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We consider the electron-positron annihilation process into hadrons Reþe− up toOðα3sÞ, and we adopt the
smearing method suggest by Poggio, Quinn, and Weinberg to confront the experimental data with theory.
As a theoretical model, we use a QCD coupling constant frozen in the low-energy regime, where this
coupling can be parametrized in terms of an effective dynamical gluon mass (mg) which is determined
through Schwinger-Dyson equations. In order to find the best fit between experimental data and theory, we
perform a χ2 study, that, within the uncertainties of the approach, has a minimum value whenmg=ΛQCD is in
the range 1.2–1.4. These values are in agreement with other phenomenological determinations of this ratio
and lead to an infrared effective charge αsð0Þ ≈ 0.7. We comment how this effective charge may affect the
global duality mass scale that indicates the frontier between perturbative and nonperturbative physics.

DOI: 10.1103/PhysRevD.93.014027

I. INTRODUCTION

The standard model is one of the most successful
theories of the last century, the physical quantities of which
are computed at the loop level with high precision showing
remarkable agreement with the high-energy experimental
data. On the other hand, the theory that explains the strong
interaction, known as QCD, is governed by an asymptoti-
cally free gauge field theory involving elementary quark
and gluon fields at high energy or short distances. This
behavior at high energies is amenable to perturbative theory
calculations using Feynman diagrams. This can be used to
calculate physical mass-shell process. At low energy there
is no justification for a perturbative treatment of QCD. In
this regime nonperturbative approaches come into play.
A nonperturbative approach for QCD is provided by the

Schwinger-Dyson equations (SDE), the study of which has
revealed relevant progress in the recent years, most of it
related to the disappearance of IR divergences when the
theory is resumed in a particular gauge invariant scheme,
known as pinch technique [1]. The infrared QCD coupling
turns out to be IR finite when gluons develop a dynamically
generated mass (mg) in this nonperturbative approach. This
point was first demonstrated in Ref. [2] and was also
discussed at length in Refs. [3–10] among many other
references of this group. These results were checked
independently by different lattice simulations [11–18],
have been studied in different approaches [19–22], and
are, step by step, being accepted as a cure for the infrared
QCD divergences. The finitude of the QCD coupling
constant can be related to a nonperturbative IR fixed point,
which is a property of dynamical mass generation in
non-Abelian theories [23]. The phenomenological conse-
quences of such IR finite coupling, or a nonperturbative

fixed point, have been discussed in Ref. [24], and recently
we have discussed how this nonperturbative fixed point can
change the local minimum of a renormalization group
improved effective potential [25]. This change of minimum
state may produce noticeable modifications in the physical
properties of the model studied in Ref. [26].
From the phenomenological point of view, the theoreti-

cal results leading to a finite QCD coupling are more than
welcome, since many models describing strong interaction
physics at low energy or small transferred momenta make
use of an IR finite moderately small coupling constant. We
present in the sequence a partial list of model calculations
using an IR finite coupling constant: 1) The description of
jet shapes observables requires an IR coupling equal to 0.63
[27]; 2) quarkonium potential models use an IR coupling of
order 0.6 [28]; 3) the theoretical ratio Reþe− can fit the
experimental data with an IR coupling approximately 0.8
[29]; 4) calculation of the quarkonium fine structure in the
framework of the background perturbation theory requires
a coupling as low as 0.4 [30]; 5) QCD-inspired models
describing total hadronic cross sections make use of an IR
coupling of the order 0.5 [31]; and 6) the experimental data
on the unpolarized structure function of the proton are fitted
with a coupling constant in the range 0.4–0.56 [32].
Besides the phenomenological indications, there are also
several theoretical hints that the QCD coupling does not
increase abruptly at low energies, and this fact may explain
results claiming that the frontier between perturbative and
nonperturbative physics may occur at relatively small
momenta [33]. Of course, many of these calculations are
based on models that cannot be fully connected to QCD,
and even when related to QCD, they may be, for example,
renormalization scheme dependent, but they provide one
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hint about what we can expect for the IR value of the strong
coupling constant.
It should be remembered that a frozen coupling constant

of the order that we described in the previous paragraph
may contradict what is known about chiral symmetry
breaking in QCD [34,35]. It is indeed a problem in the
realm of Schwinger-Dyson equations to obtain the right
chiral parameters for the value of the quark condensate, fπ ,
and other quantities when the gluon acquires a dynamically
generated mass and the coupling freezes in the infrared.
Possible solutions in this approach, invoking nonperturba-
tive QCD aspects, were pointed out only in the last years
[36,37]. The calculation of Ref. [36] is consistent with
lattice data showing that the chiral and confinement
transitions happens at the same temperature [38], and
within this model we can obtain reasonable values for
the chiral parameters [39]. Fortunately the problems raised
by Peris and de Rafael [34] do not lead to a “no-go"
theorem, and the solution of Ref. [36] is one possible way
to evade these difficulties.
In this work we will study the ratio Reþe− ,

