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In this analysis, we present the contribution associated with the chromomagnetic dipole operator O8 to
the double differential decay width dΓ=ðds1ds2Þ for the inclusive process B̄ → Xsγγ. The kinematical
variables s1 and s2 are defined as si ¼ ðpb − qiÞ2=m2

b, where pb, q1, q2 are the momenta of b quark and
two photons. This contribution (taken at tree level) is of order αs, like the recently calculated QCD
corrections to the contribution of the operatorO7. In order to regulate possible collinear singularities of one
of the photons with the strange quark, we introduce a nonzero massms for the strange quark. Our results are
obtained for exact ms, which we interpret as a constituent mass being varied between 400 and 600 MeV.
Numerically it turns out that the effect of the (O8, O8) contribution to the branching ratio of B̄ → Xsγγ
does not exceedþ0.1% for any kinematically allowed value of our physical cutoff parameter c, confirming
the expected suppression of this contribution relative to the QCD corrections to dΓ77=ðds1ds2Þ.
DOI: 10.1103/PhysRevD.93.014037

I. INTRODUCTION

Inclusive rare B-meson decays are known to be a unique
source of indirect information about physics at scales of
several hundred GeV. In the standard model (SM) all these
processes proceed through loop diagrams and thus are
relatively suppressed. In the extensions of the SM the
contributions stemming from the diagrams with “new”
particles in the loops can be comparable or even larger
than the contribution from the SM. Thus getting exper-
imental information on rare decays puts strong constraints
on the extensions of the SM or can even lead to a
disagreement with the SM predictions, providing evidence
for some “new physics.”
To make a rigorous comparison between experiment and

theory, precise SM calculations for the (differential) decay
rates are mandatory. While the branching ratios for B̄ →
Xsγ [1] and B̄ → Xslþl− are known today even to next-to-
next-to-leading logarithmic (NNLL) precision (for reviews,
see [2,3] and [4] for recent updated predictions on radiative
decay modes of B meson), other branching ratios, like the
one for B̄ → Xsγγ discussed in this paper, were only known
to leading logarithmic precision in the SM [5–8]. As the
process B̄ → Xsγγ is expected to be measured at the
planned Super B-factory in Japan [9,10], we recently
completed first steps towards a next-to-leading logarithmic
(NLL) result for this decay [11,12], by working out
QCD corrections to the numerically important (O7, O7)
contribution.

In this paper, we go one step further and provide the
self-interference contribution to B̄ → Xsγγ stemming from
the chromomagnetic dipole operator O8 which starts at
order αs. Although a naive estimate suggests that this
contribution is suppressed by a factor of jCeff

8 Qd=Ceff
7 j2 ∼

1=36 relative to the QCD corrections to the (O7, O7)
interference, a more detailed investigation is in order: In
both cases (O7 and O8), one of the two photons can be
emitted from the strange quark in a collinear way, leading
to contributions involving logðms=mbÞ terms.1 Concerning
the other photon, the two cases differ, however. Unlike in
the O7, the second photon can also be emitted from the s
quark in the O8 case. While a fully collinear emission of
both photons is excluded by our cuts (see later), a leftover
enhancement effect could still apply in the O8 case and
thereby milder the naive suppression factor. As the average
energies of the two photons are not very high, there might
be a second effect related to the different infrared structure
(1=Eγ-terms) of the two cases, which also potentially
milders the naive suppression factor given above. We feel
that these considerations motivate a detailed evaluation of
the ðO8;O8Þ-interference contribution.
The starting point of our calculation is the effective

Hamiltonian, obtained by integrating out the heavy par-
ticles in the SM, leading to

Heff ¼ −
4GFffiffiffi

2
p V⋆

tsVtb

X8
i¼1

CiðμÞOiðμÞ; ð1Þ

where we use the operator basis introduced in [13]:
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1We interpret ms to be a constituent mass, varying it between
400 and 600 MeV.
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O1 ¼ ðs̄LγμTacLÞðc̄LγμTabLÞ;
O2 ¼ ðs̄LγμcLÞðc̄LγμbLÞ;
O3 ¼ ðs̄LγμbLÞ

X
q

ðq̄γμqÞ;

O4 ¼ ðs̄LγμTabLÞ
X
q

ðq̄γμTaqÞ;

