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On lattice gauge field configurations with 2þ 1 dynamical quark flavors, we investigate the momentum
space quark and gluon propagators in the combined maximally Abelian plusUð1Þ3 × Uð1Þ8 Landau gauge.
We extract the gluon fields from the lattice link variables and study the diagonal and off-diagonal gluon
propagators. We find that the infrared region of the transverse diagonal gluon propagator is strongly
enhanced compared to the off-diagonal propagator. The Dirac operator from the Asqtad action is inverted
on the diagonal and off-diagonal gluon backgrounds separately. In agreement with the hypothesis of
infrared Abelian dominance, we find that the off-diagonal gluon background hardly gives rise to any
nontrivial quark dynamics while the quark propagator from the diagonal gluon background closely
resembles its Landau gauge counterpart.
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I. INTRODUCTION

Despite the long-standing acceptance of QCD as the
correct theory to describe the strong interactions of quarks
and gluons, a basic understanding of its main characteristic
features, the dynamical breaking of the chiral symmetry
and confinement, is still lacking. Several scenarios for the
underlying mechanism of confinement have been sug-
gested over the decades. Under the most popular ones
are the Kugo-Ojima [1] and the Gribov-Zwanziger scenar-
ios [2,3], as well as the dual superconductor picture [4–6].
Some common aspects of the different confinement criteria
have been investigated in Refs. [7–11].
The dual superconductor picture of confinement is

especially appealing since it offers a rather intuitive
approach to confinement. Type II superconductors in their
superconducting phase are known to repel external mag-
netic fields below a critical value of the external field
strength. If the magnetic field exceeds that value, tubes of
magnetic flux (Abrikosov vortices) begin to penetrate the
superconductor. The flux tubes are encircled by Cooper
pairs which squeeze the latter. Identifying the penetrating
magnetic flux tubes with the color electric field of the
Yang-Mills vacuum, and moreover the condensed electric
monopoles (Cooper pairs) with color magnetic monopoles,
one finds a dual picture where hypothetical magnetic
monopoles at the beginning and end of the Abrikosov
vortices correspond to the confined quarks of QCD.
Therefore, it is suggested that confinement is due to the
condensation of color magnetic monopoles which squeeze

the color electric flux tube between quarks and antiquarks.
The dual superconductor picture has a far-reaching con-
sequence: the Abelian parts of the gauge fields should
dominate the nonperturbative IR dynamics [12].
While confinement is the reason why individual quarks

and gluons have never been observed in experiment, the
theory still allows one to investigate correlation functions
of single quark and gluon entities: the QCD Green’s
functions. QCD is a gauge theory, and therefore the gauge
has to be fixed in order to study the fundamental two-point
functions. The maximally Abelian gauge, as the name
suggests, rotates the gauge fields such that the diagonal,
i.e., Abelian parts of the gauge fields, are enhanced over the
off-diagonal parts. This renders the maximally Abelian
gauge particularly suitable to study IR Abelian dominance.
Lattice QCD provides an approximation to the con-

tinuum formulation with a finite number of degrees of
freedom which allows one to perform numerical simula-
tions. Various attempts of investigating the dual super-
conductor picture in lattice QCD have been carried out; see,
e.g., Refs. [13,14]. IR Abelian dominance has been
demonstrated in lattice gauge field theory in SU(2)
[15–17] and more recently in SU(3) [18,19] by studying
the infrared behavior of the gluon propagator in the
maximally Abelian gauge. In the recent study [20] almost
perfect Abelian dominance of the string tension on large
physical volumes in quenched SU(3) has been found.
Additionally, IR Abelian dominance has been found in
an alternative lattice formulation [21] which does not rely
on the maximally Abelian gauge. Complementary to the
lattice approach several continuum investigations of
Abelian dominance were performed. In Ref. [22] the
authors showed that the off-diagonal gluon and ghost
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contributions become massive, a necessary condition for
the effective model described in Ref. [23]. Furthermore,
Abelian dominance has been analyzed perturbatively
[24,25] and in Dyson-Schwinger and renormalization
group equation studies [26–28].
It is interesting to study the influence of Abelian