Reþe−ðsÞ≡ σðeþe− → hadronsÞ
σðeþe− → μþμ−Þ ; ð1Þ

as a tool to determine the infrared value of an effective
QCD charge, which is related to the ratio mg=ΛQCD, where
ΛQCD is the QCD characteristic scale. A similar kind of
analysis has already been performed in the known work of
Mattingly and Stevenson [29] in the context of optmized
perturbation theory (OPT) and in Ref. [40] in the context of
analytic perturbation theory. Here we will differ from them
using an effective QCD charge obtained from Schwinger-
Dyson equations, verifying that the experimental data are
fitted only by a narrow range ofmg=ΛQCD values. We recall
that Reþe−ðsÞ can be calculated perturbatively and can be
developed as a power series in the QCD coupling and in
terms of the parameter

aðsÞ≡ αsðsÞ=π; ð2Þ

which, in our case, will be improved using the effective
charge obtained through the SDE in an gauge invariant way
using the pinch technique [1].
The organization of this work is the following. In Sec. II

we discuss the hadronic cross section Reþe−ðsÞ both in the
partonic level and with massive quarks, and after that we
use the nonperturbative effects in the QCD coupling
constant to calculate the behavior of ratio Reþe−ðsÞ. In
Sec. III the theoretical calculation is compared with the
experimental data using smeared functions as proposed by
Poggio, Quinn, and Weinberg [41], obtaining results that
confirm the IR freezing of the QCD coupling constant. In
Sec. IV we use the concept of global duality and discuss
how this effective charge affects the scale that indicates the

matching between the perturbative and nonperturbative
physics. In Sec. V we draw our conclusions.

II. HADRONIC CROSS SECTION Reþe−ðsÞ
The eþe− annihilation into hadrons is one of the most

important processes for testing the theory of strong inter-
action. This process provides a fundamental QCD test,
supplying evidence for the existence of color [42]. At
lowest order the total hadronic cross section is obtained by
simply summing over all kinematically accessible flavors
and colors of quark-antiquark pairs,

Reþe−ðsÞ≡ σðeþe− → hadronsÞ
σðeþe− → μþμ−Þ ¼ 3

Xnf
i

q2i : ð3Þ

Here the qi denote the electric charges of the different
flavors of quarks, and this is recognized as the parton model
result.
Real and virtual gluon corrections to this basic

process (3) will generate higher-order contributions to
the perturbative series. The second- and higher-order
corrections in perturbation theory were computed a long
time ago in the zero quark mass limit in Ref. [43] and can
be expressed order by order in a perturbative series,

Reþe−ðsÞ ¼ 3
Xnf
i

q2i ð1þRðsÞÞ; ð4Þ

where R has the form

RðsÞ ¼ að1þ r1aþ r2a2 þ…Þ ð5Þ

and depends upon a single kinematic variable s≡Q2, the
c.m. energy. As shown in Eq. (2), a is defined by the QCD
coupling constant over π. The coefficients of Eq. (5) depend
of the renormalization scheme. In the modified minimal
subtraction scheme (MS) the coefficients were computed in
Ref. [43],

r1 ¼ 1.986 − 0.1153n2f ð6Þ

r2 ¼ −6.637 − 1.200nf − 0.00518n2f; ð7Þ

where nf is the number of flavors.
We will follow closely the pioneering work about OPT

by Mattingly and Stevenson [29], but instead we will
consider the nonperturbative approach to the QCD cou-
pling constant obtained through the SDE. The approach
described above is valid for massless quarks, mq ¼ 0. To
include quark mass effects, we use the approximate result
[29,41,44]
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Reþe−ðQ2Þ ¼ 3
X
i

q2i
vi
2
ð3 − v2i Þ½1þ gðviÞR�; ð8Þ

with the sum over the active quark flavors that are above
threshold, i.e., those with masses lower than Q=2
(mi < Q=2), and

vi ¼
�
1 − 4

m2
i

Q2

�1
2

;

gðvÞ ¼ 4π

3

�
π

2v
−
3þ v
4

�
π

2
−

3

4π

��
: ð9Þ

Here vi represents the quark velocity, so that vi ¼ 0
corresponds to the heavy quark threshold, and the results
for massless quarks are recovered in the relativistic
limit vi → 1.
For the theoretical calculation of Reþe−ðsÞ, we shall take

