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We critically examine the potential to disentangle the Standard Model (SM) and new physics (NP) in
B → K�μþμ− and B → K�eþe− decays, focusing on (i) the LHCb anomaly, (ii) the search for right-handed
currents, and (iii) lepton-universality violation. Restricting ourselves to the large-recoil region, we advocate
a parametrization of the hadronic matrix elements that separates model-independent information about
nonperturbative QCD from the results of model calculations. We clarify how to estimate corrections to the
heavy-quark limit that would generate a right-handed (virtual) photon in the b → sγ contribution to the
decay. We then apply this approach to the discussion of various sets of observables of increasing theoretical

cleanness. First, we show that angular observables in the optimized Pð0Þ
i basis are, in general, still not robust

against the long-distance QCD effects, both numerically and by examining analytically the dependence on
corrections to the (model-independent) heavy-quark limit. As a result, while a fit to data favors a NP
contribution to the semileptonic operators of the type δC9 ≃ −1.5, this comes at a relatively small statistical
significance of ≲2σ once such power corrections are properly accounted for. Second, two of these
observables, P1 and PCP

3 , are particularly clean at very low q2 and sensitive probes of right-handed quark
currents. We discuss their potential to set stringent bounds on the Wilson coefficient C0

7, especially using
data of the electronic mode, and we update the bounds with current angular data in the muonic channel.
Finally, in light of the recent hint of lepton-universality violation in Bþ → Kþll, we introduce and
investigate new lepton-universality observables involving angular observables of the muonic and electronic
modes and their zero crossings and show that, if the effect is of the size suggested by experiment, these can
clearly distinguish between different NP explanations in terms of underlying semileptonic operators.
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I. INTRODUCTION

Rare B decays such as B → Mlþl−, where M is a
charmless hadronic state, are powerful probes of beyond
Standard Model (BSM) physics due to their short-distance
sensitivity combined with their GIM and CKM suppression
in the Standard Model (SM). In case M is a vector
resonance, like the K�ð892Þ (K� from now on), the decays
have a very rich kinematical structure that leads to up to 24
angular observables (including direct CP asymmetries)
which are functions of the dilepton invariant mass squared,
q2 [1–38].
Experimental results on B → K�lþl− include measure-

ments of the branching fraction, forward-backward asym-
metry and the longitudinal polarization fractions by the
B-factories [39–42], CDF [43], LHCb [44,45], CMS [46]
and ATLAS [47]; measurements including the angular

observables Að2Þ
T and Aim have been done by CDF [48]

and LHCb [45]. Intriguingly, LHCb reported a 3.7σ
discrepancy with the SM in the muonic mode (l ¼ μ) in
the course of the first complete (CP-averaged) angular
analysis of the final state system [49]. The putative effect

occurs in the ½4.3; 8.68� GeV2 dilepton mass bin of the
angular observable P0

5, but also with a lower significance of
2.5σ in the bin ½1; 6� GeV2. Other tensions have been
pointed out in the data (P2 [50] or FL [51]) and global
analyses of b → sμμ and b → sγ decays have claimed the
data to be in tension with the SM with a statistical
significance of up to 4.5σ [50].
Beyond the SM, this tension can be ascribed to a

negative shift of the Wilson coefficient of the semi-
leptonic-vector operator Q9 [50] in the weak
Hamiltonian, although contributions to other Wilson
coefficients have also been discussed [50–54]. On the
other hand, a previous analysis of the angular observ-
ables using a model-independent parametrization of the
hadronic uncertainties [33] that minimized the input
from nonperturbative calculations, led to SM predictions
with theoretical errors considerably larger than those
employed in the above-mentioned fits. More recently, a
Bayesian analysis of the data found a good agreement
with the SM [52], allowing the hadronic parameters to
float in the fit.
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Besides that, the LHCb recently reported an even more
surprising deficit of Bþ → Kþμμ decays as compared to
Bþ → Kþee, with a significance of 2.6σ [55]. This signal
of lepton-universality violation (LUV) has been analyzed
by different groups [56–62] with the common conclusion
that the only plausible sources of this effect are the

semileptonic operators Qð0Þ
9;10. Moreover, it was recently

pointed out [62] that similar deficits in the inclusive b →
sll decay have been observed by Belle [63] and
BABAR [64].
Because of the far-reaching implications of potential

manifestations of new-physics (NP), a clear understanding
of the SM “background” expectation is needed. In this
work, we critically re-examine the anatomy of the uncer-
tainties in the theoretical description of B → K�lþl−

decays in the large-recoil region and classify different
observables according to their theoretical cleanness. Our
presentation draws on our longer work [33], which was
focused on a transparent decomposition of the decay
amplitudes into (perturbatively) calculable and nonpertur-
bative ingredients, a general but minimal parametrization of
the latter, and a discussion of present and prospective
knowledge of those parameters. The framework in [33] was
tailored to the lower end-point region of the dilepton
invariant mass spectrum. We update it here and, with
minor extensions, we apply to the case at hand.
We then update our SM predictions for the angular

distribution of B → K�μþμ− and provide new predictions
for the B → K�eþe− angular distribution. The complex

dependence that observables in the Pð0Þ
i basis, in general,

have on the underlying hadronic matrix elements is
illustrated analysing the tension of the b → sμμ data with
the SM. We further discuss two observables, P1 and PCP

3 ,
which are particularly clean and that can be used to put
stringent bounds on electromagnetic operators induced by
right-handed currents. Finally, in light of the LUV signals
hinted by different b → sll measurements we introduce
and study new lepton-universality ratios which are very
accurately predicted in the SM. We show that they provide
an excellent benchmark to confirm and characterize the
effect and we study prospects in different NP scenarios.

II. CONNECTING SHORT-DISTANCE PHYSICS
TO OBSERVABLES

The decay B̄ → K̄�lþl− proceeds via the ΔB ¼ 1 weak
Hamiltonian (see e.g. [65]), which encapsulates short-
distance SM contributions from scales above μ ∼mb, as
well as any NP with mass scale beyond the weak scale, in a
set of Wilson coefficients. In the SM, the lepton pair is
always produced through either the leptonic vector or axial
vector current. The three axial vector helicity amplitudes
are

HAðλÞ ¼ −iN ~Vλðq2ÞC10; ð1Þ

where λ is the helicity of the K̄� and N a normalization
constant. They receive contributions only from the semi-
leptonic part of the weak Hamiltonian and factorize
“naively” into helicity form factors ~Vλðq2Þ ([33,66]; con-
ventions in this paper follow [33]) and the Wilson coef-
ficient C10.
If the lepton mass is not neglected, the axial-vector

current can also create the dilepton in a pseudoscalar state
(λ ¼ 0 only), bringing in another, naively factorizing,

amplitude HPðq2Þ¼−iN 2mlj~kj
q2

mb
mbþms

Sðq2ÞC10, (equivalent

to what is often called “timelike” amplitude), and one extra,

scalar form factor S; j~kj ¼ λ1=2ðm2
B;m

2
K� ; q2Þ=ð2mBÞ is the

momentum of the vector meson in the B-meson rest frame.
In addition, the dilepton can be produced through the

vector leptonic current. The corresponding three vector
helicity amplitudes HVðλÞ again receive contributions from
the semileptonic ΔB ¼ 1 Hamiltonian. However, they
comprise further terms originating in the magnetic penguin
operator Q7γ, as well as from the hadronic part of the weak
Hamiltonian, whereby the dilepton is created through a
virtual photon. The former bring in a further set of three
form factors, while the latter contributions include “charm
loops,” “annihilation,” etc. and do not factorize naively. In
the notation of [33]:

HVðλÞ ¼ −iN
�
~Vλðq2ÞC9 þ

2mbmB

q2
~Tλðq2ÞC7

−
16π2m2

B

q2
hλðq2Þ

�
: ð2Þ

Beyond the SM, the helicity amplitudes may receive
extra contributions from modified Wilson coefficients C7,
C9, C10, as well as the chirality-flipped operators, Q0

7, Q
0
9,

Q0
10, if present. Furthermore, in the most general NP

scenario there will a be further “scalar” and three “tensor”
amplitudes.1

We would like to emphasize the simplicity and trans-
parency of (1) and (2) when compared to the more
traditional transversity amplitudes involving chiral lepton
currents. In particular, it exposes in a clear way the various
hadronic uncertainties impacting on the vector helicity
amplitudes, which stem from two rather than one form
factors (per helicity), ~Vλ and ~Tλ, and, in addition, the
nonlocal correlator hλ. While the photon-pole dominance
can be exploited to identify especially clean null tests of the
SM at very low q2, particular care will be needed in
attributing BSM effects to observables that involve the
vector helicity amplitudes (e.g. through C9) away from the
end point of the large-recoil region.

1The NP scalar contributions to B → K�lþl− are tightly
bounded by the pure leptonic rare decay Bs → lþl− [14,56].
Tensor operators can be neglected if we assume the scale of NP to
be well above the electroweak scale [56].
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Finally it is worth recalling that the residues of the vector
helicity amplitudes are related to the amplitude of the
radiative decay:

AðB̄ → K�ðλÞγðλÞÞ ¼ lim
q2→0

q2

e
HVðq2 ¼ 0; λÞ

¼ iNm2
B

e

�
2mb

mB
ðC7

~Tλð0Þ − C0
7
~T−λð0ÞÞ

− 16π2hλðq2 ¼ 0Þ
�
: ð3Þ

A. Minimal parametrization of nonperturbative QCD

The key to understanding the uncertainties on various
observables is a full and transparent description of the
nonperturbative input, both of the factorizable (form factor)
and (naively) nonfactorizable (hλ) type. This allows to
disentangle model-independent constraints from assump-
tions in the modeling of nonperturbative QCD effects.
A considerable simplification of the nonperturbative

dynamics arises in the combined heavy-quark and large-
energy (HQ/LE) limit of QCD [67–73], corresponding to
the large-recoil or low-q2 region of the decay. In this limit,
both the form factors [68,74,75] and the (naively) non-
factorizable term hλ [5,9] exhibit QCD factorization (col-
linear factorization) into universal “soft” form factors,
light-cone distribution amplitudes (LCDA), and perturba-
tively calculable hard kernels; this structure is most trans-
parent when formulated in soft-collinear effective field
theory (SCET) where the hard kernels become Wilson
coefficients of operators built out of collinear and soft fields
[71–73]. In particular, the number of independent form
factors is reduced from seven to two, the vector and tensor
helicity form factors in (2) are related, and two helicity
amplitudes vanish altogether.
A fundamental limitation to factorization is the fact that