dominance on chiral symmetry breaking and the hadron
spectrum; in Ref. [29] it has been found that SU(2) Abelian
projected fields give a chiral condensate which closely
resembles the results of strongly coupled gauge theory. In
Ref. [30] quenched hadron spectra in Abelian gauge fields,
extracted by maximal Abelian projection, have been
studied; the ratios of the hadron mass to the square root
of the string tension of the Abelian fields are similar to
those of the full SU(3) theory. The authors concluded that
they have found Abelian dominance (and monopole domi-
nance) for the hadron spectra.
In the current paper we advance previous investigations

of the gluon propagator in the maximally Abelian gauge
from pure Yang-Mills theory [18,19] to full dynamical
QCD by adopting Nf ¼ 2þ 1 gauge field configurations.
Furthermore, we analyze for the first time the maximally
Abelian gauge quark propagator. In order to obtain insights
in the dependence of chiral symmetry breaking and the
dynamic mass generation of quarks on the type of gluon
background, we invert the Dirac matrix separately on the
diagonal and off-diagonal gluon fields.
The remainder of this work is structured as follows. In

Sec. II we introduce the maximally Abelian gauge and
discuss some aspects of its implementation on the lattice.
After reviewing the methods to extract the QCD Green’s
functions on the lattice in Sec. III, we list details of our
lattice setup in Sec. IV and present our results.

II. MAXIMALLY ABELIAN GAUGE
ON THE LATTICE

The continuum gauge fields are given by

AμðxÞ ¼
1

2

X8
i¼1

λiA
ðiÞ
μ ðxÞ; ð1Þ

where the λi are the Gell-Mann matrices and AðiÞ
μ ðxÞ are

real. On the lattice, the latter translate to the lattice link
variables UμðxÞ ∈ SUð3Þ. The continuum and lattice fields
are related via

UμðxÞ ¼ eiag0AμðxÞ ð2Þ
with a being the lattice spacing and g0 the bare coupling
constant. A gauge transformation in the language of lattice
QCD reads

UμðxÞ → gðxÞUμðxÞgðxþ μ̂Þ† ð3Þ
with local gauge transformations gðxÞ ∈ SUð3Þ.

The maximally Abelian gauge (MAG) aims at minimiz-

ing the off-diagonal part of the gauge fields, i.e., AðiÞ
μ ðxÞ

with i ≠ 3; 8. This is equivalent to maximizing the follow-
ing functional of the link variables,

Fg
MAG3½U� ¼

X
x;μ

tr½λ3UμðxÞλ3UμðxÞ†� ð4Þ

þ tr½λ8UμðxÞλ8UμðxÞ†�; ð5Þ

where λ3 and λ8 build the Cartan subalgebra of SU(3). Once
the functional Eq. (4) resides in a local maximum, the
gauge condition

θ ¼ 1

VNd

X
x;j

�X
μ

uðjÞμ ðxÞσ3uðjÞμ ðxÞ† ð6Þ

þ uðjÞμ ðx − μ̂Þ†σ3uðjÞμ ðx − μ̂Þ
�

2

ð7Þ

becomes small. Here Nd is the number of Euclidean
spacetime indices, V the number of lattice sites, and the

uðjÞμ ðxÞ, j ¼ 1, 2, 3 are the SU(2) subgroup elements of the
link variables UμðxÞ.1 In practice we reach a gauge
precision of θ < 10−13. More details of the implementation
can be found in Refs. [31,32].
Once a maximum of Eq. (4) has been reached, the