RðsÞ giving by Eqs. (4) and (5) with the coefficients r1 and
r2 given by Eqs. (6) and (7), respectively, but assuming an
expansion in terms of the nonperturbative QCD coupling
constant obtained from QCD Schwinger-Dyson equations
in the pinch technique approach. A quite general expression
for this coupling is given by [4]

αsðk2Þ ¼
�
4πβ0 ln

�
k2 þ fðk2; m2

gðk2ÞÞ
Λ2
QCD

��
−1
; ð10Þ

where the function fðk2; m2ðk2ÞÞ is determined as a fit to
each specific value of the dynamically generated effective
gluon mass mg. For simplicity we have adopted the
following expression for this coupling,

αsðQ2Þ ¼
�
4πβ0 ln

�
Q2 þ ρm2

gðQ2Þ
Λ2
QCD

��
−1
; ð11Þ

where β0 ¼ ð11N − 2nfÞ=48π2, ΛQCD ≡ Λ is the charac-
teristic QCD scale, and the function m2

gðQ2Þ represents the
dynamical gluon mass given by [45]

m2
gðQ2Þ ≈ m4

g

Q2 þm2
g
: ð12Þ

The advantage of Eq. (11) is that we can vary the IR mg

value without the need to solve the coupled SDE for the
gluon propagator, and as long as we consider the 3 < ρ < 4
interval, we accommodate the early Cornwall result [2], the
ones of Ref. [4] without noticeable differences, and this
range is also consistent with the phenomenological values
obtained in Ref. [32]. It is important to note that at high
energies we recover the usual perturbative strong coupling.
The effective QCD charge discussed in the previous

paragraph has been obtained in one specific scheme (the
SDE and pinch technique) leading to a particular derivation
of the nonperturbative QCD effective coupling. Although

this scheme is gauge invariant [1], it may be claimed that
we could have different definitions for the nonperturbative
QCD coupling and argue why we should consider Eq. (11)
as representative of the actual behavior of the QCD charge.
About this we can first say that Eq. (11) matches with the
perturbative QCD coupling at high momenta. Second,
lattice data and SDE solutions are clearly pointing to the
existence of a dynamical mass scale for the gluon propa-
gator, and if this is true we can prove the existence of a
nonperturbative IR fixed point, i.e., an IR frozen coupling
constant [23]. Therefore, Eq. (11) certainly matches the
expected UV and IR behaviors of the QCD coupling
constant no matter the scheme used to determine this
effective charge, and we shall assume that in our calcula-
tion we can replace the perturbative coupling by this
effective one.
Going back to the Reþe−ðsÞ ratio, one interesting issue is

to compare the effects of quark masses at low energy on this
ratio when we consider the effective QCD coupling
constant αs. In other words, we take both Eqs. (4)
and (8) at order OðαsÞ and compare them. So these
equations become

Reþe−ðQ2Þ ¼ 3
X
i

q2i
vi
2
ð3 − v2i Þ

�
1þ gðviÞ

αsðQ2Þ
π

�
;

ð13Þ

Reþe−ðQ2Þ ¼ 3
Xnf
i

q2i

�
1þ αsðQ2Þ

π

�
; ð14Þ

where αsðk2Þ is given by Eq. (11). We take standard values
for the current-quark masses [46]: mu ¼ 2.4 MeV,
md ¼ 4.9 MeV, ms ¼ 100 MeV, mc ¼ 1.3 GeV and
Λ ¼ 300 MeV.
From Fig. 1 we can see that the mass effect on the ratio

Reþe− is negligible for light quarks and becomes important
with the opening of the charm threshold. Note that not only
the freezing in the QCD coupling constant [Eq. (11)] was
considered in Eqs. (13) and (14), but the perturbative
coupling constant has been considered in Eq. (14) as well,
and this one is represented by the dotted-dashed line in
Fig. 1. It seems that the mass effect, when we use the IR
finite charge, is not so strong in the low-energy regime
(below 1 GeV) in comparison with the pure perturbative
calculation.
We have considered the expression for RðsÞ in the MS,