O5 ¼ ðs̄LγμγνγρbLÞ
X
q

ðq̄γμγνγρqÞ;

O6 ¼ ðs̄LγμγνγρTabLÞ
X
q

ðq̄γμγνγρTaqÞ;

O7 ¼
e

16π2
½s̄σμνðm̄bRþ m̄sLÞFμνb�;

O8 ¼
gs

16π2
½s̄σμνðm̄bRþ m̄sLÞTaGa

μνb�: ð2Þ

The symbols Ta (a ¼ 1, 8) denote the SUð3Þ color
generators; gs and e denote the strong and electromagnetic
coupling constants. In Eq. (2), m̄b and m̄s are the running
b- and s-quark masses in the MS scheme at the renorm-
alization scale μ. We keep the exact dependence on the
strange-quark mass in our calculation. Further, as we are
not interested in charge-parity-violation effects in the
present paper, we exploited the unitarity of the Cabibbo–
Kobayashi–Maskawa matrix and neglected VubV�

us (as
VubV�

us ≪ VtbV�
ts) when writing Eq. (1).

While the Wilson coefficients CiðμÞ appearing in Eq. (1)
have been known to sufficient precision at the low scale
μ ∼mb for a long time (see e.g. the reviews [2,3] and
references therein), the matrix elements hsγγjOijbi and
hsγγgjOijbi, which in a NLL calculation are needed to
order g2s and gs, respectively, are only partially known now
(see [11,12] for the details of the provided contributions
and [14] for a recent summary). Calculating the ðOi;OjÞ-
interference contributions for the differential distributions
at order αs is in many respects of similar complexity as the
calculation of the photon energy spectrum in B̄ → Xsγ at
order α2s needed for the NNLL computation. There, the
individual interference contributions, which all involve
extensive calculations, were published in separate papers,
sometimes even by two independent groups (see e.g.
[15,16]). It therefore cannot be expected that the NLL
results for the differential distributions related to B̄ → Xsγγ
are given in a single paper. As a next step in the NLL
enterprise, we derive in the present paper the ðO8;O8Þ-
interference contribution (which starts at order αs) to the
double differential decay width dΓ=ðds1ds2Þ. The variables
s1 and s2 are defined as si ¼ ðpb − qiÞ2=m2

b, where pb and
qi denote the four-momenta of the b quark and the two
photons, respectively.
At order αs there are only contributions to dΓ88=

ðds1ds2Þ with four particles (s-quark, two photons and a
gluon) in the final state. These contributions correspond to
specific cuts of the b-quark self energy at order α2 × αs,

involving twice the operator O8. As there are additional
cuts, which contain for example only one photon, our
observable cannot be obtained using the optical theorem,
i.e., by taking the absorptive part of the b-quark self energy
at three loops. We therefore calculate the mentioned con-
tributions with four particles in the final state individually.
When calculating the contribution ofO8 to dΓ=ðds1ds2Þ,

we restrict ourselves (as in Refs. [11,12]) to the region in
the ðs1; s2Þ-plane which is also accessible to three body
decays b → sγγ (associated e.g. with the tree-level con-
tribution of O7), i.e.,

s1 > x4; s2 > x4; s1 þ s2 < 1þ x4; s1s2 > x4;

ð3Þ

where x4 ¼ ðms=mbÞ2. The energies E1 and E2 in the rest
frame of the b quark of the two photons are related to s1 and
s2 in a simple way: si ¼ 1 − 2Ei=mb. As the energies Ei of
the photons have to be away from zero in order to be
observed, the values of s1 and s2 should be considered to be
smaller than one. Furthermore, in order to see two separate
photons, their invariant mass should also be away from
zero. All these requirements can be implemented in terms
of one physical cut parameter c (c > 0), by demanding2

s1 ≥ c; s2 ≥ c; 1 − s1 − s2 ≥ c: ð4Þ

The kinematical region in the ðs1; s2Þ-plane, which we take
into account in this paper, therefore corresponds to the
intersection of the regions given in Eqs. (3)–(4). For
explicit formulas representing this intersection, we refer
to the appendix.
Imposing these cuts, the photons do not become soft in