OðΛ=E;Λ=mBÞ power corrections (to be denoted generi-
cally byOðΛ=mBÞ from now on), do not factorize; attempts
to do so lead to end-point divergent convolutions.
Therefore, besides the parametric uncertainties entering
the amplitude in the exact HQ/LE limit, one needs to take
into account these power corrections. In this section we
update and extend the model-independent treatment of
power corrections introduced for the first time in [33]. We
stress at the outset that this issue cannot be sidestepped by
employing form factor calculations in the light-cone sum
rule (LCSR) framework (or other existing frameworks). To
the extent that LCSR calculations give an unambiguous,
controlled (i.e. systematically improvable) approximation,
they involve convolutions of perturbative kernels with
LCDA and a twist expansion very similar, and underpinned
by very similar Feynman diagram calculations, as those
applying to the heavy-quark expansion. However, these are
necessarily accompanied by model-dependent steps before
a hadronic quantity can be extracted, most importantly a

modeling of an infinite tower of continuum contributions.
While there is a standard convention for attaching uncer-
tainties due to this, the procedure is quantitatively justified
only by a number of numerical successes. We will,
however, clarify in what sense LCSR calculations can be
used to estimate corrections to the HQ/LE limit, for which
much less relative accuracy is required. This was shown in
detail for the helicity þ1 form factors in [33]. Below we
will also clarify further in what sense the leading correc-
tions to the heavy-quark limit of hþ can be precisely
identified with a matrix element that can be estimated with
the LCSR method as done in [33].

1. Form factors

We start rescaling the helicity-zero form factors:

V0ðq2Þ ¼
ffiffiffiffiffi
q2

p
j~kj

~V0ðq2Þ; T0ðq2Þ ¼
m2

Bffiffiffiffiffi
q2

p
j~kj

~T0ðq2Þ;

V�ðq2Þ ¼ ~V�ðq2Þ; T�ðq2Þ ¼ ~T�ðq2Þ: ð4Þ

In [33], a parametrization of the following form was
suggested:

Fðq2Þ ¼ F∞ðq2Þ þ aF þ bFq2=m2
B þOð½q2=m2

B�2Þ: ð5Þ

Here F denotes any helicity form factor with F∞ðq2Þ its
HQ/LE limit, and the remainder the power corrections.
More precisely, F∞ðq2Þ are functions (one for each form
factor) among which the HQ/LE relations hold, including
perturbative corrections [68,74,76]. The precise form of
F∞ðq2Þ is ambiguous (see below) and defines a scheme for
the power correction terms.
In (5), we have Taylor-expanded the power corrections

about q2 ¼ 0. As the form factors have no singularity in a
circle of radius m2

Bs
about the origin in the complex q2

plane, this amounts to an expansion in the dimensionless
ratio q2=m2

Bs
with coefficients of generic size OðΛ=mBÞ. In

particular, the remainder term in (5) should be a correction
of a few percent throughout the low-q2 region
q2 < 6 GeV2, and will be neglected in the following
(see also [38]). We stress that beyond this truncation there
is no loss of generality in our decomposition.
The form factors obey a number of model-independent

relations. First, there are two exact constraints:

Tþð0Þ ¼ 0; Sð0Þ ¼ V0ð0Þ: ð6Þ

Five further constraints hold in the HQ/LE limit, two to all
orders2 in αs:

2This was conjectured in [77], exhibited at OðαsÞ in [33] and
follows at Oðα2sÞ from the results of [76]. It seems nevertheless
clear that it is true to all orders [75].
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V∞þ ðq2Þ ¼ 0; T∞þ ðq2Þ ¼ 0; ð7Þ
and three to zeroth order in perturbation theory only:

V∞
− ðq2Þ ¼ T∞

− ðq2Þ; V∞
0 ðq2Þ ¼ T∞

0 ðq2Þ;
V∞
0 ðq2Þ ¼ S∞ðq2Þ: ð8Þ

The perturbative corrections to (8) are unambiguously
calculable as convolutions of perturbative kernels with
nonperturbative LCDA [74]. Eqs. (7) and (8) reduce the
nonperturbative input in the exact HQ/LE limit from seven
to two independent functions; i.e., there are only two
independent F∞ðq2Þ, traditionally called the “soft form
factors.” From (8) it is clear that they correspond to the
helicities -1 and 0, denoted ξ⊥ðq2Þ and ξ∥ðq2Þ, respectively.
Their q2 dependence is not calculable from first principles
at present (the scaling in [68] is violated by radiative
corrections [74]); as a result, not only the values at q2 ¼ 0

of the soft form factors but also their q2 dependence need to
be modeled or determined experimentally.
At finite mB, where the power corrections are nonzero,

the soft form factors are not uniquely determined, as the
HQ/LE relations are invariant under a shift,

ξ⊥ðq2Þ → ξ⊥ðq2Þ þ f⊥ðq2Þ;
ξ∥ðq2Þ → ξ∥ðq2Þ þ f∥ðq2Þ; ð9Þ

where f⊥ and f∥ are OðΛ=mBÞ. It is customary to exploit
this freedom by identifying ξ⊥ðq2Þ and ξ∥ðq2Þwith a pair of
(finite-mB) QCD form factors.
In this work we use

ξ⊥ðq2Þ ¼ T1ðq2Þ ¼
mB

2j~kj
T−ðq2Þ − bTþ

q2

2mBj~kj

þO
�
Λ2

m2
B
;
Λ
mB

�
q2

m2
B

�
2
�
;

ξ∥ðq2Þ≡ Sðq2Þ; ð10Þ
where T1ð0Þ is a tensor form factor in the transversity basis.
We parametrize the q2 dependence by modifying the

HQ/LE scalings of [68]:

ξXðq2Þ ¼ ξXð0Þ
�

1

1 − q2=m2
B

�
2þαX

; X ¼ ⊥; ∥: ð11Þ

The values at q2 ¼ 0,

ξ⊥ð0Þ ¼ T−ð0Þ ¼ 0.31ð4Þ; ξ∥ð0Þ ¼ 0.31ð6Þ; ð12Þ

are obtained as an average of results based on LCSR
[78,79] and Dyson-Schwinger equations [80]; hereby, the
errors are chosen such that the central values of these
predictions are covered, as is the value of T−ð0Þ suggested
by the observed B → K�γ branching fraction, T−ð0Þ≃
T1ð0Þ ¼ 0.277ð13Þ [5,14,33].3 We note that the identifica-
tion ξ⊥ð0Þ ¼ T−ð0Þ implicitly fixes a nonvanishing value
of the OðΛ2=m2

BÞ residual term in (10). The parameters αX
in (11) model the nonperturbative radiative violations to the
“naive” HQ/LE scaling; we estimate them comparing again
to the different calculations:

jα⊥jmax ¼ 0.2; jα∥jmax ¼ 0.7: ð13Þ

In Fig. 1 we show the T−ðq2Þ and Sðq2Þ used in this work
compared to the central values of the calculations used as
input. The error bands stem from the parameters ξXð0Þ and
αX, that, together with the parameters in the αs corrections
[74] to Eqs. (8) (see below), represent the only sources of
theoretical uncertainties that enter the helicity amplitudes
through the form factors in the HQ/LE limit.
While our errors on the soft form factors may seem to

dwarf the power corrections, this is a mirage: experimen-
tally, one studies observables for which the dependence on
the soft form factors cancels out if αs and power corrections
are neglected. Hence, the latter, parametrized by the

0 1 2 3 4 5 6
0.0

0.1

0.2

0.3

0.4

0.5

0.6

q 2 GeV2
T

0 1 2 3 4 5 6
0.0

0.2

0.4

0.6

0.8

q 2 GeV2

S

FIG. 1. The QCD form factors employed in this work to determine the soft form factors, T−ðq2Þ and Sðq2Þ (red solid), compared to the
determinations used as input in the LCSRs [78] (blue short-dashed), [79] (black dotted) and Dyson-Schwinger equations [80] (purple
long-dashed) approaches. Note that the error of T−ð0Þ has been enlarged to cover the experimentally driven determinations (see text).

3The latter assumes that there is no NP in C7 or C0
7. The former

Wilson coefficient is strongly constrained by inclusive B → Xsγ
decay, and we assume it to be given by its SM value in this paper.
The latter is constrained independently to be (in the present
context) negligibly small by other observables as discussed and
quantified in Sec. III D.
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coefficients aF and bF in (5), constitute a leading source of
uncertainty on these observables and must be carefully
considered. First, the exact relations (6) imply

aTþ ¼ 0; aV0
¼ aS: ð14Þ

On the other hand, the pairs of coefficients aT−
¼ aS ¼ 0

and bT−
¼ bS ¼ 0 since they are effectively absorbed in

ξ⊥;∥ð0Þ and α⊥;∥, respectively, through the definitions of the
soft form factors detailed above. This, in turn, also implies
that aV0

¼ 0 using the second equation in (14). Note that
we cannot remove the remaining eight coefficients aT0

, bT0
,

aV−
, bV−

, aVþ , bVþ , bTþ and bV0
while maintaining the

heavy-quark relations (8).
These are dimensionless coefficients which represent a

suppression OðΛ=mBÞ over the values (for aF) and first
derivatives (for bF) of the form factors at q2 ¼ 0. From the
results in the HQ/LE limit we see that Fð0Þ ∼ ξXð0Þ≃ 0.3,
while for the slopes Eq. (11) leads to dFðq2Þ=dq2jq2¼0 ¼
ξXð0Þð2þ αXÞ=m2

B, which, taking into account Eq. (13),
can be numerically as large as ∼1 (in units of m−2

B ). Thus,
assuming for the moment that Λ=mB ∼ 0.10, we find from
power-counting arguments alone that

jamax;pc
F j≃ 0.03; jbmax;pc

F j≃ 0.10: ð15Þ
One should keep in mind that these estimates are ad hoc
when interpreting the uncertainties derived from the bounds
in (15). To be more precise, and except for their generic
Λ=mB suppression we assume that the exact size (and sign)
of the power corrections are currently unknown.
One can also use the model-independent parametrization

in Eq. (5) to implement further constraints that could be
obtained from first-principles in QCD or to build in
nonperturbative calculations of the form factors and test
them (see e.g. [38]). This discussion is of the utmost
importance in instances where experimental tensions with
the SM appear in observables that are not only sensitive to

short-distance Wilson coefficients but also to the power
corrections to the form factors.
In connection to this, and as an illustration that will

become useful for the phenomenological discussion below,
we show in Fig. 2 the vector form factors V�ðq2Þ used in
this work together with two different predictions from
LCSRs. It is interesting to note at this point that the
calculation in [78] implies a power correction to V−ðq2Þ
which is consistent with the power-counting estimate in
(15) but favoring an overall positive sign, i.e.