and the same happens for the quark masses. The mass effect
is only relevant for heavy quarks, does not affect the main
region of R(s) that we study when the coupling is infrared
finite, and was not included in the final result. However, we
do use a different scheme to describe the infrared finite
coupling. It has been argued that the Green functions
obtained through the combination of the pinch technique
with the background field method (PT-BFM) are gauge
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invariant and renormalization group independent [47] (and
so is the coupling constant [48]); i.e., they are independent
of any renormalization mass μ. This means that in principle
we could obtain a coupling that would be independent of
ambiguities in its determination. However, this is not the
case. The SDE for the gluon propagator, from which part of
the information leading to the infrared coupling is obtained,
has to be solved imposing that the nonperturbative propa-
gator is equal to the perturbative one at some high-energy
scale ðμÞ or comparing the SDE propagator to the lattice
data. After obtaining the QCD propagators, we can
determine the μ independent coupling through one specific
relation of two point correlators. This procedure is not
unambiguous and contains all the numerical uncertainty
related to this specific calculation. We may argue that the
mass generation mechanism in the PT-BFM approach
minimizes the vacuum energy [2] and should reflect a
scheme independent quantity; however, the full procedure
to obtain the infrared finite coupling contains truncation
and numerical approximations that are hard to estimate at
the present level of the SDE solutions. As a matter of
completeness, we recall that another possible determination
of the IR behavior of αs is based on light-front holographic
QCD [49]. The only assumption that underlies light-front
holographic QCD is that QCD is conformal in the IR, in a
procedure claimed to be renormalization scheme indepen-
dent [50]. Similarly to the above discussion, the determi-
nation of the coupling uses a particular definition, which is
called the g1 scheme, that may introduce uncertainties in
the same way as the PT-BFM approach. The g1 scheme can
be related to other couplings, as the one assumed in our
work, using fundamental QCD relations, and these rela-
tions suggest that, once transformed to the one discussed
here, the coupling freezes near 0.7 [51], i.e., the same value
found by us.

III. SMEARING Reþe−ðsÞ
The comparison of the theoretical prediction with the

experimental data for Reþe− is not possible rigorously,
because there is no direct correspondence between the
perturbative quark-antiquark thresholds and the hadronic
thresholds and resonances of the data. The only way to do
this is to use the smearing method proposed by Poggio,
Quinn, and Weinberg [41]. Although this method was
thought to be used at high energies, in Refs. [29] and [40] it
was used at low energies in different contexts and with
interesting results.
The experimental data that we are going to use have been

taken from Particle Data Group, Ref. [46]. Of particular
interest to us is the region from Q ¼ 0 up to 6 GeV. The
data and errors are shown in Fig. 2. In that figure we have
done a zoom to better show the resonances in the region of
interest to us.
Figure 3 shows our data compilation, up to 6 GeV. The

red solid line represents our fit, where the quite narrow
resonances ρ;ϕ; J=ψ ;ψð3686Þ;ψð3770Þ, as assumed in
Ref. [29], were not included in the data compilation.
The data go well beyond the b quark threshold, but they
have no real effect on the results that we shall present.
In the fit of Fig. 3 are included four resonances, the
ω; ρ0;ψð4040Þ;ψð4415Þ. The red curve was obtained with
the following fit,

X4
i

AiBi

ðQ2 −M2
i Þ2 þ Ai

þ CþDQ2; ð15Þ

where M1¼0.781;M2¼1.65;M3¼4.04;M4¼4.42GeV2,
and we summarize the values and errors of the fit
parameters in Table I. To perform the fit, we used the
NonlinearModelFit package of Mathematica software
obtaining an R2 value for the number of adjusted points
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FIG. 1. The one-loop theoretical ratio Reþe− behavior with the
nonperturbative coupling of Eq. (11) with ρ ¼ 4 and
mg=Λ ¼ 1.2. The mass effects on the Reþe− are given by
Eq. (13) (solid line), while Eq. (14) is represented by the dashed
line. The calculation with the perturbative coupling constant is
also shown by the dotted-dashed line.
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FIG. 2. World data to ratio Reþe−ðsÞ ¼ σðeþe− → hadrons; sÞ=
σðeþe− → μþμ−; sÞ. σðeþe− → hadrons; sÞ is the experimental
cross section corrected for initial state radiation and electron-
positron vertex loops, σðeþe− → μþμ−; sÞ ¼ 4πα2ðsÞ=3s. Data
errors are total below 2 GeV and statistical above 2 GeV.
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equal to R2 ¼ 0.9921. A quite detailed discussion about the
errors appearing in the analysis of the experimental data is
already presented in the second work of Ref. [29].
In order to compute the smeared experimental data, we

employ the same approach as the one of Ref. [29]. We
assume that the narrow resonances have a Breit-Wigner
form,