our case, while one of them can become collinear with the
strange quark. This implies that in the final result a single
logarithm ofms survives. The only source for such logðmsÞ
terms in our result is the mentioned collinear emission of
the photons from the s quark. In particular, we emphasize
that the ðO8;O8Þ contribution to the double differential
decay width does not become singular when the gluon
and the strange quark become collinear, since the gluon
is emitted from the effective operator O8 directly and
therefore there is no propagator denominator of the form
ðps þ pgÞ2 which could become singular. In addition, soft-
gluon related singularities also do not appear in this case (the
matrix element associated with O8 even goes to zero when
the gluon energy tends to 0). The absence of singularities
generated by soft and/or collinear gluons is related to the fact
that concerningQCDour observable (i.e. the triple or double
differential decay width), based on the full effective
Hamiltonian, is fully inclusive and therefore nonsingular.

2The normalized invariant mass squared s ¼ ðq1 þ q2Þ=m2
b of

the two photons can be written as s ¼ 1 − s1 − s2 þ s3, where s3
is the normalized hadronic mass squared.
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We also stressed this fact in [12], where the ðO7;O7Þ
contribution was worked out. In this case there were gluon
induced singularities in the virtual and bremsstrahlung
corrections, but they canceled when combined as a conse-
quence of the Kinoshita-Lee-Nauenberg theorem. This
means that the origin of logðmsÞ terms is from collinear
photon emission only. Note that concerning QED our
observable is not fully inclusive, becausewewant to observe
exactly two photons in the final state; therefore logðmsÞ
terms remain. A further remark on the numerical ms-
dependence is in order: The ðO7;O7Þ contribution to the
double differential decay width starts at order α0s. This
leading contribution does not contain logðmsÞ terms when
applying the kinematical cuts discussed above.Only at order
α1s terms ∼ logðmsÞ appear, because one of the photons can
become collinear with the strange quark. As a consequence,
we expect the relative ms-dependence of the ðO7;O7Þ
contribution to be smaller than the corresponding depend-
ence of the ðO8;O8Þ contribution, because the latter only
starts at order α1s. In other words the ms-dependence of the
complete double differential decay width will be smaller
than the one which is only based on the ðO8;O8Þ contri-
bution discussed in this paper.
The main goal of this paper is to work out dΓ88=ðds1ds2Þ

as a further ingredient towards a systematic NLL prediction
for the decay rate of B̄ → Xsγγ. For similar analysis for the
case of B̄ → Xsγ, one can see e.g. [17–21].
In this regard, we employ in our calculation a finite

strange-quark mass ms which we interpret to be of con-
stituent type in the numerics. This approach has also been
adopted previously, e.g. by Kaminski et al. in [22] and
Asatrian and Greub in [12,23]. The experience gained in
these references shows that the constituent mass approach
gives results which are similar to those when using frag-
mentation functions [23]. Therefore, we believe that this
method is sufficient to obtain an estimate of the ðO8;O8Þ-
interference contribution.While the fragmentation approach
seems better from the theoretical point of view, it is not clear
that it leads to better final results in practice, because the
fragmentation functions (for s → γ or g → γ) suffer from
experimental uncertainties, as pointed out in [23]. An
alternative could be to look at the version with “isolated
photons” a la Frixione [24]which corresponds, however, to a
slightly different observable. Such an approach is beyond
the scope of the present paper and is left for future studies.
Before moving to the detailed organization of our paper,

we should mention that the inclusive double radiative
process B̄ → Xsγγ has also been explored in several
extensions of the SM [6,8,25]. Also the corresponding
exclusive modes, Bs → γγ and B → Kγγ, have been exam-
ined before, both in the SM [7,26–34] and in its extensions
[25,30,31,35–43]. We should add that the long-distance
resonant effects were also discussed in the literature (see
e.g. [7] and the references therein). Finally, the effects of

photon emission from the spectator quark in the B meson
were discussed in [26,30,44].
The remainder of this paper is organized as follows.

In Sec. II the calculation of the ðO8;O8Þ contribution to the
double differential decay width dΓ=ðds1ds2Þ is presented.
To regulate the configurations where photons are emitted
from the s quark in a collinear way, a finite strange-quark
mass ms is introduced. This way the collinear singularities
manifest themselves as logðmsÞ terms in our final result,
which reflects the feature for the photons having hadronic
substructure. In Sec. III we illustrate the numerical impact
of the ðO8;O8Þ contribution to the double differential width
and the total decay width (depending on a kinematical cut).
The main text of our paper ends with a short summary in
Sec. IV. In Appendix, we give the explicit formulas
defining the four-particle phase-space region considered
in this paper together with the explicit expressions for the
master integrals (MIs) appearing in our calculation.