V−ð0Þ
T−ð0Þ

≳ V∞
− ð0Þ

T∞
− ð0Þ

: ð16Þ

Finally, let us also remark that the identifications used in
Eq. (12) are arbitrary and other QCD form factors could have
been employed in their stead. This amounts to re-arrange-
ments of power corrections, cf. Eq (9), so that comparing
different schemes allows to test the robustness of the
approach introduced in [33] and refined here. Our particular
choice is different to the one taken in [29,31] which is based
on using the vector form factors, i.e. V−ðq2Þ and V0ðq2Þ in
the helicity basis. We prefer to retain the tensor form factor
T−ðq2Þ because its value at q2 ¼ 0 can be determined from
experimental data [33,74]. The form factor Sðq2Þ appears in
the amplitude only multiplied by lepton masses, and it is
argued in Ref. [38] that using V0ðq2Þ to fix ξ∥ðq2Þ in its
stead could reduce the impact of the power corrections in the
predictions. However, Eq. (14) implies that the power
corrections to V0ðq2Þ enter only through bV0

which has a
marginal effect in the total uncertainty. We will explicitly
demonstrate this by comparing both choices in the phenom-
enological discussion below.

2. Nonfactorizable term

The matrix element of the hadronic weak Hamiltonian,
affecting only the three vector helicity amplitudes through

0 1 2 3 4 5 6
0.0

0.1

0.2

0.3

0.4

0.5

0.6

q 2 GeV2

V

0 1 2 3 4 5 6
0.2

0.1

0.0

0.1

0.2

q 2 GeV2

V

FIG. 2. The predictions on the form factors V−ðq2Þ and Vþðq2Þ obtained in the QCDF approach described in this work. The blue band
are the uncertainties from power corrections added linearly to those from the errors of the parameters entering the perturbative
corrections (red band). These are compared to results in two different LCSR calculations, [78] (blue dashed) and [79] (black dot-
dashed), where the thinner lines are the errors obtained ignoring correlations and taking the maximum possible value when transforming
to the helicity basis used here.
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the hλ terms in (2), can also be split into a HQ/LE limit and
a power correction term,

hλðq2Þ ¼ h∞λ ðq2Þ þ rλðq2Þ: ð17Þ

The leading-power term h∞λ can be calculated system-
atically to any order in αs in QCD factorization [5]. It
carries a well-defined q2 dependence. In particular, to
Oðα0sÞ it amounts to the well-known substitutions C7 →
Ceff
7 and C9 → Ceff

9 ðq2Þ in (2) and the addition of a single,
CKM-suppressed annihilation diagram.
The power-correction terms rλ are more complicated

than in the form factor case. The hadronic weak hamil-
tonian comprises two operators Qc

1, Q
c
2 involving a charm

quark pair, as well as four-quark operators containing light
quarks and the chromomagnetic penguin operator. Of these,
the charmed operators come with large CKM and Wilson
coefficients, presumably giving the most important con-
tributions that we will denote by rcλ.
A key conclusion in [33] was that while rcλ is not

negligible for λ ¼ −; 0, it respects the same helicity
hierarchy as the factorizable terms, i.e. jrcþj ≪ jrc−j; jrc0j.
This relied on a LCSR estimate of soft gluon emission from
the charm loop, and we clarify here the precise relation to
the QCD factorization result in the heavy-quark limit.
Recall first that the HQ/LE limit is given in terms of

Feynman diagrams such as those shown in Fig. 3, com-
puted for soft “constituents” of the B-meson and collinear
ones of the K�, convoluted with leading-twist light-cone
distribution amplitudes. Schematically,

hλ ¼
Z

1

0

duϕK� ðuÞTðu; αsÞ þOðΛ=mbÞ; ð18Þ

where u is the fraction of the K� momentum carried by one
of the K� constituents and dependence on the B-meson
constituent momenta has been suppressed. The internal
lines in the graphs can have hard [Oðm2

bÞ] or hard-collinear
[OðmbΛÞ] virtualities. AWilsonian picture is provided (just
as for the form factor case) by SCET, whereby in two
matching steps the hard and the hard-collinear degrees of
freedom are integrated out, leaving a theory with only
OðΛ2Þ virtualities, where soft and collinear modes no
longer talk to each other and Tðu; αsÞ is a Wilson

coefficient. In fact the picture is not quite complete, as
some convolutions are not convergent: these, however, can
be absorbed into heavy-to-light form factors, times so-
called vertex corrections. There are also annihilation graphs
that converge for λ ¼ �1 for all q2. A necessary and
sufficient requirement for convergence is a sufficiently fast
fall-off of the LCDA at the end point, which holds at
leading twist. This ensures that the “end-point” contribu-
tions to the convolutions, where the collinear “constituent”
really is soft, and the LCDA formalism does not apply, is
suppressed by at least one power of Λ=mB [70].
Further sources of power corrections arise from similar

graphs (with two K� “constituents”) convoluted with
higher-twist two-particle LCDAs, and from graphs with
more constituent lines convoluted with multi-particle
LCDAs (also of higher twist). Sometimes, such higher-
twist contributions exhibit end-point divergences. Note that
at the (spectator) end point, the virtualities of the internal
lines are reduced. For example, the gluon in Fig. 3 is
generically hard-collinear, but soft in the endpoint region, if
the photon does not attach to the spectator line. One can
introduce a cutoff Λh separating collinear from soft
momenta. Then schematically,

rcλ ∼
Z

1

Λh

duϕK� ðuÞTðu; αsÞ þ rcλ;soft: ð19Þ

The first term represents the contributions involving hard-
collinear gluon exchanges and is calculable in perturbation
theory (albeit cutoff dependent). The second contribution
cannot be computed in QCD factorization, however it can
be represented by an operator matrix element hK�jOs̄GbjBi
where Os̄Gb is an operator involving one soft gluon field.
The end-point contribution in this case would not have a
relative power suppression; this can again be argued based
on the end-point behavior of the LCDA and kernel [70], or
simply on the grounds that, even though not calculable, it
needs to cancel the cutoff dependence.
At the two-particle LCDA level, the hard-collinear term

for an insertion of the ðV − AÞ × ðV − AÞ operators Qc
1; Q

c
2

cannot generate an rcþ amplitude because of chirality
conservation in QCD (if light-quark masses are neglected)
[74,77]. It is clear that this also applies to the twist-3 (first
subleading power) two-particle contribution. There are also
twist-3 three-particle contributions, corresponding to an
extra outgoing collinear gluon line. They do not vanish by
the V − A structure of weak interaction, as the extra gluon
field can carry helicity þ1. These three-particle twist-3
contributions have not been computed in the literature.4 In
LCSR computations of the B → V form factors, they give
small contributions [81]. For the present case, we note that

FIG. 3. Spectator scattering diagrams for B → Vγð�Þ. The
bullets denote the possible photon attachments.

4A subset of twist-3 two-particle contributions relevant to the
isospin asymmetries in B → K�γ and B → K�lþl− has been
calculated in [7,8].

S. JÄGER and J. MARTIN CAMALICH PHYSICAL REVIEW D 93, 014028 (2016)

014028-6



the hard-collinear contributions are suppressed by a factor
of αs, and it appears clear that they are end-point con-
vergent from the fact that the three-particle twist-3 vector
meson LCDA vanishes linearly at the quark and antiquark
end points (and quadratically at the gluon end point) [82].
In summary, all hard-collinear contributions are at least

Λ2=m2
B or Λ=mB × αs suppressed, and the same is true for

any contribution involving a collinear gluon, including if
extra soft gluons are radiated. Hence the fate of rcþ is
determined (at order Λ=mB) by purely soft gluon emission
from the charm loop, while rc−, rc0 receive small corrections
to their nonvanishing leading-power values from this
mechanism. For q2 ≪ 4m2

c, the interaction of the charm
loop with a soft gluon background can be represented
through a series of light-cone operators with matrix
elements scaling as ½Λ2=ð4m2

cÞ�n, n ¼ 1; 2;… [79].5 The
B → K� matrix element of the leading (1-soft-gluon) term
in this operator expansion provides an approximation of
rcλ;soft, accurate up to Λ4=ð4mcÞ4Þ corrections. We have
verified that the result in [79] corresponds to the identi-
fication ΛmB ∼ 4m2

c. One obtains generic sizes of Λ=mB for
rcλ;soft, as expected. For q2 ¼ 0 this was indeed the con-
clusion reached already in [83].
To go further in estimating the hadronic matrix elements,

in [33] we adapted a LCSR developed in [79] to the helicity
amplitudes rcλ . LCSRs equate the matrix element of a
perturbative two-point correlator to a sum over a complete
set of hadronic states, which is then truncated to its first
term by means of a duality threshold model. This first term
contains the desired hadronic matrix element. In the case at
hand, the correlation function vanishes for λ ¼ þ1 up to
terms suppressed by an extra factor of Λ=mB [33]. Barring
systematic cancellations between the different terms in the
hadronic sum, for which we cannot identify a mechanism,
this implies that rcþ ¼ OðΛ2=m2

BÞ. No such suppression
takes place for λ ¼ −; 0, which are OðΛ=mBÞ.
Based on these considerations, we parametrize the

remainder term as:

rcλðq2Þ ¼ Aλ þ Bλ
q2

4m2
c
; ð20Þ

where Aλ and Bλ are constants of order Λ2=ð4m2
cÞ. This

generalizes the parametrization in [33], where rλðq2Þ was
approximated by its q2 ¼ 0 value, equivalent to a shift in
the Wilson coefficient C7 in (2) and appropriate for the
phenomenological discussion for q2 ≤ 3 GeV2, a restric-
tion we do not wish to make here. The Bλ-terms

parametrize the leading corrections to a pure 1=q2 depend-
ence once the photon propagator is taken into account, and
give rise to a q2-independent contribution to the amplitude,
and an estimate of the uncertainty due to long-distance
charm contributions away from the kinematic end point.
Attempts to improve on this by including higher powers of
q2=ð4m2

cÞ appear futile, as those will only become relevant
once q2=ð4m2

cÞ ∼ 1 and the expansion breaks down.
Concerning the numerical values of Aλ and Bλ, we allow

arbitrary complex phases for them. This is because, even
when restricting to the operators Qc