RresðQ2Þ ¼ 9

α2
BllBh

M2Γ2

ðQ2 −M2Þ2 þM2Γ2
; ð16Þ

where α is the QED coupling and M;Γ; Bll; Bh are the
mass, width, lepton branching ratio, and hadronic branch-
ing ratio, respectively. The narrow resonances that were
excluded from the fit can now be represented by a delta
function through the following transformation:

1

ðQ2 −M2Þ2 þM2Γ2
≈

π

MΓ
δðQ2 −M2Þ: ð17Þ

For these we can write Eq. (16) as

RresðQ2Þ ≈ 9πMΓ
α2

BllBhδðQ2 −M2Þ: ð18Þ

In order to compare both the theoretical and experimen-
tal data, we used the “smearing” procedure applied by
Poggio, Quinn, and Weinberg (PQW) in Ref. [41]. There
they defined the smeared ratio by

R̄PQWðQ2;ΔÞ ¼ Δ
π

Z
∞

0

ds0
Reþe−ð

ffiffiffiffi
s0

p Þ
ðs0 −Q2Þ2 þ Δ2

: ð19Þ

The smeared ratio could be written as [41]

2iR̄PQWðQ2;ΔÞ ¼ ΠðQ2 þ iΔÞ − ΠðQ2 − iΔÞ; ð20Þ

where ΠðzÞ is the vacuum-polarization amplitude. The best
choice of Δ is the smallest value that will smooth out any
rapid variations in either the experimental or the theoretical
Reþe− . It turns out that this depends upon the energy region
one is interested in. Around the charm threshold a
Δ ¼ 3 GeV2 or more is necessary, while in the lowest-
energy region aΔ as small as 1 GeV2 can be used [29]. The
idea now is to apply this smearing to both the theoretical
and experimental Reþe−’s and then compare the results.
To determine the theoretical smeared ratio Reþe− , we can

solve Eq. (19) by numerical integration. In order to deal
with the different thresholds, we performed the numerical
integration considering several intervals, from mu to Qmax,
and over the range 0 to mu we considered Reþe− ¼ 0. We
assumed Qmax ¼ 6 GeV. From Qmax to∞, Reþe− remained
constant, and in this region we can make the integration of
Eq. (19) analytically. The quite narrow resonances are
given by Eq. (18), and therefore Eq. (19) can be solved
without trouble, and their contributions become

R̄res ≈
9BllBhΔMΓ

α2½ðQ2 −M2Þ2 þ Δ2� : ð21Þ

The other resonances (ω; ρ0;ψð4040Þ;ψð4415Þ) were con-
sidered in the fit with a Breit-Wigner function.
The fitted experimental data were integrated numerically

as shown in Eq. (19). We computed the smeared quantity
for four different values Δ ¼ 1 GeV2, 1.5 GeV2, 2 GeV2,
and 3 GeV2. For simplicity we present in Fig. 4 the result
only for Δ ¼ 1.5 GeV2. The smeared theoretical Reþe− was
computed, threshold by threshold, for values of mg=Λ
between 0.7 and 2.4 and ρ ¼ 4, and the values are also
shown in Fig. 4. Note that the QCD coupling constant
Eq. (11) depends on mg=Λ, and consequently the ratio
Reþe− has the same dependence. The shaded area in the
figure was determined assuming �7% uncertainty around
the experimental central value, obtained when we consid-
ered ad hoc variations of the many parameters in our fitting
procedure and the possible normalization errors pointed out
in Ref. [29].
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FIG. 3. Compilation of experimental Reþe− data (excluding
narrow resonances). The red solid line represents the fit of
Eq. (15).

TABLE I. Fit parameters and errors, respectively, leading to the
fitted curve in Fig. 3.