II. ðO8;O8Þ CONTRIBUTION TO THE
DOUBLE DIFFERENTIAL SPECTRUM

dΓ=ðds1ds2Þ AT OðαsÞ
We now turn to the calculation of theO8 self-interference

contribution to the decay width for B̄ → Xsγγ, which is
based on the partonic process b → sgγγ, where g denotes a
gluon. Although this is only a tree-level computation at order
αs, it is quite complicated because of the four particles in the
final state, one of them being massive (the strange quark).
Before going into detail, we mention that the kinematical

range of the variables s1 ¼ ðpb − q1Þ2=m2
b and s2 ¼

ðpb − q2Þ2=m2
b is larger in the 1 → 4 process considered

in this section than the range given in Eq. (3), which
corresponds to the 1 → 3 process b → sγγ. Nevertheless,
we restrict ourselves to the range which corresponds to the
intersection of the regions given in Eqs. (3)–(4), as we also
did in [11,12] when considering virtual and bremsstrahlung
corrections to the O7 contribution. For explicit formulas of
the considered ðs1; s2Þ-region, we refer to Eq. (A1) in the
appendix.
The diagrams defining the O8 contribution at the

amplitude level are shown in the first line of Fig. 1. The
amplitude squared, needed to get the (double differential)
decay width, can be written as a sum of interferences of
the different diagrams shown on the first line in Fig. 1. One
such interference is shown on the second line of the same
figure. The four-particle final state is described by five
independent kinematical variables; s1 and s2 are just two
of them.
In the present paper, we worked out in a first step the

triple differential spectrum dΓ88=ðds1ds2ds3Þ, where s3 ¼
ðps þ pgÞ2=m2

b is the normalized hadronic mass squared
and pg is the final state gluon momentum. At this level, we
computed the resulting MIs numerically for exact ms (see
Appendix for their explicit expressions). To get the double
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differential spectrum dΓ88=ðds1ds2Þ we then integrated
over s3 in its range s3 ∈ ½m2

s=m2
b; s1:s2�.

Last, as the various steps of the calculation are similar to
those in Ref. [11], we refer to Sec. VII of that paper for
more details on the techniques applied. Also, we refer to
Appendix B of Ref. [12] for a useful parametrization of the
four-particle phase space for the case where one of
the particles is massive, which is based on the work
in Ref. [45].

III. NUMERICAL ILLUSTRATIONS

In the previous section we described the calculation for
the ðO8;O8Þ contribution to the double differential decay
width for B̄ → Xsγγ at NLL precision.
The Wilson coefficient C8;effðμÞ at the low scale3

C8;effðμÞ ¼ C0
8;effðμbÞ

has been known for a long time (see Ref. [13] and
references therein). Numerical values for the input param-
eters and for this Wilson coefficient at various values for the
scale μ, together with the numerical values of αsðμÞ, are
given in upper and lower panels of Table I, respectively.
To stress that the ðO8;O8Þ contribution to dΓ=ðds1ds2Þ

only starts at the NLL level, we write

dΓ88

ds1ds2
¼ dΓð1Þ

88

ds1ds2
ð5Þ

where dΓð1Þ
88 =ðds1ds2Þ has the form

dΓð1Þ
88

ds1ds2
¼ α2m̄2

bðμÞm3
bjC8;effðμÞj2G2

FjVtbV�
tsj2Q4

d

1024π5

×
αs
4π

CFκ
ð1Þ
88 ðs1; s2; ms=mbÞ: ð6Þ

The function κð1Þ88 ðs1; s2; ms=mbÞ, which encodes the
dependence on s1, s2 and on ms=mb, is too lengthy to
be displayed explicitly. We note that we will keep the exact
ms dependence in our numerics.