1 and Qc
2, rλ is affected

by “charmless” multiparticle cuts, just as happens already
in the leading-power, perturbatively calculable charm loop
result [5]. (See also the discussion in terms of hadronic final
state interactions in [84].) Although this means that the q2

dependence is not analytic in any disc around the origin, the
dependence on the charm mass should still be regular and
admit an expansion in the variable q2=ð4m2

cÞ (with mc-
independent, nonanalytic coefficients), as the charm quark
pair is always off shell. In practice allowing an arbitrary
strong phase has little effect on the uncertainties on the
observables considered below.
It is instructive to represent rcλ as a (helicity-dependent)

shift to Ceff
9 ðq2Þ. In Fig. 4 we show the long-distance charm

contributions used in this work parametrized as a correction
to the Wilson coefficient C9. The (black) solid line is the
result of a fit of Eq. (20) to the upper error band shown in
Fig. 5 of Ref. [79] that is the result of the LCSR calculation
valid up to q2 ≃ 4 GeV2. We show the modulus of the
(complex) correction and extrapolate up to q2 ≃ 6 GeV2.
More precisely, (20) corresponds to a parametrization of
the type jΔCi

9j ¼ 2mbmB=q2δi1 þ δi2, and the fits give
δ11 ¼ 0.02, δ12 ¼ 0.18, δ31 ¼ 0.03, δ32 ¼ 0.78. This cor-
rection is implemented numerically in this work as a flat
error in the corresponding helicity amplitudes. The con-
tribution rþ is additionally power suppressed as discussed
above, and we will use the same parameters as in r− but
multiplied by Λ=mB.
In Fig. 4 we also show the parametrization used in [79]

as (blue) dashed lines, where the partonic result is matched
to a hadronic representation via a dispersion integral and a
model for the continuum contribution. This is shown as an
illustration of the possible large long-distance effects that
could be induced by the Qc

1 and Qc
2 operators at q2 ≳

6 GeV2 and whose description requires introducing model
dependence. This is also consistent with the findings
of Ref. [37].
Other contributions to rλ can also be investigated. Those

induced by the chromomagnetic penguin operator Q8 have
been studied in the context of LCSR in [84] and [85], an
their contributions turn out to be very small. The contri-
butions involving light-quark loops can be problematic at
low q2 since their treatment in QCDF is the dual to the one
induced by light vector resonances. However, they always

5We stress that the gluon is soft in the B rest frame. This is
different from the case where one considers extra collinear
gluons, such as in deriving a light-cone sum rule with K�
distribution amplitudes; see the discussion in [33]. However,
as explained, it is soft gluon emission that determines power
corrections incalculable in QCD factorization.
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come doubly CKM suppressed or multiplied by small
Wilson coefficients. A study of the impact of the duality
violation (in relation to the QCDF result) was done using
vector-meson dominance in [33] and it turned out to be
negligibly small in the binned angular observables. It was
also shown that ru;d;sþ for the light quarks is also suppressed
by ðΛ=mBÞ2.
For all this, we neglect the power corrections to the other

terms, effectively absorbing them into rcλ and will treat all
the corrections to rþ suppressed by ðΛ=mBÞ2.

III. ANGULAR OBSERVABLES AND THE
ANALYSIS OF THE EXPERIMENTAL DATA

The q2-dependent angular distribution (summed over
lepton spins) is quadratic in the helicity amplitudes and has
been given in [33]. Certain ratios of angular coefficients are
favored because of their reduced sensitivity to form factors.

In particular, we will discuss the so-called Pð0Þ
i basis which

was introduced in [23,31]. This is an exhaustive set of
observables, constructed from ratios of the angular coef-
ficients and engineered to cancel most of the hadronic
uncertainties in the HQ/LE limit.
In order to illustrate this and critically reexamine the

residual uncertainties on those observables, we will focus
on two of them, called P1 and P0

5 in [23,31]. In terms of the
helicity amplitudes, they read:

P1 ¼
−2ReðHþ

VH
−�
V þHþ

AH
−�
A Þ

jHþ
V j2 þ jH−

V j2 þ jHþ
A j2 þ jH−

Aj2
; ð21Þ

P0
5 ¼

Re½ðH−
V −Hþ

V ÞH0�
A þ ðH−

A −Hþ
A ÞH0�

V �ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðjH0

V j2 þ jH0
Aj2ÞðjHþ

V j2 þ jH−
V j2 þ jHþ

A j2 þ jH−
Aj2Þ

p
ð22Þ

where we have neglected the muon mass for clarity and
have introduced the short-hand notation HV;AðλÞ ¼ Hλ

V;A.

In certain approximations P1 and P0
5 become free of

nonperturbative uncertainties. In the HQ/LE limit and
neglecting αs corrections, as well as the contributions hλ
from the hadronic weak Hamiltonian, the λ ¼ þ helicity
amplitudes vanish and Vλðq2Þ ¼ Tλðq2Þ. As a result, in
these limits and in the SM,6

P1 ¼ 0; ð23Þ

P0
5 ¼

Re½C�
10C9;⊥ þ C�

9;∥C10�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðjC9;∥j2 þ jC10j2ÞðjC9;⊥j2 þ jC10j2Þ

q ; ð24Þ

where C9;⊥ ¼ Ceff
9 ðq2Þ þ 2mbmB

q2 Ceff
7 , C9;∥ ¼ Ceff

9 ðq2Þ þ
2mb
mB

Ceff
7 , and the Pð0Þ

i are functions of theWilson coefficients
alone.
Thus, the leading sources of uncertainties for the

observables in the Pð0Þ
i basis are due to the presence of

nonfactorizable contributions as well as to corrections to
the HQ/LE form factor relations. To see this explicitly, note
that

P0
5 ¼ P0

5j∞
�
1þ aV−

− aT−

ξ⊥
mB

j~kj
m2

B

q2
Ceff
7

×
C9;⊥C9;∥ − C2

10

ðC2
9;⊥ þ C2

10ÞðC9;⊥ þ C9;∥Þ
þ aV0

− aT0

ξ∥
2Ceff

7

×
C9;⊥C9;∥ − C2

10

ðC2
9;∥ þ C2

10ÞðC9;⊥ þ C9;∥Þ
þ 8π2

~h−
ξ⊥

mB

j~kj
m2

B

q2

×
C9;⊥C9;∥ − C2

10

C9;⊥ þ C9;∥
þ further terms

�
þOðΛ2=m2

BÞ;

ð25Þ
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FIG. 4. Long-distance charm contributions parametrized as a correction to the Wilson coefficient C9. The (black) solid line results
from the maximum possible contribution as shown in Ref. [79]. We show the modulus of the (complex) correction extrapolated up to
q2 ≃ 6 GeV2. The (blue) dashed lines correspond to the hadronic parametrization used in [79].

6We will ignore in this discussion the strange quark mass
which produces an effect suppressed by ms=mb in P1.
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where for simplicity we have assumed real Wilson coef-
ficients, ~hþ denotes the nonlocal term hλ with its leading
term removed (absorbed into Ceff

9 ), and we have neglected
the difference between mb and mB as a higher-order effect.
We see in the second term on the first line the presence
of the power correction combination aV−

− aT−
. This

is invariant under change of soft form factor scheme
[cf. (9)]—in particular it does not matter whether V− or
T− is identified with ξ⊥, implying aV−

¼ 0 or aT−
¼ 0,

respectively. Similarly, power corrections to the helicity-
zero form factors enter only in the combination (aV0

—aT0
)

(second line). Both can be understood by observing that
form factors cancel out of P0

5 completely if Ceff
7 , the λ ¼ þ

amplitudes, and nonfactorizable corrections are all
neglected. As a result, form factor uncertainties enter
only through interference of the tensor and vector form
factors, and of form factors and nonfactorizable correc-
tions. Put another way, form factor uncertainties enter the
Pi only through deviations of the form factor differences
Tλ − Vλ from their zero HQ/LE limit. (For λ ¼ −; 0, these
could be traded for the deviations of the ratios Tλ=Vλ

from one.) At the model-independent level, lacking
first-principles results on the individual form factors all
one can achieve is to parametrize the power correction
Tλ − Vλ in some way. For example, without loss of
generality one can parametrize

T−ðq2Þ − V−ðq2Þ≡ aT−
þ bT−

q2

m2
B
þ � � �

ðcorresponding to aV−
¼ 0Þ

or one can take

T−ðq2Þ − V−ðq2Þ≡ −aV−
− bV−

q2

m2
B
þ � � �

ðcorresponding to aT−
¼ 0Þ:

This is an equivalent way of defining the same power
correction schemes discussed above. Clearly, any model
prediction such as a sum rule calculation can be
expressed in either parametrization. Of course, the
prediction for a physical observables does not depend
on which choice is made, as the scheme dependence of
the model calculation cancels against that in the observ-
able calculation (in the present case, simply aT−

and
−aV−

are traded for one another in the intermediate
stages, and similarly bT−

and −bV−
).