Estimate Standard error

A1 3.61 × 10−3 9.80 × 10−5

A2 4.50 × 10−2 6.73 × 10−3

A3 3.42 × 10−3 5.69 × 10−4

A4 1.11 × 10−2 2.26 × 10−3

B1 5.37 × 10−5 3.55 × 10−7

B2 9.11 × 10−6 4.80 × 10−7

B3 1.20 × 10−5 4.87 × 10−7

B4 8.71 × 10−6 4.95 × 10−7

C −4.63 × 10−1 7.00 × 10−2

D 6.66 × 10−1 2.26 × 10−2
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In Fig. 4 most of the theoretical smeared lines are within
the shaded area except for the result obtained with mg=Λ ¼
0.7 (magenta line with square data points), which is out of
the shaded region. This fact will happen for any mg=Λ
value smaller than 0.7, which leads to large values of the
coupling constant where the expansion in Reþe−ðsÞ does not
make sense anymore. This mean that there is not agreement
between the data and theory for mg=Λ ¼ 0.7 and lower
values within the assumed uncertainty. The theoretically
smeared Reþe− with mg=Λ between 0.8 and 2.4 are within
the shaded region. However, larger mg=Λ values lead to
theoretical Reþe− curves increasingly away from the exper-
imental data, but with lines that can barely be distinguished
from each other, and we did not include these results in the
figure.
We have applied the smearing method for the ratio Reþe−

with ρ ¼ 4 and different values of Δ in order to compare
experiment and theory. In principle, following Ref. [29], a
smaller Δ value is better to describe the low-energy limit,
and we shall limit ourselves to Reþe− up to 1.5 GeV2 as
shown in Fig. 4. In order to compare the data, we performed
a χ2 test for our physical quantities. We chose a set of
fOexp

i g of measured observables and computed fOth
i ðθÞg,

where θ are parameters. Then we minimized the χ2 function

χ2ðθÞ ¼
X
i

ðOexp
i −Oth

i ðθÞÞ2
ðΔOexp

i Þ2 ;

where the observable of our interest is the ratio Reþe− and
the parameter is the dynamic gluon mass mg=Λ. With 21
points (degrees of freedom) and a deviation of data about
10%, we developed a χ2 test for comparison of the smeared
Reþe− at Oðα3sÞ. In Table II we set ρ ¼ 4 and write the χ2

values for several mg=Λ. The values of mg=Λ are in the
interval [0.8, 2.4], and according to Fig. 4 they fall into the
shaded region.
One interesting point in Table II is that for different

mg=Λ values and ρ ¼ 4 all minimum values of χ2 occur for
mg=Λ ¼ 1.2. This behavior can be better seen in Fig. 5,
where ν is the number of degrees of freedom. This means
that there is only one value of mg=Λ providing the best
match with the experiment, and pointing out for one
specific infrared value of the QCD coupling constant. It
is important to remember that in the SDE equations mg is
one input parameter and lattice data do not have enough
precision to pinpoint this mass scale, revealing the interest
on phenomenological determinations of this quantity.
As we discussed after Eq. (10), for each value of mg=Λ

we have a slightly different SDE solution, the differences of
which can be parametrized in terms of different ρ values.
Therefore we have changed the Δ values and the ρ values
and studied the χ2 distribution. With ρ ¼ 4 and
Δ ¼ 1.5; 2; 3 GeV2, we have found that the minimum is
located at mg=Λ ¼ 1.2. However, with Δ ¼ 1.5 GeV2 and
Δ ¼ 2 GeV2 and taking ρ ¼ 3, 3.5, 4, we can see in

Experimental data

0.0 0.5 1.0 1.5 2.0
1.0

1.2

1.4

1.6

1.8

2.0

2.2

Q² GeV

R
P

Q
W

FIG. 4. Smeared Reþe− for Δ ¼ 1.5 GeV2. The experimental
result is shown in the middle of the shaded region. We have drawn
this shaded area assuming an error of 7% above and below the
smeared experimental data, which helped us to determine differ-
ent values of the ratio mg=Λ that are near this region. For
example, the theoretical smeared Reþe− for mg=Λ ¼ 0.7 is shown
by the magenta line, which is out of the shaded area.

TABLE II. χ2-values for Reþe− with ρ ¼ 4 and different Δ
values (in units of GeV2).