diagonal gluon fields, AðiÞ
μ ðxÞ with i ¼ 3, 8, are favored

over the off-diagonal gluons. In Fig. 1 we show the

distribution of the gluon fields AðiÞ
μ ðxÞ from a single lattice

gauge field configuration. While in the Landau gauge none
of the gauge fields is favored and thus their distributions lie
on top of each other, the distribution of the MAG fields
shows a clear shift of the diagonal fields toward larger
values and correspondingly a shift toward smaller values
for the off-diagonal parts.
The MAG functional Eq. (4) is invariant under gauge

transformations of the form

gdðxÞ ¼ exp ðiωð3Þλ3 þ iωð8Þλ8Þ; ð8Þ

and therefore the MAG is an incomplete gauge condition; it
leaves a remaining Uð1Þ3 ×Uð1Þ8 gauge freedom. The
latter we remove by enforcing thatUμðxÞ fulfills in addition
to the MAG the Landau gauge condition

Fg
Landau½U� ¼ Re

X
μ;x

tr½gðxÞUμðxÞgðxþ μ̂Þ†�→! max; ð9Þ

1Two SU(2) matrices overlap on the diagonal ofUμðxÞ, and the
third one consists of the corners of UμðxÞ.
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with respect to diagonal gauge transformations gðxÞ ¼
gdðxÞ.
Lastly, in order to study the diagonal and off-diagonal

parts of the gluon fields separately, we extract the fields
AμðxÞ from the link variables Eq. (2) via the first order
approximation

AμðxÞ ¼
1

2iag0
ðUμðxÞ − UμðxÞ†Þjtraceless: ð10Þ

Note that we do not make use of the “exact” logarithmic
definition of the lattice gluon fields in order to stay
consistent with the definition of the gluon fields in the
Landau gauge condition [31].2

III. QCD PROPAGATORS

A. Gluon propagator

In Landau gauge the gluon propagator in momentum
space is transverse and diagonal in color space,

Dμνðk2Þ ¼
1

8

X8
i¼1

hAðiÞ
μ ðkÞAðiÞ

ν ð−kÞi ð11Þ

¼
�
δμν −

kμkν
p2

�
Dðk2Þ; ð12Þ

where AðiÞ
μ ðkÞ are the Fourier transformed gauge fields

extracted from the links by Eq. (10). Appropriate for the
Symanzik-improved Lüscher-Weisz gauge action [34], we
define the momentum variable as

kμ ¼
2

a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sin2

�
pμa

2

�
þ 1

3
sin4

�
pμa

2

�s
; ð13Þ

where

pμ ¼
2πnμ
aLμ

ð14Þ

are the discrete lattice momenta. The transversality of the
momentum space propagator is a direct consequence of the
Landau gauge condition ∂μAμðxÞ ¼ 0.
For the MAG case we split the propagator in a diagonal,

Ddiag
μν ðk2Þ ¼ 1

2

X
i¼3;8

hAðiÞ
μ ðkÞAðiÞ

ν ð−kÞi; ð15Þ

and an off-diagonal part,

Doff
μν ðk2Þ ¼

1

6

X
i≠3;8

hAðiÞ
μ ðkÞAðiÞ

ν ð−kÞi: ð16Þ

Due to the residual Uð1Þ3 ×Uð1Þ8 Landau gauge fixing,
the diagonal propagator is transverse, whereas the off-
diagonal propagator has a longitudinal and a transverse
component,

Doff
μν ðk2Þ ¼

�
δμν −

kμkν
k2

�
Doff

T ðk2Þ þ kμkν
k2

Doff
L ðk2Þ: ð17Þ

B. Quark propagator

In manifestly covariant gauges, the interacting quark
propagator Sðμ;p2Þ, renormalized at the renormalization
point μ, can be decomposed into Dirac scalar and vector
parts,

Sðμ;p2Þ ¼ ðipAðμ;p2Þ þ Bðμ;p2ÞÞ−1 ð18Þ

or equivalently as

Sðμ;p2Þ ¼ Zðμ;p2ÞðipþMðp2ÞÞ−1: ð19Þ

In the last equation the wave-function renormalization
function Zðμ;p2Þ ¼ 1=Aðμ;p2Þ carries all the information
about the renormalization scale, and the mass function
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FIG. 1. The relative frequency of the gluon field components

AðiÞ
μ ðxÞ (in lattice units) from a single gauge field configuration in

the Landau gauge and the MAG. In the Landau gauge the eight
field components follow the same normal distribution, while in
the MAG a trend of the off-diagonal components (MAG-off)
toward smaller values compared to the diagonal components
(MAG-diag) is manifest.