The interference is most important if Ceff
7 and Ceff

9 ðq2Þ
are comparable, as happens in particular around the
zero-crossing of P0

5. The term displayed on the last line
involves nonfactorizable corrections. All three terms
demonstrate how the soft form factors with their
associated uncertainties re-enter at subleading power.
The full expression is quite lengthy and depends on all
power-correction parameters and the three nonlocal

terms. A similar sensitivity to power corrections occurs
in most of the other angular coefficients, and in the

observables in the Pð0Þ
i basis built from them. This

includes the locations of the zero-crossings of these
observables.
In striking contrast, the OðΛ=mBÞ power corrections to

P1 take the simple form

P1 ¼
1

C2
9;⊥ þ C2

10

mB

j~kj

�
−
aTþ

ξ⊥
2m2

B

q2
Ceff
7 C9;⊥

−
aVþ

ξ⊥
ðC9;⊥Ceff

9 þ C2
10Þ −

bTþ

ξ⊥
2Ceff

7 C9;⊥

−
bVþ

ξ⊥
q2

m2
B
ðC9;⊥Ceff

9 þ C2
10Þ þ 16π2

hþ
ξ⊥

m2
B

q2
C9;⊥

�

þOðΛ2=m2
BÞ: ð26Þ

Apart from depending on only one soft form factor and
fewer power-correction and nonlocal parameters, these
terms suffer further suppression: aTþ vanishes exactly as
discussed in Sec. II A 1, the next three terms are suppressed
by a power of q2=m2

B relative to the denominator at small
q2, and hþ has an extra power suppression as discussed
in the previous section. As a result, P1 vanishes like
OðΛ2=m2

BÞ, OðCeff
9 =Ceff

7 × q2=m2
B × Λ=mBÞ at small q2

in the SM. By contrast, in the presence of nonzero C0
7 it

is order one. Analogous is the case of the CP-asymmetry
PCP
3 [20,33], which at low q2 cleanly probes a BSM weak

phase in C0
7.

Finally let us comment on the extension of our con-
clusions to the observables in the Si basis, where the total
decay rate is used to normalize the angular observables
[14]. The theoretical errors are in general expected to be

larger than in the Pð0Þ
i basis, because the sensitivity to

ξ⊥ðq2Þ and ξ∥ðq2Þ is enhanced in the heavy-quark limit
without the P0

i basis optimization. However, the suppres-
sion in the SM of the λ ¼ þ amplitudes still implies the
same OðΛ2=m2

BÞ, OðCeff
9 =Ceff

7 × q2=m2
B × Λ=mBÞ suppres-

sion seen above for the “un-optimized” versions of P1 and
PCP
3 , S3 and A9, respectively, and the additional form factor

uncertainties affect only the normalization of the residual
term in these two special cases, which is very small at
small q2.

A. Statistical framework and predictions in the SM

In the analysis of experimental data one must specify
the treatment of the theoretical uncertainties in the
statistical framework to be used. A frequentist scheme
that has been successfully applied to the analysis of the
CKM unitarity triangle by the CKMfitter collaboration is
the range fit (or Rfit) method [86]. In this approach,
the χ2 is first constructed in the usual way, based on a
vector of experimentally measured observables ~x with
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experimental uncertainty ~σ.7 The theoretical determination
of the observables depends on two types of variables:

(i) A set ~C of short-distance Wilson coefficients of the
effective weak Hamiltonian; (ii) hadronic parameters, ~y
that can be determined using various nonperturbative

methods with some systematic uncertainty ~δ. A piece is
then added to the χ2 that does not contribute unless any
of the components yi leaves the range determined by its
uncertainty, δi. More explicitly:

χ2ð~C; ~yÞ

¼
8<
:

P
i

ðxi−xthi ð~C;~yÞÞ2
σ2i

; if yk ∈ ½ȳk − δk; ȳk þ δk� ∀k
∞; otherwise

:

ð27Þ

Once it is in this form, one can treat the set ~y as nuisance
parameters to construct a “profile χ2” depending on the
Wilson coefficients alone,

~χ2ð~CÞ ¼ min
~y
χ2ð~C; ~yÞ; ð28Þ

and determine confidence level (C.L.) intervals for the Ci
in a frequentist fashion and irrespective of the values of
the other QCD parameters. Obviously, QCD parameters
with particular interest, e.g. for testing nonperturbative
calculations, can be promoted to the set of “interesting”

parameters in ~C and be determined simultaneously from
the experimental data.
Another statistical framework would be to implement the

theoretical uncertainties in a χ2 by adding in quadratures to
the experimental uncertainties [50,53,54]. This implicitly
assumes that the theoretical errors distribute normally or
can be measured independently, although this will be rarely
the case.
These considerations have to be kept in mind when

interpreting the theoretical predictions of the observables.
In particular, it is clear that the Rfit method scans the space

of parameters ~y within the interval defined by its uncer-
tainty, searching for C.L. intervals that maximize the
agreement between theory and experimental data. Thus,
our uncertainties must be interpreted in terms of the
maximal spread of theoretical predictions that will be
considered in the global fits. On the other hand, it is
important to stress that the nuisance parameters are also
implicitly fitted and the range of their values will be further
constrained in the analysis.
In the first three columns of Table I we show the results

produced in the SM using the model-independent approach
described in Sec. II A. The relevant input parameters with
their uncertainties are listed in Table II, while for the
Wilson coefficients in the SM we use NNLL accuracy [87].
The central values in the two first columns correspond to
those of the parameters and the errors to the maximum
spread produced by the scan within the range produced by
their uncertainties. In the second column, we employ a
different parametrization for the soft form factors. Instead
of T− and S, and following the approach suggested in [38],
we choose ξ⊥ ¼ mB=ð2EÞV− and ξ∥ ¼ V0 to study the
effect on the uncertainties introduced by these choices.
Equation (11) and the values of the parameters in (13) and
(15) also hold in this case. In the third column, we show the
results assuming that the parameters ~y are normally
distributed and uncorrelated, and we quote the mean and
the 1σ C.L. of the distributions resulting for the
observables.
From the results of the two first columns, we conclude

that different identifications of the soft form factors to the
QCD ones can produce small differences in the results,
which can be reconciled with reasonable changes in the
power-correction parameters aX and bX. As stressed in

TABLE I. Results for the bin ½1; 6� GeV2 in the SM for a selection of observables and using different schemes for
the estimation of the theoretical uncertainties. We compare with independent calculations in the literature [30,38,52]
whenever it is possible. In the last column we show the experimental data.

Max. spread Max. spread (V− and V0) 1σ Gaussian Ref. [30,52] Ref. [38] Expt.

P1 −0.03þ0.22
−0.24 −0.03þ0.22

−0.23 −0.03þ0.13
−0.13 — 0.009þ0.038

−0.044 0.15(40)
P2 −0.12þ0.41

−0.37 −0.11þ0.37
−0.33 −0.10þ0.19

−0.19 −0.15þ0.07
−0.07 −0.21þ0.17

−0.20 −0.66ð23Þ
P0
5 −0.36þ0.45

−0.34 −0.37þ0.40
−0.34 −0.36þ0.19

−0.17 −0.34þ0.09
−0.08 −0.41þ0.11

−0.12 0.21(21)

TABLE II. Input parameters employed in the calculations of
this work. Values for the soft form factors and power-correction
parameters is found in Sec. II A.

mb;ð1SÞ 4.65(3) [88] αsðMZÞ 0.1184(7) [88]
mc 1.275(25) [88] fK� 220(5) MeV [33]
ms 0.095(5) [88] fK�⊥ 170(20) MeV [33]
λ 0.22543(77) [89] a1 0.2(2) [5]
A 0.812(19) [89] a2 0.1(3) [5]
ρ̄ 0.145(27) [89] fB 0.1905(42) GeV [90]
η̄ 0.343(15) [89] λ−1B;þ 2.0ð5Þ GeV−1 [5]

7The correlations for the data used in this paper have not been
published and we assume in our fits that the different measure-
ments are uncorrelated.
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Sec. II A 1, this comparison provides a test of self-
consistency to any approach based on the HQ/LE limit.
Therefore, it is surprising that the opposite conclusion was
drawn from the similar analysis of Ref. [38]. By comparing
the results obtained in the first and third columns we
observe that treating the theoretical errors as normally
distributed one obtains, at 1σ, less than 1=2 the uncertainty
produced by the scan of the parameter space.
In the fourth and fifth columns of Table I, we show the

results of independent calculations, Refs. [30] (Bayesian)
and [38], respectively, and in the last column, the LHCb
data. The predictions from Ref [52] (nominal priors) are the
result of a Bayesian treatment assuming normal distribu-
tions for the nuisance parameters. The description of the
power corrections is different to the one employed in this
work. A scale factor is introduced at the level of the
amplitudes [13] that is normally distributed around 1 and
with the standard deviation at the 0.15%. However note that
with this method the corrections to the relation Tλðq2Þ ¼
Vλðq2Þ are omitted and, as discussed in Sec. III, the
uncertainties in observables like P0

5 or P2 could be under-
estimated at low q2. On the other hand, Ref. [38] (KMPW
scheme) uses a parametrization of the power corrections to

the form factors similar to the one proposed here, and
quotes the maximum spread of theoretical predictions.
However the power-correction parameters are not treated
as uncertainties constrained only by model-independent
relations but they are in part fitted to LCSR calculations.
We finish the comparison by noting that the uncertainties

have increased as compared to our previous work in
Ref. [33]. This is largely explained by the improved
treatment of the nonfactorizable soft contributions used
in this paper and, to a lesser extent, by the different values
used for the power-corrections parameters and ξ⊥ð0Þ. Also,
in the present analysis, we scan all parameters simulta-
neously, whereas in Ref. [33] they were separated in four
groups and added in quadratures.

B. Predictions for B → K�μþμ− and B → K�eþe−
angular observables

In Table III, we update our predictions in the SM and the
muonic mode for the branching fraction, the longitudinal
polarization fraction FL and the angular observables in the

Pð0Þ
i basis (defined using the LHCb conventions [45,49]), in

the narrow binning scheme. We also show predictions for

TABLE III. Binned results in the SM for the branching fraction, the longitudinal polarization fraction FL and the angular observables

in the Pð0Þ
i basis (using the LHCb conventions [45,49]). For the electronic mode we give predictions for the bin ½0.0020þ0.0008

−0.0008 ; 1.12
þ0.06
−0.06 �

[91].