Δ ¼ 1.5 Δ ¼ 2 Δ ¼ 3

mg=Λ ¼ 0.8 1.37763 1.85683 2.70305
mg=Λ ¼ 0.9 0.837894 1.24134 2.10877
mg=Λ ¼ 1.0 0.712088 1.06814 1.92454
mg=Λ ¼ 1.2 0.657517 0.98275 1.82944
mg=Λ ¼ 1.4 0.666606 0.99339 1.84067
mg=Λ ¼ 1.6 0.698763 1.03745 1.88845
mg=Λ ¼ 1.8 0.744845 1.09813 1.95303
mg=Λ ¼ 2.0 0.801059 1.16891 2.02676
mg=Λ ¼ 2.2 0.865123 1.24620 2.10588
mg=Λ ¼ 2.4 0.935314 1.32809 2.18823
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FIG. 5. χ2 for the smeared quantity R̄eþe−ðQ2;ΔÞ with ρ ¼ 4
and different Δ values.
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Figs. 6 and 7 that the minimum points are now located
between mg=Λ ¼ 1.2 and mg=Λ ¼ 1.4. Note that the
minima for Δ ¼ ð1.5; 2Þ GeV2 and ρ ¼ 3, 3.5 are approx-
imately atmg=Λ ¼ 1.4. Unless some SDE solution deviates
grossly from the results that are presently found in the
literature, mg=Λ values between 1.2 and 1.4 and ρ values
between 3 and 4 lead to an infrared value of the coupling
constant, according to Eq. (11) with two quark flavors,
approximately of Oð0.7Þ. The minimum χ2 seems to be
dependent on the product ρmg=Λ.

IV. GLOBAL DUALITY AND THE INFRARED
QCD COUPLING

It is usually assumed that there is a frontier between
perturbative and nonperturbative QCD at one specific mass
scale, and there are proposals about how this scale, that
separates long and short distances, can be determined. One
of these proposals is established by the concept of global
duality and is explained in Refs. [52,53]. The determination
of this scale (s0) consist in doing a matching between

perturbative QCD (pQCD) and experiment by the
expression

Z
s0

0

dt
1

π
ImΠðtÞexp ¼

Z
s0

0

dt
1

π
ImΠðtÞpQCD: ð22Þ

The s0 scale was determined to be of s0 ≈
1.5 GeV2 [40,53].
Equation (22) also implies

Z
s0

0

dsR̄exp ¼
Z

s0

0

dsR̄theor; ð23Þ

and we can use our previous result to determine s0. It is
clear that we shall have a different s0 value for the matching
prescribed by Eq. (22) if we use the effective charge that we
discussed before. This happens because in the case of
perturbative QCD the right-hand side of Eq. (22) starts
growing fast as we approach the Landau pole of the
perturbative coupling and the solution appears at a large
mass scale. On the other hand, assuming global duality for
the IR finite effective QCD charge, we do not expect a fast
rise of the coupling at low momenta and consequently we
expect a slow increase of the right-hand side of Eq. (23) as
we go to small momenta.
To determine the scale s0, we can define the quantity

ϵðQ2; s0Þ ¼
Z

s0

0

dsðR̄exp − R̄theorÞ ð24Þ

and look for zeros of this equation. In the above equation,
we have a s0 and mg=Λ dependence besides the one on Δ
and ρ. For simplicity we can solve Eq. (24) in the limit
Q2 → 0, for specific values of the smearing factors Δ, ρ,
and mg=Λ and look for a zero of Eq. (24).
In the case of Δ ¼ 1.5 GeV2, ρ ¼ 4, and mg=Λ ¼ 1.2,

we show in Table III that ϵðQ2 → 0Þ ≈ 0 when
s0 ¼ 0.87 GeV2. This, as discussed previously, is the result
that we were expecting when we changed the perturbative
coupling by the effective charge of Eq. (11), showing that
the so-called frontier between the perturbative and non-
perturbative physics occurs at one smaller mass scale than
the one determined with perturbative QCD. We also show
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FIG. 6. χ2 for the smeared quantity R̄eþe−ðQ2;ΔÞ with Δ ¼
1.5 GeV2 and different ρ values.

m g

²

4
2

m g

²

3.5

0.5 1.0 1.5 2.0 2.5
0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

m g

²

3

FIG. 7. χ2 for the smeared quantity R̄eþe−ðQ2;ΔÞ with Δ ¼
2 GeV2 and different ρ values.

TABLE III. ϵð0Þ with mg=Λ ¼ 1.2, ρ ¼ 4, and differ-
ent s0 values.

s0 ϵð0Þ
0.6 −0.0987
0.8 −0.0276
0.87 −0.0060
1.0 −0.0291
1.2 −0.0812
1.4 −0.1264
1.6 −0.1545
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in Fig. 8 a plot of ϵðQ2 → 0Þ as a function of s0 and mg=Λ
in the case of Δ ¼ 1.5 GeV2 and ρ ¼ 4, where we can
show that the smallest ϵð0Þ values are obtained at one s0
smaller than 1.5 GeV2. Actually the effective coupling that
we are using has nonperturbative information, and therefore
we should not be allowed to say that s0 is the mass scale
indicating the transition between short and large distances
but should just say that if we improve the QCD calculations
with such an effective charge we probably could perform
“improved perturbative” calculations a little bit deeper into
the IR region.