2We performed some checks using the logarithmic definition:
the qualitative behavior of the gluon propagator is the same,
as it was also found in Ref. [33]. The main difference here
is, as expected, that the diagonal part of the longitudinal
gluon propagator from the logarithmic definition does not
vanish.
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Mðp2Þ ¼ Bðμ;p2Þ=Aðμ;p2Þ is a renormalization group
invariant.
The lattice regularized quark propagator SLðp2; aÞ,

which depends on the lattice spacing a, can then be
renormalized at renormalization scale μ with the momen-
tum independent quark wave-function renormalization
constant Z2ðμ; aÞ,

SLðp2; aÞ ¼ Z2ðμ; aÞSðμ;p2Þ: ð20Þ

The momentum subtraction scheme has the renormaliza-
tion point boundary conditions Zðμ; μ2Þ ¼ 1 and Mðμ2Þ ¼
mðμÞ where mðμÞ is the running mass.
The nonperturbative functions Mðp2Þ and Zðp2Þ≡

Z2ðμ; aÞZðμ;p2Þ can be extracted directly from the lattice.
To this end we invert the Asqtad fermion matrix [35] in
order to obtain the quark propagator which we sub-
sequently Fourier transform to momentum space. Taking
basic Clifford algebra properties into account we can
extract the dressing functions. For details we refer to
Refs. [36,37]. Note that the lattice dressing functions will
be functions of the lattice quark momenta [which differ
from the gluon momenta (13)], and for the Asqtad action
these are defined by

kμ ¼ sinðpμÞ
�
1þ 1

6
sin2ðpμÞ

�
: ð21Þ

We perform a cylinder cut [38] on all our data and average
over the discrete rotational and parity symmetries of
SLðp2; aÞ to increase statistics.

IV. RESULTS

A. Gauge configurations

For our simulation we adopted two sets of gauge field
configurations generated by the MILC Collaboration
[39–42]: a “coarse” set of size 203 × 64 with lattice
spacing a ¼ 0.12 fm, which consists of five dynamical
plus a quenched ensemble, and furthermore a “fine” set
consisting of a single ensemble of size 403 × 96 with
lattice spacing a ¼ 0.09 fm. The configurations were
generated with the Symanzik-improved Lüscher-Weisz
gauge action [43] and have been made available to the
lattice community via the gauge connection [44]. Both sets
include two light degenerate (l) and one heavier quark
flavors (s) (except the quenched ensemble), implemented
with the Asqtad improved action [35]. The parameters of
the lattices are summarized in Table I; for the reported
lattice scales and quark masses we refer to the original
work [39–42].

B. Gluon propagator

The gluon propagator in the maximally Abelian gauge
has already been studied both in SU(2) [15,16] and SU(3)
[18,19] for pure Yang-Mills theory. Here we extend those
studies to full QCD with 2þ 1 flavors of dynamical
quarks. In Fig. 2 we show the propagators of the coarse
ensemble for the different quark masses including the
quenched data set. In addition to the three MAG propa-
gators (diagonal transverse, off-diagonal longitudinal, and
off-diagonal transverse), we include the Landau gauge
propagator for comparison. The Landau gauge propagator
has been studied on the same data set in Ref. [45].
Following their setup we use the same renormalization
condition