In Table II, the impact of
dΓð1Þ

88

ds1ds2
on the branching ratio for

B̄ → Xsγγ is presented for various choices of ms, c and the
scale μ. It is seen that this contribution is much smaller than
the corresponding numbers for the (O7, O7) contribution
(see Table IV of Ref. [12] for comparison).
To obtain the values for the branching ratio in Table II as

a function of the cutoff parameter c defined in Eq. (4), we
integrate the double differential spectrum over the corre-
sponding ranges in s1 and s2 [see Eq. (A1)], divide by the
semileptonic decay width and multiply with the measured
semileptonic branching ratio. For illustrative purposes, it is
sufficient to take the lowest order formula for the semi-
leptonic decay width [see e.g. Eq. (6.2) in Ref. [12]].
In Fig. 2 we plot dΓ88=ðds1ds2Þ, calculated in this paper,

as a function of s1, while s2 is kept fixed at s2 ¼ 0.2. The
renormalization scale is chosen to be μ ¼ mb=2 and ms is
varied between 400 and 600 MeV. This figure shows that
dΓ88=ðds1ds2Þ is orders of magnitude smaller in size than
dΓ77=ðds1ds2Þ (for comparison see Fig. 7 of Ref. [12]
which is an extended analysis of the work in Ref. [11]). For
other choices of the scale μ, the behavior of the spectrum is
similar, but even smaller in size.
In Fig. 3 we investigate the numerical impact of the (O8,

O8) contribution on the branching ratio of B̄ → Xsγγ (see
the discussion in the third paragraph of the introduction).
More precisely, we worked out the relative shift

b s

q
1

q
2

b s

q
2

q
1

b bs
O

8
O

8

q
1

q
2

s

q
1

q
2

FIG. 1. On the first line the diagrams defining the O8

contribution to b → sgγγ are shown at the amplitude level.
The crosses in the graphs stand for the possible emission places
of the gluon (emerging from the operator O8). On the second line
the contribution to the decay width corresponding to the
interference of diagram 1 with diagram 4 is illustrated. This
sample interference diagram gives rise to log ðms=mbÞ terms due
to collinear configurations of one of the photons with the s quark.

TABLE I. Upper: Relevant input parameters used in this paper.
Lower: The Wilson coefficient C8;effðμÞ and αsðμÞ at different
values of the renormalization scale μ.

Parameter Value

BRexp
sl 0.1049

mb 4.8 GeV
mc=mb 0.29
GF 1.16637 × 10−5 GeV−2

Vcb 0.04
VtbV�

ts 0.04
αðemÞ−1 137

C0
8;effðμÞ αsðμÞ

μ ¼ MW −0.09739 0.1213
μ ¼ 2mb −0.13516 0.1818
μ ¼ mb −0.14905 0.2175
μ ¼ mb=2 −0.16529 0.2714

3At NLL precision, C8;effðμÞ is needed only up to order α0s,
because the square of the matrix element hsgγγjO8jbi starts at
order α1s. Furthermore, for our current purpose we identify the M̄S
mass m̄bðμÞ with the corresponding pole mass.
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Br½B̄ → Xsγγ�88c
Br½B̄ → Xsγγ�c

ð7Þ

of the branching ratio due to the (O8, O8) contribution,
as a function of the kinematical cut parameter c.
Figure 3 clearly shows that this contribution is below
0.1% in the full ðs1; s2Þ-range considered in this paper.
We mention that in B̄ → Xsγ the situation concerning
the O8 contribution is different. As pointed out in
Refs. [17,20], in this decay mode the contribution of
O8 is non-negligible, in particular, for values of
Eγ < 1.1 GeV. On the other hand, in the double radi-
ative decay, the effects described in the references just
mentioned are also present in the O7 contribution; as a
consequence the effect of the O8 contribution stays
small in the full phase space.

IV. CONCLUDING REMARKS

In the present work we calculated the set of the
OðαsÞ corrections to the decay process B̄ → Xsγγ
originating from diagrams involving the chromomag-
netic dipole operator O8. To perform this calculation, it
was necessary to work out diagrams with four particles
(s quark, two photons and a gluon) in the final state.
From the technical point of view, the calculation was
made possible by the use of the Laporta algorithm [46]
to identify the needed master integrals. We then solved
the resulting MIs numerically, keeping the exact
dependence on the strange-quark mass ms, which we
varied between 400 and 600 MeV in the numerical
illustrations.
We conclude that the numerical impact of the self-

interference contribution of the chromomagnetic dipole
operator O8 to the decay rate is minor when compared to
the self-interference effect of the electromagnetic dipole
operator O7.
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TABLE II. Branching ratios (in units of 10−11) for B̄ → Xsγγ when only considering the (O8, O8) contribution
calculated in this paper. The left half of the table corresponds to the results when choosing c ¼ 1=50, while in the
right half c is set to be c ¼ 1=100. The rows labeled with NLL1, NLL2 and NLL3 give the result of this specific NLL
contribution when setting ms ¼ 400 MeV, ms ¼ 500 MeV and ms ¼ 600 MeV, respectively. See the text for
details.