V. CONCLUSIONS

We have studied the electron-positron annihilation proc-
ess into hadrons Reþe− up to Oðα3sÞ, where the QCD
coupling constant was described by an effective charge
obtained in solutions of the Schwinger-Dyson equations in
the pinch technique scheme. This effective charge is frozen
in the infrared region, and the frozen value is related to a
dynamically generated gluon mass. The existence of such a
dynamical gluon mass, or an effective mass scale for the
gluon propagator, has not only been observed in SDE
solutions but has been confirmed by lattice simulations, and
in this case we can prove that the coupling constant freezes
in the IR region [23]. The main purpose of the work was the
determination of the infrared value of the dynamical gluon
mass, related to the IR value of the effective charge, since
this value enters as an input into the numerical solutions of
the SDE, and lattice data including dynamical quarks can
only obtain rough approximations to this quantity.
To compare the Reþe− experimental data to the theoreti-

cal calculation, we adopted the smearing method suggested
by Poggio, Quinn, and Weinberg. In order to find the best
fit between the experimental data and theory, we performed
a χ2 study of the resulting curves, that, within the
uncertainties of the approach, leads to a minimum value
when mg=ΛQCD is in the range 1.2–1.4. These values are in
agreement with other phenomenological determinations
of this ratio and imply an infrared effective charge

αsð0Þ ≈ 0.7, which is also in agreement with the result
obtained by Mattingly and Stevenson when analyzing
Reþe− in a different scheme [29].
The χ2 study indicates that the result is stable and

independent of the smearing parameter Δ. All uncertainties
about the full procedure have been discussed in Ref. [29],
and the main novelty is the use of the effective charge
related to the dynamical gluon mass scale. Although there
is much evidence for an IR finite gluon propagator and
coupling constant, there is not a unique definition of the
nonperturbative QCD charge. However, the effective cou-
pling that we have considered here can map any possible
behavior of the QCD charge, i.e., is compatible with the UV
behavior predicted by perturbative QCD and is frozen in the
IR region, as should be expected when the theory develops
a dynamically generated mass.
Taking advantage of our Reþe− calculation, we have

discussed what happens with the scale determined by the
concept of global duality [52,53] when the perturbative
coupling is exchanged by the effective charge discussed up
to now. We verify that s0, the mass scale indicating the
transition between short and large distances, is changed to a
smaller value. However, as should be understood from our
procedure, we are assuming an “improved” coupling, and
this fact has clear phenomenological consequences. One is
that we could perform “improved perturbative” calculations
possibly going deeper into the IR region, although the main
point is that it is necessary to build a bridge between
perturbative QCD and the SDE results, which not only
show a cure for the QCD IR divergences but seems to
provide a soft transition between the perturbative and
nonperturbative QCD regimes.
Although the idea of dynamical gluon mass generation

was put forward a long time ago, leading to infrared finite
Green’s functions [2], due to the involved field theoretical
aspects of the combination of the pinch technique with the
background field method necessary to obtain gauge invari-
ant and renormalization group independent quantities, only
after the appearance of many lattice QCD simulations did
this subject have a revival, in such a way that very recent
theoretical papers are revisiting the determination of a finite
gluon propagator and coupling constant in three- [54] and
four-dimensional QCD [47], trying to spread the ideas of
this mechanism. On the other hand, this subject also raised
attempts to describe these infrared finite quantities in terms
of an effective Lagrangian valid for infrared QCD (see
Refs. [55–57] and references therein). These attempts,
although introducing a hard gluon mass and leading to a
“soft” Becchi-Rouet-Stora-Tyutin symmetry breaking,
seem to be compatible (at the “perturbative” level) with
many lattice data about the freezing of the infrared QCD
quantities. Therefore, including the discussion presented in
this work, there are several new [58–61] and old [62] tests
for the phenomenological consequences of an infrared
finite QCD coupling and gluon propagator, and, as the

FIG. 8. ϵðQ2 → 0Þ surface [Eq. (24)] calculated up to Oðα3sÞ
with Δ ¼ 1.5 and ρ ¼ 4.
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time goes on, all these attempts may provide a new
consistent view of infrared QCD. It is also interesting to
note that a recent work [63] determined the transition scale
between perturbative and nonperturbative QCD using
hadron-parton duality, which, when translated to the MS
scheme, would give a value close to the coupling deter-
mined by us. This can only indicate that the different
approaches lead to a result that is quite stable.
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