number, the excitations carrying both
strangeness and charm quantum numbers are a much
cleaner probe of the postulated existence of the charm-
hadron-like excitations. In this subsector, the pressure can
be partitioned into partial pressures of jCj ¼ 1 mesonlike
excitations carrying strangeness jSj ¼ 1 and C ¼ 1 baryon-
like excitations with jSj ¼ 1, 2, i.e.,

pC;SðT; μB; μS; μCÞ
¼ pC;S¼1

M ðTÞ cosh ðμ̂S þ μ̂CÞ

þ
X2

j¼1

pC;S¼j
B ðTÞ cosh ðμB − jμS þ μCÞ: ð3Þ

Thus, the partial pressures of the strange-charm hadronlike
excitations can be obtained as pC;S¼1

M ¼χSC13 −χBSC112 , p
C;S¼1
B ¼

χSC13 −χSC22 −3χBSC112 , and pC;S¼2
B ¼ð2χBSC112 þχSC22 −χSC13 Þ=2. In

Fig. 2 (bottom) we show the fractional contributions of
these partial pressures towards the total charm partial
pressure pCðTÞ ¼ χC2 . Even in this subsector, contributions
from the hadronlike excitations are significant for
T ≲ 200 MeV. However, partial pressure for the S ¼ 2
charm-baryon-like excitations is negligible.
Having shown that there can be significant contributions

from charm-meson- and baryonlike excitations to the
charm partial pressure in the QGP, it is important to ask
whether the addition of only these charm degrees of
freedom, besides the charm-quark-like excitations, is suf-
ficient to describe all available lattice QCD results for up-
to-fourth-order charm susceptibilities. As discussed pre-
viously in Ref. [12], the constraints χC4 ¼ χC2 , χ

BC
11 ¼ χBC13 ,

χSC11 ¼ χSC13 are due to negligible contributions from jCj ¼ 2,
3 hadronlike states and they do not provide any indepen-
dent constraint specific to our proposed model. The
remaining four independent fourth-order generalized charm
susceptibilities, χC2 , χ

BC
13 , χ

BC
22 , and χBC31 , allow us to define

the three partial pressures, pC
q , pC

M, and pC
B, and one

constraint

c1 ≡ χBC13 − 4χBC22 þ 3χBC31 ¼ 0 ð4Þ

that has to hold if the model is correct. If we consider the
strange-charm subsector, we have six generalized suscep-
tibilities, χSC13 , χ

SC
22 , χ

SC
31 , χ

BSC
112 , χ

BSC
121 , and χBSC211 . We can use

three of these to estimate the partial pressures pC;S¼1
M ,

pC;S¼1
B , and pC;S¼2

B defined above, while the remaining ones
will provide three additional constraints that can be used to
validate our proposed model. These constraints can be
written as

c2 ≡ 2χBSC121 þ 4χBSC112 þ χSC22 − 2χSC13 þ χSC31 ¼ 0; ð5aÞ

c3 ≡ 3χBSC112 þ 3χBSC121 − χSC13 þ χSC31 ¼ 0; ð5bÞ
c4 ≡ χBSC211 − χBSC112 ¼ 0: ð5cÞ

Note that the above constraints hold trivially for a free
charm-quark gas. It is assuring that our proposed model
also smoothly connects to the HRG at Tc. In Fig. 3 we show
the lattice QCD data for ci’s. Despite large errors on the
presently available lattice data, all the ci’s are, in fact,
consistent with zero. Note that, since a possible strange-
charm diquarklike excitation will carry jCj ¼ jSj ¼ 1 but
jBj ¼ 2=3, the QCD data being consistent with the con-
straint c4 ¼ 0 actually tells us that the thermodynamic
contributions of possible diquarklike excitations are neg-
ligible in the deconfined phase of QCD.
One may speculate on the nature of these charm-hadron-

like excitations and, in particular, why their partial pres-
sures vanish gradually with increasing temperature. A
likely explanation may be that with increasing temperature
the spectral functions of these excitations gradually
broaden. A detailed treatment of thermodynamics of
quasiparticles with finite width was developed in
Refs. [25–27]. It was shown that broad asymmetric spectral
functions lead to partial pressures that are considerably
smaller than those obtained with zero-width quasiparticles
of the same mass, and for sufficiently large width the partial
pressures can be made arbitrarily small. Thus, the smallness

FIG. 3. Lattice QCD results for four constraints (ci) normalized
by the total charm pressure (see text).
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of the partial pressure of charm-quark-like excitations for
T ∼ Tc may imply that they have a large width for those
temperatures, while the widths of the charm-hadron-like
excitations increase with the temperatures; these excitations
become very broad for T ≳ 200 MeV. Such a gradual
melting picture is also consistent with the gradual changes
of the screening correlators of open-charm-meson-like
excitations with increasing temperature [24].
Finally, one may wonder whether the rich structure of the

up-to-fourth-order generalized charm susceptibilities can
be described only in terms of the charm quasiquarks
without invoking presence of any other type of charm
degrees of freedom. In terms of charm quasiquarks
alone, the charm partial pressure will be pC=T4 ¼ 6=
π2m̂2

cK2ðm̂cÞ coshðμ̂C þ μ̂B=3Þ, where m̂c ¼ mc=T with
mc being the mass of the charm quasiparticle. The lattice
QCD results for the charm susceptibilities, for example, the
nonvanishing values of χSCmn, can only be described if the
charm-quasiquark mass depends of the chemical potentials
of all the quark flavors, i.e., mc ≡mcðT; μB; μS; μCÞ. For
simplicity, one may imagine Taylor expanding mc in terms
of the chemical potentials and treating these coefficients as
parameters for fitting all the lattice QCD results on the
generalized charm susceptibilities. Obviously, such a qua-
siquark model will contain at least as many tunable
parameters as the number of susceptibilities. Moreover,
in order to satisfy various other constraints observed in the
lattice QCD data, such as χC4 ¼ χC2 , χBC11 ¼ χBC13 , these
parameters must also be very finely tuned. For example,
in order to satisfy the constraint c4 ¼ 0, the coefficients of
the Oðμ2BμSμCÞ term of mc must be equal to coefficient of
theOðμBμSμ2CÞ term. Even if one chooses to use such finely
tuned parameters for the chemical potential dependence of

the quasiquark mass, the charm partial pressure is not
guaranteed to go smoothly over to the HRG values, as
observed in the lattice data.
To conclude, using the lattice QCD results for up-to-

fourth-order generalized charm susceptibilities [12] we
have shown that the weakly coupled charm quasiquarks
become the dominant charm degrees of freedom only above
T ≳ 200 MeV. To investigate the nature of charm degrees
of freedom in the intermediate temperature regime,
Tc ≲ T ≲ 200 MeV, we postulated the presence of non-
interacting charm-meson- and baryonlike excitations in the
QGP, along with the charm-quark-like excitations. We have
shown that such a picture is consistent with the presently
available lattice QCD results. We have isolated the indi-
vidual partial pressures of these excitations and found that
just above Tc open-charm-meson- and baryonlike excita-
tions provide the dominant contribution to the thermody-
namics of charm sector. We also do not observe presence of
diquarklike excitations in the s-c sector at these temper-
atures. Our study hints at possible resonant scattering of the
heavy quarks in the medium until around 1.2Tc, as first
advocated in Ref. [28]. These findings may have important
consequences for the heavy-quark phenomenology of
heavy-ion collision experiments, especially in understand-
ing the experimentally observed elliptic flow and nuclear
modification factor of heavy flavors at small and moderate
values of transverse momenta [5–8,28,29].
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