Dðk2 ¼ μ2Þ ¼ 1

μ2
ð22Þ

at μ ¼ 4 GeV. In the IR we find suppression of the
propagator with dynamical quarks due to screening effects.
Compared to the Landau gauge, this effect is more
pronounced in the maximally Abelian gauge.
Decreasing the quark mass leads to a further suppression
in the IR; however, the dependence on the quark mass
is small.
In Fig. 3 we present the gluon form factors of the fine

ensemble. It is very important to note that in both Figs. 2
and 3, it is obvious that the diagonal parts of the MAG
gluon propagator are pronounced as compared to the
Landau gauge counterparts, and, respectively, the off-

TABLE I. Overview of the gauge field parameters: the lattice
size N3

s × Nt, lattice spacing a, dynamical quark masses ml and
ms (∞ indicating quenched gauge fields), and the number of
configurations that enter our analysis.

N3
s × Nt a (fm) ml (MeV) ms (MeV) # configs.

11.5 976
16.4 573

203 × 64 0.12 32.9 82.2 391
49.3 432
65.8 350
∞ ∞ 408

403 × 96 0.09 6.8 68.0 187

TABLE II. Results of a fit of the maximally Abelian gluon
propagators to (23).

m (GeV) ν Z χ2=n:d:f:

Doff
T 1.47(2) 1.18(2) 14.9(6) 0.9

Doff
L 1.66(3) 1.77(4) 36.2(36) 1.0

Ddiag 0.78(1) 1.85(1) 181.6(54) 1.7
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diagonal parts are suppressed. This extends previous
findings of IR Abelian dominance from pure Yang-Mills
theory to full QCD.
Our findings for the fine ensemble in Fig. 3 are in very

good agreement with the SU(2) results of Ref. [16]

considering the fact that we study the SU(3) propagator
and included dynamical quarks. There the authors found a
wide maximum of the dressing function k2Doff

L ðk2Þ at
around 2 GeV and a sharp peak of k2Ddiagðk2Þ around
0.7 GeV. To compare our results with the quenched SU(3)
results of Ref. [19] we applied a fit to our data with their
function

Dðk2Þ ¼ Z
ðk2 þm2Þν ð23Þ

in the same momentum regime k < 3 GeV. Qualitatively,
our results in Table II compare well to the quenched results
from Ref. [19].

C. Quark propagator

We obtain the quark propagator in the standard way by
inverting the (Asqtad) Dirac operator for a point source on a
gauge field background. This is performed in Landau gauge
and in the maximally Abelian gauge with Uð1Þ3 ×Uð1Þ8
Landau residual gauge fixing. Additionally, we split the
maximally Abelian gauge gluon fields in their diagonal and
off-diagonal components and invert the Dirac operator on
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FIG. 2. The gluon propagator of the coarse ensembles of Table I renormalized at μ ¼ 4 GeV.
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FIG. 3. The gluon form factors of the fine ensemble. The solid
lines illustrate the fit to Eq. (23).
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the two parts separately. Thus, we obtain four “kinds” of
quark propagators from each ensemble.

1. Quark mass dependence

On the five dynamical coarse ensembles of Table I, we
calculate the quark propagator in Landau gauge, in the
MAG, on a pure diagonal MAG background and a pure off-
diagonal MAG background. The mass parameter of the
valence quark propagator has been set to the value of the
corresponding light sea quark mass for these five ensem-
bles. This will allow for a systematic extrapolation to the
chiral limit.
In Fig. 4 the quark mass functionMðk2Þ is shown for the

four types of gluon backgrounds (Landau gauge, MAG,
MAG-diag, and MAG-off) from all coarse ensembles,
including a linear extrapolation to the chiral limit. In
analog, Fig. 5 shows the corresponding quark wave-
function renormalization functions Zðk2Þ.
When comparing the Landau gauge quark propagator

to the quark propagator in the MAG, the first observation
is that the MAG data, with the same statistics, results in

more gauge noise from the Monte Carlo integration.
Moreover, the running masses of the MAG data lie
higher than the corresponding Landau gauge masses,
which holds from the largest mass of ml ¼ 65.8 MeV
down to the chiral limit. The dynamically generated
infrared masses, on the other hand, appear compatible
within the error bars.
It is evident that Mðk2Þ from the MAG-diag gluon

background nicely resembles the Landau gauge analog
(despite being more noisy), whereas Mðk2Þ from MAG-off
gluons is constant, lying roughly 40% higher than the
corresponding bare quark mass. In the chiral limit it is
compatible with zero. Similarly, the wave-function renorm-
alization function from MAG-off gluons comes out close
to its tree-level value, Zðk2Þ ≈ 1, independent of the
quark mass.