Bin [GeV2] Br ½10−8� FL P1 P2 PCP
3 ½10−4� P0

4 P0
5 P0

6 P0
8

[0.1, 0.98] 8.6þ4.5
−3.1 0.26þ0.21

−0.14 0.03þ0.06
−0.05 −0.175þ0.039

−0.041 0.2þ1.1
−0.8 0.19þ0.06

−0.08 0.56þ0.13
−0.14 0.04þ0.08

−0.08 0.00þ0.09
−0.09

[1.1, 2] 3.4þ2.9
−1.5 0.68þ0.17

−0.23 0.04þ0.11
−0.11 −0.83þ0.16

−0.09 0.4þ3.4
−2.3 0.04þ0.16

−0.18 0.35þ0.30
−0.32 0.06þ0.19

−0.19 0.01þ0.11
−0.11

[2, 3] 3.4þ3.4
−1.5 0.78þ0.13

−0.21 0.01þ0.12
−0.15 −0.84þ0.39

−0.14 0.4þ4.3
−2.9 −0.19þ0.23

−0.20 −0.10þ0.47
−0.42 0.06þ0.26

−0.27 0.02þ0.09
−0.09

[3, 4] 3.6þ3.8
−1.8 0.77þ0.14

−0.24 −0.03þ0.27
−0.27 −0.21þ0.50

−0.53 0.3þ3.4
−2.6 −0.37þ0.23

−0.16 −0.49þ0.52
−0.36 0.05þ0.27

−0.28 0.01þ0.06
−0.06

[4, 5] 4.0þ4.3
−2.1 0.73þ0.18

−0.28 −0.06þ0.34
−0.32 0.30þ0.35

−0.52 0.2þ2.3
−2.1 −0.45þ0.20

−0.12 −0.69þ0.48
−0.30 0.04þ0.25

−0.26 0.01þ0.05
−0.05

[5, 6] 4.6þ5.1
−2.6 0.68þ0.22

−0.30 −0.07þ0.39
−0.38 0.59þ0.23

−0.40 0.1þ1.7
−1.6 −0.48þ0.17

−0.10 −0.80þ0.43
−0.27 0.03þ0.23

−0.24 0.01þ0.05
−0.06

[1.1, 6] 19þ19
−9 0.73þ0.17

−0.25 −0.02þ0.23
−0.24 −0.10þ0.41

−0.39 0.3þ2.7
−1.9 −0.30þ0.21

−0.16 −0.38þ0.46
−0.34 0.05þ0.24

−0.25 0.01þ0.06
−0.05

Electron 23þ10
−8 0.12þ0.14

−0.07 0.03þ0.05
−0.05 −0.080þ0.017

−0.016 0.3þ1.0
−0.7 0.19þ0.06

−0.07 0.52þ0.12
−0.12 0.04þ0.07

−0.07 0.00þ0.08
−0.08

TABLE IV. Binned results in the SM for the branching fraction, the longitudinal polarization fraction FL and the angular observables

in the Pð0Þ
i basis (using the LHCb conventions [45,49]). The results are obtained using Montecarlos in which the nuisance parameters are

distributed normally and we quote for each case the mean as central value and the 1σ intervals as error bars. For the electronic mode we
give predictions for the bin ½0.0020þ0.0008

−0.0008 ; 1.12
þ0.06
−0.06 � [91].

Bin [GeV2] Br ½10−8� FL P1 P2 PCP
3 ½10−4� P0

4 P0
5 P0

6 P0
8

[0.1, 0.98] 8.5þ2.0−1.8 0.26þ0.10−0.09 0.025þ0.023−0.022 −0.177þ0.020−0.021 0.02þ0.34−0.36 0.181þ0.029−0.035 0.57þ0.06−0.06 0.040þ0.033−0.033 0.000þ0.044−0.043
[1.1, 2] 3.4þ1.1

−0.9 0.68þ0.10−0.12 0.03þ0.05−0.05 −0.84þ0.07−0.06 0.3þ0.8−0.8 0.03þ0.07−0.08 0.36þ0.14−0.14 0.06þ0.08−0.08 0.01þ0.05−0.05
[2, 3] 3.4þ1.4−1.0 0.78þ0.07−0.11 0.01þ0.06−0.07 −0.83þ0.16−0.10 0.3þ0.9−0.7 −0.20þ0.10−0.10 −0.10þ0.21−0.20 0.06þ0.11−0.11 0.014þ0.035−0.035
[3, 4] 3.6þ1.5−1.1 0.78þ0.08−0.11 −0.04þ0.16−0.16 −0.19þ0.24−0.26 0.3þ0.9−0.7 −0.37þ0.10−0.08 −0.49þ0.22−0.19 0.05þ0.12−0.12 0.013þ0.020−0.020
[4, 5] 4.0þ1.8−1.2 0.73þ0.10−0.13 −0.05þ0.22−0.21 0.32þ0.18−0.23 0.2þ0.8−0.7 −0.45þ0.08−0.07 −0.69þ0.20−0.17 0.3þ0.12−0.12 0.011þ0.017−0.017
[5, 6] 4.6þ1.9−1.4 0.67þ0.12−0.15 −0.07þ0.24−0.24 0.60þ0.12−0.17 0.1þ0.6−0.6 −0.48þ0.08−0.06 −0.80þ0.18−0.15 0.02þ0.11−0.11 0.01þ0.02−0.02
[1.1, 6] 19þ8−5 0.73þ0.09−0.12 −0.03þ0.14−0.14 −0.08þ0.19−0.20 0.2þ0.6−0.5 −0.31þ0.09−0.08 −0.38þ0.20−0.17 0.04þ0.10−0.11 0.01þ0.02−0.02
Electron 23þ6−5 0.13þ0.06−0.05 0.033þ0.021−0.019 −0.080þ0.008−0.008 0.27þ0.32−0.36 0.194þ0.026−0.032 0.52þ0.05−0.05 0.035þ0.027−0.027 0.001þ0.042−0.042
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the electronic mode in an “effective” low-q2 bin [91]
½0.0020þ0.0008

−0.0008 ; 1.12
þ0.06
−0.06 �. All these predictions are obtained

scanning the nuisance parameter space and extracting the
maximum spread for the errors. The errors propagated from
the uncertainties in the range of the bin in the electronic
case are very small and neglected.
In Table IV we show instead the predictions we obtained

using Gaussian distributions for the nuisance parameters,
quoting the mean and the 1σ interval for the observables.

C. The B → K�μþμ− anomaly

As it has been stressed above, the angular observables in
B → K�lþl− at low q2 are usually afflicted by the leading
power corrections to the HQ/LE factorization formula for
the decay amplitude. In order to illustrate the impact that
these can have in the phenomenological analyses, we
investigate the significance of the recently claimed tensions
with the SM in B → K�μþμ− at low q2 and employing the
model-independent approach to the nonperturbative uncer-
tainties presented here and in Ref. [33]. As discussed in
Sec. II A 2, the bin showing the largest discrepancy,
½4.3; 8.63� GeV2 [49], suffers from uncertain charm-loop
contributions for which no model-independent framework
exists even in the heavy-quark limit, as the bin extends
outside the range of validity of QCD factorization,
employed both here and in [38]. Therefore, we restrict
our investigation to the CP-averaged angular observables

in the Pð0Þ
i basis, augmented by the CP asymmetry PCP

3 ,
measured in the bin ½1; 6� GeV2 [45,49].
On the left-hand side of Fig. 5 we show the contours for

the χ2 constructed with this angular data in the SM (all the
Wilson coefficients set to their SM values), as a function of
the power corrections to the vector form factors aV� and

where we have profiled over the rest of the QCD param-
eters. The χ2 receives an important contribution from the
measured P0

5, which in our plot is represented by the
overlaid diagonal contours obtained setting all the other
QCD parameters to their central values. This is consistent
with the conclusions of the different analyses (e.g.
Ref. [50]), and we also agree that the data favors a negative
NP contribution to C9. However, in our case the signifi-
cance is smaller, below 2σ, as in our approach the data can
be accommodated quite well by reasonable values of the
power corrections. This is shown on the right-hand side of
Fig. 5, where we plot the Δχ2 as a function of the
contribution of NP to C9 (χ2min ∼ 1) and where (i) we
profile over all QCD parameters and (ii) set the NP
contributions to all other Wilson coefficients to zero.
One can explore the dependence of these results on some
of our choices. In particular, we show also the χ2 for the
case in which we use (V−, V0) to fix the soft form factors.
In this case, represented by the green dashed line, and
where we have used the same estimates for the power
corrections as in our standard choice, the agreement
worsens somewhat, increasing the significance to close
to 2σ. We emphasize, in line with our above demonstration
of the form-factor scheme independence of the observables
to linear order, that this increase in significance is not to be
interpreted as favoring this form-factor scheme. Rather the
difference in significances between the two form-factor
schemes can be taken as a measure of the uncertainty due to
higher-order power corrections.
The advantage of our parametrization of the power

corrections is that they are related to specific QCD matrix
elements and the outcome of our analysis can be compared
directly to the results of nonperturbative calculations. For
instance, our SM fit on the left-hand side of Fig. 5 favors a

4 3 2 1 0 1 2
0

1

2

3

4

5

C9

2

FIG. 5. Graphs for the B → K�lþl− anomaly. Left panel: 68% and 95% C.L. bounds in the parameter space of the power corrections

aV� and for a fit in the SM. We use a profile χ2 including only the Pð0Þ
i observables in the bin ½1; 6� GeV2. The origin of the axis

corresponds to QCDF and the small dashed box corresponds to the subspace for the LCSR of Ref. [78] when the errors of V and A1 are

combined linearly. Right panel: Profile χ2 including only the angular observables in the Pð0Þ
i basis in the bin ½1; 6� GeV2 as a function of a

BSM contribution to C9 and setting all the other Wilson coefficients to their SM values. The red and blue shades indicate the limits for
the 68% and 95% C.L. The dashed green line corresponds to the case in which V− and V0 are used to fix the soft form factors. In both
cases χ2min ∼ 1.
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value of aV−
, more generally of aV−

− aT−
or equivalently a

correction to the ratio V∞
− ð0Þ=T∞

− ð0Þ computed in QCDF,
that is negative. However, as it was advanced in Sec. II A 1,
this is a scenario that is not compatible with the LCSR
calculation of Ref. [78], where the correction is obtained
with the opposite sign. This is illustrated by the blue box in
the plot, which describes the size of the power corrections
predicted by the LCSR and estimated as described in
Sec. II A 1.
In conclusion, the interpretation B → K�μþμ− anomaly

is blurred by the sensitivity of the relevant observables to
power corrections. From the discussion above it is clear that
implementing the QCD form factors in the LCSR enhances
the signal and that a careful assessment of the accuracy of
the various nonperturbative approaches seems to be still
necessary to unambiguously attribute this anomaly to NP
(for some recent developments within LCSR see [92]).