Branching ratios for B̄ → Xsγγ

c ¼ 1=50 c ¼ 1=100

μ ¼ mb=2 μ ¼ mb μ ¼ 2mb μ ¼ mb=2 μ ¼ mb μ ¼ 2mb

NLL1 1.57 1.03 0.71 1.79 1.17 0.80
NLL2 0.96 0.63 0.43 1.09 0.71 0.49
NLL3 0.59 0.39 0.27 0.67 0.44 0.30
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FIG. 2. dΓ88=ðds1ds2Þ [as given in Eqs. (5)–(6)] as a function
of s1 for s2 fixed at 0.2, μ ¼ mb=2 andms varied between 400 and
600 MeV. The blue (top), yellow (middle) and red (bottom) lines
show the width when choosing ms to be 400, 500 and 600 MeV,
respectively.
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FIG. 3. Relative shift (Br½B̄→Xsγγ�88c
Br½B̄→Xsγγ�c ) of the branching ratio for

B̄ → Xsγγ (in percent) due to the (O8, O8) contribution as a
function of the cut parameter c for μ ¼ mb=2. The blue (top),
yellow (middle) and red (bottom) lines show the relative shifts
when setting ms ¼ 400 MeV, 500 MeV and 600 MeV, respec-
tively. For other choices of the scale μ the relative change is even
smaller.
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APPENDIX:

In this appendix, we give the explicit formulas defining
the four-particle phase-space region considered in this

paper as a result of the intersection of regions given in
Eqs. (3)–(4). Further, we give the explicit forms of the
master integrals appearing in our calculation of the
ðO8;O8Þ contribution to the decay width for B̄ → Xsγγ.

1. Explicit formulas for the range in the
ðs1;s2Þ-plane

The kinematical conditions on the phase-space variables
s1 and s2, as implicitly formulated in Eqs. (3)–(4), can
easily be converted to explicit ranges. There are the
following three cases (using x4 ¼ m2

s=m2
b):

ðiÞ if x4 ≤ c2 c < s1 < 1 − 2c; c < s2 < 1 − s1 − c

ðiiÞ if c2 < x4 < cð1 − 2cÞ c < s1 <
x4
c
;

x4
s1

< s2 < 1 − s1 − c or
x4
c
< s1 < 1 − 2c;

c < s2 < 1 − s1 − c

ðiiiÞ if x4 ≥ cð1 − 2cÞ s1− < s1 < s1þ;
x4
s1

< s2 < 1 − s1 − c with

s1� ¼
�
1 − c�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − cÞ2 − 4x4

q �
=2: ðA1Þ

Case (ii) is understood to be the sum of the two possibilities
written in Eq. (A1). Further, it can be seen from the same
equation that if one puts ms ¼ 0, one would simply end up
with case (i), as previously considered in [11,12]. As an
example, in Fig. 4 we give the geometrical representation of
case (i) of Eq. (A1).

2. Explicit forms for the master integrals

In a first step, we managed to write the triple differential
decay width dΓ88=ðds1ds2ds3Þ as a linear combination of
five independent MIs.

The full four-particle phase space can be parametrized
in terms of five independent variables. According to
the procedure described in Appendix B.2 of Ref. [12],
three of the five variables can be chosen to be s1, s2 and s3.
The MIs are therefore given in terms of integrals
over two variables called λ4 and λ5, running in the
interval [0, 1].
Since we regulated possible collinear singularities by

keeping ms exact and since soft photons are excluded by
the cuts imposed through Eq. (4), we can work in d ¼ 4
dimensions; this considerably simplifies the expressions in
Appendix B.2 of Ref. [12].
The MIs, defined at the level of the triple differential

decay width, depend on s1, s2, s3 and x4. We denote them
by Bν1ν2

seti ðs1; s2; s3; x4Þ, where ν1, ν2 stand for the powers of
the propagators in the MIs and i defines the set (propagator
structure) where they belong. Our parametrized MIs are of
the form (λ4;5 ∈ ½0; 1�)