2. Infrared behavior

The coarse ensembles cannot provide a clear picture of
the infrared behavior of the quark propagators. To improve
thereon we adopt the fine MILC ensemble of Table I. In
order to keep the gauge noise and the simulation costs at an
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FIG. 4. The quark mass function from the coarse ensembles of Table I. The bare quark masses are set to the values of the dynamical
light quark masses. Additionally, a linear extrapolation to the chiral limit is shown.
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acceptable level, we use a valence quark with the mass of
the heavier dynamical strange quark, ms ¼ 68.0 MeV,
instead of setting it to the light quark mass of ms ¼
6.8 MeV.
In Fig. 6 we compare Mðk2Þ and Zðk2Þ in the MAG,

MAG-diag, and MAG-off, respectively, directly to the
Landau gauge counterparts. While the MAG and Landau
gauge mass functions agree within the error bars over
the whole momentum range, Zðk2Þ appears to be more
strongly IR suppressed in the MAG as compared to the
Landau gauge.
Similarly, the MAG-diag mass function agrees over the

whole momentum range within the error bars with its
Landau gauge counterpart. The renormalization function
exhibits qualitatively the same IR behavior as in the
Landau gauge. In contrast, the MAG-off quark dressing
functions hardly show any nontrivial dynamics. This
is the main finding of this study; it shows that the
Abelian parts of the gluon fields not only dominate the
purely gluonic interactions but also the infrared inter-
actions of quarks.

V. SUMMARY

We have fixed dynamical SU(3) lattice gauge fields to
the combined maximally Abelian gauge and the Uð1Þ3 ×
Uð1Þ8 Landau gauge. From the lattice link variables, we
have extracted the continuum gluon fields which we
subsequently separated into purely diagonal (Abelian)
and off-diagonal components.
We investigated the gluon propagator from diagonal and

off-diagonal gluon fields. Dynamical quarks lead to an IR
suppression compared to the quenched case. The suppres-
sion becomes stronger when decreasing the quark mass.
The screening is more pronounced in the MAG propagators
compared to the Landau gauge propagator. Our findings
confirm the manifestation of infrared Abelian dominance in
the gluon propagator as found in earlier studies on
quenched lattices.
Finally, for the first time the maximally Abelian gauge

quark propagator has been analyzed on a background of
purely diagonal gluons as well as on the remaining, off-
diagonal gluon background. The hypothesis of Abelian
dominance implies that the non-Abelian gluon field does
not propagate at a long-distance scale and hence that only
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FIG. 5. The quark function renormalization function from the coarse ensembles of Table I. The bare quark masses are set to the values
of the dynamical light quark masses. A linear extrapolation to the chiral limit is shown. All data have been renormalized at
μ ¼ 3 GeV.
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the Abelian component is relevant at a long-distance scale.
In accordance therewith, we have demonstrated that the
quark propagator from a non-Abelian gluon background
hardly shows any effects while the quark propagator from
an Abelian gluon background closely resembles its Landau
gauge counterpart.
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FIG. 6. The quark mass function (left column) and renormalization function (right column) from the fine ensemble of Table I. The
MAG (top row), MAG diagonal part (middle row), and MAG off-diagonal part (bottom row) are shown. Each of the three rows of plots
includes additionally the Landau gauge quark propagator for direct comparison. The quark mass is equal to the dynamical strange quark
mass (ms ¼ 68.0 MeV). Zðk2Þ has been renormalized at μ ¼ 4 GeV.
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