D. Constraints on right-handed currents

In Secs. II A and III, we argued that the angular
observables P1 and PCP

3 stand out among the others
because they are sensitive to Hþ

V . This makes them zero
in the SM, up to subleading power corrections or up to
leading ones that are further suppressed by a factor q2=m2

B.
Thus, around the low q2 end point,P1 and PCP

3 are null tests
of the SM in very good approximation, becoming very
sensitive to right-handed currents BSM entering through
the electromagnetic penguin operator Q0

7.
On the experimental side, there are the measurements of

the muonic mode in the lowest-q2 bin and those in the
electronic channel, which are best due to its lower end
point. Indeed, most of the difference between their branch-
ing fractions in the lowest bin shown in Table III (roughly a
factor 3) stems from events in the region between the two
end points. This region is especially sensitive to the physics
of the photon pole and it is where the q2=m2

B-suppression of
the leading power corrections is maximally effective. We
show in Table V the error budget for the SM predictions of
P1 and PCP

3 in the electronic mode. As expected, the
contribution to the uncertainty from the power corrections
to the form factors is very small and the final theoretical
error is dominated by the ðΛ=mBÞ2-suppressed long-dis-
tance charm, rcþ.
The radiative decays are also obvious probes of the

structure of the electromagnetic operators and strategies to
determine the helicity of the photon (and therefore C0

7) with

these decays have been intensively investigated [83,93–99].
The inclusive b → sγ decay ratio, while theoretically clean,
depends only quadratically on C0

7. However, interference
between helicity amplitudes (and linear dependence on C0

7)
can be induced by B0-B̄0 mixing and the time-dependent
CP-asymmetry in B → K�γ and has been suggested as
a clean null test of the SM [93], via its sine coefficient
given by

SK�γ ¼
2Im½e−2iβðH�

−H̄− þH�þH̄þÞ�
jHþj2 þ jH−j2 þ jH̄þj2 þ jH̄−j2

; ð29Þ

where Hλ (H̄λ) corresponds to the helicity amplitudes of
B → K�γ (B̄ → K̄�γ) and β is the angle of the CKM
unitarity triangle. These helicity amplitudes are given in
terms of the residues at q2 ¼ 0 of those of the semileptonic
decay, HVðλÞ, cf. Eq. (3), and inherit the multiple sup-
pression ofHþ

V in the SM. Applying the approach described
in this paper for the theoretical description of the ampli-
tudes one obtains, in the SM:

SK�γ ¼ −0.02þ0.016
−0.023 ; ð30Þ

which is to be compared with the average of experimental
measurements, SK�γ ¼ −0.16� 0.22 [100–102].
In Fig. 6 we display contour plots in the C0

7 plane. On the
left-hand side, we show the ideal bounds obtained for the
central values of the theoretical parameters and assuming
an experimental precision of 0.25 for P1 and PCP

3 in both
the electronic and muonic channels. We also show the
constraint obtained from the current measurements of SK�γ .
On the right-hand side, we show the current bound that is
obtained using all the available experimental data of B →
K�lþl− in the lower bins [0.1,2] and ½2; 4.3� GeV2 and of
B → K�γ. We also use the branching fraction of B → Xsγ,
BðB → XsγÞ that, depending quadratically on C0

7, becomes
the dominant contribution to the χ2 for large values of the
coefficient. We profile over all the QCD parameters, and we
set all the other Wilson coefficients to their SM values.
We conclude that P1 and PCP

3 conform, in combination
with SK�γ and BðB → XsγÞ, and neglecting NP contribu-
tions to the phase of the Bd mixing amplitude, a basis of
clean observables that completely determine C7 and C0

7

from experiment, with the simple expressions given in
[98,99] being protected from QCD uncertainties to a high
degree.
With the small theoretical uncertainties in the SM

predictions, one expects that the determination of these
Wilson coefficients will be dominated by the experimental
errors. In this regard, and as shown in the left-hand panel of
Fig. 6, the measurements provided by the electronic mode
are very promising. It is also worth pointing out in the right-
hand panel of Fig. 6 the small discrepancy with the SM in

TABLE V. Error budget for the P1 and PCP
3 for the electronic

mode in the bin ½0.002; 1.12� GeV2.

Result QCDF Fact. p.c.’s Nonfact. p.c.’s

P1 0.032þ0.055
−0.048

−0.003
þ0.010

�0.012 þ0.031
−0.029

PCP
3 ½10−4� 0.3þ1.0

−0.7
þ0.5
−0.2

þ0.1
−0.2

þ0.6
−0.4
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the imaginary part that is driven by the current measure-
ment of the angular observable A9 in the muonic mode.8

At higher q2, P1 and PCP
3 are also affected by OðΛ=mBÞ

power corrections induced, in this case, chiefly by the
vector form factor Vþðq2Þ. However, given their specific
sensitivity to right-handed quark currents they could also
serve to probe C0

9 and C
0
10, especially if these are as large as

recently discussed in the literature [54]. In order to
demonstrate this we show in Fig. 7 the q2 dependence
of P1 and PCP

3 in the SM and compared to the results in
different scenarios of NP involving corrections to C0

9 and

C0
10 of order 1. As discussed in Sec. III A, the correlations

with other observables in terms of the same relevant QCD
parameters (cf. aVþ) will increase the sensitivity of P1 and
PCP
3 to C0

9 and C0
10 in the global fits.

IV. LEPTON-UNIVERSALITY RATIOS

In light of the recent hints on lepton universality
violation (LUV) in various b → sll measurements it
becomes important to investigate the opportunities that
B → K�ll offers for the confirmation and characterization
of the effect. In fact, one can introduce lepton universality
ratios involving the muonic and the electronic modes for a
given observable. These are extremely clean since up to
kinematical Oðm2

μ=q2Þ corrections, they are equal to 1 in
the SM and in lepton-universal NP scenarios. Let us start
defining the ratio of the rates [103]:

FIG. 6. Bounds in the C0
7 plane. Left panel: Ideal 68% and 95% contour plots for the central values of the theoretical parameters. The

diagonal band corresponds to the SK�γ measurement and the vertical and horizontal ones to hypothetical null measurements of P1 and
PCP
3 , respectively, with an assumed experimental precision of 0.1. The green and black lines are for the muonic mode and the brown and

orange for the electronic one. Right panel: Current bounds at 68% and 95% C.L. in the C0
7 plane using all the current data of

B → K�μþμ− in the lower bins [0.1,2] and ½2; 4.3� GeV2 and of B → K�γ and B → Xsγ. We use the profile likelihood method and set all
other Wilson coefficients to their SM values.

FIG. 7. Sensitivity of P1ðq2Þ and PCP
3 ðq2Þ to right-handed quark currents. The SM predictions are the solid (red) lines and the

theoretical uncertainty, represented by the band, is obtained taking the maximum spread of theoretical predictions. In the plot of P1ðq2Þ
the NP scenarios correspond to C0

7 ¼ −0.05 (dashed green), C0
9 ¼ −1 (dotted black) and C0

10 ¼ 1 (dot-dashed blue). In the plot of
PCP
3 ðq2Þ, we show C0

7 ¼ −0.05 (dashed green), C0
9 ¼ −1 (dotted black) and C0

10 ¼ 1 (dot-dashed blue). In the plot of PCP
3 ðq2Þ, we plot

C0
7 ¼ 0.05i (dashed green), C0

9 ¼ −eiπ4 (dotted black) and C0
10 ¼ ei

π
4 (dot-dashed blue).

8Since this discussion is meant to be an illustration of the
impact of the approach of this paper in the phenomenology, we
obtained our experimental PCP

3 from the measured A9 and FL via
PCP
3 ¼ A9=ð1 − FLÞ, propagating errors quadratically and ignor-

ing experimental correlations.
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RK� ¼ BðB → K�μþμ−Þ
BðB → K�eþe−Þ : ð31Þ

Next, we can use the angular distribution of the final K and
π produced in the K� decay to separate the total B → K�ll
rate into the contributions of the decays into transversely
or longitudinal K� mesons. The balance between these
two in the total decay rate is often measured by the
polarization fractions FL ¼ 1 − FT [45]. Here we prefer
to use the integrated “longitudinal” and “transversal” rates,
dΓ=dq2FL;T , and construct the corresponding lepton-
universality ratios:

RK�
X
¼ BðB → K�

Xμ
þμ−Þ

BðB → K�
Xe

þe−Þ : X ¼ L; T: ð32Þ

Finally, one can define the ratio of the different angular
observables that we define as

Ri ¼
hΣμ

i i
hΣe

i i
; ð33Þ

where Σl
i stands for the given observable with the leptons l

in the notation for the CP averages of [33] and with the
brackets indicating that the angular observables have been
integrated over certain q2 region. In the discussion below,
we will use the same labels for the q2-dependent observ-
ables obtained replacing the integrated rates in Eqs. (31),
(32) and (33) by the corresponding differential ones.
As it has been concluded in various analyses [56,57],

the LUV signal ought to be produced by lepton-
dependent semileptonic operators Qð0Þ

9;10. In the following,

we will discuss the lepton-universality ratios in scenarios
assuming that the electronic mode is SM-like and with
the NP affecting only the muonic operators. This is
supported by the current (rather unprecise) electronic
data set, and it would also fit a possible NP contribution
to the B → K�μþμ− anomaly discussed in Sec. III C
[56–58,60,62,104]. Nevertheless, note that these ratios
are only sensitive to the differences of the Wilson coef-
ficients for the two leptons. Wewill study three scenarios: A
in which δCμ

9 ¼ −1; B where δCμ
10 ¼ −1; and C an

SUð2ÞL-doublet scenario with δCμ
9 ¼ −δCμ

10 ¼ −0.5. As
discussed in [57], these are all allowed by the LUV
measurement in Bþ → Kþll. In this sense, a positive
and significant NP contribution to C10 does not seem to be
ruled out in some global analyses especially if it comes in a
SUð2ÞL combination with C9 [54]. In order to study
plausible solutions based on quark right-handed currents,
we will also consider, in one particular lepton-universality
ratio, the “primed” scenarios where δCμ

i → δCμ0
i .