Bν1ν2
seti ðs1; s2; s3; x4Þ

¼ N ps

Z
λ4

Z
λ5

dλ4dλ5
P−ν1
1;i P

−ν2
2;iffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1 − λ5Þλ5

p ðA2Þ

where N ps is the phase-space factor with N ps ¼ s3−x4
2048π6s3

,

and the propagators P1;i, P2;i are understood to be
expressed in terms of the integration variables λ4, λ5 and
the variables s1, s2, s3, following the parametrization used
in [12]. Based on these considerations, we have the
following expressions for the MIs:

c2 x4

c

c

c

0 1

1

s1

s 2

FIG. 4. The shaded area shows the ðs1; s2Þ phase-space region
for the case c2 ≥ x4.
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set1∶
P1 ¼ðpg−pbþq1Þ2−m2

s ; P2¼ðpg−pbÞ2−m2
s

B00
set1 ¼ s3−x4

2048π5s3

B10
set1 ¼

R
λ4

R
λ5
dλ4dλ5

I10set1 ðλ4;λ5Þffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1−λ5Þλ5

p

¼ logðs3=x4Þ
2048π5ðs1−s3Þ

B01
set1 ¼

R
λ4

R
λ5
dλ4dλ5

I01set1 ðλ4;λ5Þffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1−λ5Þλ5

p

B11
set1 ¼

R
λ4

R
λ5
dλ4dλ5

I11set1 ðλ4;λ5Þffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1−λ5Þλ5

p
set2∶
P1¼ðpg−pbþq1Þ2−m2

s ; P2 ¼ðpg−pbþq2Þ2−m2
s

B11
set2 ¼

R
λ4

R
λ5
dλ4dλ5

I11set2 ðλ4;λ5Þffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1−λ5Þλ5

p

ðA3Þ

where the respective integrands explicitly read

I10set1 ¼ N ps
s3

ðs1 − s3Þðs3ð1 − λ4Þ þ x4λ4Þ
; ðA4Þ

I01set1 ¼ N pss1ðs1 − s3Þs3½s1fs3ðs1 þ ðs2 − 2Þs3
−ðs1 þ s2 − s3Þx4 þ x4Þ − ðs1ðs1 þ s2Þ
−ðs1 − s2 þ 2Þs3Þλ4ðs3 − x4Þg
−2frootðs1 − 1Þðs1 − s3Þð2λ5 − 1Þðs3 − x4Þ�−1;

ðA5Þ

I11set1 ¼−N pss1s23½ðs3ðλ4−1Þ−x4λ4Þ
×fs1ðs3ðs1þðs2−2Þs3− ðs1þ s2− s3Þx4þx4Þ
−ðs1ðs1þ s2Þ− ðs1− s2þ2Þs3Þλ4ðs3−x4ÞÞ
−2frootðs1−1Þðs1−s3Þð2λ5−1Þðs3−x4Þg�−1; ðA6Þ

I11set2 ¼ −N pss1s23½ðλ4ðx4 − s3Þ þ s3Þf2ð2λ5 − 1Þ
× ðs1 − 1Þðs1 − s3Þfrootðs3 − x4Þ
þ s1ðλ4ðs3ðs3 − s2þ2Þ − s1ðs2 þ s3ÞÞðx4 − s3Þ
þ s3ððs1 þ s2 − s3−1Þx4 − s1s2 þ s3ÞÞg�−1;

ðA7Þ

froot ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s21ðs1 þ s2 − s3 − 1Þðs1s2 − s3Þs3ðλ4 − 1Þλ4

ðs1 − 1Þ2ðs1 − s3Þ2

s
:

ðA8Þ

In Eq. (A3), the integrations involved in B00
set1 were trivial to

perform. For B10
set1, an analytical solution is possible, using

the differential equation method. For the remaining MIs, as
the corresponding integrands Iν1ν2seti ðλ4; λ5Þ develop compli-
cated structures, we performed these integrations numeri-
cally for exact ms.
As can be understood from their propagator structures,

two of the MIs, B01
set1 and B11

set2 , are symmetric under the
exchange of s1↔s2.
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