In Fig. 8 we show a selection of the ratios (32) and (33)
plotted in terms of the q2-dependent differential rates. The
first plot, on the left-hand side of the upper panel, shows the
effects of the different NP scenarios on the longitudinal
rate. This is analogous to the one in B → Klþl−, and
therefore a signal equivalent to the one measured in RK
should be also found in RK�

L
. On the other hand, the effect in

the ratio of the transversal rate is intrinsically different to
the one probed by RK. Indeed, RK�

T
depends on jH−

V j2,
which includes an interference term, C9C7=q2, that is
negative in the SM. Therefore, a contribution δC9 < 0
is expected to reduce the interference, increasing the
transversal rate at low q2. This is what we observe on

FIG. 8. Lepton-universality ratios for B0 → K�0ll in the SM and in different NP scenarios. The SM is the solid (red), A the dashed
(blue), B the dot-dashed (green) and C the dotted (black) lines. In the right-hand plot of the lower panel (R3) we show, instead, the A0, B0
and C0 scenarios.
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the right-hand side of upper panel in Fig. 8, where, in the
scenario A, RK�

T
> 1 for most of the low q2 region and up to

the point where the term jCμ
9j2 dominates and makes

RK�
T
< 1. Scenario B involves only a reduction of the

quadratic term jCμ
10j2 and therefore it causes an overall

reduction of RK�
T
with respect to 1.

Besides that, the ratios Ri between different coefficients
of the angular observables offer unique opportunities to
investigate LUV. Some of these coefficients, like I6ðq2Þ
(the one entering AFB and P2) and I5ðq2Þ (entering P0

5)
have zeroes at low q2 due to the cancellations between Cl

9

and C7=q2 at work within H−
V (see e.g. [5]). Therefore, a

displacement of the zero-crossings between a muonic
angular coefficient and its electronic counterpart would
be also an unambiguous signal of LUV, as all long-distance
QCD effects cancel out. Defining:

Δi
0 ≡ ðq20ÞðμÞIi

− ðq20ÞðeÞIi
; ð34Þ

an observation of a nonvanishing Δ0
i would provide

sensitivity to LUV in δC9⊥ (primarily for i ¼ 6), to
δC9⊥ þ δC9∥ (primarily for i ¼ 5), and in addition to
δC10 (i ¼ 4).
In particular, these would manifest as singularities in the

q2 dependence of the corresponding lepton-universality
ratios. As an example, we show on the left-hand side of the
lower panel of Fig. 8, R6ðq2Þ in the SM compared to the
different NP scenarios. As anticipated, in A and C, one
finds singularities with the negative contributions to Cμ

9

shifting the zeroes of the muonic mode to higher q2. In
scenario B, involving only a shift to Cμ

10, the positions of
the zeroes do not change and the effect chiefly consists of a
sustained (in q2) reduction of R6 with respect to 1. Thus,
one expects that ratios R6 taken from rates integrated up to
q2 ≃ 4 GeV2 will be very sensitive to LUV entering
through Cl

9 . A very similar plot and discussion can be
made for R5, with the exception that the zeroes of I5ðq2Þ are
at rather lower q2, and for R4, whose zero is also sensitive to
LUV in Cl

10.
On the right-hand side of the lower panel of Fig. 8, we

show a lepton-universality ratio, R3, that is qualitatively
different to the previous ones. The R3 involves the same
angular observable as P1, with its strong sensitivity to right-
handed currents, but with an almost exact cancellation of
hadronic uncertainties in the ratio. In fact, this is shown in
the plot, where the sensitivity is enhanced even more by the
smallness of Il3ðq2Þ in the SM and the fact that it has a zero
which depends on C0

9 and C
0
10. This in turn also means that

obtaining a useful measurement of R3 could prove chal-
lenging as it requires non-null measurements of Il3ðq2Þ,
which would already indicate NP (cf. Sec. III D) or require
very high statistics.

In Table VI we present various binned predictions in the
SM and in the different NP scenarios discussed above. All
of the latter produce a generalized reduction of RK�

L
by a

∼25%, which is equivalent to the one experienced by RK,
although now the characteristic dependence of RK�

T
on Cμ

9

allows to distinguish among them. In A wewould observe a
increment of RK�

T
, in B a 20% decrease and, in C, a value

that is very similar to the SM. In fact we have chosen the
bin ½1; 4� GeV2 because it maximizes this sensitivity of RK�

T

to interference ofCμ
9 with the photon pole. In anticipation to

the incoming LHCb measurements of the angular observ-
ables in both, the muonic and electronic channels, we also
show the results in the ½0.1; 1� GeV2 bin. In this case, RK�

T

does not seem to be very sensitive to the NP scenarios
studied, although the reduction in RK�

L
is similar to the one

in the larger bin.
Finally, we also give results for R6 in ½1; 4� GeV2 to

demonstrate the interest that measurements of the Ri ratios
could have in the future. Nevertheless, we stress that the
real potential of these observables lies in the measurement
of their q2 dependence. In fact, the predictions in the SM in
large bins can have an infinite uncertainty because, for
certain values of the nuisance parameters, the zeroes in Ii
are such that hIei i ¼ 0. This problem, of course, disappears
with the measurement of Ri in a sufficiently dense array
of bins.

V. CONCLUSIONS

We have revisited a model-independent approach to the
nonperturbative uncertainties in B → K�lþl− at large
recoil [33] and in the light of the new data and recent
anomalies. Our approach places the heavy-quark/large-
energy limit of QCD, with its well-defined predictions
and simplifications, in its core. The power corrections
are parametrized incorporating only exact (model-
independent) constraints in QCD. Beyond that, we treat
the resulting parameters as flat errors in the amplitudes
whose ranges we estimate by power-counting arguments, in
case of the form factors or using explicit model calcula-
tions, for the nonfactorizable terms.

TABLE VI. Binned predictions for the lepton-universality
ratios in B0 → K�0ll. Uncertainties in the SM are at the permille
level.

Ratio Bin [GeV2] SM A B C

RK� [0.1, 1] 0.981 0.98 0.92 0.95
[1, 4] 0.996 0.93 0.75 0.82

RK�
L

[0.1, 1] 0.991 0.81 0.72 0.75
[1, 4] 0.999 0.81 0.73 0.75

RK�
T

[0.1, 1] 0.979 1.02 0.97 1.00
[1, 4] 0.987 1.18 0.79 0.97

R6 [1, 4] 0.975 1.31 0.75 1.01
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With this approach to the QCD uncertainties we intend
to minimize the amount of information needed on the
value and correlations of the hadronic matrix elements
that should be, otherwise, obtained from nonperturbative
frameworks like the light-cone sum rules. The reason for
this is twofold: (i) We can classify angular observables
according to their sensitivity to specific NP and hadronic
effects, especially the power corrections. (ii) We make
manifest the fact that the experimental data will not only
test the short-distance structure of the SM but also,
simultaneously, our understanding of the hadronic matrix
elements involved. Therefore, in the event of a disagree-
ment with the data and before claiming discovery of NP,
it will be of utmost importance to find schemes to
dissect, and hopefully rule out, the incompletely under-
stood nonperturbative dynamics as the culprit.
We have then updated our predictions for the muonic and

electronic channels and discussed various classes of
observables according to their theoretical cleanness and
specific sensitivities to NP. First, we demonstrated that the
observables in the Pð0Þ

i basis generally suffer from leading
power corrections and argued that their theoretical uncer-
tainties need to be carefully assessed. These conclusions
extend also to the Si basis in which the hadronic uncer-
tainties generally do not cancel in the heavy-quark limit.
We then ratified the findings of previous studies about the
importance of P0

5 (or S5) in the angular analysis performed
with 1 fb−1 of LHCb data. Our fits also favor negative NP
contributions to C9 although, contrary to the conclusions of
other analyses (e.g. Refs. [50,54]), we find a pull of the
angular obsevables of B → K�μμ at low q2 (below 6 GeV2)
with respect to the SM of only about 2σ. The better
consistency in our approach is achieved with an allowed
region of the nuisance (QCD) parameter space that is
selected by the Rfit algorithm. Similar conclusions are
obtained in the Bayesian analysis of Ref. [52] where the
QCD parameters are also allowed to float in the fits. Our
framework proves most useful by pointing to the specific
form of the QCD hadronic matrix elements that is needed.
In this sense, we discussed that agreement with the SM
requires power corrections to the ratio of the tensor and
vector form factors, T− and V−, that are not in good
agreement with the ones obtained in light-cone sum rule
calculations.
This discussion, in turn, emphasizes the value that two of

these observables have. Indeed, P1 and PCP
3 only receive

contributions from the leading power corrections that are
further suppressed around the low-q2 end point, providing a
theoretically clean window to right-handed currents BSM.
Furthermore, the experimental prospects for the dedicated
measurement of this region, especially with the electronic
modes, is very promising. We argued that in combination
with the radiative decays, these two observables provide a

sufficient set of constraints to accurately determine the
Wilson coefficients C0

7 and C7 from experiment. We
determined the bounds in the C0

7 plane that can be obtained
with the current measurements on radiative decays and the
angular observables in the muonic channel to illustrate this.
Finally, we proposed various lepton-universality ratios

and relative shifts in zero-point crossings using the
angular distributions of the muonic and electronic chan-
nels. These are all very accurately predicted in the SM
and have a rich structure in terms of lepton-dependent
Wilson coefficients. Ratios based on the transversal and
longitudinal contributions to the decay rate are very
useful to distinguish among different scenarios involving
the semileptonic operators. In particular, RK�

L
is similar to

the ratio in the kaonic decay, RK, whereas RK�
T
shows an

interesting dependence on Cl
9 due to the interference with

the photon pole in H−
V . Ratios involving the angular

coefficient I4;5;6ðq2Þ are particularly interesting because
of their zeroes that depend on C9 and C10 and LUV
produces the appearance of singularities in the rates. We
discussed binned predictions in various NP scenarios and
concluded that these lepton universality ratios have a
great potential in terms of the discovery and shaping of
the presumed lepton-universality interactions beyond
the SM.
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Note added.—After this work was completed and submit-
ted, Refs. [105–107] appeared concerning BSM searches
with B → Vlþl− decays. Furthermore, Ref. [108]
appeared which updates the LCSR predicions of [78].
Interestingly, while the tensor form factor T−ð0Þ ¼ T1ð0Þ
in [108] is significantly lower than in [78] and now leads to
a SM prediction for BRðB → K�γÞ in agreement with
experiment, the ratio V−ð0Þ=T−ð0Þ receives no significant
change and remains at variance with the power corrections
inferred from data (if the SM is assumed).
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